J Vanterler Da 
email: vanterler@ime.unicamp.br
  
C Sousa 
  
M Aurora 
  
P Pulido 
  
E Capelas De Oliveira 
  
Existence and regularity of weak solutions for ψ-Hilfer fractional boundary value problem

Keywords: ψ-fractional differential boundary value problem, existence and regularity, weak solution, Lax-Milgram theorem Mathematics Subject Classification (2010) 26A33, 34A08, 35A15, 35B38

In this present paper we investigate the existence and regularity of weak solutions for ψ-Hilfer fractional boundary value problem in C α,β;ψ 2 and H (Hilbert space) spaces, using extension of the Lax-Milgram theorem. In this sense, to finalize the paper, we discuss the integration by parts for ψ-Riemann-Liouville fractional integral and ψ-Hilfer fractional derivative.

Introduction and Preliminaries

In this paper we discuss the existence and regularity of weak solutions of ψ-Hilfer fractional boundary value problem (•) are the right-sided and left-sided ψ-Riemann-Liouville fractional integrals of order β(β -1), respectively, λ is a parameter and Φ : [0, T ] × R → R is a continuous function [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF].

Fractional differential equations are tools of great importance in physics, biology, engineering and in various fields of science. In addition, we also highlight its importance in the discussion of qualitative properties of fractional differential equations [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation[END_REF][START_REF] Sousa | Validation of a fractional model for erythrocyte sedimentation rate[END_REF][START_REF] Sousa | Stability of the fractional Volterra integro-differential equation by means of ψ-Hilfer operator[END_REF][START_REF] Sousa | On the stability of a hyperbolic fractional partial differential equation[END_REF]. Recently, the fractional calculus has been of paramount importance in the discussion of variational problems, which are formulated in the context of boundary value problems, problems involving p-Laplacian, critical point theory, among other problems that stand out in this context [START_REF] Nyamoradi | An extension of the Lax-Milgram theorem and its application to fractional differential equations[END_REF][START_REF] Zhang | Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses[END_REF][START_REF] Zhou | Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses[END_REF]. In 2011 Jiao and Zhou [START_REF] Jiao | Existence of solutions for a class of fractional boundary problems via critical point theory[END_REF], discussed the existence of solutions to a fractional boundary value problem on a variational structure using critical point theory. Mahmudov and Unul [START_REF] Mahmudov | Existence of solutions of fractional boundary value problems with p-Laplacian operator[END_REF], investigated the existence and uniqueness of solutions of fractional differential equation in the sense of Caputo with the p-Laplacian operator and integral conditions.

In 2016 Ledesma [START_REF] Ledesma | Boundary value problem with fractional p-Laplacian operator[END_REF] investigated the existence of solution for the fractional p-Laplacian Dirichlet problem with mixed derivatives

D α T |D α 0+ u(t)| p-2 D α 0+ u(t) = f (t, u(t)), t ∈ [0, T ] u(0) = u(T ) = 0,
where D α T (•) and D α 0+ (•), are Riemann-Liouville fractional derivatives the right and left of order α with 1 p < α < 1, 1 < p < ∞ and f : [0, T ] × R → R is a Carathéodory function which satisfies some growth conditions.To obtain the result, a direct method in variational methods and mountain pass theorem was used.

Em 2017, Fattahi and Alimohammady [START_REF] Fattahi | Existence of infinitely many solutions for a fractional differential inclusion with non-smooth potential[END_REF] using non-smooth critical point theory and variational methods to study the existence solutions for a fractional boundary-value problem functions ∂F (u(t)) denotes the generalized Clarke gradient of function F (u(t)) at u ∈ R. Fractional differential problems were studied by many authors, see for example [START_REF] Ali | Existence of solutions for fractional differential equations with Dirichlet boundary conditions[END_REF][START_REF] Chai | Infinitely many solutions for nonlinear fractional boundary value problems via variational methods[END_REF][START_REF] Cruz | Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivatives[END_REF][START_REF] Ledesma | Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential[END_REF][START_REF] Li | The existence of solutions for an impulsive fractional coupled system of (p, q)-Laplacian type without the Ambrosetti-Rabinowitz condition[END_REF][START_REF] Nyamoradi | Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory[END_REF][START_REF] Nyamoradi | Variational approach to homoclinic solutions for fractional Hamiltonian systems[END_REF][START_REF] Ziheng | Variational approach to solutions for a class of fractional Hamiltonian systems[END_REF].

