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Abstract

In this article, we present the ψ-Hilfer fractional derivatives of variable order (FDVO)
of Types I, II and III, versions A and B, as well as their combinations. Moreover, we
discuss the ψ-Caputo FDVO with respect to another function, for the ψ-Hilfer and the
ψ-Caputo FDVO. In addition, we propose approximations and relations between both
derivatives. With regards to the ψ-Hilfer FDVO Type II, we discuss the stability of the
FVO nonlinear systems solutions by means of one-parameter Mittag-Leffler functions of
variable order. Examples involving the FDVO Lu and Chen systems, are also presented.
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1 Introduction

The mathematics is driven by looking for patterns and that through rigorous deductions
try to answer questions that have capture the attention over the decades and still intrigue
scientists [14, 18]. By the year 1695, one of the questions that resulted in consequences of
paramount importance for mathematics, emerged in a letter between Leibniz and L’Hôpital,
including the following question: “What is the meaning of dnf(x)

dxn , n being a fractional
number” [10, 47, 48, 49]. Leibniz predicted that such a question would have important
consequences in future [45, 46]. Since then, a number definitions of fractional derivatives
have been introduced, each with its importance and relevance. We highlight here the
Riemann-Liouville and Caputo fractional derivatives, since they are of utmost importance
in the theory of fractional calculus [2, 9, 13, 16].

Knowing the broad class of fractional operator definitions where the order is not variable,
how do you know which derivative is the best choice for analysing a given set of measurement
data [3]? With the increasing complexity of physical phenomena to be modeled, Sousa and
Oliveira [26, 28] analysed the application of the ψ-Hilfer fractional derivative. Indeed, for
a given choice of ψ and for the limits 1 and 0 of the parameter β, we get particular cases
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of the classic fractional derivatives. Regarding the ψ-Hilfer fractional derivative, a number
of relevant works were published [17, 27, 29, 30, 31, 32, 36]. For works addressing other
types of integrals and derivatives an their applications interested readers can address to
[1, 5, 6, 13, 16, 40] and the references therein.

Tavares et al. [38], discussed three new versions of the Caputo fractional derivative of
variable order (FDVO) and presented a numerical tool to solve partial differential equations
involving such operator. For each version of the Caputo fractional derivative, an approx-
imation formula in terms of the integer order derivative and an estimate for the error of
the approximations, were proposed. More recently Almeida [36, 1], discussed three types of
Caputo-Hadamard FDVO. Approximation formulas for each operator were presented and
estimates for the error were also given. Over the years, researchers started to use frac-
tional integrals of variable order (FIVO) and FDVO to investigate results in the variational
context [8, 11, 19, 20, 21, 22, 23, 24, 25, 34, 35, 42]. It is also of particular relevance
the work by Almeida, Tavares and Delfim Torres and collaborators, investigating FDVO
[4, 5, 7, 12, 15, 37, 39, 41, 42].

In the follow-up of these works and also those by Sousa and Oliveira [26, 28], this paper
proposes six types of ψ-Hilfer FDVO, called Types I, II and III, each with two versions
A and B. Some approximations for the type II (versions A and B) of ψ-Hilfer FDVO are
investigated, highlighting their relationship with the ψ-Caputo and ψ-Riemann-Liouville
fractional derivatives with respect to another function. We verify that when working with
FDVO, some common properties of fractional derivatives of fixed order are lost. Nonetheless,
the idea is to look at these of FDVO, in the sense of approximations through series, which
lead to interesting and important results for the emerging area of fractional calculus of
variable order.

We highlight the main results investigated in this article. Therefore, we:

1. Propose 6 types of the ψ-Hilfer FDVO, called Types I, II and III, versions A and B;

2. Discuss the combined ψ-Hilfer FDVO;

3. Develop new versions of the ψ-Caputo FDVO;

4. Present new results and properties regarding the ψ-Hilfer FDVO;

5. Investigate the stability of solutions for FDVO nonlinear systems.

Besides these aspects, we can raise further questions such as whether it is possible to
obtain a version of the Leibniz rule. Such issues are addressed in a critical discussion at the
final part the study.

In the rest the article is divided as follows. In section 2, we introduce several results of
importance for the development of the article. In section 3, we analyse the six versions of
the ψ-Hilfer FDVO, as well as several formulations for the ψ-Caputo FDVO with respect
to another function. Moreover, the new versions for the combined ψ-Hilfer FDVO are also
discussed. We study approximations for the proposed versions of fractional derivatives and
the integration by parts of the ψ-Hilfer fractional derivative Type II. Some examples include
representative graphs and a choice for the function and the values of α(x, t), δ, ε, t, x and
a. In section 4 we consider the ψ-Hilfer FDVO Type II for illustrating the new concepts.
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We investigate the stability of the solutions of fractional nonlinear systems by means of
one-parameter Mittag-Leffler functions of variable order. Moreover, we discuss examples
involving the FDVO Lu and Chen systems. In section 5, we include the final comments and
a critical discussion, summarising the results obtained and pointing towards questions still
open.

2 Preliminary, concepts and results

In this section, we introduced some fundamental concepts and results that will be of impor-
tance throughout the article. For the definitions of FIVO with respect to another function,
we use information available in several seminal references [8, 15, 34, 43].

Definition 2.1 Let 0 < α(x, t) < 1, I = [a, b] (−∞ ≤ a < (x, t) < b ≤ ∞) be a finite

or infinite interval, f ∈ L1([a, b],R) and ψ ∈ C1([a, b],R) an increasing function such that

ψ′(·) 6= 0, ∀x, t ∈ [a, b]. The FIVO of a function f ∈ L1([a, b],R) with respect to another

function, ψ, of variable order α(x, t), on the left and on the right, are given by

I
α(x,t);ψ
a+ f(t) =

∫ t

a

ψ′ (s)

Γ(α(x, s))
(ψ (t)− ψ (s))α(x,s)−1 f(s) ds. (2.1)

and

I
α(x,t);ψ
b− f(t) =

∫ b

t

ψ′ (s)

Γ(α(x, s))
(ψ (s)− ψ (t))α(x,s)−1 f(s) ds, (2.2)

respectively.

Remark 2.1 Some particular cases concerning Eq. (2.1) and Eq. (2.2) should be high-

lighted:

a) Choosing α(x, s) = α(x, t), we have

I
α(x,t);ψ
a+ f(t) =

1

Γ(α(x, t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 f(s) ds (2.3)

and

I
α(x,t);ψ
b− f(t) =

1

Γ(α(x, t))

∫ b

t
ψ′ (s) (ψ (s)− ψ (t))α(x,t)−1 f(s) ds (2.4)

b) Choosing α(x, t) = α (t) and α (x, s) = α (s), yields

I
α(t);ψ
a+ f(t) =

∫ t

a

ψ′ (s)

Γ(α(s))
(ψ (t)− ψ (s))α(s)−1 f(s) ds

and

I
α(t);ψ
b− f(t) =

∫ b

t

ψ′ (s)

Γ(α(s))
(ψ (s)− ψ (t))α(s)−1 f(s) ds.
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c) Taking α (x, s) = α (x, t) = α (t), with 0 < α(t) < 1, ∀t ∈ [a, b], we have

I
α(t);ψ
a+ f(t) =

1

Γ(α(t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(t)−1 f(s) ds

and

I
α(t);ψ
b− f(t) =

1

Γ(α(t))

∫ b

t
ψ′ (s) (ψ (s)− ψ (t))α(t)−1 f(s) ds.

d) If we consider α (x, t) = α, a constant, with 0 < α < 1, then we obtain the Riemann-

Liouville fractional integral

Iα,ψa+ f(t) =
1

Γ(α)

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α−1 f(s) ds

and

Iα,ψb− f(t) =
1

Γ(α)

∫ b

t
ψ′ (s) (ψ (s)− ψ (t))α−1 f(s) ds.

e) For a particular choice of the order of the FIVO, Eq. (2.1), we can obtain several

FIVO that are well known in the literature [1, 8, 21, 33]. Note that the function ψ (·) has

not yet been chosen. Thus, we can conclude that from the choice of ψ (·), the variety of

possible formulations for the integral is even larger.

f) The law of exponents is not always valid for FIVO, that is, for Eq. (2.1), we have

I
α(x,t);ψ
a+ I

β(x,t);ψ
a+ f (t) 6= I

α(x,t)+β(x,t);ψ
a+ f (t) .

Also, taking α (x, t) = α (t) and β (x, t) = β (t) we obtain

I
α(t);ψ
a+ I

β(t);ψ
a+ f(t) 6= I

α(t)+β(t);ψ
a++

f (t) .

For the particular case, when the order is not variable, that is, if α(t) = α and β(t) = β,

then it results:

Iα;ψa+ Iβ;ψa+ f(t) = Iα+β;ψa+ f(t).

In short, Definition 2.1 establishes the ψ-Riemann-Liouville FIVO. However, we do not
have yet formulated a variable order extension for the ψ-Hilfer fractional derivative, which
will be presented in the following definition.

Definition 2.2 [26, 28] Let n − 1 < α < n, with n ∈ N, I = [a, b] an interval such that

(−∞ ≤ a < b ≤ ∞) and f, ψ ∈ Cn ([a, b] ,R) two functions such that ψ (·) is increasing and
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ψ (·) 6= 0, ∀t ∈ I. The ψ-Hilfer fractional derivative, left-side and right-sided, HDα,β;ψa+ (·)

and HDα,β;ψb− (·), of order α and type β, with 0 ≤ β ≤ 1, are defined by

HDα,β;ψa+ f (t) = I
β(n−α);ψ
a+

(
1

ψ ′ (t)

d

dt

)n
I
(1−β)(n−α);ψ
a+ f (t) (2.5)

and

HDα,β,ψb− f (t) = I
β(n−α);ψ
b−

(
− 1

ψ ′(t)

d

dt

)n
I
(1−β)(n−α),ψ
b− f (t) (2.6)

respectively.

As seen above, we present a variety of FIVO. For a particular choice of α(x, t) and the
function ψ(·), we find a number of versions of FIVO scattered in the published literature.
Based on the definition of the FIVO in Eq. (2.3) and the ψ-Hilfer fractional derivative in
Eq. (2.5), we will discuss, in the sequel generalized versions of the ψ-Hilfer FDVO.

3 The ψ-Hilfer FDVO

In this section, we introduce a six version for the ψ-Hilfer FDVO. In addition, we also present
versions for the ψ-Caputo FDVO that are of special importance for obtaining approxima-
tions of the ψ-Hilfer FDVO. In this sense, we present relevant properties and examples for
the ψ-Hilfer FDVO type II. To conclude the section, we discuss several approximations for
the ψ-Caputo and ψ-Hilfer FDVO and particular cases of these approximations.

