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ABSTRACT

Feature extraction is a key step in image processing for pattern recognition and machine learning
processes. Its purpose lies in reducing the dimensionality of the input data through the computing of
features which accurately describe the original information. In this article, a new feature extraction
method based on Discrete Modal Decomposition (DMD) is introduced, to extend the group of space
and frequency based features. These new features are called modal features. Initially aiming to
decompose a signal into a modal basis built from a vibration mechanics problem, the DMD projection
is applied to images in order to extract modal features with two approaches. The first one, called
full scale DMD, consists in exploiting directly the decomposition resulting coordinates as features.
The second one, called filtering DMD, consists in using the DMD modes as filters to obtain features
through a local transformation process. Experiments are performed on image texture classification
tasks including several widely used data bases, compared to several classic feature extraction methods.
We show that the DMD approach achieves good classification performances, comparable to the state
of the art techniques, with a lower extraction time.

1 Introduction

Raster digital images are composed of a finite set of digital values with several dimensions (height, width, depth, time
or other). In the two-dimensional space case, the most common one, these digital values are called pixels and contain a
fixed number related to the color and intensity information of the scene. The amount of computing space the raster
image is taking up is directly linked to its number of pixels, but also to the chosen color representation (gray-scale,
RGB, HSV, etc.).

For a storage purpose, the raster image I is encoded and represented with a raster file format, which aims reduce the
image size without losing too much of the information it contains. Several file formats are used (JPEG, GIF, PNG, etc.)
to compress the images thanks to different feature extraction techniques (i.e. Discrete Cosine Transform for JPEG).

For pattern recognition and machine learning purposes, the information contained in raster images is most of the time
too complex in terms of interpretation and computing space. Before getting to the classification step, these processes
are then using a feature extraction step to facilitate the learning and the generalization of the information. The reduction
of information by feature extraction is therefore a major issue for the compression and classification of raster images. In
this article, we decide to focus on feature extraction for classification tasks.

More precisely, feature extraction aims to extract features from raster images, allowing to characterize and discriminate
the image content with an optimal amount of information. These features can take the form of a single value or a
vector of values. The feature extraction relies on a set of methods that are usually found in literature (Tuceryan & Jain,
1993), (Porebski, 2009) as clustered into four major groups :
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• Geometrical approaches characterized by geometrical features,

• Statistical or distribution approaches characterized by statistical features,

• Filtering or transformation approaches characterized by space and frequency features,

• Model approaches where features are based on texture spatial modelling.

One can note that the distribution of methods in these items is not strict and that some of them may belong to several
groups. Each type of approach also allows to analyze a specific type of information contained in an image.

This study falls perfectly within the continuity of these description methods. Indeed, we propose the use of an original
technique, based on Discrete Modal Decomposition (DMD), to extract discriminant features from raster images. The
features extracted with this technique supplement and extend the group of space and frequency features.

The paper is organized as follows. In section 2, we briefly present several existing space and frequency features and
their main uses in the literature. In section 3, we then introduce the genesis, the principles and the use of DMD to extract
features, called modal features, from raster digital images. Finally in section 4, we propose to evaluate the relevance of
these features to classify different images textures, from the VisTex database (Picard, 2000), the DTD database (Cimpoi
et al. , 2014), the SIPI database (Weber, 1997) and the Outex database (Ojala et al. , 2002). We compare our technique
with Haralick features from cooccurrence matrices, LBP features, Hog features and DCT features.

2 Space and frequency features

Space and frequency features are mainly defined to characterize the textures contained in grayscale images. Gray levels
are quantifying the luminance of the scene, which describes the amount of light that passes through, is emitted or
reflected from the scene. The spacial arrangement at different scales of these gray levels characterize the texture of the
image. The existence of more or less regular spatial patterns leads to a visual sensation of a contrasted, coarse, fine,
smooth, granular, regular, irregular, etc. texture. Space and frequency features aim to characterize the image texture on
the spatial and/or frequency domains.

These features are usually generated by filtering or transformation approaches. They can be separated into three groups
as shown by Porebski (Porebski, 2009) :

• Spatial approach,

• Frequency approach,

• Space and frequency approach.

We propose in the following subsections to briefly describe the main methods of filtering or transforming in each of
those three groups.

