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In this article, we present the ψ-Hilfer fractional derivatives of variable order (FDVO) of Types I, II and III, versions A and B, as well as their combinations. Moreover, we discuss the ψ-Caputo FDVO with respect to another function, for the ψ-Hilfer and the ψ-Caputo FDVO. In addition, we propose approximations and relations between both derivatives. With regards to the ψ-Hilfer FDVO Type II, we discuss the stability of the FVO nonlinear systems solutions by means of one-parameter Mittag-Leffler functions of variable order. Examples involving the FDVO Lu and Chen systems, are also presented.

Introduction

The mathematics is driven by looking for patterns and that through rigorous deductions try to answer questions that have capture the attention over the decades and still intrigue scientists [START_REF] Nash | Open problems in mathematics[END_REF][START_REF] Polya | The Stanford mathematics problem book: With hints and solutions[END_REF]. By the year 1695, one of the questions that resulted in consequences of paramount importance for mathematics, emerged in a letter between Leibniz and L'Hôpital, including the following question: "What is the meaning of d n f (x) dx n , n being a fractional number" [START_REF] Debnath | A brief historical introduction to fractional calculus[END_REF][START_REF] Leibniz | Letter from Hanover, Germany, to GFA L'Hopital[END_REF][START_REF] Leibniz | Letter from Hanover, Germany to Johann Bernoulli[END_REF][START_REF] Leibniz | Letter from Hanover, Germany to John Wallis[END_REF]. Leibniz predicted that such a question would have important consequences in future [START_REF] Machado | Recent history of fractional calculus[END_REF][START_REF] Machado | Recent history of the fractional calculus: data and statistics[END_REF]. Since then, a number definitions of fractional derivatives have been introduced, each with its importance and relevance. We highlight here the Riemann-Liouville and Caputo fractional derivatives, since they are of utmost importance in the theory of fractional calculus [START_REF] Almeida | A Caputo fractional derivative of a function with respect to another function[END_REF][START_REF] Karniadakis | ok of Fractional Calculus with Applications[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF][START_REF] Oliveira | Hilfer-Katugampola fractional derivatives[END_REF].

Knowing the broad class of fractional operator definitions where the order is not variable, how do you know which derivative is the best choice for analysing a given set of measurement data [START_REF] Almeida | Caputo-Hadamard fractional derivatives of variable order[END_REF]? With the increasing complexity of physical phenomena to be modeled, Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] analysed the application of the ψ-Hilfer fractional derivative. Indeed, for a given choice of ψ and for the limits 1 and 0 of the parameter β, we get particular cases of the classic fractional derivatives. Regarding the ψ-Hilfer fractional derivative, a number of relevant works were published [START_REF] Oliveira | Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations[END_REF][START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | Fractional calculus and the ESR test[END_REF][START_REF] Sousa | Validation of a fractional model for erythrocyte sedimentation rate[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF][START_REF] Tavares | Combined fractional variational problems of variable order and some computational aspects[END_REF]. For works addressing other types of integrals and derivatives an their applications interested readers can address to [START_REF] Almeida | Caputo-Hadamard fractional derivatives of variable order[END_REF][START_REF] Almeida | Modeling some real phenomena by fractional differential equations[END_REF][START_REF] Almeida | A discrete method to solve fractional optimal control problems[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF][START_REF] Oliveira | Hilfer-Katugampola fractional derivatives[END_REF][START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF] and the references therein.

Tavares et al. [START_REF] Tavares | Caputo derivatives of fractional variable order: numerical approximations[END_REF], discussed three new versions of the Caputo fractional derivative of variable order (FDVO) and presented a numerical tool to solve partial differential equations involving such operator. For each version of the Caputo fractional derivative, an approximation formula in terms of the integer order derivative and an estimate for the error of the approximations, were proposed. More recently Almeida [START_REF] Tavares | Combined fractional variational problems of variable order and some computational aspects[END_REF][START_REF] Almeida | Caputo-Hadamard fractional derivatives of variable order[END_REF], discussed three types of Caputo-Hadamard FDVO. Approximation formulas for each operator were presented and estimates for the error were also given. Over the years, researchers started to use fractional integrals of variable order (FIVO) and FDVO to investigate results in the variational context [START_REF] Atanackovic | An expansion formula for fractional derivatives of variable order[END_REF][START_REF] Hajipour | On an accurate discretization of a variable-order fractional reaction-diffusion equation[END_REF][START_REF] Pooseh | Expansion formulas in terms of integerorder derivatives for the Hadamard fractional integral and derivative[END_REF][START_REF] Pooseh | Numerical approximations of fractional derivatives with applications[END_REF][START_REF] Samko | Integration and differentiation to a variable fractional order[END_REF][START_REF] Samko | Fractional integration and differentiation of variable order: an overview[END_REF][START_REF] Sierociuk | On a new definition of fractional variableorder derivative[END_REF][START_REF] Sierociuk | On a new symmetric fractional variable order derivative[END_REF][START_REF] Sierociuk | Derivation, interpretation, and analog modelling of fractional variable order derivative definition[END_REF][START_REF] Sun | A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications[END_REF][START_REF] Sun | Variable-order fractional differential operators in anomalous diffusion modeling[END_REF][START_REF] Valério | Variable order fractional controllers[END_REF]. It is also of particular relevance the work by Almeida, Tavares and Delfim Torres and collaborators, investigating FDVO [START_REF] Almeida | A fractional Malthusian growth model with variable order using an optimization approach[END_REF][START_REF] Almeida | Modeling some real phenomena by fractional differential equations[END_REF][START_REF] Almeida | A fractional Malthusian growth model with variable order using an optimization approach[END_REF][START_REF] Herzallah | Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations[END_REF][START_REF] Odzijewicz | Noether's theorem for fractional variational problems of variable order[END_REF][START_REF] Tavares | Constrained fractional variational problems of variable order[END_REF][START_REF] Tavares | Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order[END_REF][START_REF] Valério | Variable-order fractional derivatives and their numerical approximations[END_REF][START_REF] Valério | Variable order fractional controllers[END_REF].

In the follow-up of these works and also those by Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF], this paper proposes six types of ψ-Hilfer FDVO, called Types I, II and III, each with two versions A and B. Some approximations for the type II (versions A and B) of ψ-Hilfer FDVO are investigated, highlighting their relationship with the ψ-Caputo and ψ-Riemann-Liouville fractional derivatives with respect to another function. We verify that when working with FDVO, some common properties of fractional derivatives of fixed order are lost. Nonetheless, the idea is to look at these of FDVO, in the sense of approximations through series, which lead to interesting and important results for the emerging area of fractional calculus of variable order.

We highlight the main results investigated in this article. Therefore, we:

1. Propose 6 types of the ψ-Hilfer FDVO, called Types I, II and III, versions A and B; 2. Discuss the combined ψ-Hilfer FDVO; 3. Develop new versions of the ψ-Caputo FDVO; 4. Present new results and properties regarding the ψ-Hilfer FDVO; 5. Investigate the stability of solutions for FDVO nonlinear systems.

Besides these aspects, we can raise further questions such as whether it is possible to obtain a version of the Leibniz rule. Such issues are addressed in a critical discussion at the final part the study.

In the rest the article is divided as follows. In section 2, we introduce several results of importance for the development of the article. In section 3, we analyse the six versions of the ψ-Hilfer FDVO, as well as several formulations for the ψ-Caputo FDVO with respect to another function. Moreover, the new versions for the combined ψ-Hilfer FDVO are also discussed. We study approximations for the proposed versions of fractional derivatives and the integration by parts of the ψ-Hilfer fractional derivative Type II. Some examples include representative graphs and a choice for the function and the values of α(x, t), δ, ε, t, x and a. In section 4 we consider the ψ-Hilfer FDVO Type II for illustrating the new concepts.

We investigate the stability of the solutions of fractional nonlinear systems by means of one-parameter Mittag-Leffler functions of variable order. Moreover, we discuss examples involving the FDVO Lu and Chen systems. In section 5, we include the final comments and a critical discussion, summarising the results obtained and pointing towards questions still open.

Preliminary, concepts and results

In this section, we introduced some fundamental concepts and results that will be of importance throughout the article. For the definitions of FIVO with respect to another function, we use information available in several seminal references [START_REF] Atanackovic | An expansion formula for fractional derivatives of variable order[END_REF][START_REF] Odzijewicz | Noether's theorem for fractional variational problems of variable order[END_REF][START_REF] Sun | A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications[END_REF][START_REF] Zhang | Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions[END_REF].

Definition 2.1 Let 0 < α(x, t) < 1, I = [a, b] (-∞ ≤ a < (x, t) < b ≤ ∞) be a finite or infinite interval, f ∈ L 1 ([a, b], R) and ψ ∈ C 1 ([a, b], R) an increasing function such that ψ (•) = 0, ∀x, t ∈ [a, b]. The FIVO of a function f ∈ L 1 ([a, b], R)
with respect to another function, ψ, of variable order α(x, t), on the left and on the right, are given by

I α(x,t);ψ a+ f (t) = t a ψ (s) Γ(α(x, s)) (ψ (t) -ψ (s)) α(x,s)-1 f (s) ds. (2.1) 
and

I α(x,t);ψ b- f (t) = b t ψ (s) Γ(α(x, s)) (ψ (s) -ψ (t)) α(x,s)-1 f (s) ds, (2.2) 
respectively.