D α T D α 0+ u(t) ∈ λ∂F (u(t)) + µ∂F (u(t)), a.e. t ∈ [0, T ] u(0) = u(T ) = 0,
Afrouzi and Hadjian [START_REF] Afrouzi | A variational approach for boundary value problems for impulsive fractional differential equations[END_REF], established results of existence and uniqueness of classic infinite solutions for Caputo fractional differential equations with limit value movement, using the critical point theory. In this sense, presented two examples, in order to elucidate the investigated results. However, there are few studies on the existence and uniqueness of fractional boundary conditions, some references for a brief reading [START_REF] Jiao | Existence results for fractional boundary value problem via critical point theory[END_REF][START_REF] Zhang | Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses[END_REF] and references therein.

Motivated by the work discussed above, and in order to contribute to the growth of the area, the main contributions to our study are highlighted as follows:

1. We discussed conditions for obtaining the existence and regularity of weak solutions for Eq.(1); 2. The proposed problem is more generalized, and some it in the literature are the special cases of it. Moreover, according to particular cases, our analysis can also be applied to the addressed problems by selecting the appropriate function of ψ; 3. The ψ-fractional spaces are directly linked with their respective fractional operator. Therefore, each fractional problem discussed, as well as its respective particular cases, are well defined;

Let (X, • X ) be a real Banach space with dual space X * . Denote by B r (x 0 ) the ball B r (x 0 ) = {x ∈ X, x -x 0 ≤ r} and consider the set

∆ = max Φ(t, s), (t, s) ∈ [0, T ] × - (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 , (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 . Let 0 < α ≤ 1 and 0 ≤ β ≤ 1. The left-sided ψ-fractional derivative space C α,β;ψ 2 := C α,β;ψ 2 ([0, T ] , R) is defined by the closure of C ∞ 0 ([0, T ] , R) [8, 17], C α,β;ψ 2 = y ∈ L 2 ([0, T ] , R) ; H α,β;ψ 0+ y ∈ L 2 ([0, T ] , R) , I β(β-1) 0+ u (0) = I β(β-1) T - u (T ) = 0 = C ∞ 0 ([0, T ] , R). ( 2 
)
On the other hand, let 0

< α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. The Left- sided ψ-fractional derivative space C 2α,β;ψ p := C 2α,β;ψ p ([0, T ] , R) is defined by the closure of C ∞ 0 ([0, T ] , R) , is given by C 2α,β;ψ p =            y ∈ L p ([0, T ] , R) ; H α,β;ψ 0+ y ∈ L p ([0, T ] , R) and H α,β;ψ T - H α,β;ψ 0+ y ∈ L p ([0, T ] , R) , I β(β-1) 0+ y (0) = I β(β-1) 0+ y (T ) = 0, H α,β;ψ T - H α,β;ψ 0+ y (0) = H α,β;ψ T - H α,β;ψ 0+ y (T ) = 0           
with the following norm Let (0, T ) be a finite or infinite interval of the real line R and α > 0. Also let ψ(t) be an increasing and positive monotone function on (0, T ], having a continuous derivative ψ (t) on (0, T ). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [0, T ] are defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

y C 2α,β;ψ p = y p L p + H α,β;ψ 0+ y p L p + H α,β;ψ T - H α,β;ψ 0+ y p L p 1/p ∀y ∈ C 2α,β;ψ
I α;ψ 0+ f (x) = 1 Γ (α) x a ψ (t) (ψ (x) -ψ (t)) α-1 f (t) dt (3) 
and

I α;ψ T -f (x) = 1 Γ (α) T x ψ (t) (ψ (t) -ψ (x)) α-1 f (t) dt. (4) 
Let n -1 < α < n with n ∈ N, I = [0, T ] is the interval and f, ψ ∈ C n ([0, T ], R) two functions such that ψ is increasing and ψ (t) = 0, for all t ∈ I. The ψ-Hilfer fractional derivative left-sided and right-sided H α,β;ψ 0+ (•) and H α,β;ψ T -(•) of function of order α and type 0 ≤ β ≤ 1, are defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF]]

