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Introduction

One of the most intriguing questions of the XVII century, was through a letter from l'Hôspital to Leibniz about the possibility, in classical derivative, that n could be something other than an integer, for example, n = 1 2 . At first, Leibniz did not provide an answer to the question, but he said that "this will lead to a paradox", which one day will bring useful consequences [START_REF] Kilbas | Fractional integral and derivatives (theory and applications)[END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Diethelm | The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type[END_REF]. In fact, Leibniz was right. However, many interesting questions have been arisen over the years and which they have not been answered yet. For example, if the first derivative of a function provides the slope of the function, what is the geometric meaning of the fractional derivative, in particular, n = 1 2 ? Anton Karl Grünwald [START_REF] Grunwald | Uber" begrente" Derivationen und deren Anwedung[END_REF], in 1867 and Aleksey Vasilievich Letnikov [START_REF] Letnikov | Theory of Differentiation with an Arbitrary Indicator[END_REF], in 1868, introduced the fractional derivative today called Grünwald-Letnikov, of great importance in numerical problems and it is based on the generalization of the ordinary differentiation of order n ∈ N. Two years later, 1869, Nikolay Sonin [START_REF] Sonin | On differentiation with arbitrary index[END_REF] introduced a new fractional derivative, which today we call the Riemann-Liouville fractional derivative. At first this formulation of the recent and new fractional derivative was good. However, a simple case was intrigued. The Riemann-Liouville fractional derivative of a constant was different from zero when n in non integer. Then, in 1967, Michele Caputo [START_REF] Caputo | Linear models of dissipation whose Q is almost frequency independent-II[END_REF], in view of the definition of fractional derivative according to Riemann-Liouville, presented a new definition of fractional derivative, more restrictive than that of Riemann-Liouville, today called Caputo fractional derivative. With this formulation the derivative of a constant is zero. The idea to introduce this new fractional derivative formulation was due to the fact that it was used to solve a viscoelasticity problem [START_REF] Caputo | Elasticitá e dissipazione (Elasticity and anelastic dissipation)[END_REF]. It is worth mentioning that fractional derivatives are non-local operators. Since then, numerous definitions of fractional derivatives have been introduced over the years. We highlight a few: ψ-Caputo, ψ-Riemann-Liouville, Weyl, Hilfer, Katugampola, Hadamard, Caputo-Katugampola, Hilfer-Katugampola, Hilfer-Hadamard, Riemann, Erdélyi-Kober, Riesz among other formulations [START_REF] Kilbas | Fractional integral and derivatives (theory and applications)[END_REF][START_REF] Almeida | A Caputo fractional derivative of a function with respect to another function[END_REF][START_REF] Diethelm | The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type[END_REF][START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Oliveira | Hilfer-Katugampola fractional derivatives[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF]. A recent review of the fractional derivatives and operators can be found in [START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF]. However, how do you know which fractional derivative is the best for looking at data? How to choose the fractional derivative? One way to overcome this problem is to propose more general fractional derivatives in a special way, which contains a wide class of common fractional derivatives. Then, in 2018, Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] introduced the ψ-Hilfer fractional derivative. Today the fractional calculus is consolidated and numerous applications through fractional derivatives and fractional integrals are obtained, among which, relevant and important works, published in high quality journals [START_REF] Sousa | A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator[END_REF][START_REF] Machado | Some applications of fractional calculus in engineering[END_REF][START_REF] Rasheed | Simulations of variable concentration aspects in a fractional nonlinear viscoelastic fluid flow[END_REF][START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | Fractional calculus and the ESR test[END_REF][START_REF] Sousa | Validation of a fractional model for erythrocyte sedimentation rate[END_REF][START_REF] Wang | Controllability of fractional non-instantaneous impulsive differential inclusions without compactness[END_REF][START_REF] Luo | Applying fractional calculus to analyze economic growth modelling[END_REF][START_REF] Babaei | Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations[END_REF][START_REF] Sayevand | An accurate and cost-efficient numerical approach to analyze the initial and boundary value problems of fractional multi-order[END_REF][START_REF] Silva | Stability of a fractional HIV/AIDS model[END_REF][START_REF] Nemati | A numerical approach for solving fractional optimal control problems using modified hat functions[END_REF][START_REF] Salati | Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems[END_REF][START_REF] Frederico | Fractional Noether's theorem with classical and Caputo derivatives: constants of motion for non-conservative systems[END_REF][START_REF] Frederico | Fractional conservation laws in optimal control theory[END_REF].

However, despite numerous definitions of existing fractional derivatives, what criterion a certain differentiation operator must to be called fractional? In 2015, Ortigueira and Machado [START_REF] Ortigueira | What is a fractional derivative?[END_REF] introduced a criteria that a differentiation operator must satisfy to be called fractional. A priory, some definitions of derivatives until then called fractional, do not satisfy the generalized Leibniz rule, in particular, Caputo fractional derivative. Then, in 2019, Sousa and Oliveira [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] introduced Leibniz I and II type rules, which encompass all existing fractional derivatives, based on the choice of a ψ(•) function and the limit β → 1 and β → 0.

As we know, fractional calculus is a generalization of differential and integral calculus. On the other hand, there is a theory called pseudo-analysis which in turn is a generalization of classical analysis, instead of the real numbers field, semi-conduction is defined in a real interval with pseudo-addition and pseudo-multiplication, is an interesting subject for countless researchers from different areas of knowledge, namely: functional equations, functional analysis, variational calculus, among others [START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF][START_REF] Pap | Generalization of the Jensen inequality for pseudo-integral[END_REF]. During these years, numerous researchers have investigated new formulations of inequalities involving fractional integrals in this context [START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Agahi | Pseudo-fractional integral inequality of Chebyshev type[END_REF]. In 2018, Babakhani et al. [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF] investigated properties for pseudo-fractional operators, in particular, introduced a version for the Riemann-Liouville pseudo-fractional derivative with respect to another functions. This work opened the door to a new branch of fractional calculus, now involving pseudo-fractional operators. In this sense, motivated by the ψ-Hilfer fractional derivative and the theory of pseudo-analysis, in particular, by the pseudo-fractional operators, we will introduce the ψ-Hilfer pseudofractional operator. We believe that with this new operator, it will be allowed to carry out new researches in the field of differential and integral equations, as well as recently published by Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF].

Here we will highlight the main results obtained in this paper, in order to clarify the understanding and, in particular, to make clear what the investigated objectives, namely:

1. We introduced the ψ-Hilfer pseudo-fractional operator

H α,β;ψ ⊕, ,a+ f (x) = I β(n-α);ψ ⊕, ,a+ g -1 D ψ (x) n I (1-β)(n-α);ψ ⊕, ,a+ f (t);
2. We introduced versions of the g-Leibniz I and II rules for the ψ-Hilfer pseudo-fractional operator, given by

H α,β;ψ ⊕, ,a+ (f (x) h (x)) = ∞ =0 ∞ m=0 g -1 (C m ) D m ⊕ f (x) RL D α-m;ψ ⊕, ,a+ h(x) ∞ k=0 g -1 (C k ) I ε+k;ψ ⊕, ,a+ h(a) g -1 (d k ) g -1 (ψ(x) -ψ(a)) ε+α
where

C k = -ε k , C m = -ε m - α + ε and d k = (h • f ) [k] (a) Γ(β(1 + α)) and H α,β;ψ ⊕, ,a+ (f (x) h(x)) = ∞ m=0 g -1 (C m ) D m ⊕ f (x) H α-m;ψ ⊕, ,a+ h(x) ⊕ ∞ k=0 g -1 (C k ) I ε-k;ψ ⊕, ,a+ h(a) f (k) (x) -f (k) (a) g -1 (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) ,
where

C m = α m , C k = -ε k with ε = (1 -β)(1 -α), respectively.
3. Consequently, we investigate the g-Laplace transform for Hilfer pseudo-fractional operator, given by

L ⊕ H D α,β ⊕, ,a+ f (x) = g -1 (s α ) L ⊕ (f (x)) n-1 k=0 g -1 s n(1-β)+αβ-k-1 I (1-β)(n-α)-k ⊕, ,a+ f (0) .
4. We discuss versions of the g-integration by parts for the ψ-Hilfer pseudo-fractional operator, given by

⊕ [a,b] H α,β;ψ ⊕, ,a+ f (x) h (x) dx = ⊕ [a,b] g -1 ψ (x) f (x) H α,β;ψ ⊕, ,b-h (x) g -1 ψ (x) dx.
5. We highlight the wide class of pseudo-fractional differentiation operators of the g-Leibniz I and II type rules, and of the Laplace transform, obtained from the new results discussed here.

The article is divided as follows: in section 2, we present some important definitions and results of the pseudo-analysis theory and in the fractional sense, the Riemann-Liouville fractional integral with respect to another function and the ψ-Hilfer fractional derivative. In this sense, we investigated new results for the ψ-Hilfer fractional derivative of paramount importance throughout the paper. In section 3, we introduce the new ψ-Hilfer pseudofractional operator and investigate some fundamental properties, which are also shown. In addition, we discuss some particular cases, since it is a special property of the operator. The results are obtained for left-sided ψ-Hilfer pseudo-fractional operator, for the rightsided case, it follows in an analogous way. In addition, we investigated the g-Leibniz I and II type rules for the ψ-Hilfer pseudo-fractional operator and discussed some important particular cases. Finally, we calculate the g-Laplace transform of Hilfer pseudo-fractional operator and g-integration by parts of the ψ-Hilfer pseudo-fractional operator. Concluding remarks close the paper.

Preliminaries

In this section, we will present and discuss some important findings that will be essential in investigating the main outcome of this article.