Definition 3.1 Let n − 1 < α (x, t) < n, with n ∈ N, I = [a, b] an interval such that

(−∞ ≤ a < b ≤ ∞) and f, ψ ∈ Cn([a, b],R) two functions such that ψ is increasing

monotonically and ψ′ (·) 6= 0, ∀x, t ∈ I. The ψ-Hilfer FDVO, left-sided and right-sided,

H
iD

α(x,t),β;ψ
a+ (·)

(
H
iD

α(x,t),β;ψ
b− (·)

)
of variable order α (x, t) and type 0 ≤ β ≤ 1 with i = 1, 2,

are given by

a) Type I (A)

H
1D

α(x,t),β;ψ
a+ f(t) = I

β(n−α(x,t));ψ
a+

{
1

Γ(n− γn(x, t))

(
1

ψ′(t)

d

dt

)n ∫ t

a
Aα,βψ,+ (x, s, t) f(s) ds

}
(3.1)

where Aα,βψ,+ (x, s, t) := ψ′ (s) (ψ (t)− ψ (s))n−γn(x,t)−1 and γn(x, t) = α(x, t)+β(n−α(x, t)).

b) Type I (B)

H
1D

α(x,t),β;ψ
b− f(t) = I

β(n−α(x,t));ψ
b−

{
1

Γ(n− γn(x, t))

(
− 1

ψ′(t)

d

dt

)n ∫ b

t
Aα,ψβ,− (x, s, t) f(s) ds

}
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(3.2)

where Aα,βψ,− (x, s, t) := ψ′ (s) (ψ (s)− ψ (t))n−γn(x,t)−1.

c) Type II (A)

H
2D

α(x,t),β;ψ
a+ f(t) = I

β(n−α(x,t));ψ
a+

{(
1

ψ′(t)

d

dt

)n 1

Γ(n− γn(x, t))

∫ t

a
Aα,βψ,+ (x, s, t) f(s) ds

}
(3.3)

where Aα,βψ,+ (x, s, t) := ψ′ (s) (ψ (t)− ψ (s))n−γn(x,t)−1.

d) Type II (B)

H
2D

α(x,t),β;ψ
b− f(t) = I

β(n−α(x,t));ψ
b−

{(
− 1

ψ′(t)

d

dt

)n 1

Γ(n− γn(x, t))

∫ b

t
Aα,ψβ,− (x, s, t) f(s) ds

}
(3.4)

where Aα,ψβ,− (x, s, t) := ψ′ (s) (ψ (s)− ψ (t))n−γn(x,t)−1.

We also include the Type III (A) and Type III (B), with a variable order depending
on the integral factor. The version Type III (A), is given by:

HDα(x,t),β;ψa+ f(t) = I
β(n−α(x,t));ψ
a+

{(
1

ψ′(t)

d

dt

)n ∫ t

a

Aα,βψ,+ (x, s, t)

Γ(n− γn(x, s))
f(s) ds

}
(3.5)

where Aα,βψ,+ (x, s, t) := ψ′ (s) (ψ (t)− ψ (s))n−γn(x,s)−1.

The version Type III (B), is given by:

HDα(x,t),β;ψb− f(t) = I
β(n−α(x,t));ψ
b−

{(
− 1

ψ′(t)

d

dt

)n ∫ b

t

Aα,βψ,− (x, s, t)

Γ(n− γn(x, s))
f(s) ds

}
(3.6)

where Aα,βψ,− (x, s, t) := ψ′ (s) (ψ (s)− ψ (t))n−γn(x,s)−1.

Choosing α(x, t) = α(t) and α(x, s) = α(s) in Eq. (3.5) and Eq. (3.6), we have

HDα(t),β;ψa+ f(t) = I
β(n−α(t));ψ
a+

{(
1

ψ′(t)

d

dt

)n ∫ t

a

Aα,βψ,+ (s, t)

Γ(n− γn(s))
f(s) ds

}
and

HDα(t),β;ψb− f(t) = I
β(n−α(t));ψ
b−

{(
− 1

ψ′(t)

d

dt

)n ∫ b

t

Aα,βψ,− (s, t)

Γ(n− γn(s))
f(s) ds

}
whereAα,βψ,+ (s, t) := ψ′ (s) (ψ (t)− ψ (s))n−γn(s)−1 andAα,βψ,− (s, t) := ψ′ (s) (ψ (s)− ψ (t))n−γn(t)−1,
respectively.

From the choice of ψ(·) and the limits β → 0 or β → 1, it is possible to obtain a wide
class of FDVO as particular cases. Here, we present two particular cases, the ψ-Caputo and
the ψ-Riemann-Liouville FDVO.
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• Taking the limit β → 1 in both sides of Eq. (3.1), Eq. (3.2), Eq. (3.3) and Eq. (3.4),
we have the ψ-Caputo FDVO:

C
1D

α(x,t);ψ
a+

f(t) = I
n−α(x,t);ψ
a+

(
1

ψ′(t)

d

dt

)n
f(t).

and
C
1D

α(x,t);ψ
b− f(t) = I

n−α(x,t);ψ
b−

(
− 1

ψ′(t)

d

dt

)n
f(t).

• Taking the limit β → 0 in both sides of Eq. (3.1), Eq. (3.2), Eq. (3.3) and Eq. (3.4),
we have the ψ-Riemann-Liouville FDVO:

1D
α(x,t);ψ
a+

f(t) =
1

Γ(n− α(x, t))

(
1

ψ′(t)

d

dt

)n ∫ t

a
Aα,1ψ,+ (x, s, t) f(s) ds;

2D
α(x,t);ψ
a+

f(t) =

(
1

ψ′(t)

d

dt

)n 1

Γ(n− α(x, t))

∫ t

a
Aα,1ψ,+ (x, s, t) f(s) ds;

1D
α(x,t);ψ
b− f(t) =

1

Γ(n− α(x, t))

(
− 1

ψ′(t)

d

dt

)n ∫ b

t
Aα,1ψ,− (x, s, t) f(s) ds;

2D
α(x,t);ψ
b− f(t) =

(
− 1

ψ′(t)

d

dt

)n 1

Γ(n− α(x, t))

∫ b

t
Aα,1ψ,− (x, s, t) f(s) ds,

whereAα,1ψ,+ (x, s, t) := ψ′ (s) (ψ (s)− ψ (t))n−α(x,t)−1 andAα,1ψ,− (x, s, t) := ψ′ (s) (ψ (t)− ψ (s))n−α(x,t)−1.

Remark 3.1 Taking α(x, t) = α and substituting in both sides of Eq. (3.1), Eq. (3.2), Eq.

(3.3) and Eq. (3.4), we have the following identities

H
1D

α(x,t),β;ψ
a+

f(t) = H
2D

α(x,t),β;ψ
a+

f(t) = HDα,β;ψ
a+

f(t)

and

H
1D

α(x,t),β;ψ
b− f(t) = H

2D
α(x,t),β;ψ
b− f(t) = HDα,β;ψ

b− f(t)·

The ψ-Hilfer FDVO can be written in terms of the ψ-Caputo and ψ-Riemann-Liouville
FDVO. Therefore, we have:

H
2D

α(x,t),β;ψ
a+

f(t) = I
β(n−α(x,t));ψ
a+ 2D

γn(x,t);ψ
a+

f(t)

and
H
2D

α(x,t),β;ψ
b− f(t) = I

β(n−α(x,t));ψ
b− (−1)n 2D

γn(x,t);ψ
b− f(t).

On the other hand, we also have

H
2D

α(t),β;ψ
a+

f(t) = C
1D

β(α(x,t)−n)+n;ψ
a+

I
n−γn(x,t);ψ
a+

f(t)
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and
H
2D

α(x,t),β;ψ
b− f(t) = C

1D
β(α(x,t)−n)+n;ψ
b− I

n−γn(x,t);ψ
b− f(t).

We can also present other versions for the Caputo FDVO:

C
1 D

α(t);ψ
a+ x (t) = 1D

α(t);ψ
a+ (x (t)− x (a)) (3.7)

=
1

Γ (1− α (t))

(
1

ψ′ (t)

d

dt

)∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds,

C
1 D

α(t);ψ
b− x (t) = 1D

α(t);ψ
b− (x (t)− x (b)) (3.8)

=
1

Γ (1− α (t))

(
− 1

ψ′ (t)

d

dt

)∫ b

t
ψ′ (s) (ψ (s)− ψ (t))−α(t) (x (s)− x (b)) ds,

C
2 D

α(t);ψ
a+ x (t) = 2D

α(t);ψ
a+ (x (t)− x (a)) (3.9)

=

(
1

ψ′ (t)

d

dt

)
1

Γ (1− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds,

and

C
2 D

α(t);ψ
b− x (t) = 2D

α(t);ψ
b− (x (t)− x (b)) (3.10)

=

(
− 1

ψ′ (t)

d

dt

)
1

Γ (1− α (t))

∫ b

t
ψ′ (s) (ψ (s)− ψ (t))−α(t) (x (s)− x (b)) ds.

The expressions are important to investigate two results involving the ψ-Hilfer FDVO.

Based on the definitions of the ψ-Hilfer FDVO with respect to another function, we now
present the combined ψ-Hilfer FDVO.

Definition 3.2 Let 0 < α1(x, t), α2(x, t) < 1, 0 ≤ β ≤ 1, γ = (γ1, γ2), γ1, γ2 6= 0 and

f ∈ AC([a, b],R). We have:

H
iD

α1(x,t),α2(x,t),β;ψ
γ f(t) = γ1

H
iD

α1(x,t),β;ψ
a+

f(t) + γ2
H
iD

α2(x,t),β;ψ
b− f(t) (3.11)

for i = 1, 2.

Let us now make a brief analysis concerning Eq. (3.11).

1. Taking the limit β → 1 in both sides of Eq. (3.11), we get the combined ψ-Caputo
FDVO, given by

H
iD

α1(x,t),α2(x,t);1
γ f(t) = γ1

C
iD

α1(x,t);ψ
a+

f(t) + γ2
C
iD

α2(x,t);ψ
b− f(t)

= C
iD

α1(x,t),α2(x,t);ψ
γ f(t)

for i = 1, 2.
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2. As a particular case, considering ψ(t) = t and taking the limit β → 1 in both sides of
Eq. (3.11) we obtain the combined Caputo FDVO

H
iD

α1(x,t),α2(x,t);1
γ f(t) = γ1

C
iD

α1(x,t)
a+

f(t) + γ2
C
iD

α2(x,t)
b− f(t)

= C
iD

α1(x,t),α2(x,t)
γ f(t)

for i = 1, 2.

