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In this paper, we will investigate the existence of global epositive mild solutions to the initial value problem with nonlinear impulsive fractional evolution differential equation involving the theory of sectorial operators. To obtain the result, we used Kuratowski's non-compactness measure theory, the Cauchy criterion and the Gronwall inequality.

1. Introduction. In this paper, we consider the initial value problem (IVP) with nonlinear impulsive fractional evolution differential equation, given by ( 1)

   C D α 0+ ξ(t) + Aξ(t) = f t, ξ(t) , t ∈ J ∞ , t = t k , ∆ξ| t=t k = I k (ξ(t k )), k ∈ N, ξ(0) = x 0
where C D α 0+ (•) is Caputo fractional derivative of order 0 < α < 1, ξ : J → Ω, A : D(A) ⊂ Ω → Ω is a sectorial operator of type (M, θ, α, ρ) in Ω, f ∈ C(J ∞ × Ω, Ω), ∆ξ| t=t k = ξ(t + k ) -ξ(t - k ) being that ξ(t + k ) and ξ(t - k ) represent the limits on the right and left of ξ(t) in t = t k , respectively, I k : Ω → Ω (k ∈ N) are impulsive functions and x 0 ∈ Ω. Furthermore, be 0 < t

1 < t 2 < • • • < t m • • • , t m → ∞ with m → ∞, a partition in J ∞ , define J ∞ = J ∞ \{t 1 , t 2 , .
. . , t m , . . .}, J 0 = [0, t 1 ] e J k = (t k , t k+1 ] (k ∈ N). Further consider, λ 1 the small positive real eigenvalue of the linear operator A and be e 1 ∈ D(A) the corresponding positive eigenvector.

In 2012, Shu and Wang [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF], considered the fractional semi-linear integrodifferential equation in Banach space X, given by ( 2)

       D α 0+ u (t) = Au (t) + f (t, u (t)) + t 0 q (t -s) g (s, u (s)) ds u (0) + m (u) = u 0 ∈ X u (0) + n (u) = u 1 ∈ X
where D α 0+ (•) is Caputo fractional derivative with 1 < α < 2, A is a sectorial operator of type (M, θ, α, µ), defined from the domains D(A) ⊂ X in to X, the nonlinear map f, g continuous functions defined from [0, T ]×X → X, q : [0, T ] → X is an integrable function on [0, T ] and the nonlocal condition m : X → X, n : X → X are two continuous functions.

As is well known, a mild solution to system Eq.( 2) satisfies the following equation

u (t) = S α (t) (u 0 -m (u)) + K α (t) (u 1 -n (u)) + t 0 T α (t -s) f (s, u (s)) + s 0 q (s -τ ) g (τ, u (τ )) dτ ds.
In this sense, the authors investigated the existence and uniqueness of a mild solution for Eq.( 2), using the Krasnoselskii theorem, Arzelà-Ascoli theorem and the fixed point theorem.

The importance of fractional differential equations in the theoretical and application scope is notable. The number of works published in the area of fractional differential equations, comes in an important and interesting growth in the scientific community [START_REF] Benedetti | Evolution fractional differential problems with impulses and nonlocal conditions[END_REF][START_REF] Chen | Fractional non-autonomous evolution equation with nonlocal conditions[END_REF][START_REF] Eidelman | Cauchy problem for fractional diffusion equations[END_REF][START_REF] Fečkan | On the new concept of solutions and existence results for impulsive fractional evolution equations[END_REF][START_REF] Hernández | Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators[END_REF][START_REF] Vanterler Da | Mild and classical solutions for fractional evolution differential equation[END_REF][START_REF] Horani | Fractional Cauchy problems and applications[END_REF][START_REF] Vanterler Da | A note on the mild solutions of Hilfer impulsive fractional differential equations[END_REF][START_REF] Vanterler Da | Existence of mild solutions to Hilfer fractional evolution equations in Banach space[END_REF][START_REF] Vanterler Da | Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability[END_REF]. The fact that numerous researchers justify that working with fractional operators (derivative and integral) it is possible to obtain better results when comparing with classical operators, when it comes to applications [START_REF] Babaeia | Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations[END_REF][START_REF] Hernández | On recent developments in the theory of abstract differential equations with fractional derivatives[END_REF][START_REF] Machado | Fractional-order kinematic analysis of biomechanical inspired manipulators[END_REF][START_REF] Manuel | On the properties of some operators under the perspective of fractional system theory[END_REF][START_REF] Vanterler Da | Fractional calculus and the ESR test[END_REF][START_REF] Vanterler Da | Validation of a fractional model for erythrocyte sedimentation rate[END_REF][START_REF] Sundaravadivoo | Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects[END_REF][START_REF] Wang | The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Wang | Relaxed controls for nonlinear fractional impulsive evolution equations[END_REF]. From a theoretical point of view, there is still a vast path to be explored, since the theory is being constructed in innumerable directions of the theory of fractional differential equations, especially involving sectorial and almost sectorial operators [START_REF] Lizama | Mild solutions for abstract fractional differential equations[END_REF][START_REF] Vanterler Da | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Vanterler Da | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF][START_REF] Vanterler Da | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Subashini | Existence results of Hilfer integro-differential equations with fractional order[END_REF][START_REF] Wang | On recent developments in the theory of boundary value problems for impulsive fractional differential equations[END_REF][START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Wang | Abstract fractional Cauchy problems with almost sectorial operators[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF]. In addition, numerous questions still need to be answered, which will enrich the theory in general. Here, we highlight two relevant works in the theory of fractional differential equations involving sectorial and almost sectorial operators [START_REF] Chen | Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators[END_REF][START_REF] Ding | Analytical solutions to fractional evolution equations with almost sectorial operators[END_REF][START_REF] Wang | Abstract fractional Cauchy problems with almost sectorial operators[END_REF][START_REF] Yang | Positive solutions for the initial value problem of fractional evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF][START_REF] Zhang | Existence and controllability of fractional evolution equation with sectorial operator and impulse[END_REF].