Remark 2.1 Some particular cases concerning Eq. (2.1) and Eq. (2.2) should be highlighted:

a) Choosing α(x, s) = α(x, t), we have

I α(x,t);ψ a+ f (t) = 1 Γ(α(x, t)) t a ψ (s) (ψ (t) -ψ (s)) α(x,t)-1 f (s) ds (2.3)
and

I α(x,t);ψ b- f (t) = 1 Γ(α(x, t)) b t ψ (s) (ψ (s) -ψ (t)) α(x,t)-1 f (s) ds (2.4) b) Choosing α(x, t) = α (t) and α (x, s) = α (s), yields I α(t);ψ a+ f (t) = t a ψ (s) Γ(α(s)) (ψ (t) -ψ (s)) α(s)-1 f (s) ds and I α(t);ψ b- f (t) = b t ψ (s) Γ(α(s)) (ψ (s) -ψ (t)) α(s)-1 f (s) ds. c) Taking α (x, s) = α (x, t) = α (t), with 0 < α(t) < 1, ∀t ∈ [a, b], we have I α(t);ψ a+ f (t) = 1 Γ(α(t)) t a ψ (s) (ψ (t) -ψ (s)) α(t)-1 f (s) ds and I α(t);ψ b- f (t) = 1 Γ(α(t)) b t ψ (s) (ψ (s) -ψ (t)) α(t)-1 f (s) ds.
d) If we consider α (x, t) = α, a constant, with 0 < α < 1, then we obtain the Riemann-Liouville fractional integral

I α,ψ a+ f (t) = 1 Γ(α) t a ψ (s) (ψ (t) -ψ (s)) α-1 f (s) ds and I α,ψ b-f (t) = 1 Γ(α) b t ψ (s) (ψ (s) -ψ (t)) α-1 f (s) ds.
e) For a particular choice of the order of the FIVO, Eq. (2.1), we can obtain several FIVO that are well known in the literature [START_REF] Almeida | Caputo-Hadamard fractional derivatives of variable order[END_REF][START_REF] Atanackovic | An expansion formula for fractional derivatives of variable order[END_REF][START_REF] Samko | Integration and differentiation to a variable fractional order[END_REF][START_REF] Sousa | Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation[END_REF]. Note that the function ψ (•) has not yet been chosen. Thus, we can conclude that from the choice of ψ (•), the variety of possible formulations for the integral is even larger.

f) The law of exponents is not always valid for FIVO, that is, for Eq. (2.1), we have

I α(x,t);ψ a+ I β(x,t);ψ a+ f (t) = I α(x,t)+β(x,t);ψ a+ f (t) . Also, taking α (x, t) = α (t) and β (x, t) = β (t) we obtain I α(t);ψ a+ I β(t);ψ a+ f (t) = I α(t)+β(t);ψ a + + f (t) .
For the particular case, when the order is not variable, that is, if α(t) = α and β(t) = β, then it results:

I α;ψ a+ I β;ψ a+ f (t) = I α+β;ψ a+ f (t).
In short, Definition 2.1 establishes the ψ-Riemann-Liouville FIVO. However, we do not have yet formulated a variable order extension for the ψ-Hilfer fractional derivative, which will be presented in the following definition. 

Definition 2.2 [26, 28] Let n -1 < α < n, with n ∈ N, I = [a, b] an interval such that (-∞ ≤ a < b ≤ ∞) and f, ψ ∈ C n ([a, b] , R) two functions such that ψ (•)
H D α,β;ψ a+ f (t) = I β(n-α);ψ a+ 1 ψ (t) d dt n I (1-β)(n-α);ψ a+ f (t) (2.5)
and

H D α,β,ψ b-f (t) = I β(n-α);ψ b- - 1 ψ (t) d dt n I (1-β)(n-α),ψ b- f (t) (2.6)
respectively.

As seen above, we present a variety of FIVO. For a particular choice of α(x, t) and the function ψ(•), we find a number of versions of FIVO scattered in the published literature. Based on the definition of the FIVO in Eq. (2.3) and the ψ-Hilfer fractional derivative in Eq. (2.5), we will discuss, in the sequel generalized versions of the ψ-Hilfer FDVO.

The ψ-Hilfer FDVO

In this section, we introduce a six version for the ψ-Hilfer FDVO. In addition, we also present versions for the ψ-Caputo FDVO that are of special importance for obtaining approximations of the ψ-Hilfer FDVO. In this sense, we present relevant properties and examples for the ψ-Hilfer FDVO type II. To conclude the section, we discuss several approximations for the ψ-Caputo and ψ-Hilfer FDVO and particular cases of these approximations.

Definition 3.1 Let n -1 < α (x, t) < n, with n ∈ N, I = [a, b] an interval such that (-∞ ≤ a < b ≤ ∞) and f, ψ ∈ C n ([a, b], R
) two functions such that ψ is increasing monotonically and ψ (•) = 0, ∀x, t ∈ I. The ψ-Hilfer FDVO, left-sided and right-sided,

H i D α(x,t),β;ψ a+ (•) H i D α(x,t),β;ψ b- (•) of variable order α (x, t) and type 0 ≤ β ≤ 1 with i = 1, 2,
are given by a) Type I (A)

H 1 D α(x,t),β;ψ a+ f (t) = I β(n-α(x,t));ψ a+ 1 Γ(n -γ n (x, t)) 1 ψ (t) d dt n t a A α,β ψ,+ (x, s, t) f (s) ds (3.1)
where A α,β ψ,+ (x, s, t) := ψ (s) (ψ (t) -ψ (s)) n-γn(x,t)-1 and γ n (x, t) = α(x, t) + β(n -α(x, t)).

b) Type I (B)

H 1 D α(x,t),β;ψ b- f (t) = I β(n-α(x,t));ψ b- 1 Γ(n -γ n (x, t)) - 1 ψ (t) d dt n b t A α,ψ β,-(x, s, t) f (s) ds (3.2)
where A α,β ψ,-(x, s, t) := ψ (s) (ψ (s) -ψ (t)) n-γn(x,t)-1 .

c) Type II (A)

H 2 D α(x,t),β;ψ a+ f (t) = I β(n-α(x,t));ψ a+ 1 ψ (t) d dt n 1 Γ(n -γ n (x, t)) t a A α,β ψ,+ (x, s, t) f (s) ds (3.3)
where A α,β ψ,+ (x, s, t)

:= ψ (s) (ψ (t) -ψ (s)) n-γn(x,t)-1 . d) Type II (B) H 2 D α(x,t),β;ψ b- f (t) = I β(n-α(x,t));ψ b- - 1 ψ (t) d dt n 1 Γ(n -γ n (x, t)) b t A α,ψ β,-(x, s, t) f (s) ds (3.4) where A α,ψ β,-(x, s, t) := ψ (s) (ψ (s) -ψ (t)) n-γn(x,t)-1 .
We also include the Type III (A) and Type III (B), with a variable order depending on the integral factor. The version Type III (A), is given by:

H D α(x,t),β;ψ a+ f (t) = I β(n-α(x,t));ψ a+ 1 ψ (t) d dt n t a A α,β ψ,+ (x, s, t) Γ(n -γ n (x, s)) f (s) ds (3.5)
where A α,β ψ,+ (x, s, t) := ψ (s) (ψ (t) -ψ (s)) n-γn(x,s)-1 . The version Type III (B), is given by:

H D α(x,t),β;ψ b- f (t) = I β(n-α(x,t));ψ b- - 1 ψ (t) d dt n b t A α,β ψ,-(x, s, t) Γ(n -γ n (x, s)) f (s) ds (3.6)
where A α,β ψ,-(x, s, t) := ψ (s) (ψ (s) -ψ (t)) n-γn(x,s)-1 . Choosing α(x, t) = α(t) and α(x, s) = α(s) in Eq. (3.5) and Eq. (3.6), we have 

H D α(t),β;ψ a+ f (t) = I β(n-α(t));ψ a+ 1 ψ (t) d dt n t a A α,β ψ,+ (s, t) Γ(n -γ n (s)) f (s) ds
f (t) = I β(n-α(t));ψ b- - 1 ψ (t) d dt n b t A α,β ψ,-(s, t) Γ(n -γ n (s)) f (s) ds
where A α,β ψ,+ (s, t) := ψ (s) (ψ (t) -ψ (s)) n-γn(s)-1 and A α,β ψ,-(s, t) := ψ (s) (ψ (s) -ψ (t)) n-γn(t)-1 , respectively.

From the choice of ψ(•) and the limits β → 0 or β → 1, it is possible to obtain a wide class of FDVO as particular cases. Here, we present two particular cases, the ψ-Caputo and the ψ-Riemann-Liouville FDVO.

• Taking the limit β → 1 in both sides of Eq. (3.1), Eq. (3.2), Eq. (3.3) and Eq. (3.4), we have the ψ-Caputo FDVO:

C 1 D α(x,t);ψ a + f (t) = I n-α(x,t);ψ a + 1 ψ (t) d dt n f (t). and C 1 D α(x,t);ψ b - f (t) = I n-α(x,t);ψ b - - 1 ψ (t) d dt n f (t).
• Taking the limit β → 0 in both sides of Eq. (3.1), Eq. (3.2), Eq. (3.3) and Eq. (3.4),

we have the ψ-Riemann-Liouville FDVO:

1 D α(x,t);ψ a + f (t) = 1 Γ(n -α(x, t)) 1 ψ (t) d dt n t a A α,1 ψ,+ (x, s, t) f (s) ds; 2 D α(x,t);ψ a + f (t) = 1 ψ (t) d dt n 1 Γ(n -α(x, t)) t a A α,1 ψ,+ (x, s, t) f (s) ds; 1 D α(x,t);ψ b - f (t) = 1 Γ(n -α(x, t)) - 1 ψ (t) d dt n b t A α,1 ψ,-(x, s, t) f (s) ds; 2 D α(x,t);ψ b - f (t) = - 1 ψ (t) d dt n 1 Γ(n -α(x, t)) b t A α,1 ψ,-(x, s, t) f (s) ds,
where A α,1 ψ,+ (x, s, t) := ψ (s) (ψ (s) -ψ (t)) n-α(x,t)-1 and A α,1 ψ,-(x, s, t) := ψ (s) (ψ (t) -ψ (s)) n-α(x,t)-1 .