3. Taking the limit β → 0 in both sides of Eq. (3.11), we get the combined ψ-Riemann-
Liouville FDVO, given by

H
iD

α1(x,t),α2(x,t);0
γ f(t) = γ1 iD

α1(x,t);ψ
a+

f(t) + γ2 iD
α2(x,t);ψ
b− f(t)

= iD
α1(x,t),α2(x,t);ψ
γ f(t)

for i = 1, 2.

4. As a particular case, considering ψ(t) = t and taking the limit β → 0 in both sides of
Eq. (3.11) we obtain the combined Riemann-Liouville FDVO

H
iD

α1(x,t),α2(x,t);0
γ f(t) = γ1 iD

α1(x,t)
a+

f(t) + γ2 iD
α2(x,t)
b− f(t)

= iD
α1(x,t),α2(x,t)
γ f(t)

for i = 1, 2.

5. From the choice of the function ψ(t) and the limits β → 0 and β → 1 it is possible to
obtain other formulations of FDVO.

6. γ = (γ1, γ2) ∈ [0, 1]2 is a vector with γ1 and γ2 both non null.

7. Taking γ1 = 0 and γ2 6= 0 or γ1 6= 0 and γ2 = 0 in Eq. (3.11) we have

H
iD

α1(x,t),α2(x,t),β;ψ
γ f(t) = γ2

H
iD

α2(x,t),β;ψ
b− f(t)

and
H
iD

α1(x,t),α2(x,t),β;ψ
γ f(t) = γ1

H
iD

α1(x,t),β;ψ
a+

f(t)

for i = 1, 2.

From the versions of the ψ-Hilfer FDVO presented in Eq. (3.1) - Eq. (3.4), we can
analyse important properties as follows.

Proposition 3.2 Let f and g be two continuous functions and λ and δ two arbitrary con-

stants. The ψ-Hilfer FDVO are linear, that is

H
iD

α(x,t),β;ψ
a+

(λf ± δg)(t) = λHiD
α(x,t),β;ψ
a+

f(t)± δHiD
α(x,t),β;ψ
a+

g(t)

for i = 1, 2.
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Proof: The proof follows directly from the definition. 2

Theorem 3.3 Let f ∈ C ′([a, b],R) and x, t ∈ [a, b]. Then, we have

a) H
1D

α(x,t),β;ψ
a+

f(t) = H
2D

α(x,t),β;ψ
a+

f(t) = 0 at t = a;

b) H
1D

α(x,t),β;ψ
b− f(t) = H

2D
α(x,t),β;ψ
b− f(t) = 0 at t = b.

Proof: a) Consider the ψ-Hilfer FDVO in terms of the ψ-Riemann-Liouville FDVO.
Taking the norm, we can write

H
2D

α(x,t),β;ψ
a+

f(t) =
∥∥∥Iβ(n−α(x,t));ψa+ 2D

γn(x,t);ψ
a+

f(t)
∥∥∥

=

∥∥∥∥ 1

Γ(β(n− α (x, t)))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 2D

γn(x,t);ψ
a+

f(s) ds

∥∥∥∥
≤

∥∥∥ 2D
γn(x,t);ψ
a+

f(t)
∥∥∥

Γ(β(n− α (x, t)))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 ds

=

∥∥∥ 2D
γn(x,t);ψ
a+

f(t)
∥∥∥

Γ(β(n− α (x, t)))

(ψ (t)− ψ (a))α(x,t)

α (x, t)

that is zero at t = a.

On the other hand, we have∥∥∥H1Dα(x,t),β;ψa+
f(t)

∥∥∥ =

∥∥∥∥Iβ(n−α(x,t));ψa+

{
1

Γ(β, α (x, t))

(
1

ψ′(t)

d

dt

)n
×
∫ s

a
Aα,βψ,+ (x, s, t) f(τ) dτ

}∥∥∥∥
≤ ‖f (t)‖Cnψ

∥∥∥∥∥Iβ(n−α(x,t));ψa+

(
1

Γ(n− γn(x, t))

(ψ(s)− ψ(a))n−γn(x,t)

n− γn(x, t)

)∥∥∥∥∥
≤

‖f (x, t)‖Cnψ
Γ(n− γn(x, t) + 1)

1

Γ(β(n− α (x, t)))
×

×
∫ t

a
ψ′ (s) (ψ (t)− ψ (s))β(n−α(x,t))−1 (ψ(s)− ψ(a))n−γn(x,t) ds.

where Aα,βψ,+ (x, s, t) := ψ′ (s) (ψ (t)− ψ (s))n−γn(x,t)−1.

Integrating by parts and rearranging we obtain∥∥∥H1Dα(x,t),β;ψa+
f(t)

∥∥∥
≤

‖f (x, t)‖Cnψ
Γ(n− γn(x, t) + 1)

1

Γ(β(n− α(x, t)))

∫ ψ(t)−ψ(a)

0

(
1− u

ψ(t)− ψ(a)

)β(n−α(x,t))−1
un−γn(x,t)du.

Introducing a change of variables p =
u

ψ (t)− ψ (a)
and simplifying, yields

∥∥∥H1Dα(x,t),β;ψa+
f(t)

∥∥∥ ≤
‖f (x, t)‖Cnψ

Γ(n− γn(x, t) + 1)

(ψ(t)− ψ(a))n−γn(x,t)

Γ(β(n− α(x, t)))

∫ 1

0
(1− p)β(n−α(x,t))−1 pn−γn(x,t) dp.
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Using the definition of gamma function, we have∥∥∥H1Dα(x,t),β;ψa+
f(t)

∥∥∥ ≤
||f(t)||Cnψ

Γ(n− γn(x, t) + 1)

(ψ(t)− ψ(a))n−γn(x,t)

Γ(β(n− α(x, t)))

Γ(α)Γ(n− γn(x, t) + 1)

Γ(n− α(x, t) + 1)
.

From this expression evaluated at t = a we obtain zero, which conclude the proof. For
b) we omit the proof, since the procedure is the one adopted for a). 2

Lemma 3.4 Let ε, δ > 0. Consider the function f1(t) = (ψ(t)−ψ(a))δ−1(ψ(x)−ψ(a))ε−1.

Then, we have

H
1 Dα(x,t),β;ψ

a+
f1(t) = (ψ(x)− ψ(a))ε−1I

β(1−α(x,t));ψ
a+

{
1

Γ(1− γ1(x, t))

(
1

ψ′(t)

d

dt

)
×B(1− γ1(x, t), δ)(ψ(t)− ψ(a))δ−γ1(x,t)

}
(3.12)

and

H
2 Dα(x,t),β;ψ

a+
f1(t) =

Γ(δ)

Γ(δ − α(x, t))
(ψ(t)− ψ(a))δ−α(x,t)−1 (ψ(x)− ψ(a))ε−1 (3.13)

where γ1(x, t) := α(x, t)− β(1− α(x, t))).

Proof: First, let us show Eq. (3.12). In fact, by definition of H1 Dα(x,t),β;ψ
a+

(·) and remem-
bering the relation

I
1−γ1(x,t);ψ
a+

[
(ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1

]
= (ψ(x)− ψ(a))ε−1I

1−γ1(x,t);ψ
a+

(ψ(t)− ψ(a))δ−1

= (ψ(x)− ψ(a))ε−1
Γ(δ)

Γ(1− γ1(x, t) + δ)
(ψ(t)− ψ(a))δ−γ1(x,t),

we have

H
1 Dα(x,t),β;ψf(t) = I

β(1−α(x,t));ψ
a+

{
1

Γ(1− γ1(x, t))

(
1

ψ′(t)

d

dt

)
×

×Γ(1− γ1(x, t))(ψ(t)− ψ(a))ε−1
Γ(δ)

Γ(1− γ1 (x, t) + δ)
(ψ(t)− ψ(a))δ−γ1(x,t)

}
= (ψ(x)− ψ(a))ε−1I

β(1−α(x,t));ψ
a+

{
1

Γ(1− γ1(x, t))
×

×
(

1

ψ′(t)

d

dt

)
Γ(δ)Γ(1− γ1(x, t))
Γ(1− γ1(x, t) + δ)

(ψ(t)− ψ(a))δ−γ1(x,t)
}

= (ψ(x)− ψ(a))ε−1I
β(1−α(x,t));ψ
a+

{
1

Γ(1− γ1(x, t))
×

×
(

1

ψ′(t)

d

dt

)
B(1− γ1(x, t), δ)(ψ(t)− ψ(a))δ−γ1(x,t)

}
.
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Consider the relation

2D
γ1(x,t);ψ
a+

(
(ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1

)
=

Γ(δ)

Γ(δ − γ1(x, t))
(ψ(t)− ψ(a))δ−γ1(x,t)−1(ψ(x)− ψ(a))ε−1. (3.14)

Applying I
γ1(x,t)−α(x,t);ψ
a+

(·) to both sides of Eq.(3.14) we get

H
2D

α(x,t),β;ψ
a+

f1(t) = I
γ1(x,t)−α(x,t);ψ
a+ 2D

γ1(x,t);ψ
a+

(
(ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1

)
=

Γ(δ)

Γ(δ − γ1(x, t))
(ψ(x)− ψ(a))ε−1I

γ1(x,t)−α(x,t);ψ
a+

[
(ψ(t)− ψ(a))δ−γ1(x,t)−1

]
=

Γ(δ)

Γ(δ − α(x, t))
(ψ(t)− ψ(a))δ−α(x,t)−1(ψ(x)− ψ(a))ε−1

which concludes the proof. 2

Theorem 3.5 Let ε, δ > 0 and consider the function

f2(t) = Eα(x,t)((ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1)

where Eα(x,t)(·) is the one parameter Mittag-Leffler function of variable order. Then, we

have

H
2 Dα(x,t),β;ψ

a+
f2(t) =

∞∑
k=0

Γ(k(δ − 1) + 1)

Γ(k(δ − 1) + 1− α(x, t))

(ψ(t)− ψ(a))k(δ−1)−α(x,t)(ψ(x)− ψ(a))k(ε−1)

Γ(α(x, t)k + 1)
.