In 2013, Yang and Liang [START_REF] Yang | Positive solutions for the initial value problem of fractional evolution equations[END_REF], using fixed point theorems and the analytical semigroup theory, investigated the presence of positive light solutions to the Cauchy problem of Caputo's fractional evolution equations in Banach spaces. Examples were discussed, in order to validate the results obtained. In 2013 Wang et al. [START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF], performed out a study on optimal controls and listing of nonlinear fractional impulsive evolution equations. In this work, they dedicated to investigating the existence of mild continuous solutions by parts and applications of fractional impulsive parabolic control. In 2015, Wang et al. [START_REF] Wang | The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order 1 < α < 2[END_REF], investigated the existence of positive mild solutions of fractional evolution equations with nonlocal conditions of order 1 < α < 2, using Schauder's fixed point theorem and the Krasnoselskii fixed point theorem. In the same year, Ding and Ahmad [START_REF] Ding | Analytical solutions to fractional evolution equations with almost sectorial operators[END_REF], dedicated themselves to investigating the existence and uniqueness of mild solutions for equations of fractional evolution with almost sectorial operators. As highlighted above, numerous studies have been published, some important and relevant to the theory.

Motivated by the works above, and in order to contribute with new results for the theory of fractional differential equations, in particular, of impulsive evolution, in this present paper, we have as main objective, to investigate the existence of epositive mild solutions for a initial value problem with nonlinear impulsive fractional evolution differential equation involving the theory of sectorial operators. In order to obtain the result, we will make use of Kuratowski's non-compactness measurement theory and Gronwall's inequality.

The article is organized as follows: in section 2, we present the definitions of the ψ-Riemann-Liouville fractional integral and ψ-Hilfer fractional derivative, and two particular cases, which were used to formulate the problem investigated. We present the Gronwall theorem (inequality) and its respective lemma. On the other hand, we discuss a brief part of the theory of sectorial operators and some fundamental results. Finally, we approach the concept of Kuratowski's noncompactness measure, with some essential results in obtaining the main result of this paper. In section 3, we investigate the main result of this paper, that is, the existence of e-positive mild solutions for Eq.( 1), through Kuratowski's noncompactness measure, using Cauchy's criterion and Gronwall's inequality.

Preliminaries.

In this section, we will present some fundamental concepts and results that will be of paramount importance in obtaining our main result.

Consider the Banach space (Ω, • ), and the interval J = [a, b] ⊂ R with n ∈ N. The continuous functions space, given by [START_REF] Vanterler Da | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Vanterler Da | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF] 

C(J, Ω) := {f : J → Ω; f : continuous} , with norm f C := sup t∈J |f (t)|.
On the other hand, we have the space of the continuously differentiable functions given by,

C n (J, Ω) := f : J → Ω; f (n) ∈ C(J, Ω) , endowed with the norm f C n := sup t∈J |f (n) (t)|.
Note that the spaces defined above are Banach spaces. Now consider, the interval J ∞ = [0, ∞). The space of the continuous functions by parts given by [START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF] P C(J ∞ , Ω) := ξ : J ∞ → Ω; ξ(t) be continuous int = t k , continuous left in t = t k and there is the limit on the right , ξ(t + k ), ∀k ∈ N whose norm is given by ξ

P C = max k∈N sup t∈J k ξ(t)
, is a Banach space.

Definition 2.1. [START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF] Let Ω be a real Banach space. A non-empty, closed and convex subset Ω + ⊂ Ω is considered a cone if it meets the following conditions:

(i) If x ∈ Ω + and λ 0, then λx ∈ Ω + . (ii) If x ∈ Ω + and -x ∈ Ω + , then x = 0.

Every cone Ω + ⊂ Ω induces an order in Ω given by: x y ⇔ y -x ∈ Ω + .

Let J = [a, b] ⊂ R be a interval with -∞ a < b ∞ and let ψ(x) a monotonous increasing and positive function at (a, b), with derivative ψ (x) be continuous at (a, b). The left ψ-Riemann-Liouville fractional integrals with respect to the ψ function of a f function in J of order α > 0 is defined, by [START_REF] Vanterler Da | On the Ψ-fractional integral and applications[END_REF][START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF] (3)

I α;ψ a+ f (x) = 1 Γ(α) x a ψ (t) ψ(x) -ψ(t) α-1 f (t)dt.
Analogously, the right ψ-Riemann-Liouville fractional integral is defined.