H α,β;ψ 0+ f (x) = I β(n-α);ψ 0+ 1 ψ (x) d dx n I (1-β)(n-α);ψ 0+ f (x) (5) 
and

H α,β;ψ T -f (x) = I β(n-α);ψ T - - 1 ψ (x) d dx n I (1-β)(n-α);ψ T - f (x) . (6) 
The ψ-Hilfer fractional derivatives defined as above can be written in the following form

H α,β;ψ 0+ f (x) = I γ-α;ψ 0+ D γ;ψ 0+ f (x) (7) 
and

H α,β;ψ T -f (x) = I γ-α;ψ T - D γ;ψ T -f (x) (8) 
with

γ = α + β (n -α) and I γ-α;ψ 0+ (•) , I γ-α;ψ T - (•)
, are given by Eq.( 3) and Eq.( 4), respectively. The ψ-Riemann-Liouville fractional derivatives D γ;ψ T -(•) and D γ;ψ 0+ (•), can be obtained in the following references [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF].

Lemma 1 [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Let α > 0 and δ > 0. Then, we have the following semigroup property given by

I α;ψ 0+ I δ;ψ 0+ f (x) = I α+δ;ψ 0+ f (x) (9) 
and

I α;ψ T -I δ;ψ T -f (x) = I α+δ;ψ T - f (x) . ( 10 
)
Theorem 1 [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

If f ∈ C n ([0, T ] , R), n -1 < α < n and 0 ≤ β ≤ 1, then I α;ψ 0+ H α,β;ψ 0+ f (x) = f (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I (1-β)(n-α);ψ a+ f (0) 
(11) and

I α;ψ T -H α,β;ψ T -f (x) = f (x) - n k=1 (ψ (b) -ψ (x)) γ-k Γ (γ -k + 1) f [n-k] ψ I (1-β)(n-α);ψ T - f (T ) , (12) 
where f

[n-k] ψ (x) := 1 ψ (x) d dx n-k f (x). Definition 1 [8, 17] Let 0 < α ≤ 1 and 0 ≤ β ≤ 1. The ψ-fractional derivative space C α,β;ψ 2 is defined by the closure of C ∞ 0 ([0, T ]) with respect to the norm, τ C α,β;ψ 2 = τ 2 L 2 (0,T ) + H α,β;ψ 0+ 2 L 2 (0,T ) 1/2
.

Theorem 2 [START_REF] Jiao | Existence results for fractional boundary value problem via critical point theory[END_REF][START_REF] Sousa | Variational structure : ψ-Hilfer fractional operator[END_REF] Let 0 < α ≤ 1 and 0 ≤ β ≤ 1. The ψ-fractional derivative space C α,β;ψ 2 is reflexive and separable Banach space.

Theorem 3 [START_REF] Jiao | Existence results for fractional boundary value problem via critical point theory[END_REF][START_REF] Sousa | Variational structure : ψ-Hilfer fractional operator[END_REF] Assume that α > 1/2, 0 ≤ β ≤ 1 and the sequence τ k converges weakly to

τ in C α,β;ψ 2 , then τ k → τ in C([0, T ]). Remark 1 We have τ ∞ ≤ (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 τ C α,β;ψ 2 , ∀x ∈ C α,β;ψ 2 . Definition 2 [8, 17] A function τ ∈ C α,β;ψ 2
is a weak solution of Eq.( 1), provided that for any ξ ∈ C α,β;ψ 2 , yields

T 0 H α,β;ψ 0+ τ (t) H α,β;ψ 0+ ξ(t) + τ (t)ξ(t) dt = λ T 0 Φ(t, τ (t), ξ(t))dt. ( 13 
)
Theorem 4 [START_REF] Nyamoradi | An extension of the Lax-Milgram theorem and its application to fractional differential equations[END_REF] Suppose that H is a Hilbert space, B(τ, ξ) is continuous coercive bilinear form on H and Ξ : H → H * satisfying the following conditions:

(C 1 ) There exists a constant N > 0 such that ||Ξ(u)|| H * ≤ N, ∀u ∈ B 1 (0), where B 1 (0) = {u ∈ H : ||u|| H ≤ 1}; (C 2 ) If {u k } is a sequence in H such that u k u weakly in H, then the sequence {Ξ(u k )} has a subsequence {Ξ(u k )} such that Ξ(u kn ) Ξ(u) weakly in H * .
The rest of the article is divided as follows. In section 2, we discussed the existence and regularity of weak solutions for ψ-Hilfer fractional boundary value problem in C α,β;ψ p ([0, T ], R) using the Lax-Milgram theorem and some results that will be discussed during the section. In addition, we discuss the integration by parts for ψ-Riemann-Liouville fractional integral and ψ-Hilfer fractional derivative and some particular cases are investigated. Concluding remarks closed the paper.