(3.15)

Proof: In fact, by the definition of the one parameter Mittag-Leffler function we can
write

H
2 Dα(x,t),β;ψ

a+
f2(t) = H

2 Dα(x,t),β;ψ
a+

Eα(x,t)((ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1)

= H
2 Dα(x,t),β;ψ

a+

∞∑
k=0

[(ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1]k

Γ(α(x, t)k + 1)

=

∞∑
k=0

H
2 Dα(x,t),β;ψ

a+
[(ψ(t)− ψ(a))δ−1(ψ(x)− ψ(a))ε−1]k

Γ(α(x, t)k + 1)

=

∞∑
k=0

H
2 Dα(x,t),β;ψ

a+
(ψ(t)− ψ(a))k(δ−1)(ψ(x)− ψ(a))k(ε−1)

Γ(α(x, t)k + 1)

=
∞∑
k=0

Γ(k(δ − 1) + 1)

Γ(k(δ − 1) + 1− α(x, t))

(ψ(t)− ψ(a))k(δ−1)−α(x,t)(ψ(x)− ψ(a))k(ε−1)

Γ(α(x, t)k + 1)



13

which concludes the the proof. 2

We illustrate the theoretical discussion held previously by means of some examples.
Following Theorem 10, we address the possibility of choosing α(x, t), which is directly
related to the function f . Then, let δ, ε > 0, 0 < α(x, t) ≤ 1 and consider the function

f(x, t) =

∞∑
k=0

Γ(k(δ − 1) + 1)

Γ(k(δ − 1) + 1− α(x, t))

(ψ(t)− ψ(a))k(δ−1)−α(x,t)(ψ(x)− ψ(a))k(ε−1)

Γ(α(x, t)k + 1)
.

The plots in Fig. 1, Fig. 2 and Fig. 3 consider with t and x varying in the interval [0.0.5]
with space of 0.001. Moreover, three cases are considered, namely (δ, ε, a) = (2.7, 1.9, 0),
(δ, ε, a) = (3.7, 0.9, 0) and (δ, ε, a) = (2.9, 2.9, 0).

Figure 1: (δ, ε, a) = (2.7, 1.9, 0)

Remark 3.6 In particular, given n ≤ k ∈ N, and as δ > n, yields

H
2 Dα(x,t),β;ψa+ (ψ(t)− ψ(a))k =

k!

Γ(k + 1− α(x, t))
(ψ(t)− ψ(a))k−α

and

H
2 Dα(x,t),β;ψb− (ψ(b)− ψ(t))k =

k!

Γ(k + 1− α(x, t))
(ψ(b)− ψ(t))k−α.

On the other hand, for n > k ∈ N0, we obtain

H
2 Dα(x,t),β;ψa+ (ψ(t)− ψ(a))k = H

2 Dα(x,t),β;ψb− (ψ(b)− ψ(t))k = 0.
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Figure 2: (δ, ε, a) = (3.7, 0.9, 0)

Figure 3: (δ, ε, a) = (2.9, 2.9, 0)

Theorem 3.7 Given λ > 0, n − 1 < α(x, t) < n and 0 ≤ β ≤ 1. Consider the functions
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f(t) = Eα(x,t)(λ(ψ(t)− ψ(a))α(x,t)) and g(t) = Eα(x,t)(λ(ψ(b)− ψ(t))α(x,t)). Then, we have

H
2 Dα(x,t),β;ψa+ f(t) = λf(t) and H

2 Dα(x,t),β;ψb− g(t) = λg(t).

Proof: Using the definition of the one parameter Mittag-Leffler function and Eq. (3.13)
(with ε = 1), we have

H
2 Dα(x,t),β;ψa+ f(t) = H

2 Dα(x,t),β;ψa+ Eα(x,t)(λ(ψ(t)− ψ(a))α(x,t))

=
∞∑
k=0

λk

Γ(α(x, t)k + 1)
H
2 Dα(x,t),β;ψa+ (ψ(t)− ψ(a))α(x,t)k

= λ
∞∑
k=1

λk−1(ψ(t)− ψ(a))α(x,t)(k−1)

Γ((k − 1)α(x, t) + 1)

= λf(t).

which concludes the the proof. 2

Theorem 3.8 Let 0 < α(x, t) < 1− 1
n for all (x, t) ∈ ∆ with a number n ∈ N greater than or

equal to two, and ψ′(t) 6= 0. If f ∈ C ′([a, b],R), g ∈ C([a, b],R) and I
1−α(x,t);ψ
b− g ∈ AC[a, b],

then:

a)∫ b

a
g(t)H2 Dα(x,t),β;ψ

a+
f(t)dt = I

1−γ(x,t);ψ
a+ f(t) I

β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)∣∣∣∣b
a

+

∫ b

a
I
1−γ(x,t);ψ
a+ f(t)ψ′ (t) 2D

β(α(x,t)−1);ψ
b−

(
g(t)

ψ′(t)

)
dt.

(3.16)

b)∫ b

a
g(t)H2 Dα(x,t),β;ψ

b− f(t)dt = −I
1−γ(x,t);ψ
b− f(t) I

β(1−α(x,t));ψ
a+

(
g(t)

ψ′(t)

)∣∣∣∣b
a

+

∫ b

a
I
1−γ(x,t);ψ
b− f(t)ψ′ (t) 2D

β(α(x,t)−1);ψ
a+

(
g(t)

ψ′(t)

)
dt.

(3.17)

Proof: Here we prove Eq. (3.16). The proof of Eq. (3.17) is similar and is omitted.
Then, ∫ b

a
g(t) H

2 Dα(x,t),β;ψa+ f(t) dt =

∫ b

a
g(t) C

2D
β(α(x,t)−1)+1;ψ
a+ I

1−γ(x,t);ψ
a+ f(t) dt
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=

∫ b

a
g(t) C

2 D
β(α(x,t)−1)+1;ψ
a+

h(x, t) dt

where we introduced the notation

h(x, t) = I
1−γ(x,t);ψ
a+

f(t).

Using the relation

C
2 D

β(α(x,t)−1)+1;ψ
a+

h(x, t) = I1−β̃;ψ
a+

(
1

ψ′(t)

d

dt

)
f(t)

with β̃ = β(α(x, t)− 1) + 1, we obtain∫ b

a
g(t) H

2 Dα(x,t),β;ψ
a+

f(t) dt =

∫ b

a
g(t) I

β(1−α(x,t));ψ
a+

(
1

ψ′(t)

d

dt

)
h(x, t) dt

=

∫ b

a
ψ′(t)

(
1

ψ′(t)

d

dt

)
h(x, t) I

β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)
dt

=

∫ b

a

d

dt
h(x, t)I

β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)
dt.

Integrating by parts, we can write∫ b

a
g(t) H

2 Dα(x,t),β;ψa+ f(t) dt

= h(x, t) I
β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)∣∣∣∣b
a

−
∫ b

a
h(x, t)

d

dt
I
β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)
dt

= I
1−γ(x,t);ψ
a+ f(t) I

β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)∣∣∣∣b
a

−
∫ b

a
I
1−γ(x,t);ψ
a+

d

dt
I
β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)
dt

= I
1−γ(x,t);ψ
a+ f(t)I

β(1−α(x,t));ψ
b−

(
g(t)

ψ′(t)

)∣∣∣∣b
a

+

∫ b

a
I
1−γ(x,t);ψ
a+ f(t)(ψ′(t))Dβ(α(x,t)−1)b−

(
g(t)

ψ′(t)

)
dt

which completes the proof. 2

Theorem 3.9 Assuming the same conditions as to Theorem 5.2 and choosing ψ (t) = t

with limit β → 1, we have∫ b

a
g (t) C

2 D
α(x,t)
a+ f (t) dt = f (t) I

1−α(x,t)
b− g (t)

∣∣∣b
a

+

∫ b

a
f (t) 2D

α(x,t)−1
b− g (t) dt.

Proof: The proof follows directly from the Theorem 3.8. 2

The following theorem highlights the relationship between the two versions of ψ-Caputo
FDVO with respect to another function.
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Theorem 3.10 The following relations hold between the left fractional operators:

C
1 D

α(t);ψ
a+ x (t) = C

1 D
α(t);ψ
a+ x (t)

+
α′ (t)

Γ (2− α (t))ψ′ (t)

∫ t

a
(ψ (t)− ψ (s))1−α(t)

[
1

1− α (t)
− ln (ψ (t)− ψ (s))

]
ds

and

C
1 D

α(t);ψ
b− x (t) = C

1 D
α(t);ψ
b− x (t)

+
α′ (t)

Γ (2− α (t))ψ′ (t)

∫ b

t
(ψ (s)− ψ (t))1−α(t)

[
1

1− α (t)
− ln (ψ (s)− ψ (t))

]
ds.

Proof: Using the Definition 3.7 and applying the integration by parts of function f(s) =

ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)), we obtain

C
1 D

α(t);ψ
a+ x (t) =

1

Γ (1− α (t))

(
1

ψ′ (t)

d

dt

)∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

=
1

Γ (1− α (t))

(
1

ψ′ (t)

d

dt

)
1

(1− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds.

Let us recall that[
(ψ (t)− ψ (s))1−α(t)

]′
= (ψ (t)− ψ (s))1−α(t)

[
−α′ (t) ln (ψ (t)− ψ (s)) +

(1− α (t)ψ′ (t))

ψ (t)− ψ (s)

]
.(3.18)

Differentiating the integral Eq. (3.18) and using Eq. (3.18), yields

C
1 D

α(t);ψ
a+ x (t) =

α′ (t)

Γ (2− α (t))ψ′ (t) (1− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

+
1

Γ (1− α (t))ψ′ (t) (1− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t)

×
[
−α′ (t) ln (ψ (t)− ψ (s)) +

(1− α (t))ψ′ (t)

ψ (t)− ψ (s)

]
x′ (s) ds

=
α′ (t)

Γ (2− α (t))ψ′ (t) (1− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

− α′ (t)

Γ (2− α (t))ψ′ (t)

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ln (ψ (t)− ψ (s)) ds

+
1

Γ (1− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t)

x′ (s)

ψ′ (s)
ds

= C
1 D

α(t);ψ
a+ x (t) +

α′ (t)

Γ (2− α (t))ψ′ (t)

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s)[

1

1− α (t)
− ln (ψ (t)− ψ (s))

]
ds.
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Thus, we concluded the proof. The proof for the second expression follows the same
steps. 2

In particular, for the choice α (t) = α (constant), we have C
1 D

α(t);ψ
a+ x (t) = C

1 D
α(t);ψ
a+ x (t) .

The Eq. (3.18) in Theorem 3.10, can be written as follows

C
1 D

α(t);ψ
a+ x (t) = C

1 D
α(t);ψ
a+ x (t)

+
α′ (t)

Γ (2− α (t))ψ′ (t)

∫ t

a
(ψ (t)− ψ (s))1−α(t)

[
ln (ψ (t)− ψ (s))− 1

1− α (t)

]
x′ (s) ds.