We are going to present a new idea of ψ-Hilfer fractional derivative in the sense of pseudo-fractional operators, involving the symbols (⊕, ). To this end, we will first present some concepts arising from pseudo analysis. Let Also, 0 x = 0 and that is distributive over ⊕, i.e., x (y ⊕ z) = (x y) ⊕ (x ) z.

The structure ([a, b], ⊕, ) is a semiring [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF].

Definition 2.3 [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] An important class of pseudo-operations ⊕ and is when these are defined by a monotone and continuous function g : [a, b] -→ [0, ∞], i.e., pseudo-operations ⊕ and are given by

x ⊕ y = g -1 (g(x) + g(y)) and x y = g -1 (g(x)g(y)).

(2.1) Definition 2.4 [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] Let X be a non-empty set and A be a σ-algebra of subsets of a set X. A set function µ : A -→ [a, b] is called a σ-⊕-measure if the following conditions are satisfy:

1. µ (ψ) = 0; 2. µ ( ∞ i=1 A i ) = ∞ i=1 µ(A i )
holds for any sequence {A} i∈N of pairwise disjoint sets from A.

Definition 2.5 [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] Let pseudo-operations ⊕ and be defined a monotone and continuous function g

: [a, b] -→ [0, ∞].
1. The g-integral for a measurable function f

: [c, d] → [a, b] is given by ⊕ [c,d] f dx = g -1 d c g(f (x)) dx .
2. The g-Laplace of a function f is defined by [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] Let g be the additive generator of the strict-pseudoaddition ⊕ on [a, b] such that g is continuous differentiable on (a, b). The corresponding pseudo-multiplication will always be defined as u v = g -1 (g(u) • g(v)). If the function f is differentiable on (c, d) and has the same monotonicity as the function g, then the g-derivative of f at the point x ∈ (c, d) is defined by

L ⊕ [f (x)] = g -1 (L [g(f (x))]) • Definition 2.6
d ⊕ dx f (x) = g -1 d dx g(f (x)) •
Also, if there exists the n-g-derivative of f , then [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] Let g be a generator of a pseudo-addition ⊕ on interval [-∞, +∞]. Binary operation and on [-∞, +∞] are defined by the expressions

d (n)⊕ dx f (x) = g -1 d n dx n g(f (x)) • Definition 2.7
x y = g -1 (g(x) -g(y)) and x y = g -1 g(x) g(y) .

If the expressions g(x) -g(y) and g(x) g(y) have sense are said to be the pseudo-subtraction and pseudo-division consistent with the pseudo-addition ⊕.

Definition 2.8 [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF][START_REF] Yadollahzadeh | Hermite-Hadamard's inequality for pseudo-fractional integral operators[END_REF][START_REF] Hosseini | On pseudo-fractional integral inequalities related to Hermite-Hadamard type[END_REF][START_REF] Pap | Pseudo-additive measures and their applications[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis to nonlinear partial differential equations[END_REF] Let g : [-∞, +∞] -→ [-∞, +∞] be a continuous, strictly increasing and odd function such that g(0) = 0, g(1) = 1 and g(+∞) = +∞. The system of pseudo-arithmetical operations {⊕, , , } generated by these functions is said to be the consistent system. 

f C[a,b] = max t∈[a,b] |f (t)| .
On the order hand, we have n-times absolutely continuous given by 

AC n [a, b] = f : [a, b] → R; f (n-1) ∈ AC ([a, b]) . The weighted space C γ,ψ [a, b] of functions f on (a, b] is defined by [21] C γ;ψ [a, b] = {f : (a, b] → R; (ψ (t) -ψ (a)) γ f (t) ∈ C [a, b]} , 0 ≤ γ < 1 with the norm f C γ;ψ [a,b] = (ψ (t) -ψ (a)) γ f (t) C[a,b] = max t∈[a,b] |(ψ (t) -ψ (a)) γ f (t)| .
C n γ;ψ [a, b] = f : (a, b] → R; f (t) ∈ C n-1 [a, b] ; f (n) (t) ∈ C γ;ψ [a, b] , 0 ≤ γ < 1 with the norm f C n γ;ψ [a,b] = n-1 k=0 f (k) C[a,b] + f (n) C γ;ψ [a,b]
.

For n = 0, we have,

C 0 γ,ψ [a, b] = C γ,ψ [a, b]. The weighted space C α,β γ,ψ [a, b] is defined by C α,β γ;ψ [a, b] = f ∈ C γ;ψ [a, b] ; H D α,β;ψ a+ f ∈ C γ;ψ [a, b] , γ = α + β (1 -α) .
Let (a, b) (-∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line R and α > 0. Also, let ψ(x) be an increasing and positive monotone function on (a, b); having a continuous derivative, ψ (x) on (a, b). The left-sided fractional integral of a function f with respect to another function ψ on [a, b] is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] 

I α,ψ a+ f (x) = 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 f (t) dt. (2.2) Let n -1 < α < n with n ∈ N, I = [a, b] is the interval such that -∞ ≤ a < b ≤ ∞ and f, ψ ∈ C n ([a, b], R
) two functions such that ψ(x) is increasing and ψ (x) = 0, for all x ∈ I. The left-sided ψ-Hilfer fractional derivative, denoted by H D α,β;ψ a+ (•), of functions of order α and type 0 ≤ β ≤ 1, is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] H D α,β;ψ a+ f (x) = I β(n-α);ψ a+

1 ψ (x) d dx n I (1-β)(n-α);ψ a+ f (x).
(2.3) Now, we present two particular cases of ψ-Hilfer fractional derivative, i.e., 1. Taking limit β → 0 in Eq.(2.3), we have ψ-Riemann-Liouville fractional derivative, given by

RL D α;ψ a+ f (x) = 1 ψ (x) d dx n I (n-α);ψ a+ f (x).
(2.4)

2. Taking limit β → 1 in Eq.(2.3), we have ψ-Caputo fractional derivative, given by

C D α;ψ a+ f (x) = I (n-α);ψ a+ 1 ψ (x) d dx n f (x).
(2.5)

Below we present the pseudo-fractional integral and pseudo-fractional operators with respect to another function in the sense of the ψ-Riemann-Liouville and ψ-Caputo fractional derivatives, and some fundamental properties. 

I n-α;ψ ⊕, ,a+ f (x) := g -1 I α;ψ a+ g(f (x)) = ⊕ [a,x] g -1 ψ(t)(ψ(x) -ψ(t)) α-1 Γ(α) f (t) dt,
where I α,ψ a+ (•) is defined as Eq.(2.2).

The right-sided ψ-Riemann-Liouville pseudo-fractional integral, is defined in an analogous way. 

RL D α;ψ ⊕, ,a+ f (x) = g -1 RL D α;ψ a+ g(f (x)) = g -1 D ψ (x) n I n-α;ψ ⊕, ,a+ f (x).
(2.6)

The right-sided ψ-Riemann-Liouville pseudo-fractional derivative, is defined in an analogous way. 

n -1 < α < n of a measurable function f : [a, b] → [a, b] with respect to function ψ on [a, b]
is defined by:

C D α;ψ ⊕, ,a+ f (x) = g -1 C D α;ψ a+ g(f (x)) = I n-α;ψ ⊕, ,a+ g -1 D ψ (x) n f (x) . (2.7) 
The right-sided ψ-Caputo pseudo-fractional derivative is defined in an analogous way.

We will present some results involving the Riemann-Liouville pseudo-fractional integral operator.

Theorem 2.1 If α ≥ 0, β ≥ 0, and f ; [a, b] -→ [a, b] is a measurable function, then the following relation hold 1. I α;ψ ⊕, ,a+ I β;ψ ⊕, ,a+ f (x) = I α+β;ψ ⊕, ,a+ f (x); 2. I α;ψ ⊕, ,a+ I β;ψ ⊕, ,a+ f (x) = I β;ψ ⊕, ,a+ I α;ψ ⊕, ,a+ f (x); 3. I 0;ψ ⊕, ,a+ f (x) = f (x); 4. I 1;ψ ⊕, ,a+ f (x) = ⊕ [a,x] ψ (t)f (t) dt. Proof: See [33]. 2 
Theorem 2.2 Let α > 0, and f 1 and

f 2 be two measurable function on [a, b]. Then, for any λ ∈ [a, b] we have 1. I α;ψ ⊕, ,a+ (f 1 (x) ⊕ f 2 (x)) = I α;ψ ⊕, ,a+ f 1 (x) ⊕ I α;ψ ⊕, ,a+ f 2 (x); 2. I α;ψ ⊕, ,a+ (λ f 1 (x)) = λ I α;ψ ⊕, ,a+ f 1 (x).
Proof: See [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF].

2
For other fundamental properties involving the Riemann-Liouville pseudo-fractional integral operator, we suggest [START_REF] Babakhani | Some properties of pseudofractional operators[END_REF].

Theorem 2.3 Let f, g ∈ C n γ,ψ [a, b], α > 0 and 0 ≤ β ≤ 1. Then H D α,β;ψ a+ f (x) = H D α,β;ψ a+ g (x) ⇔ f (x) = g (x) + n k=1 c k (ψ (x) -ψ (a)) γ-k . Proof: See [11]. 2 Theorem 2.4 Let f ∈ C n γ,ψ [a, b], α > 0 and 0 ≤ β ≤ 1, we have H D α,β;ψ a+ I α;ψ a+ f (x) = f (x) .
Proof: See [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF].

2 Lemma 2.5 Given δ ∈ R, consider the function f (x) = (ψ (x) -ψ (a)) δ-1
, where δ > n.

Then, for n -1 < α < n and 0 ≤ β ≤ 1,

H D α,β;ψ a+ f (x) = Γ (δ) Γ (δ -α) (ψ (x) -ψ (a)) δ-α-1 .
Proof: See [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF].