Remark 3.1 Taking α(x, t) = α and substituting in both sides of Eq. (3.1), Eq. (3.2), Eq.

(3.3) and Eq. (3.4), we have the following identities

H 1 D α(x,t),β;ψ a + f (t) = H 2 D α(x,t),β;ψ a + f (t) = H D α,β;ψ a + f (t)
and

H 1 D α(x,t),β;ψ b - f (t) = H 2 D α(x,t),β;ψ b - f (t) = H D α,β;ψ b - f (t)•
The ψ-Hilfer FDVO can be written in terms of the ψ-Caputo and ψ-Riemann-Liouville FDVO. Therefore, we have:

H 2 D α(x,t),β;ψ a + f (t) = I β(n-α(x,t));ψ a + 2 D γn(x,t);ψ a + f (t) and H 2 D α(x,t),β;ψ b - f (t) = I β(n-α(x,t));ψ b - (-1) n 2 D γn(x,t);ψ b - f (t).
On the other hand, we also have

H 2 D α(t),β;ψ a + f (t) = C 1 D β(α(x,t)-n)+n;ψ a + I n-γn(x,t);ψ a + f (t)
and

H 2 D α(x,t),β;ψ b - f (t) = C 1 D β(α(x,t)-n)+n;ψ b - I n-γn(x,t);ψ b - f (t).
We can also present other versions for the Caputo FDVO:

C 1 D α(t);ψ a+ x (t) = 1 D α(t);ψ a+ (x (t) -x (a)) (3.7) = 1 Γ (1 -α (t)) 1 ψ (t) d dt t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds, C 1 D α(t);ψ b- x (t) = 1 D α(t);ψ b- (x (t) -x (b)) (3.8) = 1 Γ (1 -α (t)) - 1 ψ (t) d dt b t ψ (s) (ψ (s) -ψ (t)) -α(t) (x (s) -x (b)) ds, C 2 D α(t);ψ a+ x (t) = 2 D α(t);ψ a+ (x (t) -x (a)) (3.9) = 1 ψ (t) d dt 1 Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds, and C 2 D α(t);ψ b- x (t) = 2 D α(t);ψ b- (x (t) -x (b)) (3.10) = - 1 ψ (t) d dt 1 Γ (1 -α (t)) b t ψ (s) (ψ (s) -ψ (t)) -α(t) (x (s) -x (b)) ds.
The expressions are important to investigate two results involving the ψ-Hilfer FDVO.

Based on the definitions of the ψ-Hilfer FDVO with respect to another function, we now present the combined ψ-Hilfer FDVO.

Definition 3.2 Let 0 < α 1 (x, t), α 2 (x, t) < 1, 0 ≤ β ≤ 1, γ = (γ 1 , γ 2 ), γ 1 , γ 2 = 0 and f ∈ AC([a, b], R). We have: H i D α 1 (x,t),α 2 (x,t),β;ψ γ f (t) = γ 1 H i D α 1 (x,t),β;ψ a + f (t) + γ 2 H i D α 2 (x,t),β;ψ b - f (t) (3.11) for i = 1, 2.
Let us now make a brief analysis concerning Eq. (3.11).

1. Taking the limit β → 1 in both sides of Eq. (3.11), we get the combined ψ-Caputo FDVO, given by

H i D α 1 (x,t),α 2 (x,t);1 γ f (t) = γ 1 C i D α 1 (x,t);ψ a + f (t) + γ 2 C i D α 2 (x,t);ψ b - f (t) = C i D α 1 (x,t),α 2 (x,t);ψ γ f (t) for i = 1, 2.
2. As a particular case, considering ψ(t) = t and taking the limit β → 1 in both sides of Eq. (3.11) we obtain the combined Caputo FDVO

H i D α 1 (x,t),α 2 (x,t);1 γ f (t) = γ 1 C i D α 1 (x,t) a + f (t) + γ 2 C i D α 2 (x,t) b - f (t) = C i D α 1 (x,t),α 2 (x,t) γ f (t)
for i = 1, 2.

3. Taking the limit β → 0 in both sides of Eq. (3.11), we get the combined ψ-Riemann-Liouville FDVO, given by

H i D α 1 (x,t),α 2 (x,t);0 γ f (t) = γ 1 i D α 1 (x,t);ψ a + f (t) + γ 2 i D α 2 (x,t);ψ b - f (t) = i D α 1 (x,t),α 2 (x,t);ψ γ f (t) for i = 1, 2.
4. As a particular case, considering ψ(t) = t and taking the limit β → 0 in both sides of Eq. (3.11) we obtain the combined Riemann-Liouville FDVO

H i D α 1 (x,t),α 2 (x,t);0 γ f (t) = γ 1 i D α 1 (x,t) a + f (t) + γ 2 i D α 2 (x,t) b - f (t) = i D α 1 (x,t),α 2 (x,t) γ f (t) for i = 1, 2.
5. From the choice of the function ψ(t) and the limits β → 0 and β → 1 it is possible to obtain other formulations of FDVO.

6. γ = (γ 1 , γ 2 ) ∈ [0, 1] 2 is a vector with γ 1 and γ 2 both non null.

7. Taking γ 1 = 0 and γ 2 = 0 or γ 1 = 0 and γ 2 = 0 in Eq. (3.11) we have

H i D α 1 (x,t),α 2 (x,t),β;ψ γ f (t) = γ 2 H i D α 2 (x,t),β;ψ b - f (t)
and

H i D α 1 (x,t),α 2 (x,t),β;ψ γ f (t) = γ 1 H i D α 1 (x,t),β;ψ a + f (t) for i = 1, 2.
From the versions of the ψ-Hilfer FDVO presented in Eq. (3.1) -Eq. (3.4), we can analyse important properties as follows.

Proposition 3.2 Let f and g be two continuous functions and λ and δ two arbitrary constants. The ψ-Hilfer FDVO are linear, that is

H i D α(x,t),β;ψ a + (λf ± δg)(t) = λ H i D α(x,t),β;ψ a + f (t) ± δ H i D α(x,t),β;ψ a + g(t)
for i = 1, 2.

Proof: The proof follows directly from the definition. 2

Theorem 3.3 Let f ∈ C ([a, b], R) and x, t ∈ [a, b]. Then, we have a) H 1 D α(x,t),β;ψ a + f (t) = H 2 D α(x,t),β;ψ a + f (t) = 0 at t = a; b) H 1 D α(x,t),β;ψ b - f (t) = H 2 D α(x,t),β;ψ b - f (t) = 0 at t = b.
Proof: a) Consider the ψ-Hilfer FDVO in terms of the ψ-Riemann-Liouville FDVO. Taking the norm, we can write

H 2 D α(x,t),β;ψ a + f (t) = I β(n-α(x,t));ψ a + 2 D γn(x,t);ψ a + f (t) = 1 Γ(β(n -α (x, t))) t a ψ (s) (ψ (t) -ψ (s)) α(x,t)-1 2 D γn(x,t);ψ a + f (s) ds ≤ 2 D γn(x,t);ψ a + f (t) Γ(β(n -α (x, t))) t a ψ (s) (ψ (t) -ψ (s)) α(x,t)-1 ds = 2 D γn(x,t);ψ a + f (t) Γ(β(n -α (x, t))) (ψ (t) -ψ (a)) α(x,t) α (x, t)
that is zero at t = a.

On the other hand, we have

H 1 D α(x,t),β;ψ a + f (t) = I β(n-α(x,t));ψ a + 1 Γ(β, α (x, t)) 1 ψ (t) d dt n × s a A α,β ψ,+ (x, s, t) f (τ ) dτ ≤ f (t) C n ψ I β(n-α(x,t));ψ a + 1 Γ(n -γ n (x, t)) (ψ(s) -ψ(a)) n-γn(x,t) n -γ n (x, t) ≤ f (x, t) C n ψ Γ(n -γ n (x, t) + 1) 1 Γ(β(n -α (x, t))) × × t a ψ (s) (ψ (t) -ψ (s)) β(n-α(x,t))-1 (ψ(s) -ψ(a)) n-γn(x,t) ds.
where

A α,β ψ,+ (x, s, t) := ψ (s) (ψ (t) -ψ (s)) n-γn(x,t)-1 .

Integrating by parts and rearranging we obtain

H 1 D α(x,t),β;ψ a + f (t) ≤ f (x, t) C n ψ Γ(n -γ n (x, t) + 1) 1 Γ(β(n -α(x, t))) ψ(t)-ψ(a) 0 1 - u ψ(t) -ψ(a) β(n-α(x,t))-1 u n-γn(x,t) du.