Existence and regularity of weak solutions

In this section, we investigate the existence and regularity of weak solutions of ψ-Hilfer fractional boundary problem, that is, Theorem 5 and Theorem 10. In addition, during the section, some particular cases are discussed, in order to elucidate the broad class of particular cases that the operator as well as their respective space holds.

The first main result of this section, is given by the following theorem:

Theorem 5 Suppose that 1/2 < α ≤ 1, 0 ≤ β ≤ 1 and Φ ∈ C([0, T ] × R, R
), then for any |λ| ≤ 1 ∆(ψ(T ) -ψ(0)) 1/2 , the Eq.( 1) has at least one weak solution.

Proof Consider

B(τ, ξ) = T 0 H α,β;ψ 0+ τ (t)H α,β;ψ 0+ ξ(t) + τ (t)ξ(t) dt.
and by means of Hölder's inequality, yields

|B(τ, ξ)| ≤ T 0 H α,β;ψ 0+ τ (t) H α,β;ψ 0+ ξ(t) dt + T 0 |τ (t)| |ξ(t)| dt ≤ H α,β;ψ 0+ τ 2 H α,β;ψ 0+ ξ 2 + τ 2 ξ 2 ≤ 2 τ 2 C α,β;ψ 2 ξ 2 C α,β;ψ 2 , therefore, |B(τ, ξ)| ≥ ξ 2 C α,β;ψ 2 .
It follows that B is a continuous coercive bilinear form on C α,β;ψ 2 . We define

Ξ : C α,β;ψ 2 → C α,β;ψ 2 * and Ξ(τ ), τ = T 0 Φ(t, τ (t))ξ(t)dt. Assume τ ∈ C α,β;ψ 2 with τ C α,β;ψ 2 ≤ 1. Then, by means of Remark 1, yields τ ∞ ≤ (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 τ C α,β;ψ 2 ≤ (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 , (14) 
and we obtain τ ∞ ≤ (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 

| Ξ(τ ), ξ | = T 0 Φ(t, τ (t))ξ(t)dt ≤ T 0 Φ(t, τ (t))dt 1/2 ξ 2 L 2 (0,T ) ≤ ∆T 1/2 .
Taking N = ∆T 1/2 , the condition (C 1 ) of Theorem 4 holds. Suppose

{τ k } is a sequence in C α,β;ψ 2 such that τ k → τ weakly in C α,β;ψ 2
. Then, by the Theorem 3, we get that for any t ∈

[0, T ], τ k (t) → τ (t), ∀t ∈ [0, T ].
Using this and the continuity of the function Φ, yields

Φ(t, τ k (t)) → Φ(t, τ (t)), as k → ∞, ∀t ∈ [0, T ]. ( 15 
)
The sequence, {τ k } is a bounded subset of C α,β;ψ

2

. In other words, there exists a constant M > 0 such that τ k C α,β;ψ 2 ≤ M with M ∈ N. Thus, of the Eq.( 14), yields

τ k ∞ ≤ M (ψ(T ) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 , k ∈ N.
Therefore, there exists ∆ 0 > 0 (constant), such that

|Φ(t, τ k (t))| < ∆ 0 , ∀t ∈ [0, T ], k = 1, 2, . . . (16) 
In this sense, of Eq.( 15), Eq.( 16) and of Lebesgue dominated theorem, we conclude that

T 0 |Φ(t, τ k (t)) -Φ(t, τ (t))| 2 dt → 0.
For any ξ ∈ C α,β;ψ

2 with v C α,β;ψ 2 = 1, yields | Ξ(τ k ) -Ξ(u), v | = T 0 (Φ(t, τ k (t)) -Φ(t, τ (t))) v(t)dt ≤ Φ(t, τ k (t)) -Φ(t, τ (t)) 2 → 0,
which yields that Ξ satisfies (C 2 ). Then by Theorem 4, we concluded the proof.

Theorem 6 Taking ψ(t) = t and the limit β → 1 in Eq.( 1). Suppose that

1/2 < α ≤ 1 and Φ ∈ C([0, T ] × R, R
), then for any |λ| ≤ 1 ∆(t) 1/2 , the Eq.( 1) has at least one weak solution in the Caputo fractional derivative sense.