2 Lemma 2.6 Given λ > 0, n -1 < α < n and 0 ≤ β ≤ 1. Consider the function f (x) = E α (λ (ψ (x) -ψ (a)) α )
, where E α (•) is the Mittag-Leffler function with one parameter. Then,

H D α,β;ψ a+ f (x) = λf (x) .
Proof: See [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF].

Next, we will investigate three fundamental theorems for the development of this article.

Theorem 2.7 Let n -1 < α < n and 0 ≤ β ≤ 1, with n ∈ N. Let f ∈ C n γ ([a, b]). Then, we have H D α,β;ψ a+ 1 ψ (x) d dx n f (x) = H D α,β;ψ a+ D nψ a+ f (x) = C D n+α;ψ a+ f (x) (2.8) or H D α,β;ψ a+ 1 ψ (x) d dx n f (x) = RL D n+α;ψ a+ f (x) - n-1 k=0 1 k! (ψ(x) -ψ(a)) k f [k] ψ (a) = RL D n+α;ψ a+ f (x) - n-1 k=0 RL D n+α;ψ a+ (ψ(x) -ψ(a)) k k! f [k] ψ (a) = RL D n+α;ψ a+ f (x) - n-1 k=0 (ψ(x) -ψ(a)) k-n-α Γ (k + 1 -n -α) f [k] ψ (a) . (2.

9)

Proof: We first prove Eq.(2.8). Remember that

H D α,β;ψ a+ f (x) = C D µ;ψ a+ I (1-β)(n-α);ψ a+ f (x) with µ = n(1 -β) + βα. Considering f (x) = 1 ψ (x) d dx n g(x) we get C D µ;ψ a+ I (1-β)(n-α);ψ a+ 1 ψ (x) d dx n g(x) = C D µ;ψ a+ I n-γ;ψ a+ 1 ψ (x) d dx n g(x) = C D µ;ψ a+ C D γ;ψ a+ g(x) = C D µ+γ;ψ a+ g(x).
Now, to obtain Eq.(2.9), just use the relationship between the fractional derivatives ψ-Caputo and ψ-Riemann-Liouville.

2

Theorem 2.8 Let n -1 < α < n, n -1 < δ < n, 0 ≤ β ≤ 1 and n ∈ N. Consider f ∈ C n γ ([a, b]
). Then, we have

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = H D α+δ,β;ψ a+ f (x) - n k=1 (ψ(x) -ψ(a)) 1-ξ-k-n Γ(2 -ξ -k -n) f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) with ξ = α + β[(δ -α) -(n + α)
] and we have introduced the notation

f [n-k] ψ := 1 ψ (x) d dx f (x) [n-k]
• Proof: Considering the relation

H D α,β;ψ a+ f (x) = I γ-α;ψ a+ D γ;ψ a+ f (x)
with γ = α + β(-α), we can write

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = I γ-α;ψ a+ D γ;ψ a+ H D δ,β;ψ a+ f (x) = I γ-α;ψ a+ D γ;ψ a+ I γ-δ;ψ a+ D γ;ψ a+ f (x) = I γ-α;ψ a+ D γ;ψ a+ I -δ;ψ a+ I γ;ψ a+ D γ;ψ a+ f (x) with γ = α + β(n -α) and γ = δ + β(n -α).
The last expression can be written as follows

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = I γ-α;ψ a+ D γ;ψ a+ I γ-δ;ψ a+ f (x) - n k=1 (ψ(x) -ψ(a)) γ-k γ -k + 1 f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) = H D α,β;ψ a+ I -δ;ψ a+ f (x) - n k=1 H D α,β;ψ a+ I -δ;ψ a+ (ψ(x) -ψ(a)) γ-k γ -k + 1 f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) = H D α,β;ψ a+ I -δ;ψ a+ f (x) - n k=1 C D µ;ψ a+ I (1-β)(n-α)-δ;ψ a+ (ψ(x) -ψ(a)) γ-k γ -k + 1 f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a).
(2.10)

Note that, for α = 1 -γ -δ and δ = γ -k + 1 we have

I α;ψ a+ (ψ (x) -ψ (a)) δ-1 = Γ(δ) Γ(α + δ) (ψ (x) -ψ (a)) α+δ-1 = Γ(γ -k + 1) Γ(2 -γ -δ -k + γ) (ψ(x) -ψ(a)) 1-γ-δ-k+γ . (2.11) Choosing ψ = 1 -γ -δ -k + γ + 1 and µ = n(1 -β) + αβ, we can write C D µ;ψ a+ (ψ(x) -ψ(a)) ψ-1 = Γ(ψ) Γ(ψ -µ) (ψ(x) -ψ(a)) ψ-µ-1
which using Eq.(2.10) and simplifying we obtain

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = H D α,β;ψ a+ I -δ;ψ a+ f (x) (I) - n k=1 (ψ(x) -ψ(a)) 1-ξ-k-n Γ(2 -ξ -k -n) f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a)
where

ξ = α -β(n + α) + β(δ -α) = α + β[(δ -α) -(n + α)].
Now, we manipulate only the highlighted term. We can write

H D α,β;ψ a+ I -δ;ψ a+ f (x) = C D µ;ψ a+ I (1-β)(n-α)-δ;ψ a+ f (x) = C D µ-βδ;ψ a+ I ξ-βδ;ψ a+ f (x)
where

µ = n -β(n -α) + βδ and ξ = (1 -β)(n -α) -δ + βδ.
On the other hand, we have

H D α+δ,β;ψ a+ f (x) = I β(n-α-δ);ψ a+ 1 ψ (x) d dx n I (1-β)(n-α-δ);ψ a+ f (x) = C D µ;ψ a+ I (1-β)(n-α)-δ+δβ;ψ a+ f (x)
where µ = n -β(n -α) + βδ. Then, we finally, get

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = H D α+δ,β;ψ a+ f (x) - n k=1 (ψ(x) -ψ(a)) 1-ξ-k-n Γ(2 -ξ -k -n) f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) with ξ = α + β[(δ -α) -(n + α)], which conclude the proof. 2 Theorem 2.9 Let f ∈ C 1 ([a, b]), α ≥ 0, δ ≥ 0 and 0 ≤ β ≤ 1.
Then we have

H D α,β;ψ a+ I δ;ψ a+ f (x) = I γ-δ;ψ a+ f (x) (2.12)
with α ≥ δ ≥ 0 and γ = α + 2β(1 -α).

Proof: In fact, remember that

RL D α;ψ a+ I δ;ψ a+ f (x) = I α-δ;ψ a+ f (x)
where α ≥ δ ≥ 0 and the relation

H D α,β;ψ a+ f (x) = I α-δ;ψ a+ RL D α;ψ a+ f (x) with γ = α + β(1 -α), we can write H D α,β;ψ a+ I δ;ψ a+ f (x) = I γ-α;ψ a+ RL D γ;ψ a+ I δ;ψ a+ f (x) = I γ-α;ψ a+ I γ-δ;ψ a+ f (x) = I 2γ-α-δ;ψ a+ f (x) = I γ-δ;ψ a+ f (x) with γ = α + 2β(1 -α). 2 
3 ψ-Hilfer pseudo-fractional operator and properties

In this section we will introduce a new pseudo-fractional operator called ψ-Hilfer and investigate some important and useful properties in the theory of fractional calculus. In this sense, during the section, we will discuss some relevant particular cases and examples. 

H α,β;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g(f (t)) = I β(n-α);ψ ⊕, ,a+ g -1 D ψ (x) n I (1-β)(n-α);ψ ⊕, ,a+ f (t), (3.1)
where H D α,β;ψ a+ (•) is defined as in Eq.(2.3).

The right-sided ψ-Hilfer pseudo-fractional derivative is defined in an analogous way.

To simplify the notation and the prove of some results, we will introduce the following notation:

f [n] ψ+ f (x) := 1 ψ (x) d dx n f (x) and f [n] ψ-f (x) := - 1 ψ (x) d dx n f (x).
On the order hand, with this notation we have

H α,β;ψ ⊕, ,a+ f (x) = I γ-α;ψ ⊕, ,a+ RL D γ;ψ ⊕, ,a+ f (x) = g -1 I γ-α;ψ a+ g RL D γ;ψ ⊕, ,a+ f (x) = g -1 I γ-α;ψ a+ g g -1 RL D γ;ψ a+ g(f (x)) = g -1 I γ-α;ψ a+ RL D γ;ψ a+ f (x) ,
where γ = α + β(n -α).

We will discuss only three particular cases of pseudo-fractional operators, the most used ones. Other particular cases can be obtained from an appropriate choice of the function ψ(•) and the limits β → 0 and β → 1.

Taking the limit β → 1, in both sides of Eq.( 13) we have

H α,1;ψ ⊕, ,a+ f (x) = g -1 H D α,1;ψ a+ g(f (t)) = I n-α;ψ ⊕, ,a+ g -1 D ψ (x) n f (t) ≡ C D α;ψ ⊕, ,a+ f (x) (3.2)
which is exactly the ψ-Caputo pseudo-fractional operator, as given in Eq.(2.7).

On the other hand, taking the limit β → 0 in both sides of Eq.( 13), we get

H α,0;ψ ⊕, ,a+ f (x) = D ψ (x) n I n-α;ψ ⊕, ,a+ f (t) = RL D α;ψ ⊕, ,a+ f (x) (3.3)
which is exactly the ψ-Riemann-Liouville pseudo-fractional operator, as given in Eq.(2.6).