Introducing a change of variables

p = u ψ (t) -ψ (a)
and simplifying, yields

H 1 D α(x,t),β;ψ a + f (t) ≤ f (x, t) C n ψ Γ(n -γ n (x, t) + 1) (ψ(t) -ψ(a)) n-γn(x,t) Γ(β(n -α(x, t))) 1 0 (1 -p) β(n-α(x,t))-1 p n-γn(x,t) dp.
Using the definition of gamma function, we have

H 1 D α(x,t),β;ψ a + f (t) ≤ ||f (t)|| C n ψ Γ(n -γ n (x, t) + 1) (ψ(t) -ψ(a)) n-γn(x,t) Γ(β(n -α(x, t))) Γ(α)Γ(n -γ n (x, t) + 1) Γ(n -α(x, t) + 1) .
From this expression evaluated at t = a we obtain zero, which conclude the proof. For b) we omit the proof, since the procedure is the one adopted for a).

2

Lemma 3.4 Let ε, δ > 0. Consider the function f 1 (t) = (ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 .
Then, we have

H 1 D α(x,t),β;ψ a + f 1 (t) = (ψ(x) -ψ(a)) ε-1 I β(1-α(x,t));ψ a + 1 Γ(1 -γ 1 (x, t)) 1 ψ (t) d dt ×B(1 -γ 1 (x, t), δ)(ψ(t) -ψ(a)) δ-γ 1 (x,t) (3.12)
and

H 2 D α(x,t),β;ψ a + f 1 (t) = Γ(δ) Γ(δ -α(x, t)) (ψ(t) -ψ(a)) δ-α(x,t)-1 (ψ(x) -ψ(a)) ε-1 (3.13)
where γ 1 (x, t) := α(x, t) -β(1 -α(x, t))).

Proof: First, let us show Eq. (3.12). In fact, by definition of H 1 D α(x,t),β;ψ a + (•) and remembering the relation

I 1-γ 1 (x,t);ψ a + (ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 = (ψ(x) -ψ(a)) ε-1 I 1-γ 1 (x,t);ψ a + (ψ(t) -ψ(a)) δ-1 = (ψ(x) -ψ(a)) ε-1 Γ(δ) Γ(1 -γ 1 (x, t) + δ) (ψ(t) -ψ(a)) δ-γ 1 (x,t) ,
we have

H 1 D α(x,t),β;ψ f (t) = I β(1-α(x,t));ψ a+ 1 Γ(1 -γ 1 (x, t)) 1 ψ (t) d dt × ×Γ(1 -γ 1 (x, t))(ψ(t) -ψ(a)) ε-1 Γ(δ) Γ(1 -γ 1 (x, t) + δ) (ψ(t) -ψ(a)) δ-γ 1 (x,t) = (ψ(x) -ψ(a)) ε-1 I β(1-α(x,t));ψ a + 1 Γ(1 -γ 1 (x, t)) × × 1 ψ (t) d dt Γ(δ)Γ(1 -γ 1 (x, t)) Γ(1 -γ 1 (x, t) + δ) (ψ(t) -ψ(a)) δ-γ 1 (x,t) = (ψ(x) -ψ(a)) ε-1 I β(1-α(x,t));ψ a + 1 Γ(1 -γ 1 (x, t)) × × 1 ψ (t) d dt B(1 -γ 1 (x, t), δ)(ψ(t) -ψ(a)) δ-γ 1 (x,t) .
Consider the relation 

2 D γ 1 (x,t);ψ a + (ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 = Γ(δ) Γ(δ -γ 1 (x, t)) (ψ(t) -ψ(a)) δ-γ 1 (x,t)-1 (ψ(x) -ψ(a)) ε-1 . ( 3 
H 2 D α(x,t),β;ψ a + f 1 (t) = I γ 1 (x,t)-α(x,t);ψ a + 2 D γ 1 (x,t);ψ a + (ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 = Γ(δ) Γ(δ -γ 1 (x, t)) (ψ(x) -ψ(a)) ε-1 I γ 1 (x,t)-α(x,t);ψ a + (ψ(t) -ψ(a)) δ-γ 1 (x,t)-1 = Γ(δ) Γ(δ -α(x, t)) (ψ(t) -ψ(a)) δ-α(x,t)-1 (ψ(x) -ψ(a)) ε-1
which concludes the proof. 2

Theorem 3.5 Let ε, δ > 0 and consider the function

f 2 (t) = E α(x,t) ((ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 )
where E α(x,t) (•) is the one parameter Mittag-Leffler function of variable order. Then, we have

H 2 D α(x,t),β;ψ a + f 2 (t) = ∞ k=0 Γ(k(δ -1) + 1) Γ(k(δ -1) + 1 -α(x, t)) (ψ(t) -ψ(a)) k(δ-1)-α(x,t) (ψ(x) -ψ(a)) k(ε-1)
Γ(α(x, t)k + 1) .

(3.15)

Proof: In fact, by the definition of the one parameter Mittag-Leffler function we can write

H 2 D α(x,t),β;ψ a + f 2 (t) = H 2 D α(x,t),β;ψ a + E α(x,t) ((ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 ) = H 2 D α(x,t),β;ψ a + ∞ k=0 [(ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 ] k Γ(α(x, t)k + 1) = ∞ k=0 H 2 D α(x,t),β;ψ a + [(ψ(t) -ψ(a)) δ-1 (ψ(x) -ψ(a)) ε-1 ] k Γ(α(x, t)k + 1) = ∞ k=0 H 2 D α(x,t),β;ψ a + (ψ(t) -ψ(a)) k(δ-1) (ψ(x) -ψ(a)) k(ε-1) Γ(α(x, t)k + 1) = ∞ k=0 Γ(k(δ -1) + 1) Γ(k(δ -1) + 1 -α(x, t)) (ψ(t) -ψ(a)) k(δ-1)-α(x,t) (ψ(x) -ψ(a)) k(ε-1) Γ(α(x, t)k + 1)
which concludes the the proof. 2

We illustrate the theoretical discussion held previously by means of some examples. Following Theorem 10, we address the possibility of choosing α(x, t), which is directly related to the function f . Then, let δ, ε > 0, 0 < α(x, t) ≤ 1 and consider the function

f (x, t) = ∞ k=0 Γ(k(δ -1) + 1) Γ(k(δ -1) + 1 -α(x, t)) (ψ(t) -ψ(a)) k(δ-1)-α(x,t) (ψ(x) -ψ(a)) k(ε-1)
Γ(α(x, t)k + 1) .

The plots in Fig. 1, Fig. 2 and Fig. 3 consider with t and x varying in the interval [0.0.5] with space of 0.001. Moreover, three cases are considered, namely (δ, ε, a) = (2.7, 1.9, 0), (δ, ε, a) = (3.7, 0.9, 0) and (δ, ε, a) = (2.9, 2.9, 0). 

(ψ(t) -ψ(a)) k = k! Γ(k + 1 -α(x, t)) (ψ(t) -ψ(a)) k-α and H 2 D α(x,t),β;ψ b- (ψ(b) -ψ(t)) k = k! Γ(k + 1 -α(x, t)) (ψ(b) -ψ(t)) k-α .
On the other hand, for n > k ∈ N 0 , we obtain 

H 2 D α(x,t),β;ψ a+ (ψ(t) -ψ(a)) k = H 2 D α(x,t),β;ψ b- (ψ(b) -ψ(t)) k = 0.
f (t) = E α(x,t) (λ(ψ(t) -ψ(a)) α(x,t) ) and g(t) = E α(x,t) (λ(ψ(b) -ψ(t)) α(x,t)
). Then, we have

H 2 D α(x,t),β;ψ a+ f (t) = λf (t) and H 2 D α(x,t),β;ψ b- g(t) = λg(t).
Proof: Using the definition of the one parameter Mittag-Leffler function and Eq. (3.13) (with ε = 1), we have

H 2 D α(x,t),β;ψ a+ f (t) = H 2 D α(x,t),β;ψ a+ E α(x,t) (λ(ψ(t) -ψ(a)) α(x,t) ) = ∞ k=0 λ k Γ(α(x, t)k + 1) H 2 D α(x,t),β;ψ a+ (ψ(t) -ψ(a)) α(x,t)k = λ ∞ k=1 λ k-1 (ψ(t) -ψ(a)) α(x,t)(k-1) Γ((k -1)α(x, t) + 1) = λf (t).
which concludes the the proof. 2

Theorem 3.8 Let 0 < α(x, t) < 1-1 n for all (x, t) ∈ ∆ with a number n ∈ N greater than or equal to two, and

ψ (t) = 0. If f ∈ C ([a, b], R), g ∈ C([a, b], R) and I 1-α(x,t);ψ b - g ∈ AC[a, b], then: a) b a g(t) H 2 D α(x,t),β;ψ a + f (t)dt = I 1-γ(x,t);ψ a+ f (t) I β(1-α(x,t));ψ b- g(t) ψ (t) b a + b a I 1-γ(x,t);ψ a+ f (t)ψ (t) 2 D β(α(x,t)-1);ψ b- g(t) ψ (t) dt. (3.16) b) b a g(t) H 2 D α(x,t),β;ψ b - f (t)dt = -I 1-γ(x,t);ψ b- f (t) I β(1-α(x,t));ψ a + g(t) ψ (t) b a + b a I 1-γ(x,t);ψ b - f (t)ψ (t) 2 D β(α(x,t)-1);ψ a+ g(t) ψ (t) dt.
(3.17)

Proof: Here we prove Eq. (3.16). The proof of Eq. (3.17) is similar and is omitted.