Remembering that

H
2 Dα(t),β;ψa+ y (t) = C

1 D
β(α(t)−1)+1;ψ
a+ I

1−γ(t);ψ
a+ y (t)

with γ (t) = α (t) +β (1− α (t)), choosing x (t) = I
1−γ(t);ψ
a+ y (t), and replacing in Eq. (3.18),

yields

H
2 Dα(t),β;ψa+ y (t) = C

1 D
β(α(t)−1)+1;ψ
a+ x (t) +

βα′ (t)

Γ (1− β (α (t)− 1))ψ′ (t)

×
∫ t

a
(ψ (t)− ψ (s))β(1−α(t)) x′ (s)

[
ln (ψ (t)− ψ (s))− 1

β (1− α (t))

]
ds.

(3.19)

Analogously, we have

H
2 Dα(t),β;ψb− y (t) = C

1 D
β(α(t)−1)+1;ψ
b− x (t) +

βα′ (t)

Γ (1− β (α (t)− 1))ψ′ (t)

×
∫ b

t
(ψ (s)− ψ (t))β(1−α(t)) x′ (s)

[
ln (ψ (s)− ψ (t))− 1

β (1− α (t))

]
ds.

Choosing ψ (t) = t in Eq. (3.19), leads to

H
2 Dα(t);ψa+ y (t) = C

1 D
β(α(t)−1);ψ
a+ x (t) +

βα′ (t)

Γ (1− β (α (t)− 1))

∫ t

a
(t− s)β(α(t)−1) x′ (s) ds

with x (t) = I
1−γ(t)
a+ y (t).

Choosing ψ (t) = t and β → 1 in Eq. (3.19), results in:

H
2 Dα(t)a+ y (t) = C

1 D
β(α(t)−1)
a+ x (t) +

α′ (t)

Γ (2− α (t))

∫ t

a
(t− s)1−α(t) x′ (s) ds.

Theorem 3.11 The following relations hold between the left fractional operators:

C
2 D

α(t);ψ
a+ x (t) = C

2 D
α(t);ψ
a+ x (t)− α′ (t)

ψ′ (t) Γ (2− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s)

×
(

Ψ̃ (2− α (t)) + ln (ψ (t)− ψ (s))
)
ds (3.20)

with Ψ̃ (2− α (t)) :=
Γ′ (2− α (t))

Γ (2− α (t))
.
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Proof: Using the Definition 3.9 and applying the integration by parts of function f(s) =

ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)), yields

C
2 D

α(t);ψ
a+ x (t) =

(
1

ψ′ (t)

d

dt

)
1

Γ (1− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

=

(
1

ψ′ (t)

d

dt

)
1

Γ (2− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))1−α(t) x′ (s) ds. (3.21)

Let us remember that,(
(ψ (t)− ψ (s))1−α(t)

)′
= (ψ (t)− ψ (s))1−α(t) ×

(
−α (t) ln (ψ (t)− ψ (s)) +

(1− α (t))ψ′ (t)

ψ (t)− ψ (s)

)
.

(3.22)

Differentiating the integral Eq. (3.21) and using Eq. (3.22), we get

C
2 D

α(t);ψ
a+ x (t) =

1

ψ′ (t)


(

1

Γ (2− α (t))

)′ ∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

+
1

Γ (2− α (t))

d

dt

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds


=

1

ψ′ (t)

(
1

Γ (2− α (t))

)′ ∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

+
1

ψ′ (t)

1

Γ (2− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s)(

−α (t) ln (ψ (t)− ψ (s)) +
(1− α (t))ψ′ (t)

ψ (t)− ψ (s)

)
ds

= − 1

ψ′ (t)

α′ (t) Γ′ (2− α (t))

Γ (2− α (t))2

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

− 1

ψ′ (t)

α′ (t)

Γ (2− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ln (ψ (t)− ψ (s)) ds

+
1

Γ (1− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

= − 1

ψ′ (t)

α′ (t) Ψ̃ (2− α (t))

Γ (2− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ds

− 1

ψ′ (t)

α′ (t)

Γ (2− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′ (s) ln (ψ (t)− ψ (s)) ds

+ C
2 D

α(t);ψ
a+ x (t) ,

which concludes the proof. 2

Theorem 3.12 The following relations hold between the left fractional operators

C
2 D

α(t);ψ
a+ x (t) = C

1 D
α(t);ψ
a+ x (t)− 1

ψ′ (t)

Ψ̃ (1− α (t))

Γ (1− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds.
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Proof: Using the Definition 3.9 and applying the product property of functions to
classical derivative, we have

C
2 D

α(t);ψ
a+ x (t) =

(
1

ψ′ (t)

d

dt

)
1

Γ (1− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

=
1

ψ′ (t)

(
1

Γ (1− α (t))

)′ ∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

+
1

ψ′ (t)

d

dt

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

=
1

ψ′ (t)

Γ′ (1− α (t))

Γ (1− α (t))2

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

+
1

Γ (1− α (t))

(
1

ψ′ (t)

d

dt

)∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

= C
1 D

α(t);ψ
a+ x (t)− 1

ψ′ (t)

Ψ̃ (1− α (t))

Γ (1− α (t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))−α(t) (x (s)− x (a)) ds

with Ψ̃ (1− α (t)) =
Γ′ (1− α (t))

Γ (1− α (t))
. 2

The result in the follow-up, is intended to obtain an approximation of the ψ-Caputo
FDVO. Consequently, we highlight some particular cases. In this sense, we will present an
approximate version for the ψ-Hilfer FDVO.

For k ∈ N we consider the two following equalities:

Ak =
1

Γ (k + 1− α (t))

1 +
N∑

p=n−k+1

Γ (α (t)− n+ p)

Γ (α (t)− k) (p− n+ k)!

 ,
Dk =

Γ (α (t)− n+ k)

Γ (1− α (t)) Γ (α (t)) (k − n)!

and the function

Vk (t) =

∫ t

a
(ψ (s)− ψ (a))k x′ (s) ds.

Theorem 3.13 Let x : [a, b] → R be a function of class Cn+1, for n ∈ N, and f, x ∈ N

with N ≥ n. Then

C
1 D

α(t);ψ
a+ x (t) =

n∑
k=1

Ak (ψ (t)− ψ (a))k−α(t) x(k) (t) +

N∑
k=n

Bk (ψ (t)− ψ (a))n−k−α(t) Vk−n (t) + E (t)

(3.23)

with

E (t) ≤ (t− a) (ψ (t)− ψ (a))n−α(t)

Γ (n+ 1− α (t))

exp
[
(n− α (t))2 + n− α (t)

]
Nn−α(t) (n− α (t))

max
s∈[a,t]

∣∣x′N (s)
∣∣ .
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Proof: By definition of C1 D
α(t);ψ
a+ (·) and performing the integration by parts of function

f(s) = (ψ (t)− ψ (s))−α(t) x′ (s), we have

C
1 D

α(t);ψ
a+ x (t) =

1

Γ (1− α (t))

∫ t

a
(ψ (t)− ψ (s))−α(t) x′ (s) ds

=
(ψ (t)− ψ (a))1−α(t) x′ (a)

Γ (2− α (t))
+

1

Γ (2− α (t))

∫ t

a
(ψ (t)− ψ (s))1−α(t) x′′ (s) ds.

Performing integration by parts of function f(s) = (ψ (t)− ψ (s))1−α(t) x′′ (s), yields

C
1 D

α(t);ψ
a+ x (t) =

(ψ (t)− ψ (a))1−α(t) x′ (a)

Γ (2− α (t))
+

(ψ (t)− ψ (a))2−α(t) x′′ (a)

Γ (3− α (t))

+
1

Γ (3− α (t))

∫ t

a
(ψ (t)− ψ (s))2−α(t) x′′′ (s) ds.

Doing again integration by parts of function f(s) = (ψ (t)− ψ (s))2−α(t) x′′′ (s), we get

C
1 D

α(t);ψ
a+ x (t)

=
(ψ (t)− ψ (a))1−α(t) x′ (a)

Γ (2− α (t))
+

(ψ (t)− ψ (a))2−α(t) x′′ (a)

Γ (3− α (t))

+
(ψ (t)− ψ (a))3−α(t) x′′′ (a)

Γ (4− α (t))
+

1

Γ (4− α (t))

∫ t

a
(ψ (t)− ψ (s))3−α(t) x(4) (s) ds.

Performing this procedure (integration by parts) n− 1 times, yields

C
1 D

α(t);ψ
a+ x (t) =

n∑
k=1

(ψ (t)− ψ (a))k−α(t) x(k) (a)

Γ (k + 1− α (t))

+
1

Γ (n+ 1− α (t))

∫ t

a
(ψ (t)− ψ (s))n−α(t) xn+1 (s) ds.

By the Taylor’s theorem we obtain

(ψ (t)− ψ (s))n−α(t) = (ψ (t)− ψ (a))n−α(t)
(

1− ψ (s)− ψ (a)

ψ (t)− ψ (a)

)n−α(t)
= (ψ (t)− ψ (a))n−α(t)

N∑
p=0

(
n− α (t)

p

)
(−1)p

(ψ (s)− ψ (a))p

(ψ (t)− ψ (a))p
+ E1 (t)

where

E1 (t) = (ψ (t)− ψ (a))n−α(t)
N∑
p=0

(
n− α (t)

p

)
(−1)p

(ψ (s)− ψ (a))p

(ψ (t)− ψ (a))p

and (
n− α (t)

p

)
(−1)p =

Γ (α (t)− n+ p)

Γ (α (t)− n) p!
. (3.24)
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Using the Eq. (3.24), we obtain the formula

C
1 D

α(t);ψ
a+ x (t) =

n∑
k=1

(ψ (t)− ψ (a))k−α(t) x(k) (a)

Γ (k + 1− α (t))
+

(ψ (t)− ψ (a))n−α(t)

Γ (n+ 1− α (t))

∞∑
k=1

Γ (α (t)− n+ p)

Γ (α (t)− n) p!
×

× 1

(ψ (t)− ψ (a))p

∫ t

a
(ψ (s)− ψ (a))x(n+1)ds+ E (t)

where

E (t) =
1

Γ (k + 1− α (t))

∫ t

a
E1 (t)x(n+1) (s) ds.