In particular, for ψ(x) = x, we have the Riemann-Liouville fractional integral to the left, given by

I α a + f (x) = 1 Γ(α) x a (x -t) α-1 f (t)dt, x > a. ( 4 
)
On the other hand, let n ∈ N and

J = [a, b] ⊂ R an interval such that -∞ a < b ∞.
Further consider, the functions f, ψ ∈ C n (J; R) so that ψ be increasing and ψ (x) = 0, for every x ∈ J. The ψ-Hilfer fractional derivative to the left of f , of order n -1 < α < n and type 0 ≤ β ≤ 1 is defined by [START_REF] Vanterler Da | On the Ψ-fractional integral and applications[END_REF][START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF] 

H D α,β;ψ a+ f (x) = I β(n-α);ψ a+ 1 ψ (x) d dx n I (1-β)(n-α);ψ a+ f (x).
Analogously, to ψ-Hilfer fractional derivative right is defined.

In particular, for ψ(x) = x and taking the limit β → 1, we have the Caputo fractional derivative of, given by (5

) C D α a+ f (x) = I n-α a+ d dx n f (x) = 1 Γ(n -α) x a (x -t) n-α-1 f (n) (t)dt.
For details on how to obtain other particular cases for derivatives and fractional integrals, we suggest the work [START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF].

In the following, we will present two fundamental results, Theorem 2.2 and Lemma 2.3. However, your demonstration will not be presented here, but can be obtained from article [START_REF] Vanterler Da | A Gronwall inequality and the Cauchytype problem by means of ψ-Hilfer operator[END_REF]. Theorem 2.2. [START_REF] Vanterler Da | A Gronwall inequality and the Cauchytype problem by means of ψ-Hilfer operator[END_REF] Let ξ and ν be two integrable functions and g continuous, with domain J = [a, b]. Let ψ ∈ C 1 (J) be an increasing function such that ψ (t) = 0, ∀t ∈ J. Suppose that (1) ξ and ν are non-negative;

(2) g be non-negative and non-decreasing.

If

ξ(t) ν(t) + g(t) t a ψ (τ ) ψ(t) -ψ(τ ) α-1 u(τ )dτ, then ξ(t) ν(t) + t a ∞ k=1 [g(t)Γ(α)] k Γ(αk) ψ (τ ) ψ(t) -ψ(τ ) αk-1 v(τ )dτ.
Lemma 2.3. [START_REF] Vanterler Da | A Gronwall inequality and the Cauchytype problem by means of ψ-Hilfer operator[END_REF] Under the hypothesis of the Theorem 2.2, let v be a non-

decreasing function in J = [a, b]. So, yields ξ(t) ν(t)E α g(t)Γ(α) ψ(t) -ψ(τ ) α , where E α (t) = ∞ k=0 t k Γ(αk + 1)
, with (α) > 0, is Mittag-Leffler the function.

In order to investigate our results, we will work with the initial value problem Eq.( 1), using Caputo fractional derivative, defined by Eq.( 5).

Definition 2.4. [38] Let a, α ∈ R. A function f : [a, ∞) → Ω belongs to space C a,α if exist a real number p > α and a function g ∈ C([a, ∞); Ω) such that f (t) = t p g(t). Also, we say f ∈ C m a,α for some positive integer m if f (m) ∈ C a,α .
Let A a densely operator in Ω satisfying the following conditions [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF]:

(1) For some 0

< θ < π 2 , ρ + S θ = {ρ + λ α ; λ ∈ C, | arg(-λ α )| < θ}; (2) There exists a constant M such that (λI -A) -1 M |λ -ρ| , λ / ∈ ρ + S θ . Definition 2.5. [30, 37] A closed linear operator A : D ⊂ Ω → Ω is considered a sectorial operator of the type (M, θ, α, ρ) if exist 0 < θ < π 2 , M > 0 and ρ ∈ R such that the α-resolvent of the A exists outside the sector, ρ + S θ = {ρ + λ α ; λ ∈ C, | arg(-λ α )| < θ} and (λ α I -A) -1 M |λ α -ρ| , λ α / ∈ ρ + S θ .
If A is a sectorial operator of type (M, θ, α, ρ) then it is not difficult to see that A is the infinitesimal generator of a α-resolvent family T α (t) t≥0 in a Banach space, where T α (t) = 1 2πi C e λt R(λ α , A)dλ. Analogously, we will make the estimates for S α (t) t≥0 and K α (t) t≥0 , as we will present below. The existence of soft solutions and the qualitative theory of evolution fractional equations are researched through operator-solutions [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF],

S α (t) = 1 2πi C e λt λ α-1 R(λ α , A)dλ and K α (t) = 1 2πi C e λt λ α-2 R(λ α , A)dλ,
C being an appropriate path and A a sectorial operator of the type (M, θ, α, ρ).