Then, b a g(t) H 2 D α(x,t),β;ψ a+ f (t) dt = b a g(t) C 2 D β(α(x,t)-1)+1;ψ a+ I 1-γ(x,t);ψ a+ f (t) dt = b a g(t) C 2 D β(α(x,t)-1)+1;ψ a + h(x, t) dt
where we introduced the notation

h(x, t) = I 1-γ(x,t);ψ a + f (t).
Using the relation

C 2 D β(α(x,t)-1)+1;ψ a + h(x, t) = I 1-β;ψ a + 1 ψ (t) d dt f (t) with β = β(α(x, t) -1) + 1, we obtain b a g(t) H 2 D α(x,t),β;ψ a + f (t) dt = b a g(t) I β(1-α(x,t));ψ a + 1 ψ (t) d dt h(x, t) dt = b a ψ (t) 1 ψ (t) d dt h(x, t) I β(1-α(x,t));ψ b- g(t) ψ (t) dt = b a d dt h(x, t)I β(1-α(x,t));ψ b- g(t) ψ (t) dt.
Integrating by parts, we can write

b a g(t) H 2 D α(x,t),β;ψ a+ f (t) dt = h(x, t) I β(1-α(x,t));ψ b- g(t) ψ (t) b a - b a h(x, t) d dt I β(1-α(x,t));ψ b- g(t) ψ (t) dt = I 1-γ(x,t);ψ a+ f (t) I β(1-α(x,t));ψ b- g(t) ψ (t) b a - b a I 1-γ(x,t);ψ a+ d dt I β(1-α(x,t));ψ b- g(t) ψ (t) dt = I 1-γ(x,t);ψ a+ f (t)I β(1-α(x,t));ψ b- g(t) ψ (t) b a + b a I 1-γ(x,t);ψ a+ f (t)(ψ (t))D β(α(x,t)-1) b- g(t) ψ (t) dt which completes the proof. 2 
Theorem 3.9 Assuming the same conditions as to Theorem 5.2 and choosing ψ (t) = t

with limit β → 1, we have b a g (t) C 2 D α(x,t) a+ f (t) dt = f (t) I 1-α(x,t) b- g (t) b a + b a f (t) 2 D α(x,t)-1 b- g (t) dt.
Proof: The proof follows directly from the Theorem 3.8. 2

The following theorem highlights the relationship between the two versions of ψ-Caputo FDVO with respect to another function.

Theorem 3.10

The following relations hold between the left fractional operators:

C 1 D α(t);ψ a+ x (t) = C 1 D α(t);ψ a+ x (t) + α (t) Γ (2 -α (t)) ψ (t) t a (ψ (t) -ψ (s)) 1-α(t) 1 1 -α (t) -ln (ψ (t) -ψ (s)) ds and C 1 D α(t);ψ b- x (t) = C 1 D α(t);ψ b- x (t) + α (t) Γ (2 -α (t)) ψ (t) b t (ψ (s) -ψ (t)) 1-α(t) 1 1 -α (t)
-ln (ψ (s) -ψ (t)) ds.

Proof: Using the Definition 3.7 and applying the integration by parts of function

f (s) = ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)), we obtain C 1 D α(t);ψ a+ x (t) = 1 Γ (1 -α (t)) 1 ψ (t) d dt t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds = 1 Γ (1 -α (t)) 1 ψ (t) d dt 1 (1 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds. Let us recall that (ψ (t) -ψ (s)) 1-α(t) = (ψ (t) -ψ (s)) 1-α(t) -α (t) ln (ψ (t) -ψ (s)) + (1 -α (t) ψ (t)) ψ (t) -ψ (s) . (3.18)
Differentiating the integral Eq. (3.18) and using Eq. (3.18), yields

C 1 D α(t);ψ a+ x (t) = α (t) Γ (2 -α (t)) ψ (t) (1 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds + 1 Γ (1 -α (t)) ψ (t) (1 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) × -α (t) ln (ψ (t) -ψ (s)) + (1 -α (t)) ψ (t) ψ (t) -ψ (s) x (s) ds = α (t) Γ (2 -α (t)) ψ (t) (1 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds - α (t) Γ (2 -α (t)) ψ (t) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ln (ψ (t) -ψ (s)) ds + 1 Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) x (s) ψ (s) ds = C 1 D α(t);ψ a+ x (t) + α (t) Γ (2 -α (t)) ψ (t) t a (ψ (t) -ψ (s)) 1-α(t) x (s) 1 1 -α (t)
-ln (ψ (t) -ψ (s)) ds.

Thus, we concluded the proof. The proof for the second expression follows the same steps.

2

In particular, for the choice α (t) = α (constant), we have C 1 D α(t);ψ a+

x (t) = C 1 D α(t);ψ a+ x (t) .
The Eq. (3.18) in Theorem 3.10, can be written as follows

C 1 D α(t);ψ a+ x (t) = C 1 D α(t);ψ a+ x (t) + α (t) Γ (2 -α (t)) ψ (t) t a (ψ (t) -ψ (s)) 1-α(t) ln (ψ (t) -ψ (s)) - 1 1 -α (t)
x (s) ds.

Remembering that 

H 2 D α(t),β;ψ a+ y (t) = C 1 D β(α(t
y (t) = C 1 D β(α(t)-1)+1;ψ a+ x (t) + βα (t) Γ (1 -β (α (t) -1)) ψ (t) × t a (ψ (t) -ψ (s)) β(1-α(t)) x (s) ln (ψ (t) -ψ (s)) - 1 β (1 -α (t))
ds.

(

Analogously, we have 

y (t) = C 1 D β(α(t)-1)+1;ψ b- x (t) + βα (t) Γ (1 -β (α (t) -1)) ψ (t) × b t (ψ (s) -ψ (t)) β(1-α(t)) x (s) ln (ψ (s) -ψ (t)) - 1 β (1 -α (t))
ds.

Choosing ψ (t) = t in Eq. (3.19), leads to 

y (t) = C 1 D β(α(t)-1);ψ a+ x (t) + βα (t) Γ (1 -β (α (t) -1)) t a (t -s) β(α(t)-1) x (s) ds with x (t) = I 1-γ(t) a+ y (t).
Choosing ψ (t) = t and β → 1 in Eq. (3.19), results in:

H 2 D α(t) a+ y (t) = C 1 D β(α(t)-1) a+ x (t) + α (t) Γ (2 -α (t)) t a (t -s) 1-α(t) x (s) ds.

Theorem 3.11

The following relations hold between the left fractional operators:

C 2 D α(t);ψ a+ x (t) = C 2 D α(t);ψ a+ x (t) - α (t) ψ (t) Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) × Ψ (2 -α (t)) + ln (ψ (t) -ψ (s)) ds (3.20) with Ψ (2 -α (t)) := Γ (2 -α (t)) Γ (2 -α (t)
) .

Proof: Using the Definition 3.9 and applying the integration by parts of function

f (s) = ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)), yields C 2 D α(t);ψ a+ x (t) = 1 ψ (t) d dt 1 Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds = 1 ψ (t) d dt 1 Γ (2 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) 1-α(t) x (s) ds. (3.21) Let us remember that, (ψ (t) -ψ (s)) 1-α(t) = (ψ (t) -ψ (s)) 1-α(t) × -α (t) ln (ψ (t) -ψ (s)) + (1 -α (t)) ψ (t) ψ (t) -ψ (s) . (3.22)
Differentiating the integral Eq. (3.21) and using Eq. (3.22), we get

C 2 D α(t);ψ a+ x (t) = 1 ψ (t)        1 Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds + 1 Γ (2 -α (t)) d dt t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds        = 1 ψ (t) 1 Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds + 1 ψ (t) 1 Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) -α (t) ln (ψ (t) -ψ (s)) + (1 -α (t)) ψ (t) ψ (t) -ψ (s) ds = - 1 ψ (t) α (t) Γ (2 -α (t)) Γ (2 -α (t)) 2 t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds - 1 ψ (t) α (t) Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ln (ψ (t) -ψ (s)) ds + 1 Γ (1 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds = - 1 ψ (t) α (t) Ψ (2 -α (t)) Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds - 1 ψ (t) α (t) Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ln (ψ (t) -ψ (s)) ds + C 2 D α(t);ψ a+ x (t) ,
which concludes the proof. 2

Theorem 3.12 The following relations hold between the left fractional operators

C 2 D α(t);ψ a+ x (t) = C 1 D α(t);ψ a+ x (t) - 1 ψ (t) Ψ (1 -α (t)) Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds.
Proof: Using the Definition 3.9 and applying the product property of functions to classical derivative, we have

C 2 D α(t);ψ a+ x (t) = 1 ψ (t) d dt 1 Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds = 1 ψ (t) 1 Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds + 1 ψ (t) d dt t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds = 1 ψ (t) Γ (1 -α (t)) Γ (1 -α (t)) 2 t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds + 1 Γ (1 -α (t)) 1 ψ (t) d dt t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds = C 1 D α(t);ψ a+ x (t) - 1 ψ (t) Ψ (1 -α (t)) Γ (1 -α (t)) t a ψ (s) (ψ (t) -ψ (s)) -α(t) (x (s) -x (a)) ds with Ψ (1 -α (t)) = Γ (1 -α (t)) Γ (1 -α (t)) . 2 
The result in the follow-up, is intended to obtain an approximation of the ψ-Caputo FDVO. Consequently, we highlight some particular cases. In this sense, we will present an approximate version for the ψ-Hilfer FDVO.