If we split the sum into the first term p = 0 and the remaining terms, that is p =
1, . . . , N , and if use integration by parts, taking u (s) = (ψ (s)− ψ (a))p and v′ (s) =
x(n+1) (s), then we get

C
1 D

α(t);ψ
a+ x (t) =

n−1∑
k=1

(ψ (t)− ψ (a))k−α(t) x(k) (a)

Γ (k + 1− α (t))
+

1

Γ (n+ 1− α (t))1 +
N∑

p=n−k+1

Γ (α (t)− n+ p)

Γ (α (t)− k) (p− n+ k)

 (ψ (t)− ψ (a))n−α(t) x(n) (a)

+
(ψ (t)− ψ (a))n−1−α(t)

Γ (n− α (t))

N∑
p=1

Γ (α (t)− n+ p)

Γ (α (t) + 1− n) (p− 1)! (ψ (t)− ψ (a))p−1

×
∫ t

a
(ψ (s)− ψ (a))p−1 x(n) (s) ds+ E (t) .

Repeating the process, that is, spliting the second sum (first term p = k plus the
remaining ones p = k + 1, . . . , N) and integration by parts the integral that appears in the
sum p = k + 1, . . . , N , we obtain the desired formula.

We now seek the upper bound formula for E (t) . Using the two relations∣∣∣∣(ψ (s)− ψ (a))p

(ψ (t)− ψ (a))p

∣∣∣∣ ≤ 1, if s ∈ [a, t],

∣∣∣∣( n− α (t)
p

)∣∣∣∣ ≤ exp
[
(n− α (t))2 + n− α (t)

]
pn+1−α(t)

we can write

|E1 (t)| ≤ (ψ (t)− ψ (a))n−α(t)
∞∑

p=N+1

∣∣∣∣( n− α (t)
p

)∣∣∣∣ (−1)p
∣∣∣∣(ψ (s)− ψ (a))p

(ψ (t)− ψ (a))p

∣∣∣∣
≤ (ψ (t)− ψ (a))n−α(t)

∞∑
p=N+1

exp
[
(n− α (t))2 + n− α (t)

]
pn+1−α(t)

≤ (ψ (t)− ψ (a))n−α(t)
exp

[
(n− α (t))2 + n− α (t)

]
Nn−α(t) (n− α (t))

.
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Then, we have

E (t) ≤ 1

Γ (n+ 1− α (t))

∫ t

a
(ψ (t)− ψ (a))n−α(t)

exp
[
(n− α (t))2 + n− α (t)

]
Nn−α(t) (n− α (t))

x(n+1) (p) dp

≤ (t− a) (ψ (t)− ψ (a))n−α(t)

Γ (n+ 1− α (t))

exp
[
(n− α (t))2 + n− α (t)

]
Nn−α(t) (n− α (t))

max
s∈[a,t]

∣∣x′N (s)
∣∣ .

This concludes the proof. 2

In the Theorem 3.13 we have lim
N→∞

E (t) = 0. Consequently, it results

C
1 D

α(t);ψ
a+ x (t) ≈

n∑
k=1

Ak (ψ (t)− ψ (a))k−α(t) x(k) (t)

+

N∑
k=n

Bk (ψ (t)− ψ (a))n−k−α(t) Vk−n (t) .

Remark 3.14 Remembering that

H
2 Dα(t),β;ψa+ y (t) = C

1 D
β(α(t)−1)+1;ψ
a+ I

1−γ(t);ψ
a+ y (t)

with γ (t) = α (t) +β (1− α (t)), choosing x (t) = I
1−γ(t);ψ
a+ y (t), and replacing in Eq. (3.23),

yields

H
2 Dα(t),β;ψa+ y (t) =

n∑
k=1

Ak (ψ (t)− ψ (a))k−β(α(t)−1)−1 x(k) (t)

+

N∑
k=n

Bk (ψ (t)− ψ (a))n−k−β(α(t)−1)−1 Vk−n (t) + E (t)

(3.25)

with

E (t) ≤ (t− a) (ψ (t)− ψ (a))n−β(α(t)−1)−1

Γ (n− β (α (t)− 1))

×
exp

[
(n− β (α (t)− 1)− 1)2 + n− β (α (t)− 1)− 1

]
Nn−β(α(t)−1)−1 (n− β (α (t)− 1)− 1)

max
s∈[a,t]

∣∣x′N (s)
∣∣ ;

Ak =
1

Γ (k − β (α (t)− 1))

1 +
N∑

p=n−k+1

Γ (β (α (t)− 1) + 1− n+ p)

Γ (β (α (t)− 1) + 1− k) (p− n+ k)!

 ;

Bk =
Γ (β (α (t)− 1) + 1− n+ k)

Γ (β (1− α (t))) Γ (β (α (t)− 1) + 1) (k − n)!

and the function

Vk (t) =

∫ t

a
(ψ (s)− ψ (a))k x′ (s) ds.
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1. Taking ψ (t) = t in Eq. (3.25), we get

H
2 Dα(t),βa+ y (t) =

n∑
k=1

Ak (t− a)k−β(α(t)−1)−1 x(k) (t)

+

N∑
k=n

Bk (t− a)n−k−β(α(t)−1)−1 Vk−n (t) + E (t)

with

E (t) ≤ (t− a)n−β(α(t)−1)

Γ (n− β (α (t)− 1))

exp
[
(n− β (α (t)− 1)− 1)2 + n− β (α (t)− 1)− 1

]
Nn−β(α(t)−1) (n− β (α (t)− 1)− 1)

max
s∈[a,t]

∣∣x′N (s)
∣∣ ,

Ak =
1

Γ (k − β (α (t)− 1))

1 +
∑

p=n−k+1

Γ (β (α (t)− 1) + 1− n+ p)

Γ (β (α (t)− 1) + 1− k) (p− n+ k)!

 ,
Bk =

Γ (β (α (t)− 1) + 1− n+ k)

Γ (β (1− α (t))) Γ (β (α (t)− 1)) (k − n)!
,

and

Vk (t) =

∫ t

a
(s− a)k x′ (s) ds.

Note that lim
N→∞

E (t) = 0

H
2 Dα(t),βa+ y (t) ≈

n∑
k=1

Ak (t− a)k−β(α(t)−1)−1 x(k) (t) +
N∑
k=n

Bk (t− a)n−k−β(α(t)−1)−1 Vk−n (t)

2. Taking ψ (t) = t and β → 1, results

C
2 D

α(t)
a+ y (t) =

n∑
k=1

Ak (t− a)k−α(t) x(k) (t) +

N∑
k=n

Bk (t− a)n−k−α(t) Vk−n (t) + E (t)

with

E (t) ≤ (t− a)n−α(t)+1

Γ (n− α (t) + 1)

exp
[
(n− α (t))2 + n− α (t)

]
Nn−α(t) (n− α (t))

max
s∈[a,t]

∣∣x′N (s)
∣∣ ,

Ak =
1

Γ (k − α (t) + 1)

1 +
∑

p=n−k+1

Γ (α (t)− n+ p)

Γ (α (t)− k) (p− n+ k)!

 ,
Bk =

Γ (α (t)− n+ k)

Γ (1− α (t)) Γ (α (t)) (k − n)!
,
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and

Vk (t) =

∫ t

a
(s− a)k x′ (s) ds.

Note that lim
N→∞

E (t) = 0

C
2 D

α(t)
a+ y (t) ≈

n∑
k=1

Ak (t− a)k−α(t) x(k) (t) +

N∑
k=n

Bk (t− a)n−k−α(t) Vk−n (t) .

We presented some particular choices of ψ (·) and the limits β → 0 and β → 1. However,
the results are not restricted to those discussed here, it is possible to consider other cases
that are not included for the sake of parsimony.

4 Fractional variable order nonlinear system

In this section, we investigate the stability of solutions for a dynamic system via the ψ-Hilfer
FDVO type II and the one-parameter Mittag-Leffler function of variable order by means
of two theorems. In order to discuss the investigated results, some examples are presented
involving FDVO Lu and Chen systems.

For the investigation of the main result of this section, we chose α (ξ, t) = α (t) in the

definition H
2 Dα(ξ,t),β;ψa+ (·), so that we have H

2 Dα(t),β;ψa+ (·).
The one-parameter Mittag-Leffler function is given by

Eα (z) :=
∞∑
k=0

zk

Γ (αk + 1)
(4.1)

z ∈ R where α ∈ C, Re (α) > 0 and Γ (z) is a Gamma function, given by

Γ (z) =

∫ ∞
0

e−ttz−1dt, Re (z) > 0.

It is easy to see that in the limit α→ 1, we have E1 (z) = exp (z).

On the other hand, motivate by Eq. (4.1), we have one-parameter Mittag-Leffler func-
tion of variable order α (t) given by

Eα(t) (z) :=
∞∑
k=0

zk

Γ (α (t) k + 1)
(4.2)

where α (t) ∈ C, z ∈ R.

Consider the following fractional differential equations, given by

H
2 Dα(t),β;ψ0+ ξ (t) = Aξ (t) . (4.3)

By Theorem 3.7, the general solution of Eq. (4.3), is given by

ξ (t) = ξ0 Eα(t)
(
A (ψ (t)− ψ (0))α(t)

)
(4.4)
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where Eα(t) (·) is Eq. (4.2).

Choosing, ψ (t) = t in Eq. (4.4), yields

ξ (t) = ξ0 Eα(t)
(
Atα(t)

)
. (4.5)

On the order hand, choosing ψ (t) = t and taking the limit α (t) → α and α (t) → 1,
yields

ξ (t) = ξ0 Eα (Atα) (4.6)

and
ξ (t) = ξ0 E1 (At) = ξ0 exp (At) , (4.7)

respectively

Consider the following ψ-Hilfer fractional non-autonomous systems given by

H
2 Dα(t),β;ψ0+ ξ (t) = g (ξ (t)) ξ (t) (4.8)

with initial condition x (t0), where H
2 Dα(t),β;ψ0+ (·) is ψ-Hilfer fractional derivative of variable

order 0 < α (t) < 1, ξ ∈ R, g (·) is nonlinear continuous function and locally Lipschitz
about x.

Theorem 4.1 Let ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then |x (t)| ≤ |ξ0|Eα(t)
(
ξ (ψ (t)− ψ (0))α(t)

)
.

Proof: Let x (t) ∈ R, g (ξ (t)) ≤ ξ and H
2 Dα(t),β;ψ0+ ξ (t) = g (ξ (t)) ξ (t). Define ξ (t) =

−y (t), and we get
H
2 Dα(t),β;ψ0+ (−y (t)) = g (−y (t)) (−y (t)) .