We will present and highlight the following two Lemma 2.6 and Lemma 2.7

Lemma 2.6. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ), then, for S α (t) and t > 0, the following estimates are valid:

(i) if ρ 0 and φ ∈ max{θ, (1 -α)π}, π 2 (2 -α) , then S α (t) K 1 Me [K1(1+ρt α )] 1 α K 1 α 0 -1 π(sin θ) 1+ 1 α (1 + ρt α ) + Γ(α)M π(1 + ρt α )| cos π-φ α | α sin θ sin φ , ( 6 
) being K 0 = K 0 (θ, φ) = 1+ sin φ sin(φ -θ)
and

K 1 = K 1 (θ, φ) = max 1, sin θ sin(φ -θ) . (ii) If ρ < 0 and φ ∈ max{ π 2 , (1 -α)π}, π 2 (2 -α) , then S α (t) M[(1 + sin φ) 1 α -1] π| cos φ| 1+ 1 α + Γ(α)M π| cos φ|| cos π-φ α | α 1 1 + |ρ|t α .
Lemma 2.7. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ) and t > 0, then the following estimates are valid:

(i) If ρ 0 and φ ∈ max{θ, (1 -α)π}, π 2 (2 -α) , then T α (t) M K 1 α 0 -1 π sin θ (1 + ρt α ) 1 α t α-1 e [K1(1+ρt α )] 1 α + Mt α-1 π(1 + ρt α )| cos π-φ α | α sin θ sin φ and K α (t) M K 1 α 0 -1 K 1 π(sin θ) α+2 α (1 + ρt α ) α-1 α t α-1 e [K1(1+ρt α )] 1 α + MαΓ(α) π(1 + ρt α )| cos π-φ α | α sin θ sin φ being K 0 = K 0 (θ, φ) = 1+ sin φ sin(φ -θ)
and

K 1 = K 1 (θ, φ) = max 1, sin θ sin(φ -θ) . (ii) If ρ < 0 and φ ∈ max{ π 2 , (1 -α)π}, π 2 (2 -α) , then T α (t)   eM (1 + sin φ) 1 α -1 π| cos φ| + M π| cos φ|| cos π-φ α |   1 1 + |ρ|t α ,
and

K α (t)   eM (1 + sin φ) 1 α -1 t π| cos φ| α+2 α + αΓ(α)M π| cos φ|| cos π-φ α |   1 1 + |ρ|t α .
Lemma 2.8. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ), then

S α (t) = 1 2πi C e λt λ α-1 R(λ α , A)dλ = E α,1 (At α ) = ∞ k=0 (At α ) k Γ(1 + αk) , (7) 
T α (t) = 1 2πi C e λt R(λ α , A)dλ = t α-1 E α,α (At α ) = t α-1 ∞ k=0 (At α ) k Γ(α + αk) , (8) 
K α (t) = 1 2πi C e λt λ α-2 R(λ α , A)dλ = tE α,2 (At α ) = t ∞ k=0 (At α ) k Γ(2 + αk) . ( 9 
)
where C is an appropriate path belonging to Σ θ,ω . Lemma 2.9. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ), then

d dt (K α (t)) = S α (t) and d dt (S α (t)) = AT α (t).
Lemma 2.10. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ) and α ∈ (0, 1), then

C D α 0+ [S α (t)x 0 ] = A[S α (t)x 0 ]
and

C D α 0+ t 0 T α (t -θ)f (θ)dθ = A t 0 T α (t -θ)f (θ)dθ + f (t),
where Γ (•) is an appropriate path belonging to Σ θ,ω , S α (•) and T α (•), are given by Eq.( 7) and Eq.( 8), respectively.

Corollary 1. [30, 37] C D α t k t t k T α (t -θ)f (θ)dθ = A t t k T α (t -θ)f (θ)dθ + f (t),
where t k > 0.

As we are working with fractional differential equations with impulses, it is important to note the following result that we present below. Lemma 2.11. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] 

d dt t 0 T α (t -θ)f (θ)dθ = d dt t t k T α (t -θ)f (θ)dθ , where t k > 0.
Lemma 2.12. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shu | A new study on the mild solution for impulsive fractional evolution equations[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ) and

0 < α < 1, then C D α 0+ S α (t -t k ) I k = AS α (t -t k ) I k and C D α 0+ t t k T α (t -θ) f (θ) dθ = A t t k T α (t -θ) f (θ) dθ .
Lemma 2.13. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shu | A new study on the mild solution for impulsive fractional evolution equations[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] Let A a sectorial operator of type (M, θ, α, ρ). If 0 < α < 1 and t > t k , then

C D α t k S α (t -t k ) I k = AS α (t -t k ) I k .
The following observation has the same objective as Lemma 2.11, that is, to present the difference between an integral calculated in the determined interval in relation to the partitioned interval from the choice of k ∈ N.