Taking ψ(t) = t in Eq.( 13) we get the Hilfer pseudo-fractional operator given by

H α,β ⊕, ,a+ f (x) = g -1 H D α,β a+ g(f (t)) = I β(n-α) ⊕, ,a+ g -1 d dx n I (1-β)(n-α) ⊕, ,a+ f (t)• (3.4) Remark 3.1
1. The ψ-Hilfer pseudo-fractional operator is global;

2. Note that we explain only three particular cases for the ψ-Hilfer pseudo-fractional operator. However, it is possible to obtain a wide class of other pseudo-fractional differential operators by choosing the function ψ(•) and the limits of β → 1 or β → 0. For this, it is enough to note that the ψ-Hilfer pseudo-fractional operator is defined through the ψ-Hilfer fractional derivative, as in Eq.( 13);

The results here are investigated in [a, b], however, they can be discussed in any range [c, d] [START_REF] Letnikov | Theory of Differentiation with an Arbitrary Indicator[END_REF].

So, we have the first result on the ψ-Hilfer pseudo-fractional operator given by the following theorem:

Theorem 3.2 Let f : [a, b] -→ [a, b] be a measurable function. If n ∈ N, then we have 1. H 0,β;ψ ⊕, ,a+ f (x) = f (x); 2. H 1,β;ψ ⊕, ,a+ f (x) = g -1 D ψ (x) g(f (x)) ; 3. H n,β;ψ ⊕, ,a+ f (x) = d ψ (x) (n)⊕ f (x) dx = D ψ (x) (n)⊕ f (x).
Proof: We first prove item 1. Introducing the identity operator g -1 g = gg -1 = I (here I is the identity operator), using H D 0,β;ψ a+ f (x) = f (x) and the Eq.(2.6), yields

H 0,β;ψ ⊕, ,a+ f (x) = g -1 H D 0,β;ψ a+ g(f (x)) = g -1 (g(f (x))) = f (x)• We prove item 2. Using H D 1,β;ψ a+ f (x) = f (1) (x) ψ (x)
and the Definition 2.7, we obtain

H 1,β;ψ ⊕, ,a+ f (x) = g -1 H D 1,β;ψ a+ g(f (x)) = g -1 D ψ (x) g(f (x)) •
Finally, we prove item 3. Using the relation

H D n,β;ψ a+ f (x) = 1 ψ (x) d dx n
and the Definition 2.7, we have

H n,β;ψ ⊕, ,a+ f (x) = g -1 H D n,β;ψ a+ g(f (x)) = g -1 D ψ (x) n g(f (x)) = = D ψ (x) (n)⊕ f (x) = d ψ (x) (n)⊕ f (x)
dx which conclude the proof.

2

Now, let's emphasize the linearity of the ψ-Hilfer pseudo-fractional operator. 

1. H α,β;ψ ⊕, ,a+ (f 1 (t) ⊕ f 2 (t)) = H α,β;ψ ⊕, ,a+ f 1 (t) ⊕ H α,β;ψ ⊕, ,a+ f 2 (t); 2. H α,β;ψ ⊕, ,a+ (λ f 1 (t)) = λ H α,β;ψ ⊕, ,a+ f 1 (t).
Proof: We first prove item 1. In fact, we have

H α,β;ψ ⊕, ,a+ (f 1 (t) ⊕ f 2 (t)) = g -1 H D α,β;ψ a+ g(f 1 (t) ⊕ f 2 (t)) = g -1 H D α,β;ψ a+ g g -1 (g(f 1 (t)) + g(f 2 (t))) = g -1 H D α,β;ψ a+ g(f 1 (t)) + g(f 2 (t)) = g -1 H D α,β;ψ a+ g(f 1 (t)) + H D α,β;ψ a+ g(f 2 (t)) = g -1 g g -1 H D α,β;ψ a+ g(f 1 (t)) + g g -1 H D α,β;ψ a+ g(f 2 (t)) g -1 H D α,β;ψ a+ g(f 1 (t)) ⊕ g -1 H D α,β;ψ a+ g(f 2 (t)) = H α,β;ψ ⊕, ,a+ f 1 (t) ⊕ H α,β;ψ ⊕, ,a+ f 2 (t).
To prove item 2, we start with the relation

H α,β;ψ ⊕, ,a+ (λ f 1 (t)) = g -1 H D α,β;ψ a+ g(λ f 1 (t)) = g -1 H D α,β;ψ a+ g g -1 (g(λ)g(f 1 (t))) = g -1 H D α,β;ψ a+ (g (λ) g (f 1 (t))) = g -1 g(λ) H D α,β;ψ a+ g(f 1 (t)) = g -1 g(λ)g g -1 H D α,β;ψ a+ g(f 1 (t)) = λ g -1 H D α,β;ψ a+ g(f 1 (t)) = λ H α,β;ψ ⊕, ,a+ f 1 (t)
which complete the proof. 2

Example 3.4 Let g(x) = x β with β ∈ R and f (x) = ψ(x) -ψ(a). The corresponding pseudo-operators are x ⊕ y = β x β + y β and x y = xy. Then, the left-sided ψ-Hilfer pseudo-fractional derivative operator with order α > 0 and type 0 ≤ β ≤ 1 of f is as follows

H α,β;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g(f (x)) = g -1 H D α,β;ψ a+ (ψ(x) -ψ(a)) β = g -1 Γ( β + 1) Γ( β + 1 -α) (ψ(x) -ψ(a)) β-α = β Γ( β + 1) Γ( β + 1 -α) (ψ(x) -ψ(a)) β-α (3.5) with ψ (x) > ψ (a).
Now, we are going to discuss Eq.(3.5). First, we take ψ(x) = x. Then, we have

H α,β;x ⊕, ,a+ f (x) = β Γ( β + 1) Γ( β + 1 -α) (x -a) β-α , x > a• (3.6)
Note that, regardless of the choice of β, the result does not change, that is, for β → 1 or β → 0, the second member of Eq.(3.6) does not depends on β.

Considering ψ(x) = x ρ , we have

H α,β;x ρ ⊕, ,a+ f (x) = β Γ( β + 1) Γ( β + 1 -α) (x ρ -a ρ ) β-α , x > a.
Also, for ψ(x) = ln x, we have

H α,β;ln x ⊕, ,a+ f (x) = β Γ( β + 1) Γ( β + 1 -α) (ln x -ln a) β-α , x > a > 0.
On the other hand, considering the parameters as β = 1 = α, we have

H α,β;ψ ⊕, ,a+ f (x) = Γ(2) Γ(1) (ψ(x) -ψ(a)) 0 = 1•
We conclude with two particular cases. First, for β = 1, we get

H α,β;ψ ⊕, ,a+ f (x) = Γ(2) Γ(2 -α) (ψ(x) -ψ(a)) 1-α
and for β = 1/2 and α = 1/2 we have

H 1/2,β;x ρ ⊕, ,a+ f (x) = 1 2 Γ(3/2) Γ(1) (ψ(x) -ψ(a)) 1/2-1/2 = π 4 .
Note that we have a wide variety of results from choosing the parameters β and α and the function ψ(x). Here, we restrict ourselves to these; however other results can be obtained. Another interesting example is the case of the one-parameter Mittag-Leffler function, denoted by E α (•), which we will present below.

Example 3.5 Let g(x) = x and f (x) = E α (λ(ψ(x) -ψ(a))) with α > 0. The corresponding pseudo-operators are x ⊕ y = x + y and x y = xy. Then, the left-sided ψ-Hilfer pseudo-fractional derivative of order α > 0 is as follows

H α,β;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g(f (x)) = g -1 H D α,β;ψ a+ (E α (λ(ψ(x) -ψ(a)) α )) = g -1 (λE α (λ(ψ(x) -ψ(a)) α )) = λE α (λ(ψ(x) -ψ(a)) α ) = λf (x).
Theorem 3.6 Let g be a generator of a pseudo-addition ⊕ on the interval [-∞, +∞].

Then for α > 0, 0 ≤ β ≤ 1 and n ∈ N, we have

H α,β;ψ ⊕, ,a+ 1 ψ (x) d dx n,⊕ f (x) = RL D n-α,β;ψ ⊕, ,a+ f (x) n-1 k=0 g -1 (C k ) g -1 ((ψ(x) -ψ(a)) k-n-α ) with C k = (g • f ) [k] ψ (a) Γ(k -n -α + 1)
.

Proof: In fact, as we have (see Theorem 2.7)

H D α,β;ψ a+ 1 ψ (x) d dx n f (x) = RL D n-α;ψ a+ f (x) - n-1 k=0 (ψ(x) -ψ(a)) k-n-α Γ(k -n + 1 -α) f [k] ψ (a),
we can write

H α,β;ψ ⊕, ,a+ 1 ψ (x) d dx n,⊕ f (x) = g -1 H D α,β;ψ a+ g 1 ψ (x) d dx n,⊕ f (x) = g -1 H D α,β;ψ a+ g g -1 1 ψ (x) d dx n g(f (x)) = g -1 H D α,β;ψ a+ 1 ψ (x) d dx n g(f (x)) = g -1 RL D n-α,β;ψ a+ g(f (x)) - n-1 k=0 (ψ(x) -ψ(a)) k-n-α Γ(k -n -α + 1) (g • f ) [k] ψ (a) = g -1 RL D n-α,β;ψ a+ g(f (x)) - n-1 k=0 C k (ψ(x) -ψ(a)) k-n-α = g -1 g g -1 RL D n-α,β;ψ a+ g(f (x)) - n-1 k=0 g g -1 C k (ψ(x) -ψ(a)) k-n-α = g -1 g g -1 RL D n-α,β;ψ a+ g(f (x)) -g g -1 n-1 k=0 g g -1 C k (ψ(x) -ψ(a)) k-n-α = g -1 g g -1 RL D n-α,β;ψ a+ g(f (x)) - -g g -1 C 0 (ψ(x) -ψ(a)) -n-α ⊕ • • • ⊕ g -1 C n-1 (ψ(x) -ψ(a)) -1-α = g -1 RL D n-α,β;ψ a+ g(f (x)) n-1 k=0 g -1 C k (ψ(x) -ψ(a)) k-α-n = RL D n-α;ψ ⊕, ,a+ f (x) n-1 k=0 g -1 (C k ) g -1 (ψ(x) -ψ(a)) k-α-n
which conclude the proof. 2