For k ∈ N we consider the two following equalities:

A k = 1 Γ (k + 1 -α (t))   1 + N p=n-k+1 Γ (α (t) -n + p) Γ (α (t) -k) (p -n + k)!   , D k = Γ (α (t) -n + k) Γ (1 -α (t)) Γ (α (t)) (k -n)!
and the function

V k (t) = t a (ψ (s) -ψ (a)) k x (s) ds. Theorem 3.13 Let x : [a, b] → R be a function of class C n+1 , for n ∈ N, and f, x ∈ N with N ≥ n. Then C 1 D α(t);ψ a+ x (t) = n k=1 A k (ψ (t) -ψ (a)) k-α(t) x (k) (t) + N k=n B k (ψ (t) -ψ (a)) n-k-α(t) V k-n (t) + E (t) (3.23) with E (t) ≤ (t -a) (ψ (t) -ψ (a)) n-α(t) Γ (n + 1 -α (t)) exp (n -α (t)) 2 + n -α (t) N n-α(t) (n -α (t)) max s∈[a,t]
x N (s) .

Proof: By definition of C 1 D α(t);ψ a+ (•) and performing the integration by parts of function f (s) = (ψ (t) -ψ (s)) -α(t) x (s), we have

C 1 D α(t);ψ a+ x (t) = 1 Γ (1 -α (t)) t a (ψ (t) -ψ (s)) -α(t) x (s) ds = (ψ (t) -ψ (a)) 1-α(t) x (a) Γ (2 -α (t)) + 1 Γ (2 -α (t)) t a (ψ (t) -ψ (s)) 1-α(t) x (s) ds.
Performing integration by parts of function f (s) = (ψ (t) -ψ (s)) 1-α(t) x (s), yields

C 1 D α(t);ψ a+ x (t) = (ψ (t) -ψ (a)) 1-α(t) x (a) Γ (2 -α (t)) + (ψ (t) -ψ (a)) 2-α(t) x (a) Γ (3 -α (t)) + 1 Γ (3 -α (t)) t a (ψ (t) -ψ (s)) 2-α(t) x (s) ds.

Doing again integration by parts of function

f (s) = (ψ (t) -ψ (s)) 2-α(t) x (s), we get C 1 D α(t);ψ a+ x (t) = (ψ (t) -ψ (a)) 1-α(t) x (a) Γ (2 -α (t)) + (ψ (t) -ψ (a)) 2-α(t) x (a) Γ (3 -α (t)) + (ψ (t) -ψ (a)) 3-α(t) x (a) Γ (4 -α (t)) + 1 Γ (4 -α (t)) t a
(ψ (t) -ψ (s)) 3-α(t) x (4) (s) ds.

Performing this procedure (integration by parts) n -1 times, yields

C 1 D α(t);ψ a+ x (t) = n k=1 (ψ (t) -ψ (a)) k-α(t) x (k) (a) Γ (k + 1 -α (t)) + 1 Γ (n + 1 -α (t)) t a (ψ (t) -ψ (s)) n-α(t) x n+1 (s) ds.
By the Taylor's theorem we obtain

(ψ (t) -ψ (s)) n-α(t) = (ψ (t) -ψ (a)) n-α(t) 1 - ψ (s) -ψ (a) ψ (t) -ψ (a) n-α(t) = (ψ (t) -ψ (a)) n-α(t) N p=0 n -α (t) p (-1) p (ψ (s) -ψ (a)) p (ψ (t) -ψ (a)) p + E 1 (t)
where

E 1 (t) = (ψ (t) -ψ (a)) n-α(t) N p=0 n -α (t) p (-1) p (ψ (s) -ψ (a)) p (ψ (t) -ψ (a)) p and n -α (t) p (-1) p = Γ (α (t) -n + p) Γ (α (t) -n) p! . (3.24) 
Using the Eq. (3.24), we obtain the formula

C 1 D α(t);ψ a+ x (t) = n k=1 (ψ (t) -ψ (a)) k-α(t) x (k) (a) Γ (k + 1 -α (t)) + (ψ (t) -ψ (a)) n-α(t) Γ (n + 1 -α (t)) ∞ k=1 Γ (α (t) -n + p) Γ (α (t) -n) p! × × 1 (ψ (t) -ψ (a)) p t a (ψ (s) -ψ (a)) x (n+1) ds + E (t)
where

E (t) = 1 Γ (k + 1 -α (t)) t a E 1 (t) x (n+1) (s) ds.
If we split the sum into the first term p = 0 and the remaining terms, that is p = 1, . . . , N , and if use integration by parts, taking u (s) = (ψ (s) -ψ (a)) p and v (s) = x (n+1) (s), then we get

C 1 D α(t);ψ a+ x (t) = n-1 k=1 (ψ (t) -ψ (a)) k-α(t) x (k) (a) Γ (k + 1 -α (t)) + 1 Γ (n + 1 -α (t))   1 + N p=n-k+1 Γ (α (t) -n + p) Γ (α (t) -k) (p -n + k)   (ψ (t) -ψ (a)) n-α(t) x (n) (a) + (ψ (t) -ψ (a)) n-1-α(t) Γ (n -α (t)) N p=1 Γ (α (t) -n + p) Γ (α (t) + 1 -n) (p -1)! (ψ (t) -ψ (a)) p-1 × t a (ψ (s) -ψ (a)) p-1 x (n) (s) ds + E (t) .
Repeating the process, that is, spliting the second sum (first term p = k plus the remaining ones p = k + 1, . . . , N ) and integration by parts the integral that appears in the sum p = k + 1, . . . , N , we obtain the desired formula.

We now seek the upper bound formula for E (t) . Using the two relations

(ψ (s) -ψ (a)) p (ψ (t) -ψ (a)) p ≤ 1, if s ∈ [a, t], n -α (t) p ≤ exp (n -α (t)) 2 + n -α (t) p n+1-α(t)
we can write

|E 1 (t)| ≤ (ψ (t) -ψ (a)) n-α(t) ∞ p=N +1 n -α (t) p (-1) p (ψ (s) -ψ (a)) p (ψ (t) -ψ (a)) p ≤ (ψ (t) -ψ (a)) n-α(t) ∞ p=N +1 exp (n -α (t)) 2 + n -α (t) p n+1-α(t) ≤ (ψ (t) -ψ (a)) n-α(t) exp (n -α (t)) 2 + n -α (t) N n-α(t) (n -α (t))
.

Then, we have

E (t) ≤ 1 Γ (n + 1 -α (t)) t a (ψ (t) -ψ (a)) n-α(t) exp (n -α (t)) 2 + n -α (t) N n-α(t) (n -α (t)) x (n+1) (p) dp ≤ (t -a) (ψ (t) -ψ (a)) n-α(t) Γ (n + 1 -α (t)) exp (n -α (t)) 2 + n -α (t) N n-α(t) (n -α (t)) max s∈[a,t]
x N (s) .

This concludes the proof. 2

In the Theorem 3.13 we have lim

N →∞ E (t) = 0. Consequently, it results C 1 D α(t);ψ a+ x (t) ≈ n k=1 A k (ψ (t) -ψ (a)) k-α(t) x (k) (t) + N k=n B k (ψ (t) -ψ (a)) n-k-α(t) V k-n (t) . Remark 3.14 Remembering that H 2 D α(t),β;ψ a+ y (t) = C 1 D β(α(t)-1)+1;ψ a+ I 1-γ(t);ψ a+ y (t) with γ (t) = α (t) + β (1 -α (t)), choosing x (t) = I
1-γ(t);ψ a+ y (t), and replacing in Eq. (

α(t),β;ψ a+

y (t) = n k=1 A k (ψ (t) -ψ (a)) k-β(α(t)-1)-1 x (k) (t) + N k=n B k (ψ (t) -ψ (a)) n-k-β(α(t)-1)-1 V k-n (t) + E (t) (3.25) 
with

E (t) ≤ (t -a) (ψ (t) -ψ (a)) n-β(α(t)-1)-1 Γ (n -β (α (t) -1)) × exp (n -β (α (t) -1) -1) 2 + n -β (α (t) -1) -1 N n-β(α(t)-1)-1 (n -β (α (t) -1) -1) max s∈[a,t]
x N (s) ;

A k = 1 Γ (k -β (α (t) -1))   1 + N p=n-k+1 Γ (β (α (t) -1) + 1 -n + p) Γ (β (α (t) -1) + 1 -k) (p -n + k)!   ; B k = Γ (β (α (t) -1) + 1 -n + k) Γ (β (1 -α (t))) Γ (β (α (t) -1) + 1) (k -n)!
and the function 

V k (t) = t a (ψ (s) -ψ (a)) k x (s) ds.
y (t) = n k=1 A k (t -a) k-β(α(t)-1)-1 x (k) (t) + N k=n B k (t -a) n-k-β(α(t)-1)-1 V k-n (t) + E (t) with E (t) ≤ (t -a) n-β(α(t)-1) Γ (n -β (α (t) -1)) exp (n -β (α (t) -1) -1) 2 + n -β (α (t) -1) -1 N n-β(α(t)-1) (n -β (α (t) -1) -1) max s∈[a,t]
x N (s) ,

A k = 1 Γ (k -β (α (t) -1))   1 + p=n-k+1 Γ (β (α (t) -1) + 1 -n + p) Γ (β (α (t) -1) + 1 -k) (p -n + k)!   , B k = Γ (β (α (t) -1) + 1 -n + k) Γ (β (1 -α (t))) Γ (β (α (t) -1)) (k -n)! , and 
V k (t) = t a (s -a) k x (s) ds.
Note that lim

N →∞ E (t) = 0 H 2 D α(t),β a+ y (t) ≈ n k=1 A k (t -a) k-β(α(t)-1)-1 x (k) (t) + N k=n B k (t -a) n-k-β(α(t)-1)-1 V k-n (t) 2. Taking ψ (t) = t and β → 1, results C 2 D α(t) a+ y (t) = n k=1 A k (t -a) k-α(t) x (k) (t) + N k=n B k (t -a) n-k-α(t) V k-n (t) + E (t)
with

E (t) ≤ (t -a) n-α(t)+1 Γ (n -α (t) + 1) exp (n -α (t)) 2 + n -α (t) N n-α(t) (n -α (t)) max s∈[a,t]
x N (s) ,

A k = 1 Γ (k -α (t) + 1)   1 + p=n-k+1 Γ (α (t) -n + p) Γ (α (t) -k) (p -n + k)!   , B k = Γ (α (t) -n + k) Γ (1 -α (t)) Γ (α (t)) (k -n)! ,
and

V k (t) = t a (s -a) k x (s) ds.
Note that lim

N →∞ E (t) = 0 C 2 D α(t) a+ y (t) ≈ n k=1 A k (t -a) k-α(t) x (k) (t) + N k=n B k (t -a) n-k-α(t) V k-n (t) .
We presented some particular choices of ψ (•) and the limits β → 0 and β → 1. However, the results are not restricted to those discussed here, it is possible to consider other cases that are not included for the sake of parsimony.