Remark 1. C D α 0+ t 0 T α (t -θ)f (θ)dθ = C D α 0+ t t k T α (t -θ)f (θ)dθ , where t k > 0.
In order to obtain the existence of an e-positive mild solution from Eq.( 1), we present the concept of Kuratowski's non-compactness measure and some important consequences of it. Definition 2.14. [START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF] Let B be a limited set in a Banach space Ω and δ(B) the diameter of a setB. Kuratowski's noncompactness measure µ(•) is given by ( 10)

µ(B) = inf ε > 0; B = m i=1 B i and δ(B i ) ε, ∀i ∈ [1 • • • m] .
The Kuratowski's noncompactness measure guarantees that every limited set B admits finite coverage, that is, B can be covered by a finite number of sets with a diameter not exceeding ε > 0.

Consider the interval J = [0, b] and the Banach space C(J, Ω), then for all B ⊂ C(J, Ω) and t ∈ J, define

B(t) := {u(t); u ∈ B} ⊂ Ω.
If B is limited in C(J, Ω), then B(t) will be limited in Ω and µ B(t) µ(B). Lemma 2.17. [START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF] Let J = [a, b], W ⊂ C(J; Ω) limited and equicontinuous, so co(W ) ⊂ C(J; Ω) is also limited and equicontinuous.

Lemma 2.18. [START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF] Let {ξ n } ∞ n=1 a sequence of Bochner-integrable functions, J = [a, b] in Ω, with ξ n (t) m(t), for almost every t ∈ J and all n 1, where m ∈ L(J; R + ), then the function

Φ(t) = µ({ξ n (t)} ∞ n=1 ) ∈ L(J; R + ) which satisfies µ t a ξ n (s)ds; n ∈ N 2 t a Φ(s)ds.
Lemma 2.19. [START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF] Let W limited, so for each ε > 0, there is a sequence

{u n } ∞ n=1 ⊂ W , such that µ(W ) µ {ξ n } ∞ n=1 + ε.
3. Existence of e-positive mild solutions. In this section, we will investigate the existence of e-positive mild solutions for an initial value problem with impulsive evolution fractional differential equation of nonlinear in the Banach Ω space, through the Gronwall inequality, Cauchy's criterion and Kuratowski's noncompactness measure [START_REF] Vanterler Da | A Gronwall inequality and the Cauchytype problem by means of ψ-Hilfer operator[END_REF][START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF].

Consider the following initial value problem with linear impulsive evolution fractional equation in Ω, given by ( 11)

   C D α 0+ ξ(t) + Aξ(t) = ϕ(t), t ∈ J ∞ , t = t k , ∆ξ| t=t k = I k (ξ(t k )), k ∈ N, ξ(0) = x 0 where C D α 0+ (•) is a Caputo fractional derivative of order 0 < α < 1, u : J → Ω, A : D(A) ⊂ Ω → Ω is a sectorial operator of type (M, θ, α, ρ) in Ω, ∆ξ| t=t k = ξ(t + k ) -ξ(t - k ) being ξ(t + k
) and ξ(t - k ) represent the limits on the right and left of ξ(t) em t = t k , respectively,

I k : Ω → Ω (k ∈ N) are impulsive functions, x 0 ∈ D(A) and ϕ ∈ C(J, Ω). Also, be 0 < t 1 < t 2 < • • • < t m • • • , with t m → ∞ when m → ∞, a partition in J ∞ , define J ∞ = J ∞ \{t 1 , t 2 , . . . , t m , . . .}, J 0 = [0, t 1 ] and J k = (t k , t k+1 ] (k ∈ N).
Definition 3.1. [START_REF] Shu | The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2[END_REF][START_REF] Shu | A new study on the mild solution for impulsive fractional evolution equations[END_REF][START_REF] Shi | A study on the mild solution of impulsive fractional evolution equations[END_REF] An abstract function u ∈ P C(J ∞ , Ω) is a mild solution for Eq.( 11) if it satisfies the following integral equation:

x (t) = S α (t) x 0 + t 0 T α (t -s) ϕ(s)ds + S α (t) k i=1 S -1 α (t i ) I i (x i ) .
with S α (•) and T α (•) given by Eq.( 7) and Eq.( 8), respectively. Besides that, S -1 α (•) denotes the inverse of the fractional solution operator S α (•) at t = t i , i = 1, 2, 3, ..., m.

In addition, if there is e 0 and σ > 0, so that u(t) σe for t ∈ J ∞ , then we have an e-positive mild solution for Eq. [START_REF] Huynh | Fractional Landweber method for an initial inverse problem for time-fractional wave equations[END_REF].

Let (Ω, • ) be a Banach space, A : D(A) ⊂ Ω → Ω a closed linear operator and -A the infinitesimal generator of α-resolvent families {S α (t); t 0} and {T α (t); t 0}. So, there are M > 0 and δ > 0 such that [START_REF] Vanterler Da | Mild and classical solutions for fractional evolution differential equation[END_REF][START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Wang | Abstract fractional Cauchy problems with almost sectorial operators[END_REF] S α (t) C M e δt and T α (t) C M e δt , t 0.