Then
H
2 Dα(t),β;ψ0+ |ξ (t)| = g (|ξ (t)|) |ξ (t)| g (|ξ (t)|) ≤ ξ.

It can be gained

|ξ (t)| =
1

Γ (α (t))

∫ t

0
ψ′ (s) (ψ (t)− ψ (s))α(t)−1 g (|x (s)|) |x (s)| ds

≤ 1

Γ (α (t))

∫ t

0
ψ′ (s) (ψ (t)− ψ (s))α(t)−1 ξ |ξ (s)| ds

= |ξ0|Eα(t)
(
ξ (ψ (t)− ψ (0))α(t)

)
.

Then, yields

|ξ (t)| ≤ |ξ0|Eα(t)
(
ξ (ψ (t)− ψ (0))α(t)

)
.

2

The following results are a direct result of Theorem 4.1.

Corollary 4.2 Let us choose α (t) = α in Theorem 4.1. For ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then

|ξ (t)| ≤ |ξ0|Eα (ξ (ψ (t)− ψ (0))α).
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Corollary 4.3 Let us choose α (t) = α and ψ (t) = t in Theorem 4.1. For ξ (t) ∈ R, if

g (ξ (t)) ≤ ξ, then |ξ (t)| ≤ |ξ0|Eα (ξtα).

Corollary 4.4 Let us choose α (t) = 1 in Theorem 4.1. For ξ (t) ∈ R, if g (ξ (t)) ≤ ξ, then

|ξ (t)| ≤ |ξ0| exp (ξt).

Theorem 4.5 Consider the ψ-Hilfer fractional system of variable order

H
2 Dα(t),β;ψ0+ ξ (t) = f (ξ (t)) (4.9)

when ξ (t) = [ξ1 (t) , ξ2 (t) , ..., ξn (t)] , f (ξ (t)) = [f1 (ξ (t)) , f2 (ξ (t)) , ..., fn (ξ (t))], 0 < α (t) <

1 and 0 ≤ β ≤ 1.

If

[ξ (t)]T H
2 Dα(t),β;ψ0+ ξ (t)

[ξ (t)]T ξ (t)
=

[ξ (t)]T f (ξ (t))

[ξ (t)]T ξ (t)
≤ θ, (4.10)

then |ξ (t)| ≤ |ξ0|Eα(t)
(
θ (ψ (t)− ψ (0))α(t)

)
.

Proof: From Eq. (4.9), yields

d

dt

[
H
2 Dα(t),β;ψ0+ ξ (t)

]
=

d

dt
[f (ξ (t))]

= J (ξ)Df (ξ)

where J (ξ) :=



f11 f12 · · · f1n
f21 f22 · · · f2n
·
·
·

·
·
·

·
·
·

fn1 fn2 · · · fnn

 is the Jacobian matrix andDf (ξ) :=

[
d

dt
ξ1 (t)

d

dt
ξ1 (t) · · · · d

dt
ξ1 (t)

]T
.

For any x (t), if

[x (t)]T H
2 Dα(t),β;ψ0+ ξ (t)

[ξ (t)]T ξ (t)
=

[ξ (t)]T f (ξ (t))

[ξ (t)]T x (t)
≤ θ

yields [
d

dt
ξ (t)

]T d

dt

(
H
2 Dα(t),β;ψ0+ x (t)

)
[
d

dt
ξ (t)

]T d

dt
ξ (t)

=

[
d

dt
ξ (t)

]T d

dt
f (t)[

d

dt
ξ (t)

]T d

dt
ξ (t)
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=

[
d

dt
ξ (t)

]T
J
d

dt
f (t)[

d

dt
ξ (t)

]T d

dt
ξ (t)

≤ θ. (4.11)

Suppose λ as one of eigenvalues of the Jacobian matrix J (ξ) and there should exist a
zone zero vector µ corresponding to the eigenvalue λ. We obtain

J (ξ)µ = λµ (4.12)

and

µH [J (ξ)]H = λµH . (4.13)

Multiplying µ on both side of Eq. (4.13) on the right side, µH on both sides of Eq.
(4.12), on the left side, and adding their respective sides, yields

µH
(

[J (ξ)]H + J (ξ)
)
µ =

(
λ+ λ

)
µHµ. (4.14)

The Eq. (4.14), can be written as follows

µH
(

[J (x)]H + J (ξ)
)
µ

µHµ
=
(
λ+ λ

)
. (4.15)

Multiplying both sides of Eq. (4.15) and using Eq. (4.11), yields

Re (λ) =

(
λ+ λ

)
2

=
µH
(

[J (x)]H + J (ξ)
)
µ

2µHµ

=
µH [J (ξ)]H µ

µHµ

=
µHJ (ξ)µ

µHµ
≤ θ. (4.16)

The Eq. (4.16) shows a direct way to estimative the maximum of the real part of the
eigenvalue of Jacobian matrix J (ξ).

For any t, when δt→ 0, yields

lim
δt→0

ξ (t+ δt) = ξ (t)Eα(t)
(
J (ξ) (ψ (tδ)− ψ (0))α(t)

)
.

Then

lim
δt→0
|ξ (t+ δt)| =

∣∣∣ξ (t)Eα(t)
(
J (ξ) (ψ (tδ)− ψ (0))α(t)

)∣∣∣
≤ |ξ (t)|Eα(t)

[
Re (λmaxJ (ξ)) (ψ (tδ)− ψ (0))α(t)

]
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≤ |ξ (t)|Eα(t)
[
θ (ψ (tδ)− ψ (0))α(t)

]
.

For any t,

lim
δt→0
|ξ (t+ δt)| ≤ |ξ (t)|Eα(t)

[
θ (ψ (tδ)− ψ (0))α(t)

]
and so it can be deduced

|ξ (t)| ≤ |ξ (0)|Eα(t)
[
θ (ψ (t)− ψ (0))α(t)

]
.

2

Some important cases, resulting from Theorem 4.5 are presented below.

Corollary 4.6 Taking limit β → 1 in Eq. (4.9), we have the Caputo fractional system

cD
α(t);ψ
0+ ξ (t) = f (ξ (t))

when ξ (t) = [ξ1 (t) , ξ2 (t) , ..., ξn (t)] , f (ξ (t)) = [f1 (ξ (t)) , f2 (ξ (t)) , ..., fn (x (t))], 0 <

α (t) < 1.

If

[ξ (t)]T cD
α(t);ψ
0+ ξ (t)

[ξ (t)]T ξ (t)
=

[ξ (t)]T f (ξ (t))

[ξ (t)]T ξ (t)
≤ θ,

then |ξ (t)| ≤ |ξ0|Eα(t)
(
θ (ψ (t)− ψ (0))α(t)

)
.

Corollary 4.7 Taking limit β → 0 and ψ (t) = t in Eq. (4.9), we have the Riemann-

Liouville fractional system

RLD
α(t)
0+ x (t) = f (x (t))

when x (t) = [x1 (t) , x2 (t) , ..., xn (t)] , f (x (t)) = [f1 (x (t)) , f2 (x (t)) , ..., fn (x (t))] , 0 <

α (t) < 1.

If

[x (t)]T RLD
α(t)
0+ x (t)

[x (t)]T x (t)
=

[x (t)]T f (x (t))

[x (t)]T x (t)
≤ θ

then |x (t)| ≤ |x0|Eα(t)
(
θtα(t)

)
.

So, we can conclude that, if

[x (t)]T H
2 D

α(t),β;ψ
0+ x (t)

[x (t)]T x (t)
=

[x (t)]T f (x (t))

[x (t)]T x (t)
≤ 0,

the ψ-Hilfer fractional system Eq. (4.9) is stable.
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Next, we discuss the stability of some fractional systems involving the ψ-Hilfer fractional
derivative, especially the fractional Lu and Chen systems [50, 51]. The fractional Lu and
Chen systems towards the Riemann-Liouville fractional derivatives can be found in the
following references.

Example 1. Consider the ψ−Hilfer fractional system{
H
2 Dα(t),β;ψ0+ x1 (t) = x2 (t)
H
2 Dα(t),β;ψ0+ x2 (t) = −x1 (t)− 1

. (4.17)

Note that [x (t)]T x (t) = x21 (t) + x22 (t) and [x (t)]T f (x (t)) = −x2. So, we have

[x (t)]T H
2 Dα(t),β;ψ0+ x (t)

[x (t)]T x (t)
=

−x2 (t)

x21 (t) + x22 (t)
≤ 0.

By Theorem 4.5, results

|x (t)| ≤ |x (t0)|

and the system Eq. (4.17) is stable.

Example 2. Consider the ψ-Hilfer fractional variable order Lu system
H
2 Dα(t),β;ψ0+ x = a (y − x)
H
2 Dα(t),β;ψ0+ y = −xz + cy
H
2 Dα(t),β;ψ0+ z = xy − bz

(4.18)

where a = 6, b = 9 and c = 10.

Using the Theorem 4.5, yields

(x (t))T H
2 Dα(t),β;ψ0+ x (t)

(x (t))T x (t)
=

(x (t))T f (x (t))

(x (t))T x (t)

=
xa (y − x) + y (−xz + cy) + z (xy − bz)

x2 + y2 + z2

=
axy − ax2 + cy2 − bz2

x2 + y2 + z2

≤
a
2x

2 +
(
a
2 + c

)
y2 − bz2

x2 + y2 + z2

≤ max
(a

2
, c+

a

2
,−b

)
= max (3, 13,−8) = 13.

We have

|x (t)| ≤ |x (t0)|Eα(t)
(

13 (ψ (t)− ψ (t0))
α(t)
)

for any t > t0 and

|y (t)| = |x (t0)|Eα(t)
(

13 (ψ (t)− ψ (t0))
α(t)
)
. (4.19)
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Example 3 Consider the ψ-Hilfer fractional variable order Chen system
H
2 Dα(t),β;ψ0+ x = a (y − x)
H
2 Dα(t),β;ψ0+ y = (c− a)x+−xz + cy
H
2 Dα(t),β;ψ0+ z = xy − bz

(4.20)

where a = 13, b = 5 and c = −8.

Using the Theorem 4.5, yields

(x (t))T H
2 Dα(t),β;ψ0+ x (t)

(x (t))T x (t)
=

(x (t))T f (x (t))

(x (t))T x (t)

=
xa (y − x) + y (−xz + cy) + z (xy − bz) + y (c− a)x

x2 + y2 + z2

=
−ax2 − cy2 − bz2 − cxy

x2 + y2 + z2

≤
ax2 − cy2 − bz2 − c

(
x2+y2

2

)
x2 + y2 + z2

≤ max

(
−a− c

2

−3c

2
,−b

)
= max (−9, 12,−5) = 12.