Fractional variable order nonlinear system

In this section, we investigate the stability of solutions for a dynamic system via the ψ-Hilfer FDVO type II and the one-parameter Mittag-Leffler function of variable order by means of two theorems. In order to discuss the investigated results, some examples are presented involving FDVO Lu and Chen systems.

For the investigation of the main result of this section, we chose α (ξ, t) = α (t) in the definition It is easy to see that in the limit α → 1, we have E 1 (z) = exp (z).

On the other hand, motivate by Eq. (4.1), we have one-parameter Mittag-Leffler function of variable order α (t) given by

E α(t) (z) := ∞ k=0 z k Γ (α (t) k + 1) (4.2)
where α (t) ∈ C, z ∈ R.

Consider the following fractional differential equations, given by

H 2 D α(t),β;ψ 0+ ξ (t) = Aξ (t) . (4.3) 
By Theorem 3.7, the general solution of Eq. ( 4.3), is given by

ξ (t) = ξ 0 E α(t) A (ψ (t) -ψ (0)) α(t) (4.4)
where E α(t) (•) is Eq. (4.2).

Choosing, ψ (t) = t in Eq. (4.4), yields

ξ (t) = ξ 0 E α(t) At α(t) . (4.5) 
On the order hand, choosing ψ (t) = t and taking the limit α (t) → α and α (t) → 1, yields

ξ (t) = ξ 0 E α (At α ) (4.6)
and It can be gained

ξ (t) = ξ 0 E 1 (At) = ξ 0 exp (At) , (4.7 
4.1 Let ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then |x (t)| ≤ |ξ 0 | E α(t) ξ (ψ (t) -ψ (0)) α(t) . Proof: Let x (t) ∈ R, g (ξ (t)) ≤ ξ and
|ξ (t)| = 1 Γ (α (t)) t 0 ψ (s) (ψ (t) -ψ (s)) α(t)-1 g (|x (s)|) |x (s)| ds ≤ 1 Γ (α (t)) t 0 ψ (s) (ψ (t) -ψ (s)) α(t)-1 ξ |ξ (s)| ds = |ξ 0 | E α(t) ξ (ψ (t) -ψ (0)) α(t) . Then, yields |ξ (t)| ≤ |ξ 0 | E α(t) ξ (ψ (t) -ψ (0)) α(t) . 2 
The following results are a direct result of Theorem 4. 

when ξ (t) = [ξ 1 (t) , ξ 2 (t) , ..., ξ n (t)] , f (ξ (t)) = [f 1 (ξ (t)) , f 2 (ξ (t)) , ..., f n (ξ (t))], 0 < α (t) < 1 and 0 ≤ β ≤ 1. If [ξ (t)] T H 2 D α(t),β;ψ 0+ ξ (t) [ξ (t)] T ξ (t) = [ξ (t)] T f (ξ (t)) [ξ (t)] T ξ (t) ≤ θ, (4.10) 
then |ξ (t)| ≤ |ξ 0 | E α(t) θ (ψ (t) -ψ (0)) α(t) .
Proof: From Eq. (4.9), yields

d dt H 2 D α(t),β;ψ 0+ ξ (t) = d dt [f (ξ (t))] = J (ξ) Df (ξ)
where

J (ξ) :=         f 11 f 12 • • • f 1n f 21 f 22 • • • f 2n • • • • • • • • • f n1 f n2 • • • f nn         is the Jacobian matrix and Df (ξ) := d dt ξ 1 (t) d dt ξ 1 (t) • • • • d dt ξ 1 (t) T . For any x (t), if [x (t)] T H 2 D α(t),β;ψ 0+ ξ (t) [ξ (t)] T ξ (t) = [ξ (t)] T f (ξ (t)) [ξ (t)] T x (t) ≤ θ yields d dt ξ (t) T d dt H 2 D α(t),β;ψ 0+ x (t) d dt ξ (t) T d dt ξ (t) = d dt ξ (t) T d dt f (t) d dt ξ (t) T d dt ξ (t)
Next, we discuss the stability of some fractional systems involving the ψ-Hilfer fractional derivative, especially the fractional Lu and Chen systems [START_REF] Li | Chaos in the fractional order Chen system and its control[END_REF][START_REF] Lu | Chaotic dynamics of the fractional-order Lü system and its synchronization[END_REF]. The fractional Lu and Chen systems towards the Riemann-Liouville fractional derivatives can be found in the following references.

Example 1. Consider the ψ-Hilfer fractional system x = a (y -x) Using the Theorem 4.5, yields

2 D α(t),β;ψ 0+ x 1 (t) = x 2 (t) H 2 D α(t),β;ψ 0+ x 2 (t) = -x 1 (t) -1 . (4.17) Note that [x (t)] T x (t) = x 2 1 (t) + x 2 2 (t) and [x (t)] T f (x (t)) = -x 2 . So, we have [x (t)] T H 2 D α(t),β;ψ 0+ x (t) [x (t)] T x (t) = -x 2 (t) x 2 
(x (t)) T H 2 D α(t),β;ψ 0+ x (t) (x (t)) T x (t) = (x (t)) T f (x (t)) (x (t)) T x (t) = xa (y -x) + y (-xz + cy) + z (xy -bz) x 2 + y 2 + z 2 = axy -ax 2 + cy 2 -bz 2 x 2 + y 2 + z 2 ≤ a 2 x 2 + a 2 + c y 2 -bz 2 x 2 + y 2 + z 2 ≤ max a 2 , c + a 2 , -b = max (3, 13, -8) = 13.
We have

|x (t)| ≤ |x (t 0 )| E α(t) 13 (ψ (t) -ψ (t 0 )) α(t)
for any t > t 0 and

|y (t)| = |x (t 0 )| E α(t) 13 (ψ (t) -ψ (t 0 )) α(t) . ( 4 

.19)

Example 3 Consider the ψ-Hilfer fractional variable order Chen system Using the Theorem 4.5, yields 

     H 2 D α(t),β;ψ 0+ x = a (y -x) H 2 D α(t),β;ψ 0+ y = (c -a) x + -xz + cy
(x (t)) T H 2 D α(t),β;ψ 0+ x (t) (x (t)) T x (t) = (x (t)) T f (x (t)) (x (t)) T x (t) = xa (y -x) + y (-xz + cy) + z (xy -bz) + y (c -a) x x 2 + y 2 + z 2 = -ax 2 -cy 2 -bz 2 -cxy x 2 + y 2 + z 2 ≤ ax 2 -cy 2 -bz 2 -c x 2 +y 2 2 x 2 + y 2 + z 2 ≤ max -a - c 2 -3c 2 

Conclusion and open questions

This article investigated the ψ-Hilfer FDVO. New approximations for the ψ-Caputo fractional derivative were discussed and from them, approximations for the ψ-Hilfer FDVO. The integration by parts of the ψ-Hilfer FDVO and particular cases, as well as two examples involving the Mittag-Leffler function with respect to another function were highlighted. Three examples illustrated the proposed concepts and the results of choosing a function and values of α(x, t), δ, ε, t, x and a. From the particular choice of the ψ-Hilfer FDVO, the stability of solutions of the fractional nonlinear systems were studied by means of the one-parameter Mittag-Leffler function of variable order. Examples involving the fractional variable order Lu and Chen systems in the sense of ψ-Hilfer fractional derivative illustrated the proposed formulations.

The results, allow further research work in other problems involving fractional differential equations of variable order. We can point, for example, questions about population growth, since the solution of the problem is directly linked to the Mittag-Leffler function (see Theorem 10). Of course, other approaches involving practical applications, certainly justify and validate this new approach for the ψ-Hilfer to the FDVO.