Taking ψ(x) = x in Theorem 3.6, we conclude that the result is also valid for the Hilfer fractional derivative. Then, we have the following result, presented as a theorem. Theorem 3.7 Let g be a generator of pseudo-addition ⊕ on the interval [-∞, +∞]. Then, for α > 0, 0 ≤ β ≤ 1, and n ∈ N, we get

H α,β ⊕, ,a+ d dx n,⊕ f (x) = RL D n-α ⊕, ,a+ f (x) n-1 k=0 g -1 (C k ) g -1 ((x -a) k-α-n ) •
Proof: Follows directly from Theorem 3.6. 2

Also, presented as theorems, we will discuss two particular cases of Theorem 3.6, that is: (i) taking β = 1 we obtain a result for the Caputo fractional derivative and (ii) for β = 0 the corresponding theorem associated with the Riemann-Liouville fractional derivative. Theorem 3.8 Let g be a generator of pseudo-addition ⊕ on the interval [-∞, +∞]. Then, for α > 0, β = 1, and n ∈ N, we get

C D α;ψ ⊕, ,a+ 1 ψ (x) d dx (n),⊕ f (x) = C D n+α a+ f (x)•
Proof: Follows directly from Theorem 3.6. 2

Theorem 3.9 Let g be a generator of pseudo-addition ⊕ on the interval [-∞, +∞]. Then, for α > 0, β = 0, and n ∈ N, we get

RL D α;ψ ⊕, ,a+ 1 ψ (x) d dx (n),⊕ f (x) = RL D n-α;ψ ⊕, ,a+ f (x) n-1 k=0 g -1 (C k ) g -1 ((x -a) k-α-n ) •
Proof: Follows directly from Theorem 3.6. 2

Corollary 3.10 Considering C k = 0 in Theorem 3.6, we have

H α,β;ψ ⊕, ,a+ 1 ψ (x) d dx (n),⊕ f (x) = RL D n-α,ψ
⊕, ,a+ f (x).

Proof: Follows directly from Theorem 3.6. 2

Theorem 3.11 Let g be as in Definition 2.7 and 0 < n -1 < α, δ < n. The following relation holds

H α,β;ψ ⊕, ,a+ H δ,β;ψ ⊕, ,a+ f (x) = H α+δ,β;ψ ⊕, ,a+ f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) 1-ξ-k-n (3.7 
)

with ξ = α + β[(δ -α) -(n + α)].
Proof: Using the relation (see Theorem 2.8)

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = H D α+δ,β;ψ a+ f (x) - n k=1 (ψ(x) -ψ(a)) 1-ξ-k-n Γ(2 -ξ -k -n) f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a)
and the Definition 2.7 we can write

H α,β;ψ ⊕, ,a+ H δ,β;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g H δ,β;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g g -1 H D δ,β;ψ a+ g(f (x)) = g -1 H D α,β;ψ a+ H D δ,β;ψ a+ g(f (x)) = g -1 H D α+δ,β;ψ a+ g(f (x)) + n k=1 (ψ(x) -ψ(a)) 1-ξ-k-n Γ(2 -ξ -k -n) f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) = g -1 g g -1 H D α+δ,β;ψ a+ g(f (x)) -g g -1 n k=1 g g -1 C k (ψ(x) -ψ(a)) 1-ξ-k-n
where we have introduced the following notation

C k := f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) Γ(2 -ξ -k -n) .
The last equation can be written as

H α,β;ψ ⊕, ,a+ H δ,β;ψ ⊕, ,a+ f (x) = g -1 g g -1 H D α+δ,β;ψ a+ g(f (x)) - g g -1 C 1 (ψ(x) -ψ(a)) -ξ-n ⊕ • • • ⊕ g -1 C n (ψ(x) -ψ(a)) 1-ξ-2n = g -1 H D α+δ,β;ψ a+ g(f (x)) n k=1 g -1 C k (ψ(x) -ψ(a)) 1-ξ-k-n = H α+δ,β;ψ ⊕, ,a+ f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) 1-ξ-k-n
which conclude the proof. 2

Theorem 3.12 Let g be as in Definition 2.7 and 0 < n -1 < α, δ < n. Taking β = 0 in Eq.(3.7) we get

RL D α,ψ ⊕, ,a+ RL D δ,ψ ⊕, ,a+ f (x) = RL D α+δ,ψ ⊕, ,a+ f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) 1-ξ-k-n
with ξ = α.

Proof: Follows directly from Theorem 3.11. 2 Theorem 3.13 Let g be as in Definition 2.7 and 0 < n -1 < α, δ < n. Taking β = 1 in Eq.(3.7) we obtain

C D α,ψ ⊕, ,a+ C D δ,ψ ⊕, ,a+ f (x) = C D α+δ,ψ ⊕, ,a+ f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) 1-δ-k+α with ξ = δ -n -α.
Proof: Follows directly from Theorem 3.11. 2

Corollary 3.14 Let ψ-Hilfer pseudo-fractional derivative operators H α,β;ψ ⊕, ,a+ and H δ,β;ψ ⊕, ,a+ . Then, we have

H α,β;ψ ⊕, ,a+ H δ,β;ψ ⊕, ,a+ f (x) = H α+δ,β;ψ ⊕, ,a+ f (x)
if, and only if, the following condition holds 

C k = f [n-k] ψ I (1-β)(n-δ);ψ a+ f ( 
I α;ψ a+ f (x) = f (x), we can write H α,β;ψ ⊕, ,a+ I α;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g I α;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g g -1 I α;ψ a+ f (x) = g -1 H D α,β;ψ a+ I α;ψ a+ f (x) = g -1 [g (f (t))] = f (t)
with γ = α + 2β(1 -α).
Proof: In fact, as we have (see Theorem 2.9)

H D α,β;ψ a+ I δ;ψ a+ f (x) = I γ-δ;ψ a+ f (x)
with γ = α + 2β(1 -α) and α ≥ 0, δ ≥ 0, we can write

H α,β;ψ ⊕, ,a+ I δ;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g I δ;ψ ⊕, ,a+ f (x) = g -1 H D α,β;ψ a+ g g -1 I δ;ψ a+ f (x) = g -1 H D α,β;ψ a+ I δ;ψ a+ g (f (x)) = g -1 I γ-δ;ψ a+ g (f (x))
= I γ-δ;ψ ⊕, ,a+ f (x) which complete the proof.
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As before, we present as a corollary, a particular case, obtained by means of Eq.(3.8), with β = 0, associated with the ψ-Riemann-Liouville. 

I α;ψ ⊕, ,a+ H α,β;ψ ⊕, ,a+ f (x) = f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) γ-k (3.9) with γ = α + β(n -α).
Proof: We start with the relation [11]

I α;ψ a+ H D α,β;ψ a+ f (x) = f (x) - n k=1 (ψ(x) -ψ(a)) γ-k Γ(γ -k + 1) f [n-k] ψ I (1-β)(n-α);ψ a+ f (a) 
with γ = α + β(n -α). Then, we can write

I α;ψ ⊕, ,a+ H α,β;ψ ⊕, ,a+ f (x) = g -1 I α;ψ a+ g H α,β;ψ ⊕, ,a+ f (x) = g -1 I α;ψ a+ g g -1 H D α,β;ψ a+ f (x) = g -1 I α;ψ a+ H D α,β;ψ a+ g(f (x)) = g -1 g(f (x)) - n k=1 (ψ(x) -ψ(a)) γ-k Γ(γ -k + 1) (g • f ) [n-k] ψ I (1-β)(n-α);ψ a+ g(f (a)) = g -1 g(f (x)) - n k=1 C k (ψ(x) -ψ(a)) γ-k
where we have introduced the following notation

C k = (g • f ) [n-k] ψ I (1-β)(n-α);ψ a+ g(f (a)) Γ(γ -k + 1) •
Introducing the identity operator gg -1 = I (here I is the identity operator) we obtain

I α;ψ ⊕, ,a+ H α,β;ψ ⊕, ,a+ f (x) = g -1 g(f (x)) -g g -1 n k=1 g g -1 C k (ψ(x) -ψ(a)) γ-k = g -1 g(f (x)) -g g -1 C 0 (ψ(x) -ψ(a)) γ-k ⊕ • • • ⊕ g -1 C n (ψ(x) -ψ(a)) γ-k = f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) γ-k which complete the proof. 2 Corollary 3.19 If (g • f ) [n-k] ψ I (1-β)(n-α);ψ a+ g(f (a)) = 0 in Eq.(3.9), for k = 1, . . . , n then H α,β;ψ ⊕, ,a+ I α;ψ ⊕, ,a+ f (x) = f (x) = I α;ψ ⊕, ,a+ H α,β;ψ ⊕, ,a+ f (x).
Proof: The proof is equal to Theorem 3.18. 2 Theorem 3.20 Let g be the same as in Definition 2.7,

f ∈ C n ([a, b]), 0 < n-1 < α, δ < n,
and 0 ≤ β ≤ 1. Then we have

I α;ψ ⊕, ,a+ H δ,β;ψ ⊕, ,a+ f (x) = I α-δ;ψ ⊕, ,a+ f (x) n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) γ-k , (3.10) 
with α ≥ δ and γ = α + β(n -α).

Proof: The proof is equal to Theorem 3.18.