Through the results presented in the preliminary section, we are ready to attack the main result of this article, that is, the Theorem 3.2. Theorem 3.2. Let (Ω, • ) be a Banach space with partial order" ", whose positive cone Ω + is normal, and -A is the generator of positive α-resolvent families S α (t); t 0 and T α (t); t . For a constant σ > 0 and t ∈ J ∞ , let x 0 σe 1 and f (t, σe 1 ) λ 1 σe 1 . If the non-linearity of f ∈ C(J ∞ × Ω + , Ω) satisfy the following conditions:

(H 1 ): For t ∈ J ∞ and x ∈ Ω + , there are functions a, b ∈ C(J ∞ , Ω + ), such that f (t, x) a(t) x + b(t). (H 2 ): For all R > 0 and T > 0, exist C = C(R, T ) > 0, such that f (t, x 2 ) -f (t, x 1 ) -C(x 2 -x 1 ),
for all t ∈ [0, T ] and for 0 x 1 x 2 , with x 1 R and x 2 R (H 3 ): For all R > 0 and T > 0, exist L = L(R, T ) > 0, such that any growing monotonous sequence

D = {x n } ⊂ Ω + ∩ B(0, R) satisfies µ f (t, D) Lµ(D), ∀ t ∈ [0, T ].
Then Eq.( 1) have an e-positive mild solution in J ∞ .

Proof. The proof of this theorem will be divided into two parts.

(I) In this first part, we will prove the global existence of e-positive mild solutions in the interval

J 0 = [0, t 1 ].
In this case, Eq.( 1) is equivalent to Eq.( 12) with the evolution fractional equation without impulse in Ω, ( 12)

C D α 0+ ξ(t) + Aξ(t) = f t, ξ(t) , t ∈ J 0 , ξ(0) = x 0 .
(1) The local existence of soft solutions for the Eq.( 12) in J 0 = [0, t 1 ]. For all t 0 0 and x 0 ∈ Ω, we will prove that Eq.( 13) below, with fractional evolution equation ( 13)

C D α t0+ ξ(t) + Aξ(t) = f t, ξ(t) , t > t 0 , ξ(t 0 ) = x 0 ,
have an e-positive mild solution in I = [t 0 , t 0 +h t0 ], where h t0 ∈ (0, 1) which will be presented according to Eq.( 16).

Consider the interval I * = [0, t 0 + 1], α ∈ (0, 1), we introduced the following constants:

M t0 = sup (t -t 0 ) 1-α S α (t) ; t ∈ I * , M t0 = sup (t -t 0 ) 1-α T α (t) ; t ∈ I * ,
and

R t0 = (M t0 + M t0 )( x 0 + 1) + σe 1 .
Let a and b be functions in the condition (H 1 ), such that

a t0 = max t∈I * a(t) e b t0 = max t∈I * b(t).
On the other hand, the functions in the condition (H 2 ) and (H 3 ), given

C = C(R t0 , t 0 + 1) and L = L(R t0 , t 0 + 1).
Adding the portion Cξ(t) on both sides of the Eq.( 13), we can rewrite it as [START_REF] Manuel | On the properties of some operators under the perspective of fractional system theory[END_REF] C D α t0+ ξ(t) + (A + CI)ξ(t) = f t, ξ(t) + Cξ(t), t > t 0 , ξ(t 0 ) = x 0 .

Consider the operators S α (t) = e -Ct S α (t) and T α (t) = e -Ct T α (t) belongs, the positive α-resolvent families, {S α (t); t 0} and {T α (t); t 0}, both generated by -(A + CI), respectively. Consider the set Q application to [START_REF] Vanterler Da | Fractional calculus and the ESR test[END_REF] (Qu

)(t) = S α (t -t 0 )x 0 + t t0 T α (t -s) f s, ξ(s) + Cξ(s) ds, t ∈ I.
From continuity of f and the condition (H 2 ), we have that function Q : C(I, Ω + ) → C(I, Ω) is continuous and increasing. In addition, a fixed point of Q is also a solution of Eq.( 14) in I.

Define the set Ω:

Λ := u ∈ C(I, Ω + ); ξ(t) C R t0 , ξ(t) σe 1 , t ∈ I Then, Λ ⊂ C(I, Ω + ) is nonempty, bounded, convex and closed set. Let (16) h α t0 min 1, ( x 0 + 1)α (a t0 + C)R t0 + b t0 ,
with 0 < α < 1, then by Eq.( 15) and by condition (H 1 ), for each u ∈ Λ and

t ∈ I, yields (Qξ)(t) = S α (t -t 0 )x 0 + t t0 T α (t -s) f s, ξ(s) + Cξ(s) ds (17) S α (t -t 0 ) x 0 + t t0 T α (t -s) f s, ξ(s) + Cξ(s) ds M t0 x 0 + M t0 t t0 (t -s) α-1 a(s) ξ(s) + b(s) + C ξ(s) ds M t0 x 0 + M t0 t t0 (a t0 + C)R t0 + b t0 (t -s) α-1 ds M t0 x 0 + M t0 (a t0 + C)R t0 + b t0 (t -t 0 ) α α .
From Eq.( 17), yields

(Qξ)(t) M t0 x 0 + M t0 [(a t0 + C)R t0 + b t0 ] α ( x 0 + 1)α [(a t0 + C)R t0 + b t0 ] [M t0 + M t0 ] ( x 0 + 1) R t0 . Let v 0 (t) = σe 1 , ∀t ∈ I, so v 0 ∈ Λ. Like this (18) ϕ(t) C D α 0+ ν 0 (t) + (A + CI)ν 0 (t) = λ 1 σe 1 + Cσe 1 f (t, σe 1 ) + Cσe 1 .
As S α (t) and T α (t) are positive α-resolvent operators and Q is a increasing operator, then, from Eq.( 15), yields