We can raise some questions, namely: We note that in recent literature, we find several works on FDVO. However, many questions arise as pointed out in the critical discussion held above and need further research. By hypothesis, 1 n < α(x, t) < 1, and, in this sense, for 1 ≤ t -s we have (ψ(t)ψ(s)) α(x,t)-1 < 1. On the other hand, for 1 > t -s we have (ψ(t) -ψ(s)) α(x,t)-1 < (ψ(t) -ψ(s)) 

  is increasing and ψ (•) = 0, ∀t ∈ I. The ψ-Hilfer fractional derivative, left-side and right-sided, H D α,β;ψ a+ (•) and H D α,β;ψ b-(•), of order α and type β, with 0 ≤ β ≤ 1, are defined by

Figure 1 :

 1 Figure 1: (δ, ε, a) = (2.7, 1.9, 0)

Figure 2 :Figure 3 :

 23 Figure 2: (δ, ε, a) = (3.7, 0.9, 0)

1 .

 1 Taking ψ (t) = t in Eq. (3.25), we get

z

  ∈ R where α ∈ C, Re (α) > 0 and Γ (z) is a Gamma function, given by Γ (z) = ∞ 0 e -t t z-1 dt, Re (z) > 0.

Theorem

  

H 2 D

 2 α(t),β;ψ 0+ ξ (t) = g (ξ (t)) ξ (t). Define ξ (t) = -y (t), and we get

H 2 D

 2 α(t),β;ψ 0+(-y (t)) = g (-y (t)) (-y (t)) .

Then

  

H 2 D

 2 α(t),β;ψ 0+ |ξ (t)| = g (|ξ (t)|) |ξ (t)| g (|ξ (t)|) ≤ ξ.

H

  

H 2 D

 2 α(t),β;ψ 0+ y = -xz + cy

  a = 6, b = 9 and c = 10.

  a = 13, b = 5 and c = -8.

1 .

 1 Is a new formulation of the generalized Leibniz rule possible? 2. What is Laplace transform of the ψ-Hilfer FDVO? 3. Is it possible to investigate the existence and uniqueness of solutions of fractional differential equations in the direction of ψ-Hilfer FDVO in the context of sectorial and quasi-sectorial operators? 4. Is it possible to obtain mild solutions for abstract differential equations in the sense of the ψ-Caputo FDVO? 5. Can we obtain a new approximation for the ψ-Hilfer FDVO with Bernstein polynomials and perform numerical experiments?
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 111252 (s) (ψ (t) -ψ (s)) α(x,t)-1 |f (t)| ds ≤ b a |f (t)| b s ψ (s) (ψ (t) -ψ (s)) α(x,t)-1 dt ds = )| (ψ(t) -ψ(s)) α(x,t)-1 dt + b s+1 |ψ (t)| (ψ(t) -ψ(s)) α(x,t)-1 dt )| (ψ(t) -ψ(s)) -1 dt + ψ(b) -ψ(s + 1) ds ≤ b a |f (t)| n(ψ(s + 1) -ψ(s)) + ψ(b) -ψ(s + 1) ds ≤ ψ(b) f b a ds + n f b a (ψ(s + 1) -ψ(s)) ds -f b a ψ(s + 1) ds ≤ ψ(b) f (b -a) + n f (b -a) -| f ψ(b + 1)(b -a) = f (b -a)[ψ(b) -ψ(b + 1) + n] < ∞.Fubini's theorem, we have that h is integrable on Ω andI ) (ψ (t) -ψ (s)) α(x,t)-1 f (s) ds dt ≤ ) (ψ (t) -ψ (s)) α(x,t)-1 f (s) ds dt ≤ b a α 2 (x, t) + α (x, t) α 2 (x, t) + 1 t a ψ (s) (ψ (t) -ψ (s)) α(x,t)-1 f (s) ds dt ≤ (s) (ψ (t) -ψ (s)) α(x,t)-1 f (s) ds dt = , s, t) ds dt ≤ (b -a)(ψ(b) -ψ(b + 1) + n) f < ∞.Therefore, resultsI α(x,t);ψ a+ (•) ≤ (b -a)(ψ(b) -ψ(b + 1) + n) f that completes the proof. Let 1 n < α(x, t) < 1, ∀ t, x ∈ [a, b] with a number n ∈ N greater or equal than two, f, g ∈ C([a, b], R) and ψ ∈ C ([a, b], R) and function such that ψ (•) = 0, ∀x, t ∈ [a, b].First, note that the operator I α(x,t);ψ a+ (•) is linear. We define the following functionH(x, t, s) := ψ (s) (ψ (t) -ψ (s)) α(x,t)-1 g(t)f (s) , if s < t, 0, if t ≤ s, ∀(x, t, s) ∈ Ω := [a, b] × [a, b] × [a, b].As f, g ∈ C([a, b] , R) and using the Bolzano's theorem, f, g have maximum and minimum. Therefore, there are constants c 1 , c 2 > 0, such that |g (t)| ≤ c 1 and |f (t)| ≤ c 2 with t ∈ [a, b].

1 n - 1 .ψψ≤ c 1 c 2 ψ= c 1 c 2 ψψ- 1 ψψ 1 n -1 ds dt = c 1 c 2 b a ψ(t - 1 )= c 1 c 2 2 ψ 2

 1122111222 (s) (ψ (t) -ψ (s)) α(x,t)-1 f (s)g(t) ds dt≤ (s) (ψ (t) -ψ (s)) α(x,t)-1 |g(t)| |f (s)| ds dt (s) (ψ (t) -ψ (s)) α(x,t)-1 ds dt (s) (ψ (t) -ψ (s)) α(x,t)-1 ds dt = c 1 c 2 (s) (ψ (t) -ψ (s)) α(x,t)-1 ds + t t(s) (ψ (t) -ψ (s)) α(x,t)-1 ds (s) (ψ (t) -ψ (s)) -ψ(a) + n (ψ(t -1) -ψ(t)) 1 n dt < c 1 c 2 (ψ(b -1) -ψ(a) + n) (ψ(b -1) -ψ(a) + n) (b -a) < ∞ .On the other hand, knowing the inequality x (s) (ψ (t) -ψ (s)) α(x,t)-1 g(t)f (s) ds dt and using the Fubini's theorem, we can obtain) (ψ (t) -ψ (s)) α(x,t)-1 g(t)f (s) dt ds = ) (ψ (t) -ψ (s)) α(x,t)-1 g(t) ψTheorem 5.3[START_REF] Tavares | Combined fractional variational problems of variable order and some computational aspects[END_REF][START_REF] Tavares | Caputo derivatives of fractional variable order: numerical approximations[END_REF][START_REF] Pooseh | Numerical approximations of fractional derivatives with applications[END_REF][START_REF] Odzijewicz | Noether's theorem for fractional variational problems of variable order[END_REF][START_REF] Tavares | Constrained fractional variational problems of variable order[END_REF] Assuming the same conditions as Theorem 5.2 and choosing ψ (t) = t, we have b a g (t) I α(x,t) a+ f (t) dt = b a f (t) I α(x,t) b-g (t) dt.

  (t) < 1, ξ ∈ R, g (•)is nonlinear continuous function and locally Lipschitz about x.

				)
	respectively		
	Consider the following ψ-Hilfer fractional non-autonomous systems given by
	H 2 D α(t),β;ψ 0+	ξ (t) = g (ξ (t)) ξ (t)	(4.8)
	with initial condition x (t 0 ), where H 2 D	α(t),β;ψ 0+	(•) is ψ-Hilfer fractional derivative of variable
	order 0 < α		

  Let us choose α (t) = α and ψ (t) = t in Theorem 4.1. For ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then |ξ (t)| ≤ |ξ 0 | E α (ξt α ).

	Corollary 4.3 Corollary 4.4 Let us choose α (t) = 1 in Theorem 4.1. For ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then
	|ξ (t)| ≤ |ξ 0 | exp (ξt).			
	Theorem 4.5 Consider the ψ-Hilfer fractional system of variable order	
	H 2 D	α(t),β;ψ 0+	ξ (t) = f (ξ (t))	(4.9)

1. Corollary 4.2 Let us choose α (t) = α in Theorem 4.1. For ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then |ξ (t)| ≤ |ξ 0 | E α (ξ (ψ (t) -ψ (0)) α ).

Proof: The proof follows directly from the Theorem (5.2).
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Suppose λ as one of eigenvalues of the Jacobian matrix J (ξ) and there should exist a zone zero vector µ corresponding to the eigenvalue λ. We obtain J (ξ) µ = λµ (4.12)

Multiplying µ on both side of Eq. (4.13) on the right side, µ H on both sides of Eq. (4.12), on the left side, and adding their respective sides, yields

The Eq. (4.14), can be written as follows

Multiplying both sides of Eq. (4.15) and using Eq. (4.11), yields

The Eq. (4.16) shows a direct way to estimative the maximum of the real part of the eigenvalue of Jacobian matrix J (ξ).

For any t, when δt → 0, yields

For any t, lim

and so it can be deduced

2 Some important cases, resulting from Theorem 4.5 are presented below.

Corollary 4.6 Taking limit β → 1 in Eq. (4.9), we have the Caputo fractional system

Corollary 4.7 Taking limit β → 0 and ψ (t) = t in Eq. (4.9), we have the Riemann-

So, we can conclude that, if

the ψ-Hilfer fractional system Eq. (4.9) is stable.

Appendix

From the Theorems 5.1 and 5.2, we now discuss the operator limitation I α(x,t);ψ a+ (•) and a version of the integration by parts. 

is a linear and bounded operator.

Proof: First, note that the operator

By hypothesis, 1 n < α(x, t) < 1, and in this sense, for s + 1 ≤ t we have (ψ(t)ψ(s)) α(x,t)-1 < 1. On the other hand, for s < t < s + 1 we have (ψ(t) -ψ(s)) α(x,t)-1 < (ψ(t) -ψ(s))

1 n -1 . Therefore, we can write