Proof The proof is straight from Theorem 5, taking ψ(t) = t and the limit β → 1.

Theorem 7 Taking ψ(t) = t ρ (ρ > 0) and the limit β → 0 in Eq. [START_REF] Afrouzi | A variational approach for boundary value problems for impulsive fractional differential equations[END_REF]. Suppose that 1/2 < α ≤ 1 and Φ ∈ C([0, T ] × R, R), then for any |λ| ≤ 1 ∆(t ρ ) 1/2 , the Eq.( 1) has at least one weak solution in the Katugampola fractional derivative sense.

Proof The proof is straight from Theorem 5, taking ψ(t) = t ρ and the limit β → 0.

Theorem 8 Taking ψ(t) = t ρ (ρ > 0) and the limit β → 1 in Eq. [START_REF] Afrouzi | A variational approach for boundary value problems for impulsive fractional differential equations[END_REF]. Suppose that 1/2 < α ≤ 1 and Φ ∈ C([0, T ] × R, R), then for any |λ| ≤ 1 ∆(t ρ ) 1/2 , the Eq.( 1) has at least one weak solution in the Caputo-Katugampola fractional derivative sense.

Proof The proof is straight from Theorem 5, taking ψ(t) = t ρ and the limit β → 1.

Note that we can discuss numerous other particular cases, however we cannot choose ψ(t) = ln t, since it is not set to t ∈ [0, T ].

We are going to present the definition of fractional derivative in the weak sense, and some results are discussed.

Definition 3 Let τ, w, ξ ∈ L 2 (0, T ) with T 0 τ (t)H α,β;ψ T -ϕ(t)dt = T 0 ξ(t)ϕ(t)dt, ∀ϕ ∈ C ∞ 0 (0, T ),
and

T 0 τ (t)H α,β;ψ 0+ ϕ(t)dt = T 0 w(t)ϕ(t)dt, ∀ϕ ∈ C ∞ 0 (0, T ). Note that, H α,β;ψ T -τ (t) = ξ(t) and H α,β;ψ 0+ τ (t) = w(t).
The functions ξ and w given above will be called the weak left and the weak right fractional derivative of order α ∈ (0, 1] and type β (0 ≤ β ≤ 1) of τ respectively. Here, we denote them by H α,β;ψ 0+ τ (t) and H α,β;ψ T -τ (t) respectively. From the choice of the function ψ(•), we can obtain a wide class of fractional derivatives in the weak sense, as particular cases.

In view of Definition 1, τ ∈ C α,β;ψ 2 means that τ is the limit of a Cauchy sequence {τ n } ⊂ C ∞ 0 (0, T ), i.e., τ n → τ in L 2 (0, T ) and ∃w ∈ L 2 (0, T ) such that H α,β;ψ

0+ τ n → w in L 2 (0, T ). Then, for any ϕ ∈ C ∞ 0 (0, T ), yields T 0 w(t)ϕ(t)dt = lim n→∞ T 0 H α,β;ψ 0+ τ n (t)ϕ(t)dt = lim n→∞ T 0 ψ (t)τ n (t)H α,β;ψ 0+ ϕ(t) ψ (t) dt = T 0 ψ (t)τ (t)H α,β;ψ 0+ ϕ(t) ψ (t) dt.
Therefore, w = H α,β;ψ 0+ however it is not clear whether H α,β;ψ 0+ τ (t) exists in the usual sense, for any t ∈ [0, T ].

Next, we will prove the integration by parts for the ψ-Riemann-Liouville fractional integral and the ψ-Hilfer fractional derivative.

The relation b a

I α;ψ 0+ τ (t) ξ (t) dt = b a τ (t) ψ (t) I α;ψ T - ξ (t) ψ (t) dt ( 17 
)
is valid. One can prove Eq.( 17) directly by interchanging the order of integration by the Dirichlet formula in the particular case Fubini theorem, i.e., b a

I α;ψ 0+ τ (t) ξ (t) dt = b a 1 Γ (α) t a ψ (s) (ψ (t) -ψ (s)) α-1 τ (s) dsξ (t) dt = b a 1 Γ (α) b t ψ (s) (ψ (t) -ψ (s)) α-1 ξ (t) dtτ (s) ds = b a τ (t) ψ (t) I α;ψ T - ξ (t) ψ (t) dt.
Theorem 9 Let ψ(•) be an increasing and positive monotone function on [0, T ], having a continuous derivative ψ (•) = 0 on (0, T ).