σe 1 = ν 0 (t) = S α (t -t 0 )ν 0 (t 0 ) + t t0 T α (t -s)ϕ(s)ds S α (t -t 0 )x 0 + t t0 T α (t -s) f (s, σe 1 ) + Cσe 1 ds = (Q(σe 1 ))(t). Note that σe 1 u(t) ∀t ∈ I, then σe 1 (Q(σe 1 ))(t) (Qξ)(t), t ∈ I.
Thus, Q : Λ → Λ is continuous and increasing. The set Q(Λ) is a family of equicontinuous functions inC(I, Ω + ). Let ν 0 = σe 1 ∈ Ω and define a sequence on the interval {ν n } by ( 19)

ν n = Qν n-1 , n = 1, 2, • • • .
As Q is an increasing operator and

ν 1 = Qν 0 ν 0 , yields (20) 
ν 0 ν 1 ν 2 • • • ν n • • • Therefore, {ν n } = {Qν n-1 } ⊂ Q(Λ) ⊂ Λ is bounded and equicontinuous. Now, let B = {ν n ; n ∈ N} and B 0 = {ν n-1 ; n ∈ N}, then B 0 = B∪{ν 0 }. By Lemma 2.16 (2), yields µ(B(t)) = µ(Q(B 0 )(t)) for t ∈ I.
Substituting Q(B 0 )(t), define by Eq.( 15), yields ( 21)

µ(B(t)) = µ S α (t -t 0 )x 0 + t t0 T α (t -s) f (s, ν n-1 (s)) + Cν n-1 (s) ds; n ∈ N .
By Lemma 2.16 (3), we have µ S α (t -t 0 )x 0 = 0, so Eq.( 21), yields

µ(B(t)) = µ t t0 T α (t -s) f (s, ν n-1 (s)) + Cν n-1 (s) ds; n ∈ N .
Using the Lemma 2.18, yields

µ(B(t)) 2 t t0 µ T α (t -s) f (s, ν n-1 (s)) + Cν n-1 (s) ; n ∈ N ds 2 t t0 T α (t -s) µ f (s, ν n-1 (s)) + Cν n-1 (s); n ∈ N ds 2M t0 t t0 (t -s) α-1 µ f (s, B 0 (s)) + µ CB 0 (s) ds.
By condition (H 3 ), for all t ∈ I, yields

µ B(t) 2M t0 t t0 (t -s) α-1 [L + C]µ B 0 (s) ds 2M t0 (L + C) t t0 (t -s) α-1 µ B 0 (s) ds.
By Gronwall inequality (see Lemma 2.3 with

ψ(t) = t), yields µ B(t) 0 • E α 2M(L + C)Γ(α)(t -s) α = 0.
So, µ(B(t)) ≡ 0 for t ∈ I. Using the Lemma 2.15, we have µ(B) = max t∈I µ(B(t)) = 0, that is, {ν n } is relatively compact in C(I, Ω + ). Therefore, there exist a subsequence {ν n k } ⊂ {ν n } such that ν n k → ξ * ∈ Λ, when k → ∞. Combining this with the sequence in Eq.( 20) and the normality of the cone Ω + , it's easy to see that ν n → ξ * , with n → ∞. Taking the limit n → ∞ on both sides of Eq. [START_REF] Vanterler Da | Existence of mild solutions to Hilfer fractional evolution equations in Banach space[END_REF], and the continuity of the operator Q, we have ξ * = Qξ * a fixed point. Therefore, ξ * ∈ Λ ⊂ C(I, Ω + ) is an e-positive mild solution of the Eq.( 14).

(2) The global existence of mild solutions for the Eq.( 12) on J 0 = [0, t 1 ].

In the item 1, we prove that Eq.( 12) admit an e-positive mild solution ξ 0 ∈ C([0, h 0 ], Ω + ), given by [START_REF] Vanterler Da | A Gronwall inequality and the Cauchytype problem by means of ψ-Hilfer operator[END_REF] ξ

0 (t) = S α (t)x 0 + t 0 T α (t -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds.
By extension theorem [START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF] , ξ 0 can be extended to a saturated solution of the Eq.( 12), which is also denoted by ξ 0 ∈ C([0, T ), Ω + ), whose interval of existence is [0, T ).