2.1 Spatial approach

Spatial transformation approaches can be summarized mainly in the use of filters for edge and form detection described
by Tuceryan and Jain (Tuceryan & Jain, 1993). These filters are very similar to those used by the geometric features
approaches. Among the broadly used methods, one can find the filters of Sobel, Prewitt, Canny or the operators of
Roberts and Laplacien. The masks associated with these different filters and operators are presented in Table 1.

Table 1: Examples of masks associated with different types of filters and operators. From left to right : Laplacien,
Prewitt, Sobel [ −1 −1 −1

−1 8 −1
−1 −1 −1

] [ −1 0 −1
−1 0 −1
−1 0 −1

] [ −1 −2 −1
0 0 0
−1 −2 −1

]

2.2 Frequency approach

In the frequency domain, the main approaches used to describe the images are the Fourier transform and the Discrete
Cosine Transform (DCT). These approaches allow to extract the image characteristics, related to the texture of these
images and providing a texture description exclusively in the frequency domain. The application of these transformations
allow to obtain coefficients providing frequency information about the image content.
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Indeed, they are especially suited to describe images containing periodic element structures, which is for example the
case of coarse texture images. The high frequencies are reserved for local variations of the gray level values or the color
components of the pixels, thus all the information of the image can easily be represented with very few coefficients,
corresponding to the low frequencies. Drimbarean uses DCT method on gray level images and its extension to color
to characterize the image textures from the VisTex database (Drimbarean & Whelan, 2001). He concludes that the
extracted features from the DCT approach allow to obtain the best rate of image texture classification, whether with
a gray level or color coding, compared with the classification carried out with the extracted features from the Gabor
transformation or the Haralick features extracted from the co-occurrence matrices.

2.3 Space and frequency approach

Finally, there are other features which describe the texture in both the space and frequency domains. Among the most
used space and frequency methods are the Gabor transform and the wavelet transform. We propose to briefly present
these ones in the following subsection.

Gabor transform
We have previously specified that the use of the Fourier transform allows to characterize the frequency content of the
images. A solution to include a spatial description of the image content is to apply the short-time Fourier transform,
which principle consists in using the Fourier transform in an moving observation window. The choice of the window
size and the displacement pitch depends on the spatial patterns of the textures to be analyzed. There are various types
of observation windows: the rectangular window, the triangular window, the Welch window, the Hamming window,
the Hann window and the Gaussian window (De Coulon, 1998). When the latter is applied, the transform is therefore
called the Gabor transform.

The coefficients are calculated at each step of the sliding window. The extracted features are then often obtained by
calculating the energy, the entropy or the variance of these coefficients for each window and for a given filter. Palm
and Lehmann (Palm & Lehmann, 2002) show that the Gabor transform is competitive at describing image textures
and these texture feature extraction from the color images significantly improve the image classification of the VisTex
database compared to the use of these features defined in gray level.

Wavelet transform
The Gabor transformation is applied with a fixed window size, which can be one of its limits because some textures
can be characterized according to various scales. In order to overcome this limit, the wavelet transform is based on a
multiscale analysis of the images, and uses observation windows with various sizes.

Arivazghan uses features extracted trough the wavelet transform to classify the texture images of the VisTex
database (Arivazhagan et al. , 2005). In the same way, Sengur uses this kind of features, especially through the
calculation of the energy of the various filters, to highlight their contribution to the texture classification of the same
database, focusing especially on the color textures (Sengur, 2008). This transformation has also become famous with its
application for image compression with JPEG2000 format (Antonini et al. , 2008).

3 Feature extraction by Discrete Modal Decomposition

In this section, we detail the principles of a new spatial and frequency feature extraction technique based on Discrete
Modal Decomposition. With the initial goal of automatically generating a 3D model for Computer Aided Design,
Pentland (Pentland, 1990) chose to use dynamic behavior of the object, i.e. its natural modes of vibration to describe its
shape. Based upon this idea, the Discrete Modal Decomposition consists in decomposing a signal within a spectral
basis built from eigen modes.

Similarly to the Discrete Fourier Transform or the Discrete Cosine Transform, this projection method allows to make
the projection of the signal into an eigen basis built from structural dynamics. This eigen basis is defined by its eigen
vectors, called modal vectors, which explains the name chosen for the projection method.