If 0 < α ≤ 1 and 0 ≤ β ≤ 1, then b a H α,β;ψ 0+ τ (t) ξ (t) dt = b a τ (t) ψ (t) H α,β;ψ T - ξ (t) ψ (t) dt ( 18 
)
for any τ ∈ AC 1 and ξ ∈ C 1 satisfying the boundary conditions τ (0) = 0 = τ (T ).

Proof In fact, using the Eq.( 8), Eq.( 10) and Theorem 1 (Eq.( 11)), yields

b a τ (t) ψ (t) H α,β;ψ T - ξ (t) ψ (t) dt = b a τ (t) ψ (t) I 1-α;ψ T - D 1;ψ T - ξ (t) ψ (t) dt = b a ψ (t) I α;ψ 0+ H α,β;ψ 0+ τ (t) + (ψ (t) -ψ (a)) γ-1 Γ (γ) d j I 1-α;ψ T - D 1;ψ T - ξ (t) ψ (t) dt where d j = 1 ψ (t) d dt I (1-β)(1-α);ψ 0+ τ (0) = b a ψ (t) I α;ψ 0+ H α,β;ψ 0+ τ (t) I 1-α;ψ T - D 1;ψ T - ξ (t) ψ (t) dt + d j Γ (γ) b a ψ (t) (ψ (t) -ψ (a)) γ-1 I 1-γ;ψ T - D 1;ψ T - ξ (t) ψ (t) dt = b a 
I α;ψ 0+ H α,β;ψ 0+ τ (t) I -α;ψ T - ξ (t) ψ (t) dt = b a H α,β;ψ 0+ τ (t) ξ (t) dt.
Remark 2 From Theorem 9, for ξ, τ ∈ C α,β;ψ

2

, we have

T 0 H α,β;ψ 0+ τ (t) ξ(t)dt = T 0 ψ (t)τ (t) H α,β;ψ T ξ(t) ψ (t) dt, since C ∞ 0 (0, T ) ⊂ C α,β;ψ 2 , then H α,β;ψ 0+ τ (t) = H α,β;ψ 0+ τ (t) a.e. on t ∈ [0, T ]. Lemma 2 Let τ ∈ C α,β;ψ 2 , then H α,β;ψ 0+ τ (t)
is almost every where equal to the weak derivative of

I 1-α;ψ 0+ τ (t) in the H 1 (0, T ) sense, i.e., H α,β;ψ 0+ τ (t) = I β(1-α);ψ 0+ D ψ I 1-γ;ψ 0+ τ (t), where D ψ = 1 ψ (t) d dt , a.e on [0, T ] and γ = α + β(1 -α).
Proof For any ϕ ∈ C ∞ 0 (0, T ), yields

T 0 v(t)ϕ(t)dt = T 0 ψ (t)u(t)H α,β;ψ T - ϕ(t) ψ (t) dt = T 0 ψ (t)u(t)I γ-α;ψ T RL D γ;ψ T ϕ(t) ψ (t) dt = T 0 ψ (t)u(t)I γ-α;ψ T C D γ;ψ T ϕ(t) ψ (t) dt = - T 0 ψ (t)u(t)I γ-α;ψ T I 1-γ;ψ T D ψ ϕ(t) ψ (t) dt = - T 0 ψ (t)u(t)I 1-α;ψ T 1 ψ (t) d dt ϕ(t) ψ (t) dt = - T 0 ψ (t)u(t)I 1-α;ψ D ψ (t) ψ (t) dt = - T 0 I β(1-α);ψ 0+ I (1-β)(1-α);ψ 0+ u(t)D ψ (t)dt = - T 0 ψ (t)I (1-β)(1-α);ψ 0+ u(t)I β(1-α);ψ T D ψ (t) ψ (t) dt = - T 0 ψ (t)I (1-β)(1-α);ψ 0+ u(t)I β(1-α);ψ T D ψ ϕ(t) ψ (t) dt = T 0 ψ (t)I (1-β)(1-α);ψ 0+ u(t) C D 1-β(1-α);ψ T ϕ(t) ψ (t) dt = T 0 C D 1-β(1-α);ψ 0+ I (1-β)(1-α);ψ 0+ u(t)ϕ(t)dt = T 0 I β(1-α);ψ 0+ D ψ (t)I (1-β)(1-α);ψ 0+ u(t)ϕ(t)dt. Therefore H α,β;ψ 0+ τ (t) = I β(1-α);ψ 0+ D ψ (t)I (1-β)(1-α);ψ 0+ τ (t), with D ψ (t) = 1 ψ (t) d dt .
Lemma 3 Let 0 < α ≤ 1 and 0 ≤ β ≤ 1.