We have
|x (t)| ≤ |x (t0)|Eα(t)

(
12 (ψ (t)− ψ (t0))

α(t)
)

for any t > t0 and

|y (t)| = |x (t0)|Eα(t)
(

12 (ψ (t)− ψ (t0))
α(t)
)
. (4.21)

5 Conclusion and open questions

This article investigated the ψ-Hilfer FDVO. New approximations for the ψ-Caputo frac-
tional derivative were discussed and from them, approximations for the ψ-Hilfer FDVO. The
integration by parts of the ψ-Hilfer FDVO and particular cases, as well as two examples
involving the Mittag-Leffler function with respect to another function were highlighted.
Three examples illustrated the proposed concepts and the results of choosing a function
and values of α(x, t), δ, ε, t, x and a. From the particular choice of the ψ-Hilfer FDVO,
the stability of solutions of the fractional nonlinear systems were studied by means of the
one-parameter Mittag-Leffler function of variable order. Examples involving the fractional
variable order Lu and Chen systems in the sense of ψ-Hilfer fractional derivative illustrated
the proposed formulations.

The results, allow further research work in other problems involving fractional differ-
ential equations of variable order. We can point, for example, questions about population
growth, since the solution of the problem is directly linked to the Mittag-Leffler function
(see Theorem 10). Of course, other approaches involving practical applications, certainly
justify and validate this new approach for the ψ-Hilfer to the FDVO.
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We can raise some questions, namely:

1. Is a new formulation of the generalized Leibniz rule possible?

2. What is Laplace transform of the ψ-Hilfer FDVO?

3. Is it possible to investigate the existence and uniqueness of solutions of fractional
differential equations in the direction of ψ-Hilfer FDVO in the context of sectorial
and quasi-sectorial operators?

4. Is it possible to obtain mild solutions for abstract differential equations in the sense
of the ψ-Caputo FDVO?

5. Can we obtain a new approximation for the ψ-Hilfer FDVO with Bernstein polyno-
mials and perform numerical experiments?

We note that in recent literature, we find several works on FDVO. However, many
questions arise as pointed out in the critical discussion held above and need further research.
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Appendix

From the Theorems 5.1 and 5.2, we now discuss the operator limitation I
α(x,t);ψ
a+ (·) and a

version of the integration by parts.

Theorem 5.1 Let
1

n
< α(x, t) < 1, ∀x, t ∈ [a, b] with a number n ∈ N greater or equal than

two and ψ ∈ C ′([a, b] ,R) and function such that ψ′ (·) 6= 0, ∀x, t ∈ [a, b]. The ψ-Riemann-

Liouville FIVO α(x, t),

I
α(x,t);ψ
a+

: L1([a, b] ,R) 7−→ L1([a, b] ,R)

is a linear and bounded operator.

Proof: First, note that the operator I
α(x,t);ψ
a+

(·) is linear. Let 1
n < α(x, t) < 1 and

f ∈ L1([a, b] ,R). We define the following function

H(x, t, s) :=

{ ∣∣∣ψ′ (s) (ψ (s)− ψ (t))α(x,t)−1
∣∣∣ |f(s)| , if s < t,

0, if t ≤ s,

∀(x, t, s) ∈ Ω := [a, b]× [a, b]× [a, b].

By hypothesis, 1
n < α(x, t) < 1, and in this sense, for s + 1 ≤ t we have (ψ(t) −

ψ(s))α(x,t)−1 < 1. On the other hand, for s < t < s + 1 we have (ψ(t) − ψ(s))α(x,t)−1 <

(ψ(t)− ψ(s))
1
n
−1.

Therefore, we can write∫ b

a

(∫ s

a
H(x, s, t) dt

)
ds =

∫ b

a

(∫ b

s

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1
∣∣∣ |f(t)|

)
ds

≤
∫ b

a
|f(t)|

(∫ b

s

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1
∣∣∣ dt) ds

=

∫ b

a
|f(t)|


∫ s+1

s
|ψ′(t)|

∣∣∣(ψ(t)− ψ(s))α(x,t)−1
∣∣∣ dt

+

∫ b

s+1
|ψ′(t)|

∣∣∣(ψ(t)− ψ(s))α(x,t)−1
∣∣∣ dt

 ds

≤
∫ b

a
|f(t)|

(∫ s+1

s
|ψ′(t)|

∣∣∣(ψ(t)− ψ(s))
1
n
−1
∣∣∣ dt+

∫ b

s+1
|ψ′(t)|dt

)
ds

=

∫ b

a
|f(t)|

(∫ s+1

s
|ψ′(t)|

∣∣∣(ψ(t)− ψ(s))
1
n
−1
∣∣∣ dt+ ψ(b)− ψ(s+ 1)

)
ds

≤
∫ b

a
|f(t)|

{
n(ψ(s+ 1)− ψ(s))

1
n + ψ(b)− ψ(s+ 1)

}
ds

≤ ψ(b) ‖f‖
∫ b

a
ds+ n ‖f‖

∫ b

a
(ψ(s+ 1)− ψ(s))

1
nds− ‖f‖

∫ b

a
ψ(s+ 1) ds

≤ ψ(b) ‖f‖ (b− a) + n ‖f‖ (b− a)− | ‖f‖ψ(b+ 1)(b− a)
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= ‖f‖ (b− a)[ψ(b)− ψ(b+ 1) + n] <∞.

Remembering the inequality

x2 + 1

x+ 1
≤ Γ(x+ 1) ≤ x2 + 2

x+ 2

and using the Fubini’s theorem, we have that h is integrable on Ω and∥∥∥Iα(x,t);ψa+
(·)
∥∥∥ =

∫ b

a

∣∣∣∣ 1

Γ(α (x, t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 f(s) ds

∣∣∣∣ dt
≤

∫ b

a

1

Γ(α (x, t))

∫ t

a

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 f(s)
∣∣∣ ds dt

≤
∫ b

a

(
α2(x, t) + α (x, t)

α2(x, t) + 1

∫ t

a

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 f(s)
∣∣∣ ds) dt

≤
∫ b

a

(∫ t

a

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 f(s)
∣∣∣ ds) dt

=

∫ b

a

(∫ t

a
H(x, s, t) ds

)
dt ≤ (b− a)(ψ(b)− ψ(b+ 1) + n) ‖f‖ <∞.

Therefore, results∥∥∥Iα(x,t);ψa+ (·)
∥∥∥ ≤ (b− a)(ψ(b)− ψ(b+ 1) + n) ‖f‖

that completes the proof. 2

Theorem 5.2 Let
1

n
< α(x, t) < 1, ∀ t, x ∈ [a, b] with a number n ∈ N greater or equal than

two, f, g ∈ C([a, b],R) and ψ ∈ C ′([a, b],R) and function such that ψ′(·) 6= 0, ∀x, t ∈ [a, b].

Then, ∫ b

a
g(t)I

α(x,t);ψ
a+ f(t) dt =

∫ b

a
ψ′(t)f(t)I

α(x,t);ψ
b−

(
g(t)

ψ′(t)

)
dt .

Proof: First, note that the operator I
α(x,t);ψ
a+ (·) is linear. We define the following function

H(x, t, s) :=

{ ∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 g(t)f(s)
∣∣∣ , if s < t,

0, if t ≤ s,

∀(x, t, s) ∈ Ω := [a, b]× [a, b]× [a, b].

As f, g ∈ C([a, b] ,R) and using the Bolzano’s theorem, f, g have maximum and mini-
mum. Therefore, there are constants c1, c2 > 0, such that |g (t)| ≤ c1 and |f (t)| ≤ c2 with
t ∈ [a, b].

By hypothesis,
1

n
< α(x, t) < 1, and, in this sense, for 1 ≤ t − s we have (ψ(t) −

ψ(s))α(x,t)−1 < 1. On the other hand, for 1 > t − s we have (ψ(t)− ψ(s))α(x,t)−1 <

(ψ(t)− ψ(s))
1
n
−1.
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We can write∫ b

a

(∫ t

a
H(x, s, t) ds

)
dt =

∫ b

a

(∫ t

a

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 f(s)g(t)
∣∣∣ ds) dt

≤
∫ b

a

∫ t

a

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1
∣∣∣ |g(t)| |f(s)| ds dt

≤ c1c2

∫ b

a

∫ t

a

∣∣∣ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1
∣∣∣ ds dt

= c1c2

∫ b

a

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 ds dt

= c1c2

∫ b

a


∫ t−1

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 ds

+

∫ t

t−1
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 ds

 dt

< c1c2

∫ b

a

(∫ t−1

a
ψ′(t) ds+

∫ t

t−1
ψ′ (s) (ψ (t)− ψ (s))

1
n
−1 ds

)
dt

= c1c2

∫ b

a

(
ψ(t− 1)− ψ(a) + n (ψ(t− 1)− ψ(t))

1
n

)
dt

< c1c2 (ψ(b− 1)− ψ(a) + n)

∫ b

a
dt

= c1c2 (ψ(b− 1)− ψ(a) + n) (b− a) <∞ .

On the other hand, knowing the inequality

x2 + 1

x+ 1
≤ Γ(x+ 1) ≤ x2 + 2

x+ 2

we can write∫ b

a
g(t)I

α(x,t);ψ
a+ f(t) dt =

∫ b

a

(
1

Γ(α(x, t))

∫ t

a
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 g(t)f(s) ds

)
dt

and using the Fubini’s theorem, we can obtain∫ b

a
g(t)I

α(x,t);ψ
a+ f(t) dt =

∫ b

a

(
1

Γ(α(x, t))

∫ b

s
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1 g(t)f(s) dt

)
ds

=

∫ b

a
ψ′(s)f(s)

(
1

Γ(α(x, t))

∫ b

s
ψ′ (s) (ψ (t)− ψ (s))α(x,t)−1

g(t)

ψ′(t)
dt

)
ds

=

∫ b

a
ψ′(s)f(s)I

α(x,t);ψ
b−

(
g(s)

ψ′(s)

)
ds

which is the desired result. 2

Theorem 5.3 [36, 38, 20, 15, 37] Assuming the same conditions as Theorem 5.2 and choos-

ing ψ (t) = t, we have ∫ b

a
g (t) I

α(x,t)
a+ f (t) dt =

∫ b

a
f (t) I

α(x,t)
b− g (t) dt.
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Proof: The proof follows directly from the Theorem (5.2). 2