2 Theorem 3.21 Let f, h ∈ C n ([a, b]), α > 0 and 0 ≤ β ≤ 1. Then, H δ,β;ψ ⊕, ,a+ f (x) = H δ,β;ψ ⊕, ,a+ h(x) ⇔ f (x) = h(x) ⊕ n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) γ-k (3.11) 
Proof: We start with the known relation (see Theorem 2.3)

H D α,β;ψ a+ f (x) = H D α,β;ψ a+ h(x) ⇔ f (x) = h(x) + n k=1 C k (ψ(x) -ψ(a)) γ-k
then, we can write

H α,β;ψ ⊕, ,a+ f (x) = H α,β;ψ ⊕, ,a+ h(x) ⇔ g -1 H D α,β;ψ a+ g(f (x)) = g -1 H D α,β;ψ a+ g(h(x)) g g -1 H D α,β;ψ a+ g(f (x)) = g g -1 H D α,β;ψ a+ g(h(x)) ⇒ H D α,β;ψ a+ g(f (x)) -H D α,β;ψ a+ g(h(x)) = 0 ⇒ g(f (x)) = g(h(x)) + n k=1 C k (ψ(x) -ψ(a)) γ-k .
Introducing the inverse g -1 operator, we get

f (x) = g -1 g(h(x)) + n k=1 g g -1 C k (ψ(x) -ψ(a)) γ-k = g -1 g(h(x)) + g g -1 n k=1 g g -1 C k (ψ(x) -ψ(a)) γ-k = g -1 g(h(x)) + g g -1 C 1 (ψ(x) -ψ(a)) γ-k ⊕ • • • ⊕ g -1 C n (ψ(x) -ψ(a)) γ-k h(x) ⊕ n k=1 g -1 (C k ) g -1 (ψ(x) -ψ(a)) γ-k .
On the other hand, as

f (x) = h (x) + n k=1 c k (ψ (x) -ψ (a)) γ-k implies H D α,β;ψ a+ f (x) = H D α,β;ψ a+ h(x) 2 
We have the following corollary we have

H δ,β ⊕, ,a+ f (x) = H δ,β ⊕, ,a+ h(x) ⇔ f (x) = h(x) ⊕ n k=1 g -1 (C k ) g -1 (x -a) γ-k .
Proof: The proof follows direct to the Theorem 3.21.

2 Theorem 3.23 Let n -1 < α < n, n ∈ N and 0 ≤ β ≤ 1. If f ∈ C m+n (a, b), with m, n ∈ N.
Then, we have

I α;ψ ⊕, ,a+ k H α,β;ψ ⊕, ,a+ m f (x) = g -1 (C k ) g -1 (ψ (x) -ψ (a)) kα with C k = H D α,β;ψ a+ (g • f )(c) Γ (αk + 1)
with c a constant.

Proof: In fact, as we have [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] 

I α;ψ a+ k H D α,β;ψ a+ m f (x) = H D α,β;ψ a+ m f (c) (ψ (x) -ψ (a)) αk Γ(αk + 1)
we have

I α;ψ ⊕, ,a+ k H α,β;ψ ⊕, ,a+ m f (x) = g -1 I α;ψ a+ k g H α,β;ψ ⊕, ,a+ m f (x) = g -1 I α;ψ a+ k g g -1 H D α,β;ψ a+ m g(f (x)) = g -1 I α;ψ a+ k H D α,β;ψ a+ m g(f (x)) = g -1 H D α,β;ψ a+ m g(f (c))(ψ(x) -ψ(a)) kα Γ(αk + 1) .
Introducing the notation

c k = H D α,β;ψ a+ (g • f ) (c) Γ (αk + 1)
we finally get

I α;ψ ⊕, ,a+ k H α,β;ψ ⊕, ,a+ m f (x) = g -1 (C k ) g -1 (ψ(x) -ψ(a)) kα
which conclude the proof. 2

Remark 3.24

1. It is worth mentioning that all the results investigated above are valid for their respective particular cases of pseudo-fractional differential operators;

2. In the case of the pseudo-fractional differentiation operator in the sense of Hadamard, it should be noted that we admit a > 0, or as in other definitions, it is preferable to assume a = 1;

3. Although the results investigated in this section were for left-sided ψ-Hilfer pseudofractional differentiation operator, in an analogous way, the results are valid for the right-sided case.

Pseudo-Leibniz-types rule (I and II)

Now, let's deal with the Leibniz-types rule of I and II associated with the ψ-Hilfer pseudofractional operator. Then, for the first type, we introduce the corresponding Leibniz rule by the following theorem. 

H α,β;ψ ⊕, ,a+ (f (x) h (x)) = ∞ =0 ∞ m=0 g -1 (C m ) D m ⊕ f (x) RL D α-m;ψ ⊕, ,a+ h(x) ∞ k=0 g -1 (C k ) I ε+k;ψ ⊕, ,a+ h(a) g -1 (d k ) g -1 (ψ(x) -ψ(a)) ε+α
where

C k = -ε k , C m = -ε m - α + ε and d k = (h • f ) [k] (a) Γ(β(1 + α))
.

Proof: Remember the relation [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

H D α,β;ψ a+ (f h)(x) = ∞ =0 ∞ m=0 -ε m - α + ε f (m) (x) RL D α-m;ψ a+ h(x) - ∞ k=0 -ε k I ε+k;ψ a+ h(a)f (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α)) with ε = (1 -β)(1 -α) we can write H α,β;ψ ⊕, ,a+ (f (x) h(x)) = g -1 H D α,β;ψ a+ g(f (x) h(x)) = g -1 H D α,β;ψ a+ (g(f (x))g(h(x)))) = g -1 ∞ =0 ∞ m=0 -ε m - α + ε (g • f ) (m) (x) RL D α-m;ψ a+ (g • h)(x) = ∞ k=0 -ε k I ε+k;ψ a+ (g • h)(a)(g • f ) (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α)) = g -1 ∞ =0 ∞ m=0 C m (g • f ) (m) (x) RL D α-m;ψ a+ (g • h)(x) - ∞ k=0 C k I ε+k;ψ a+ (g • h)(a)(g • f ) (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α)) = g -1 ∞ =0 ∞ m=0 g g -1 C m (g • f ) (m) (x) RL D α-m;ψ a+ (g • h)(x) - ∞ k=0 g g -1 C k I ε+k;ψ a+ (g • h)(a)(g • f ) (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α)) = g -1 ∞ =0 ∞ m=0 g g -1 C m (g • f ) (m) (x) RL D α-m;ψ a+ (g • h)(x) g -1 ∞ k=0 g g -1 C k I ε+k;ψ a+ (g • h)(a)(g • f ) (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α))
.

Then, we have

H α,β;ψ ⊕, ,a+ (f (x) h (x)) = ∞ =0 ∞ m=0 g -1 C m (g • f ) m (x) RL D α-m;ψ a+ (g • h)(x) (I)      ∞ k=0 g -1 C k I ε+k;ψ a+ (g • h)(a)(g • f ) (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α)) (II)      . (3.12)
We first consider the expression (I), in Eq.(3.12). We have

I = g -1 C m (g • f ) m (x) RL D α-m;ψ a+ (g • h)(x) . (3.13) 
Introducing the unitary operator, we can write

I = g -1 g g -1 (C m ) g g -1 ((g • f ) m (x)) g g -1 RL D α-m;ψ a+ (g • h)(x) = g -1 g g -1 (C m ) g(D m ⊕ f (x)) g RL D α-m;ψ ⊕, ,a+ h(x) = g -1 (C m ) D m ⊕ f (x) RL D α-m;ψ ⊕, ,a+ h(x). (3.14) 
On the other hand, for the expression (II), in Eq.(3.12), we have

II = g -1 C k I ε+k;ψ a+ (g • h)(a)(g • f ) (k) (a) (ψ(x) -ψ(a)) ε+α Γ(β(1 -α)) .
As above, we introduce the unitary operator, then

II = g -1 g(g -1 (C k )) g I ε+k;ψ ⊕, ,a+ h(a) g(g -1 (d k )) g g -1 (ψ(x) -ψ(a)) ε+k = g -1 (C k ) I ε+k;ψ ⊕, ,a+ h(a) g -1 (d k ) g -1 (ψ(x) -ψ(a)) ε+k . (3.15)
Thus, introducing Eq.(3.14) and Eq.(3.15) in Eq.(3.12), we get

H α,β;ψ ⊕, ,a+ (f (x) h(x)) = ∞ =0 ∞ m=0 g -1 (C m ) D m ⊕ f (x) RL D α-m;ψ ⊕, ,a+ h(x) ∞ k=0 g -1 (C k ) I ε+k;ψ ⊕, ,a+ h(a) g -1 (d k ) g -1 (ψ(x) -ψ(a)) ε+k with C k = -ε k , C m = -ε m - α + ε and d k = (h • f ) [k] (a) Γ(β(1 + α)) which complete the proof. 2 
Finally, for the second type, we introduce the corresponding Leibniz rule by the following theorem. 