1. If 1/2 < α ≤ 1 and τ ∈ L 2 (0, T ), then I

α+β(β-1);ψ 0+ τ (0) = 0; 2. If τ ∈ C([0, T ]), then I α,β;ψ 0+ τ ∈ C([0, T ]); 3. If τ ∈ C 1 ([0, T ]) and I β(β-1);ψ 0+ τ (0) = 0, then I α;ψ 0+ τ ∈ C 1 ([0, T ]). Proof Let α = α + β(β -1
), then we have

I α;ψ 0+ τ (t) ≤ (ψ(t) -ψ(0)) α-1/2 Γ (α)(2α -1) 1/2 τ L 2 [0,T ] ,
which completes the proof of 1.

Let t 0 ∈ [0, T ] and {t n } be a sequence in [0, T ] such that t n → t 0 . Consider M = max 0≤t≤T |τ (t)|.

As τ (t n -s) → τ (t 0 -s) almost every on [0, T ],

Ψ α (t -s) |τ (t n -s) -τ (t 0 -s)| ≤ 2MΨ α (t -s),
and by means of Lebesgue dominated theorem, we conclude

tn 0 Ψ α (t -s)τ (t n -s)ds - t0 0 Ψ α (t -s)τ (t 0 -s)ds ≤ ξ 0 Ψ α (t -s) |τ (t n -s) -τ (t 0 -s)| ds + tn t0 Ψ α (t -s) |τ (t 0 -s)| ds → 0.
where ξ = max {t 0 , t 1 , t 2 , . . . } and

Ψ α (t -s) := ψ (t -s)(ψ(t) -ψ(t -s)) α-1 .
This concludes the proof of 2. Now, suppose that K = max 0≤t≤T |τ (t)| then τ n (t n -s) -τ (t 0 -s) t n -t 0 ≤ K. Therefore, using the Lebesgue dominated theorem, yields

Γ (α) I α;ψ tn τ (t n ) -I α;ψ t0 τ (t 0 ) t n -t 0 = tn 0 Ψ α (t -s) (τ (t n -s) -τ (t 0 -s)) t n -t 0 ds + tn t0 Ψ α (t -s) (τ (t n -s) -τ (t 0 -s)) t n -t 0 ds + tn t0 Ψ α (t -s) (τ (t 0 -s) -τ (0)) t 0 -s t 0 -s t n -t 0 ds → t0 0 Ψ α (t -s)τ (t 0 -s)ds.
Thus, I α;ψ 0+ τ (t) (t 0 ) = I α;ψ 0+ τ (t 0 ). From this and part 2, we conclude 3.

Lemma 4 Suppose that for some τ ∈ L 2 (0, T ), H α,β;ψ 0+ τ (t) exists and is a.e. equal to a function in C([0, T ]). Then 1. τ is almost every equal to a function τ ∈ C([0, T ]); 2. H α,β;ψ 0+ τ (t) exist for any t ∈ [0, T ] and H α,β;ψ

0+ τ (t) ∈ C([0, T ]). Proof First of all, note that H α,β;ψ 0+ Φ(x) = RL D 1-β(1-α);ψ 0+ I 1-γ;ψ 0+ Φ(x), yields H α,β;ψ 0+ Φ(x) =D ψ I 1-α;ψ 0+ Φ(x) ,
and by the Lemma 2, we obtain D ψ I 1-α;ψ 0+ f (x) is almost everywhere equal. Therefore, I 1-α;ψ 0+ τ (t) is almost everywhere equal to a function in C 1 ([0, T ]). Thus by Lemma 3, yields

t 0 τ (s)ds = I α;ψ 0+ I 1-α;ψ 0+ τ (t) ψ (t) ∈ C 1 ([0, T ]).
Take τ = D t 0 τ (s)ds [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], this complete the proof of 1.