The DMD is classified as a descriptive approach, using a description basis which is not related to the solution
of a given problem. This decomposition method has allowed to parameterize geometric shape deviations in the
geometrical tolerancing domain (Samper & Formosa, 2007), (Favrelière, 2009). It was then extended by Le Goïc
to characterize and filter geometric deviations of higher frequencies, including undulations and roughness (Le Goïc
et al. , 2011) and compare its performance with standard methods, to correlate roughness measurements with their
tribological behaviors (Le Goïc et al. , 2016). More recently, in the field of surface appearance modeling, DMD has
significantly improved the reflectance function approximation for a more realistic rendering and highlighting appearance
anomalies (Pitard et al. , 2017a).
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Figure 1: Modal projection basis. Only the first 25 modes are presented.

3.1 Modal basis

A rectangular domain designates the solid structure under investigation. The associated geometry (a square plate in the
proposed study) leads to the definition of the following dynamic structural problem (Eq. 1):

M · q̈ +K · q = 0 with q = q(x, y, t) (1)

where M and K stand for the mass and the stiffness matrices respectively. Under such formalism, q(x, y, t) stands for
the displacements which characterizes the modal shapes. Such a problem classically gives a frequency based solution
(Eq. 2):

q(x, y, t) =

+∞∑
i=1

Qi(x, y). cos(ωit) (2)

where Qi is the magnitude vector associated with the pulsation ωi. Hence, in the finite dimension framework, the eigen
modes defined by (Qi, i) are determined by solving the following linear system (Eq. 3):(

M−1K − 1

ωi
I
)
Qi = 0 (3)

where I is the identity matrix and M−1K is assured to be diagonalizable. The discrete solution is computed by using
Finite Element Analysis (FEA) and provides the dynamic modal basis Q = (Q1, Q2 . . .). As an illustration, the first 25
modal vectors are plotted in Fig. 1.

3.2 Decomposition operation

The decomposition operation is carried by projecting the image pixel values onto the eigen modes, built from dynamics
and namely the modal basis. However, the non orthonormality of Q does not allow the use of the classical projector
PQ = QQT . Indeed, the use of the dual basis Q∗ =

(
QTQ

)−1
QT is required. An infinite norm is given to the modal

vectors such as ‖Qi‖∞ = 1. Thus, the set of modal coordinates λi, modal features that we use in the proposed study,
resulting from the projection of the image pixel values (denoted PV ) within a non-orthonormal basis is given as follows
(Eq. 4):

λ =
(
QTQ

)−1
QT .PV (4)

Thus, the image pixel values can be expressed as the sum of linear combination of the modal vectors and the
decomposition residual (Eq 5):

PV =

Nq∑
i=1

λiQi + ε (Nq) (5)
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with

{
Qi : modal vectors composing the modal basis
λi : modal coordinates = modal features
Nq : number of modes of decomposition

Low-pass fitering High-pass fitering

Modal features

VisTex image
(Sand.0005)

128 x 128

Nq = 200

Figure 2: DMD filtering applied on an image of VisTex database namely (Sand.0005)

3.3 Rotation invariant modes

Most of the time, image texture patterns are likely to vary in terms of orientation without changing the texture itself.
These orientation changes must then not be considered as a variation of the texture itself when it comes to a classification
task. To avoid this, it is possible to use rotation invariant properties of the modal basis to perform the classification task.

The natural modal projection basis has two types of modes (Favrelière, 2009), identifiable by their geometrical properties
and defined by (Pitard, 2016) :

• simple modes : modes with orthogonal symmetry, therefore their shapes are invariant by rotation,

• congruent modes : couple of modes naturally generated with an angular shift.

Pitard proposes to use these properties to enhance the angular reflectance function and to demonstrate its relevance to
describe the appearance of the inspected surfaces in the visual quality inspection field (Pitard et al. , 2017b). Following
this aim, he suggests to transform the two modal coordinates λi and λi+1 of the couple of congruent modes Qi and
Qi+1 resulting from the projection operation (Equation 4) into a single amplitude value λ

′

j and a single phase value φ
′

j .
The resulting amplitude value is then rotation invariant and expressed :

λ
′

j =
√
λ2i + λ2i+1 (6)

This new setting (λ
′

j and φ
′

j) of the congruent modes allowed him to estimate robust salience maps linked to the local
visual appearance behaviour of surfaces on the scene.