H α,β;ψ ⊕, ,a+ (f (x) h(x)) = ∞ m=0 g -1 (C m ) D m ⊕ f (x) H α-m;ψ ⊕, ,a+ h(x) ⊕ ∞ k=0 g -1 (C k ) I ε-k;ψ ⊕, ,a+ h(a) f (k) (x) -f (k) (a) g -1 (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) ,
where

C m = α m , C k = -ε k with ε = (1 -β)(1 -α).
Proof: Remembering the relation [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] H D α,β;ψ a+ (f h)(x)

= ∞ m=0 α m f (m) (x) H D α-m,β;ψ a+ h(x) + ∞ k=0 -ε k I ε-k;ψ a+ h(a)(f (k) (x) -f (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) with ε = (1 -β)(1 -α) we can write H α,β;ψ ⊕, ,a+ (f (x) h(x)) = g -1 H D α,β;ψ a+ g(f (x) h(x)) = g -1 H D α,β;ψ a+ g(f (x))g(h(x))) = ∞ m=0 α m (g • f ) (m) (x) H D α-m,β;ψ a+ (g • h)(x) + ∞ k=0 -ε k I ε-k;ψ a+ (g • h)(a) (g • f ) (k) (x) -(g • f ) (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) = g -1 ∞ m=0 C m (g • f ) (m) (x) H D α-m,β;ψ a+ (g • h)(x) + ∞ k=0 C k I ε-k;ψ a+ (g • h)(a) (g • f ) (k) (x) -(g • f ) (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) .
Introducing the unitary operator in the previous expression, we obtain

H α,β;ψ ⊕, ,a+ (f (x) h(x)) = g -1 ∞ m=0 g g -1 C m (g • f ) (m) (x) H D α-m,β;ψ a+ (g • h)(x) + ∞ k=0 g g -1 C k I ε-k;ψ a+ (g • h)(a) (g • f ) (k) (x) -(g • f ) (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) = g -1 ∞ m=0 g g -1 C m (g • f ) (m) (x) H D α-m,β;ψ a+ (g • h)(x) ⊕ g -1 ∞ k=0 g g -1 C k I ε-k;ψ a+ (g • h)(a) (g • f ) (k) (x) -(g • f ) (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) = ∞ m=0     g -1 C m (g • f ) (m) (x) H D α-m,β;ψ a+ (g • h)(x) (A)     ⊕ ∞ k=0      g -1 C k I ε-k;ψ a+ (g • h)(a) (g • f ) (k) (x) -(g • f ) (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) (B)      . (3.16)
In separate, we will obtain expressions for A and B, highlighted above. Then, we can write for A:

A = g -1 C m (g • f ) (m) (x) H D α-m,β;ψ a+ (g • h)(x) = g -1 g g -1 (C m ) g g -1 (g • f ) (m) (x) g g -1 H D α-m,β;ψ a+ (g • h)(x) = g -1 g g -1 (C m ) g D m ⊕ f (x) g H α-m,β;ψ ⊕, ,a+ h(x) = g -1 (C m ) D m ⊕ f (x) H α-m,β;ψ ⊕, ,a+ h(x). (3.17)
On the other hand, for B we have

B = g -1 C k I ε-k;ψ a+ (g • h)(a) (g • f ) (k) (x) -(g • f ) (k) (a) (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) = g -1 g g -1 (C k ) g I ε-k;ψ ⊕, ,a+ h(a) (g • f ) (k) (x) -(g • f ) (k) (a) g g -1 ψ(x) -ψ(a) ε-α Γ(β(1 -α)) = g -1 (C k ) I ε-k;ψ ⊕, ,a+ h(a) (f (k) (x) -f (k) (a)) g -1 (ψ(x) -ψ(a)) ε-α Γ(β(1 -α)) .
(3.18) Substituting Eq.(3.17) and Eq.(3.18) in Eq.(3.16) we have

H α,β;ψ ⊕, ,a+ (f (x) h(x)) = ∞ m=0 g -1 (C k ) D m ⊕ f (x) H α-m;ψ ⊕, ,a+ h(x) ⊕ ∞ k=0 g -1 (C k ) I ε+k;ψ ⊕, ,a+ h(a) f (k) (x) -f (k) (a) g -1 (ψ(x) -ψ(a)) ε-α Γ(β(1 -α))
where

C m = α m , C k = -ε k with ε = (1 -β)(1 -α) which conclude the proof. 2 
We will now present two particular cases of the second type, that is, for the ψ-Riemann-Liouville and ψ-Caputo fractional derivatives. 

H D α;ψ ⊕, ,a+ (f (x) h(x)) = ∞ m=0 g -1 (C m ) D m ⊕ f (x) H D α-m;ψ ⊕, ,a+ h(x) ⊕ h(a) (f (x) -f (a)) g -1 (ψ(x) -ψ(a)) -α Γ(1 -α)
where C m = α m .

Proof: The proof follows from Theorem 3.26. 2 

RL D α;ψ ⊕, ,a+ (f (x) h(x)) = ∞ m=0 g -1 (C m ) D m ⊕ f (x) RL D α-m;ψ ⊕, ,a+ h(x)
where C m = 1 -α m .

Proof: The proof follows from Theorem 3.26. 2

g-Laplace transform

Theorem 3.29 Let g be the same as in Definition 2.7 and 0 < n -1 ≤ α < n and s ∈ R.

Then, the g-Laplace transform of the Hilfer pseudo-fractional derivative of order α is given by

L ⊕ H D α,β ⊕, ,a+ f (x) = g -1 (s α ) L ⊕ (f (x)) n-1 k=0 g -1 s n(1-β)+αβ-k-1 I (1-β)(n-α)-k ⊕, ,a+ f (0) . (3.19) 
Proof: Remembering that the Laplace transform of the Hilfer fractional derivative is given in [START_REF] Hilfer | Applications of fractional calculus in physics[END_REF], by

L H D α,β 0 + f (x) = s α L [f (x)] -s β(α-1 I (1-β)(1-α) 0 + f (0 + )
where

I (1-β)(1-α) 0 + f (0 + ) = lim t→0 + I (1-β)(1-α) 0 + f (x)
we can write

L H D α,β 0 + f (x) = s α L [f (x)] - n-1 k=0 s n(1-β)+αβ-k-1 I (1-β)(n-α)-k 0 + f (0) .
Then, we start with the relation

L ⊕ H D α,β ⊕, ,a+ f (x) = g -1 L g H D α,β ⊕, ,0 + f (x) = g -1 L g g -1 H D α,β ⊕, ,0 + g(f (x)) = g -1 L H D α,β ⊕, ,0 + g(f (x)) .
Using the relation for the Laplace transform of the Hilfer fractional derivative, the last expression can be written as

L ⊕ H D α,β ⊕, ,a+ f (x) = g -1 s α L [g(f (x))] - n-1 k=0 s n(1-β)+αβ-k-1 I (1-β)(n-α)-k 0 + (g • f ) (0 + ) = g -1 g g -1 (s α L [g(f (x))]) -g g -1 n-1 k=0 g g -1 s n(1-β)+αβ-k-1 I (1-β)(n-α)-k 0 + (g • f ) (0 + ) = g -1 g g -1 (s α L [g(f (x))]) -g g -1 s n(1-β)+αβ-1 C 0 ⊕ • • • ⊕ g -1 s n(1-β)+αβ-n C n-1 = g -1 (s α L [g(f (x))]) n-1 k=0 g -1 s n(1-β)+αβ-k-1 C k = g -1 (s α ) g -1 (L [g(f (x))]) n-1 k=0 g -1 s n(1-β)+αβ-k-1 C k I (1-β)(n-α)-k 0 + (g • f )(0) = g -1 (s α ) L [f (x)] n-1 k=0 g -1 s n(1-β)+αβ-k-1 I (1-β)(n-α)-k ⊕, ;0+ f (0)
which completes the proof.

2

Theorem 3.30 Let g be the same as in Definition 2.7 and 0 < n -1 ≤ α < n and s ∈ R.

Then, taking β = 0 in Theorem 3.29 we obtain the g-Laplace transform of the Riemann-Liouville pseudo-fractional derivative of order α, that is

L ⊕ RL D α ⊕, ,a+ f (x) = g -1 (s α ) L ⊕ (f (x))
n-1 k=0 g -1 s n-k-1 I n-α-k ⊕, ,a+ f (0)

Proof: The proof follows from Theorem 3.29. 2 

g-Integration by parts

Concluding remarks

We conclude this paper with some considerations regarding the results obtained. A priory, we introduced a new ψ-Hilfer pseudo-fractional operator and we investigated some fundamental properties, in particular, we discussed some particular cases of the investigated properties, as well as, the pseudo-fractional operator itself. In this sense, we present the versions of the pseudo-Leibniz-type rules I and II and the pseudo-Leibniz rule itself, and some particular cases were discussed. Finally, a formula for Hilfer fractional pseudofractional derivative is presented and g-integration by parts of the ψ-Hilfer pseudo-fractional operator. The results investigated here are, in fact, new and, consequently, will allow the investigation of other possible results, in particular, involving differential equations via this pseudo-fractional operator and through inequalities of pseudo-fractional integrals.

  [a, b] ⊂ [-∞, ∞]. The full order on [a, b] will be denote by . Definition 2.1 [33, 34, 35, 37, 38] A binary operator ⊕ on [a, b] is pseudo-addition if it is commutative, non-decreasing, with respect to , continuous; associative, and with a zero (neutral) element denoted by 0. Let [a, b] + = {x|, x ∈ [a, b], 0 ≤ x}. Definition 2.2 [33, 34, 35, 37, 38] A binary operation on [a, b] is pseudo-multiplication if it is commutative, positively non-decreasing, i.e., x ≤ y implies x z ≤ y z for all z ∈ [a, b] + , associative and with a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b], 1 x = x.

  Let [a, b] (0 < a < b < ∞) be a finite interval on the half-axis R + and C[a, b], AC n [a, b], C n [a, b] be the spaces of continuous functions, n-times absolutely continuous, n-times continuously differentiable functions on [a, b], respectively.The space of the continuous function f on [a, b] with the norm is defined by[START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF] 

  The weighted space C n γ;ψ [a, b] of function f on (a, b] is defined by[START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF] 

Definition 2 . 9 [ 33 ]

 2933 Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕ and the pseudo-multiplication be an increasing function. Also let h be an increasing and positive function on (a, b], having a continuous derivative h on (a, b). The left-sided and the rightsided Riemann-Liouville pseudo-fractional integrals of order α > 0 of a measurable function f : [a, b] → [a, b] with respect to function h on [a, b] are defined by:

Definition 2 .