On the other hand, by means of Lemma 3 implies that

I 1-α;ψ 0+ τ ∈ C([0, T ]). Since I 1-α;ψ 0+ τ (t) = I 1-α;ψ 0+ τ (t), ∀t ∈ [0, T ], then I 1-α;ψ 0+ τ (t) ∈ C([0, T ])
. By using it and the fact that

I 1-α;ψ 0+ τ (t) is almost everywhere equal to a function in C 1 ([0, T ]), we can conclude I 1-α;ψ 0+ τ (t) ∈ C 1 ([0, T ]). So, yields H α,β;ψ 0+ τ (t) = RL D α;ψ 0+ τ (t) = D ψ I 1-α;ψ 0+ τ (t) ,
in the weak sense.

Below we present two particular cases from Lemma 4, in the sense of Riemann-Liouville and Katugampola fractional derivatives.

Lemma 5 (Riemann-Liouville). Suppose that for some τ ∈ L 2 (0, T ), H α,0;t 0+ τ (t) exists and is a.e. equal to a function in C([0, T ]). Then

1. τ is almost every equal to a function τ ∈ C([0, T ]); 2. H α,0;t 0+ τ (t) exist for any t ∈ [0, T ] and H α,0;t 0+ τ (t) ∈ C([0, T ]).
Lemma 6 (Katugampola). Suppose that for some τ ∈ L 2 (0, T ), H α,0;t ρ 0+ τ (t) (ρ > 0) exists and is a.e. equal to a function in C([0, T ]). Then 1. τ is almost every equal to a function τ ∈ C([0, T ]); 2. H α,0;t ρ 0+ τ (t) exist for any t ∈ [0, T ] and H α,0;t ρ 0+ τ (t) ∈ C([0, T ]).

The following Lemma 7 is similar to Lemma 3 and Lemma 4. Theorem 10 Consider the conditions of Theorem 5. Then, every weak solution of Eq.( 1) is a classical solution.

Proof Suppose that τ is the weak solution of Eq.( 1) and consider g(t) = λΦ(t, τ (t)) -τ (t). Using the definition of weak solution, yields which concludes the proof.

The results above are also valid for their respective particular cases, as discussed for Theorem 5, from the choice of the function ψ(t).

Concluding remarks

We have obtained some results of existence and regularity of weak solutions for ψ-Hilfer fractional boundary value problem in C α,β;ψ 2 and H, using the extension of the Lax-Milgram Theorem and some results discussed in section 2. The results discussed here are general and global that hold a wide class of particular cases, both the problem investigated and its respective ψ-fractional space. Other issues in this regard have been discussed in other variational problems, for example, what conditions should be imposed in order to obtain multiplicity of weak solutions in the space C 2α,β;ψ 2 ? Finally, a variational structure has been discussed, in order to ensure that the variational problem discussed is well established.

H

  α,β;ψ T -H α,β;ψ 0+ τ (t) + τ (t) = λΦ(t, τ (t)), t ∈ (0, T ) I β(β-1);ψ 0+ τ (0) = I β(β-1);ψ T -τ (T ) = 0,(1)where H α,β;ψ T -(•), H α,β;ψ 0+ (•) are the right-sided and left-sided ψ-Hilfer fractional derivatives of order 1/2 < α ≤ 1 and type 0 ≤ β ≤ 1, respectively, I β(β-1);ψ T -(•) and I β(β-1);ψ 0+

  where D α T (•) and D α 0+ (•), are Riemann-Liouville fractional derivatives the right and left of order α com 0 < α ≤ 1, and where λ > 0 and µ ≥ 0 are two parameters: F, G : R → R are locally Lipschitz functions, where F (ω) = )ds, ω ∈ R and f, g : R → R are locally essentially bounded

p

  and H α,β;ψ 0+ (•) is the ψ-Hilfer fractional derivative with 0 < α ≤ 1 and 0 ≤ β ≤ 1.

Lemma 7

 7 Suppose that τ ∈ L 2 ([0, T ]), H α,β;ψ T -τ (t) exists and is almost everywhere equal to a function in C([0, T ]). Then 1. w is almost everywhere equal to a function τ ∈ C([0, T ]). 2. H α,β;ψ T -τ (t) exists for any t ∈ [0, T ] and H α,β;ψ T -τ (t) ∈ C([0, T ]).
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