3.4 Multiscale analysis application

Initially implemented to characterize form variations (Samper & Formosa, 2007), (Favrelière, 2009) on the geometrical
tolerancing, this method has been generalized to waviness and roughness by varying the width of the analysis
window (Le Goïc et al. , 2011), (Grandjean et al. , 2012).

Once the projection operation is computed, the result can be viewed as an modal features amplitude spectrum. It
enables separate the low frequency and the high frequency (and also a frequency band) content of the image texture,
rebuilding the image from a part of the modal features spectrum. This general principle is illustrated in Figure 2. As an
illustration, Figure 3 shows 4 low-pass and high-pass content resulting from the application of the DMD multiscale
analysis technique on the same VisTex image (Sand.0005) with Nq = 20.
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ssimVal = 0.14 ssimVal = 0.30 ssimVal = 0.57 ssimVal = 0.86 

VisTex image
(Sand.0005)

128 x 128

Low-pass fitering

High-pass fitering

filtering window size 
64 x 64

32 x 32 16 x 16 8 x 8

Figure 3: DMD multiscale analysis applied on an image of VisTex database namely (Sand.0005)

4 Image textures classification

To evaluate the relevance of the DMD applied as a feature extraction method, its performance on an image textures
classification task has been studied, in parallel of a few others techniques broadly used for texture and image description
: Haralick’s cooccurrence features, Local Binary Patterns (LBP), Histograms of Oriented Gradients (Hog) and DCT
features. In this section, we briefly explain the principles of the different features extraction methods used in the study
before outlining the experimental set-up and reporting the results.

4.1 Feature extraction

This section briefly describe the feature extraction methods we used to conduct this classification study.

4.1.1 Cooccurrence matrix and Haralick features

The cooccurrence matrix, classified as a statistical feature extraction method, is used to characterize the texture of an
image based on its pixel values distribution. The matrix is computed by counting all pairs of pixels with gray levels i
and j separated by a distance d in a given direction θ. The matrix is often calculated by accumulating the values of
cooccurrences in several directions to obtain a rotation invariant description. In this study, the matrices are calculated
with θ = {0, π, π2 ,

3π
4 } and d = 1. Once calculated, the cooccurrence matrices are usually reduced by extracting a set

of features. The most popular ones have been proposed by Haralick (Haralick et al. , 1973) and have been widely used
in texture analysis.

We give the equations of the first 5 features as an illustration :

1. Angular Second Moment
h1 =

∑
i

∑
j

p(i, j)
2 (7)

with p(i, j) the probability that a pixel with value i will be found adjacent to a pixel of value j.
2. Contrast

h2 =
∑
n=0

n2


Ng∑
i=1

Ng∑
j=1

p(i, j)

 , |i− j| = n (8)

3. Correlation

h3 =

∑
i

∑
j(ij)p(i, j)− µxµy

σxσy
(9)

with µx, µy, σx and σy the means and standard deviations of px and py, the marginal-probability matrices
obtained by summing the rows or columns of p(i, j).
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4. Sum of Quares : Variance
h4 =

∑
i

∑
j

i− µ2p(i, j) (10)

5. Inverse Difference Moment
h5 =

∑
i

∑
j

1

1− (i− j)2
p(i, j) (11)

The total of the 14 features equations can be found in Haralick’s original publication (Haralick et al. , 1973).

4.1.2 Local Binary Patterns (LBP)

LBP, also classified as a statistical feature extraction method, are used to characterize the texture of an image based on a
comparison of the luminance level of each pixel with its neighbors (Ojala et al. , 1996). Each pixel value is replaced by
a weighted sum described in Equation 12.

LBPP,R(xc, yc) =

P−1∑
p=0

2pδ(gp − gc) (12)

where P is the number of pixels to consider around pixel (xc, yc) , R is the radius defining the neighborhood, gc is the
gray level of pixel (xc, yc) , and gp is the grey level of the p neighbor.

The feature is constructed as the histogram of the LBP values over the image.

4.1.3 Histograms of Oriented Gradients (Hog)

Hog descriptors can be used to characterize the distribution of intensity gradients and therefore edge directions in an
image. The image is spitted in cells for which a gradient histogram is computed. The gradient is obtained by applying a
mask to filter the cell. The final descriptor is build by concatenating all the histograms generated for each cell.