 2 10 [33] (ψ-Riemann-Liouville pseudo-fractional derivative) Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕ and the pseudo-multiplication be an increasing function. Also let ψ be an increasing and positive function on (a, b], having a continuous derivative ψ on (a, b) and ψ (t) = 0. The left-sided Riemann-Liouville pseudo-fractional derivative of order n -1 < α < n of a measurable function f : [a, b] → [a, b] with respect to function ψ on [a, b] is defined by:

Definition 2 .

 2 11 [33] (ψ-Caputo pseudo-fractional derivative) Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕ and the pseudo-multiplication be an increasing function. Also let ψ be an increasing and positive function on (a, b], having a continuous derivative ψ on (a, b) and ψ (t) = 0. The left-sided Caputo pseudo-fractional derivative of order

Definition 3 . 1

 31 Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕ and the pseudomultiplication be an increasing function. Also let ψ ∈ C n ([a, b], R) a function such that ψ be an increasing and positive function on (a, b], having a continuous derivative ψ on (a, b) and ψ (x) = 0, for all x ∈ [a, b]. The left-sided ψ-Hilfer pseudo-fractional derivative of order n -1 < α < n and 0 ≤ β ≤ 1, of a measurable function f : [a, b] → [a, b] is defined by:

Theorem 3 . 3

 33 Let α > 0 and f 1 , f 2 be two measurable functions on [a, b]. Then, for any λ ∈ [a, b], we have

2 Theorem 3 . 15

 2315 a) = 0 with k = 1, . . . , n. Proof: Follows directly from Theorem 3.11. Let α ≥ 0, 0 ≤ β ≤ 1 and f ∈ C 1 ([a, b]). Then, we have the following relation H α,β;ψ ⊕, ,a+ I α;ψ ⊕, ,a+ f (x) = f (x) • Proof: Using the relation (see Theorem 2.4) H D α,β;ψ a+

which conclude the proof. 2 Theorem 3 . 16

 2316 Let α, δ ≥ 0, 0 ≤ β ≤ 1 and f ∈ C 1 ([a, b]). Then, we have H α,β;ψ ⊕, ,a+ I δ;ψ ⊕, ,a+ f (x) = I γ-δ;ψ ⊕, ,a+ f (x) (3.8)

Corollary 3 . 17 2 Theorem 3 . 18

 3172318 Let α, δ ≥ 0, and f ∈ C 1 ([a, b]). Taking β = 0 in Eq.(3.8) we get RL D α,β;ψ ⊕, ,a+ I δ;ψ ⊕, ,a+ f (x) = I α-δ;ψ ⊕, ,a+ f (x) • Proof: Follows directly from Theorem 3.16. Let g be as in Definition 2.7, f ∈ C n ([a, b]), 0 < n -1 < α < n, and 0 ≤ β ≤ 1. Then we have

Corollary 3 . 22

 322 Let f, h ∈ C n ([a, b]), α > 0, 0 ≤ β ≤ 1,and taking ψ(x) = x in Eq.(3.11) 

Theorem 3 . 25

 325 Let 0 < α < 1 and I = [a, b] with -∞ ≤ a < b ≤ +∞. Consider ψ ∈ C(I, R) an increasing function such that ψ(x) = 0, ∀x ∈ I and f, h ∈ C(I, R), such that f (x) h (x) ∈ [a, b]. Then, we have

Theorem 3 . 26

 326 Let 0 < α < 1 and I = [a, b] with -∞ ≤ a < b ≤ +∞. Consider ψ ∈ C(I, R) an increasing function such that ψ(x) = 0, ∀x ∈ I and f, h ∈ C(I, R), such that f (x) h (x) ∈ [a, b]. Then, we have

Theorem 3 . 27

 327 Let 0 < α < 1 and I = [a, b] with -∞ ≤ a < b ≤ +∞. Consider ψ ∈ C(I, R) an increasing function such that ψ(x) = 0, ∀x ∈ I and f, h ∈ C(I, R), such that f (x) h (x) ∈ [a, b]. Taking β = 1 in Theorem 3.26 we obtain the Leibniz type rule for the ψ-Caputo fractional derivative, given by

Theorem 3 . 28

 328 Let 0 < α < 1 and I = [a, b] with -∞ ≤ a < b ≤ +∞. Consider ψ ∈ C(I, R) an increasing function such that ψ(x) = 0, ∀x ∈ I and f, h ∈ C(I, R), such that f (x) h (x) ∈ [a, b]. Taking β = 0 in Theorem 3.26 we obtain the Leibniz type rule for the ψ-Riemann-Liouville fractional derivative, given by

Theorem 3 . 31 [ 20 ]( 3 . 21 ). 2 Theorem 3 .Theorem 3 . 34 (Theorem 3 . 36 (

 3312032123334336 If 0 < α ≤ 1 and 0 ≤ β ≤ 1. Then b a H D α,β;ψ a+ f (t) g (t) dt = b a f (t) ψ (t) H D α,β;ψ b-g (t) ψ (t) dt (3.20) for any f ∈ AC 1 and g ∈ C 1 satisfying boundary conditions f (a) = f (b) = 0.By means of Theorem 3.31, we discuss the g-integration by parts for ψ-Hilfer pseudofractional operator. Theorem 3.32 Let f be measurable function on [a, b] and g be a generator of pseudo-addition ⊕ on interval [-∞, ∞]. If If 0 < α ≤ 1 and 0 ≤ β ≤ 1 then we get ⊕ [a,b] H α,β;ψ ⊕, ,a+ f (x) h (x) dx = ⊕ [a,b] g -1 ψ (x) f (x) H α,β;ψ ⊕, ,b-h (x) g -1 ψ (x) dx.Proof: In fact, we have for the definitions of ψ-Hilfer fractional pseudo-operator H α,β;ψ ⊕, ,a+ , g -1 and Theorem 3.31, yields⊕ [a,b] H α,β;ψ ⊕, ,a+ f (x) h (x) dx = g -1 b a g H α,β;ψ ⊕, ,a+ f (x) h (x) dx = g -1 b a g g -1 g H α,β;ψ ⊕, ,a+ f (x) g (h (x)) dx = g -1 b a g H α,β;ψ ⊕, ,a+ f (x) g (h (x)) dx = g -1 b a g g -1 H D α,β;ψ a+ g (f (x)) g (h (x)) dx = g -1 b a H D α,β;ψ a+ g (f (x)) g (h (x)) dx = g -1 b a g (f (x)) ψ (x) H D α,β;ψ b-g (h (x)) ψ (x) dx = g -1 b a g (f (x)) ψ (x) H D α,β;ψ b-g g -1 g (h (x)) ψ (x) dx = g -1 b a g (f (x)) ψ (x) g g -1 H D α,β;ψ b-g g -1 g (h (x)) ψ (x) dx = g -1 b a g g -1 (g (f (x))) g -1 ψ (x) g -1 g H α,β;ψ ⊕, ,a+ g -1 g (h (x)) ψ (x) dx = g -1 b a g f (x) g -1 ψ (x) H α,β;ψ ⊕, ,a+ g -1 g (h (x)) ψ (x) dx = g -1 b a g f (x) g -1 ψ (x) H α,β;ψ ⊕, ,a+ h (x) g -1 ψ (x) dx = ⊕ [a,b] g -1 ψ (x) f (x) H α,β;ψ ⊕, ,b-h (x) g -1 ψ (x)dx.33 (ψ-Caputo pseudo-fractional operator) Let f be measurable function on [a, b] and g be a generator of pseudo-addition ⊕ on interval [-∞, ∞]. If If 0 < α ≤ 1 and taking limit β → 1 in Eq.(3.21) then, we have ⊕ [a,b]C D α;ψ ⊕, ,a+ f (x) h (x) dx = ⊕ [a,b] g -1 ψ (x) f (x) C D α;ψ ⊕, ,b-h (x) g -1 ψ (x) dx.Caputo pseudo-fractional operator) Let f be measurable function on [a, b] and g be a generator of pseudo-addition ⊕ on interval [-∞, ∞]. If If 0 < α ≤ 1 and taking limit β → 1 and ψ (x) = x in Eq.(3.21), then we get ⊕ [a,b]C D α ⊕, ,a+ f (x) h (x) dx = ⊕ [a,b] f (x) C D α ⊕, ,b-h (x) dx.Theorem 3.35 (ψ-Riemann-Liouville pseudo-fractional operator) Let f be measurable function on [a, b] and g be a generator of pseudo-addition ⊕ on interval [-∞, ∞]. If If 0 < α ≤ 1 and taking limit β → 0 in Eq.(3.21),then we have ⊕ [a,b]D α;ψ ⊕, ,a+ f (x) h (x) dx = ⊕ [a,b] g -1 ψ (x) f (x) D α;ψ ⊕, ,b-h (x) g -1 ψ (x) dx.Caputo pseudo-fractional operator) Let f be measurable function on [a, b] and g be a generator of pseudo-addition ⊕ on interval [-∞, ∞]. If If 0 < α ≤ 1 and taking limit β → 0 and ψ (x) = x in Eq.(3.21), then we have ⊕ x) D⊕, , b-α h (x)] dx. Theorem 3.37 (Hadamard pseudo-fractional operator) Let f be measurable function on [a, b] and g be a generator of pseudo-addition ⊕ on interval [-∞, ∞]. If If 0 < α ≤ 1 and taking limit β → 0 and ψ (x) = x (x > 0) in Eq.(3.21), then we have ⊕ [a,b] HD D α ⊕, ,a+ f (x) HD D α ⊕, ,b-h (x) g -1 1 x dx.
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