This method is commonly used to detect objects in images, such as humans detection (Dalal & Triggs, 2005). It is not
designed to perform especially well in texture description, but we still include it in this study to test if our approach
performs better than a non specialist one for this specific task.

4.1.4 Discrete Cosine Transform (DCT)

DCT is part of the local linear transforms family (Unser, 1986). These transforms are used to characterize image
texture (Ahmed et al. , 1974) in the frequency domain through a filter bank of relatively small size (a few pixels on each
side). Each filter is designed to capture a particular signature of the local texture patterns.
DCT has been widely used in image feature extraction, particularly for image coding purpose with the JPEG encoding
for example.
The DCT filter bank is built from a set of N × 1 basis column vectors hm, computed as followed :

hm =

{ 1√
N

if m = 0,√
2
N cos( (2k−1)mπ2N ) if m > 0.

(13)

To compute the N × 2 filters, the vectors defined in Eq.13 are combined thanks to the outer product :

hmn = hmh
T
n (14)

To extract features from an image I , we choose to follow the same procedure than (Drimbarean & Whelan, 2001) who
defines the texture features as the variance of the filtered M ×M image Imn by the hmn filter defined by Eq.14. The
filtered image Imn and the features fmn are then calculated using the following equations :

Imn = I ∗ hmn (15)

where ∗ the 2D convolution operator.

fmn =
1

M

M∑
x,y=0

(Imn(x, y)− µmn)2 (16)
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Figure 4: DMD filters

where µmn is the mean of the filtered image Imn.

In our study, the DCT features are computed for a filter size N = 3. In the implementation we used, also follow-
ing (Drimbarean & Whelan, 2001), the 1D DCT vectors defined in Eq.13 are h0 = {1, 1, 1}, h1 = {1, 0,−1} and
h2 = {1,−2, 1}. Using Eq.14, a set of of nine 2D DCT filters are calculated and used to compute nine texture features
according to Eq.15 and 16.

4.1.5 DMD approaches

We used two approaches to extract modal features via the DMD method explained previously :

1. The Full scale DMD :
The invariant modal coordinates λ

′

j obtained from the full image decomposition (Equation 6) are directly used
as features.

2. Filtering DMD :
The modal features are obtained using the same Eq.15 and 16 than for the DCT features, except that the filters
hmn are different. For a filter size N = 3, the DMD filters are the first nine modes of the projection basis.
These modes are illustrated in the Fig.4.

4.2 Classification method

Once the information contained in the images is reduced into a vector of features thanks to the methods presented in the
previous section, the next step rely in using a classifier to evaluate the discriminatory power of the extracted features.
The classification is composed of two phases : the learning and the prediction. The learning consists in feeding the
algorithm with training data so it can build a model to explain the data from the extracted features. In our case, we
use a supervised approach, which means that the training data is labelled by a human expert. Following this learning
phase, the training algorithm is able to predict the labels of new elements, which are not part of the training data. The
classification performance, or discriminatory power of the features, is usually characterized by the number of good
predictions obtained from this second phase.

There are numerous types of classification methods, and we have adopted the Support Vector Machine (SVM) (Vapnik,
1995) to perform the experiments presented in this study. The detailed explanation of the SVM functioning goes beyond
the scope of this article, but the elementary principle is to separate the data with hyperplans in the multidimensional
space. If the original method works only for binary classification problems and linearly separable data, several
developments have allowed to apply it on non linear data (Boser et al. , 1992) and multi-class problems (Weston et al. ,
1999). The results shown in this paper are obtained with a One-Versus-Rest SVM classifier, which enables multi-class
classification.

4.3 Datasets

To assess the performance of the features, 4 datasets has been used :
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4.3.1 VisTex database

16 textures images picked from the 19 VisTex textures (Picard, 2000) are used, namely : Bark.0001, Brick.0000,
Clouds.0000, Fabric.0001, Leaves.0010, Flowers.0000, Food.0000, Grass.0001, Metal.0000, Misc.0002, Sand.0004,
Stone.0005, Tile.0007, Water.0000, Wood.0002 and WheresWaldo.0001.

4.3.2 DTD database

22 textures images from the DTD textures (Cimpoi et al. , 2014) are used, namely : banded_0137, braided_0078,
bubbly_0054, bumpy_0079, cracked_0129, crystalline_0124, dotted_0164, fibrous_0193, flecked_0126, freckled_0159,
frilly_0121, grid_0102, grooved_0110, honeycombed_0133, marbled_0186, pleated_0111, porous_0174, scaly_0222,
smeared_0132, stratified_0162, striped_0058, waffled_0136.

4.3.3 SIPI database

16 textures images from the SIPI textures (Weber, 1997) are used, namely : 1.1.01, 1.1.02, 1.1.03, 1.1.04, 1.1.05, 1.1.06,
1.1.07, 1.1.08, 1.1.09, 1.1.10, 1.1.12, 1.1.13, 1.5.02, 1.5.03, 1.5.04, 1.5.06. We also use 12 textures from the SIPI rotated
textures, namely : bark, brick, bubbles, grass, leather, pigskin, raffia, sand, straw, water, weave, wood, wool. We use
orientations at 0, 30, 60, 90, 120, 150 and 200 degrees.

For the 3 previous data bases, following the same procedure as (Drimbarean & Whelan, 2001) to enhance the number of
training and testing images, each image is randomly divided into 540 overlapped 32×32 sub-images. For each class, 30
images are used as a training set for the classifier and the 510 left are used as a testing set to evaluate the performance.

4.3.4 Outex database

Textures from 2 sets for classification prepared with the Outex database (Ojala et al. , 2002) are used. The first,
Outex_TC_00000, contains 480 images with 24 classes. The second, Outex_TC_00013 contains 1360 images with 68
classes. We don’t resize the images as previously and use directly the 128× 128 original images.

4.4 Experiments and results

In the last part of this section, two experiments are presented to evaluate the relevance of the features extracted through
the DMD. The first one focuses on the full scale DMD features and the second one on the filtering DMD features. In
either case, the results are compared to a reference obtained with other methods.

4.4.1 Full scale DMD

This first experiment evaluates the performance of the modal features calculated on the full scale image.

Before evaluating these features on the different datasets, we run an experiment to choose how many coordinates to
use from the modal decomposition. The Figure 5 shows the evolution of the performance as a function of the number
of modes, up to 100 modes, based on the VisTex dataset. It seems that the more features are added, the more the
performance increases, until a stable 91,5% performance level from 90 features and more. The number of features
to reach the performance plateau might vary from one dataset to the other, but we decide to use 100 features in the
following experiment and make the assumption that they are enough to reach good performances across the different
datasets.

Tables 2 and 3 contains the SVM accuracy performances and extraction times for each method across the different
datasets. The left parts correspond to the results for the full scale DMD. We notice that DMD features lead to good
classification results across the different datasets, comparable to Haralick and LBP features, which are known to be
especially adapted for texture classification tasks. Moreover, they always outperform Hog features, which are not
specifically designed for texture description. These results demonstrate that the modal features extracted through the
full scale DMD approach are relevant to classify image textures.

When it comes to extraction times results, the full scale DMD outperforms all of the 3 other techniques for all data bases.
This can be explained by the fact that the full scale DMD extraction process consists in a simple dot product between
the image and the dual basis. This implies a much lower computational burden than calculating the cooccurrence matrix
for Haralick or the LBP image.
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Figure 5: Evolution of full scale DMD features performance as a function of the number of modal coordinates, using
VisTex dataset

Table 2: SVM accuracy (%) of the DMD Full Scale (FS) features against Haralick, LBP and Hog features, and Filtering
DMD against DCT on several datasets

Dataset FS DMD Haralick LBP Hog Filtering DMD DCT
VisTex 87.5 89.0 88.3 60.5 95,4 94,3
DTD 90.5 91.5 96.3 71.5 95.2 95.6
SIPI 95.0 97.8 99.8 92.8 99.1 99.3
Outex 00 84.6 65.4 94.2 68.3 75.4 76.3
Outex 13 72.5 81.3 68.5 41.5 75.4 76.2
SIPI Rotated 77.7 87.5 37.5 21.3 / /
Meana 86.0 85.0 89.4 66.9 88.1 88.3
a Mean values are calculated without taking SIPI Rotated in consideration.

Table 3: Extraction time (s) per image for the DMD full scale features against Haralick, LBP and Hog features , and
Filtering DMD against DCT on several datasets

Dataset Image Size FS DMD Haralick LBP Hog Filtering DMD DCT
VisTex 32× 32 1.22E-05 1,55E-02 6.42E-04 2.90E-04 1.62E-04 1.67E-04
DTD 64× 64 3,37E-05 2,26E-02 1,97E-03 1,47E-03 3.73E-04 3.88E-04
SIPI 128× 128 8.37E-04 2.27E-02 5.39E-03 8.95E-03 1.17E-03 1.17E-03
Outex 00 128× 128 4,86E-04 1,36E-02 5,25E-03 7,07E-03 1.17E-03 1.23E-03
Outex 13 128× 128 8,96E-04 9,11E-03 5,41E-03 7,57E-03 1.16E-03 1.18E-03
SIPI Rotated 128× 128 5.36E-04 1.76E-02 5.28E-03 6,80E-03 / /
Mean / 4,67E-04 1,68E-02 3,99E-03 5,36E-03 5,62E-03 5.81E-03
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4.4.2 Filtering DMD

This second experiment evaluates the performance of the modal features computed through the filtering DMD approach.
As explained in 4.1.5, in our experiment the filtering DMD process leads to nine modal features. For comparison
purpose, we also used nine DCT features, coming from Eq.15 and 16.

The results illustrated in Table 2 (right part) reveal that the filtering DMD features present a very good performance
on the classification task, at a similar level than the DCT features, demonstrating the relevance of the filtering DMD
approach to characterize image textures. It is not surprising to obtain close results with the DCT as the feature calculation
method is similar for the two methods, except the base patterns for the 3× 3 filters are different. The results are very
especially good for the 3 first datasets because they contain uniform and distinct texture. Indeed, a small size of filter is
particularly adapted to describe uniform textures. The textures in Outex00 and Outex13 are also uniform but there are
more classes with less distinct differences between textures. This could explain the inferior classification performances
on these 2 data bases.

Extraction times results in Table 3 (right part) show that the two methods yields very similar performances, with a slit
advantage for the filtering DMD. The similar results are logical because the two methods use a similar process with a
3× 3 moving filtering over the image.

The scope of this paper is only focused on a first investigation of the relevance of the modal features, so we only used
3× 3 filters. This second experiment could be continued by testing different sizes of filters to see how the performance
evolves. Exploring different size of filters could be particularly interesting for images with composed textures, for
which a multiscale analysis would be more relevant.

4.4.3 Rotation invariance

We evaluate the rotation invariance performance of the full scale DMD features with the SIPI rotated dataset. The
classification task includes rotated pictures of the same class at 0, 30, 60, 90, 120, 150 and 200 degrees. We compare
the performance to the Haralick features, known to be rotation invariant, to the a non rotation invariant implementation
of the LBP and to the Hog features, not considered as rotation invariant. We can see that if the performance of the full
scale DMD features is lower to the Haralick one, it drops much less than the non invariant LBP and Hog performance.
Future work will focus on investigating the rotation invariance on more datasets.

5 Conclusions

The aim of this study is to introduce a new feature extraction method based on the Discrete Modal Decomposition, to
extend the group of the space and frequency approaches. Two classification experiments has been led to evaluate the
relevance of this new approach to describe image texture, through two features extraction methods : the full scale DMD
and the filtering DMD. The results illustrate the good classification performances of the two methods, competing with
two other widely used approaches. In terms of extraction time, the DMD features outperforms the other approaches,
especially for the full scale method. This can be interesting for application needing short computation times.

This work opens up a lot of perspectives regarding the feature extractions methods we introduce. About the full
scale DMD, it would be interesting to push further our tests by processing a feature selection step to choose what
modal coordinates are the more relevant in the calculated spectrum, for a given task. Further investigation about the
rotation invariance property also needs to be carried out. Future work will also focus on testing the illumination change
robustness of our approach, but we cannot claim anything about it at this point. About the filtering DMD, a multiscale
analysis could be performed to test the relevance of this approach on composed textures. Finally, the modal features
could also be tried out for image coding tasks, to compare its performance with other commonly used formats.
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