Next, we will show that T > t 1 . Denote

a = max t∈[0,T +1] a(t), b = max t∈[0,T +1] b(t),
and

M 1 = sup t∈[0,T +1] (t -T ) 1-α S α (t) and M 1 = sup t∈[0,T +1] (t -T ) 1-α T α (t) .
Suppose T t 1 and taking a norm of the solution u 0 (see Eq.( 22)), yields

ξ 0 (t) S α (t)x 0 + t 0 T α (t -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds S α (t) x 0 + t 0 (t -s) α-1 (t -s) 1-α T α (t -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds M 1 x 0 + M 1 t 0 (t -s) α-1 f (s, ξ 0 (s)) + Cξ 0 (s) ds M 1 x 0 + M 1 t 0 (t -s) α-1 b + (a + C) ξ 0 (s) ds M 1 x 0 + M 1 b T α α + M 1 (a + C) t 0 (t -s) α-1 ξ 0 (s) ds.
By Grönwall inequality (see Lemma 2.3 with ψ(t) = t), yields

ξ 0 (t) M 1 x 0 + M 1 b T α α E α M 1 (a + C)Γ(α)t M 1 x 0 + M 1 b T α α E α M 1 (a + C)Γ(α)T M 2 . (23) 
Now, we define the following constant [START_REF] Vanterler Da | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF] N 0 := sup f (t, x) ; t ∈ [0, T + 1] e x M 2 .

As S α (t) is a continuous standard operator for t > 0, for any 0 < τ 1 < τ 2 < T , consider the following functions:

ξ 0 (τ 2 ) = S α (τ 2 )x 0 + τ2 0 T α (τ 2 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds (25) 
and

ξ 0 (τ 1 ) = S α (τ 1 )x 0 + τ1 0 T α (τ 1 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds. ( 26 
)
Subtracting Eq.( 26) from Eq.( 25), and readjusting the integrals with respect to the integration limits, yields

ξ 0 (τ 2 ) -ξ 0 (τ 1 ) = S α (τ 2 )x 0 -S α (τ 1 )x 0 + τ1 0 T α (τ 2 -s) -T α (τ 1 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds + τ2 τ1 T α (τ 2 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds.
Let's draw the norm for this difference to determine a higher quota. Then, making the following variable change s → τ 1 -s, using the Eq.( 24), Eq.( 23) and the constant M 1 , yields

ξ 0 (τ 2 ) -ξ 0 (τ 1 ) S α (τ 2 )x 0 -S α (τ 1 )x 0 + τ1 0 T α (τ 2 -s) -T α (τ 1 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds + τ2 τ1 T α (τ 2 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds S α (τ 2 )x 0 -S α (τ 1 )x 0 + τ1 0 T α (τ 2 -τ 1 + s) -T α (s) f (s, ξ 0 (s)) + Cξ 0 (s) ds + τ2 τ1 (τ 2 -s) α-1 (τ 2 -s) 1-α T α (τ 2 -s) f (s, ξ 0 (s)) + Cξ 0 (s) ds S α (τ 2 )x 0 -S α (τ 1 )x 0 + (N 0 + CM 2 ) τ1 0 T α (τ 2 -τ 1 + s) -T α (s) ds + M 1 (N 0 + CM 2 ) τ2 τ1 (τ 2 -s) α-1 ds S α (τ 2 )x 0 -S α (τ 1 )x 0 + M 1 (N 0 + CM 2 ) (τ 2 -τ 1 ) α α + (N 0 + CM 2 ) τ1 0 T α (τ 2 -τ 1 + s) -T α (s) ds. When τ 1 → T -and τ 2 → T -, yields S * α (τ 2 )x 0 -S * α (τ 1 )x 0 → 0, (τ 2 -τ 1 ) α α → 0 and T 0 T * α (τ 2 -τ 1 + s) -T * α (s) ds → 0.
So, u 0 (τ 2 ) -u 0 (τ 1 ) ≡ 0. By Cauchy criteria, there exist x ∈ Ω + such that lim t→T - u 0 (t) = x. Now, consider the initial value problem with fractional evolution equation and without impulse in Ω, given by ( 27)

c D α 0+ ξ(t) + (A + CI)ξ(t) = f (t, u(t)) + Cξ(t), t > T, ξ(T ) = x.
From item 1, we have that Eq.( 27), has an e-positive mild solution v in

[T, T + h T ]. Let u(t) = ξ 0 (t), t ∈ [0, T ), ν(t), t ∈ [T, T + h T ].
It is easy to see that ξ(t), is an e-positive mild solution of Eq.( 12) in [0, T + h T ]. As ξ(t) is an extension of the ξ 0 (t), that is, a contradiction. Thus, T > t 1 , i.e., a global e-positive mild solution ξ 0 (t) of the Eq.( 12) exist in J 0 , which is also an e-positive mild solution from Eq.(1) in J 0 . Thus, we finalized the first part of the theorem.

(II) In this second part, we will prove the existence of global e-positive mild solutions in the interval J ∞ .

Initially, we will prove that Eq.( 1) has a global e-positive mild solution in the interval J 1 = (t 1 , t 2 ]. As in Eq.( 27), here we also consider the initial value problem with evolution fractional equation without impulse in J 1 , given by ( 28)

C D α,β 0+ ξ(t) + (A + CI)ξ(t) = f (t, ξ(t)) + Cξ(t), t ∈ J 1 , ξ(t + 1 ) = ξ 0 (t 1 ) + I 1 (ξ 0 (t 1 )).
Clearly, a global e-positive mild solution of Eq.( 28) in J 1 , is also e-positive mild solution of Eq.( 1) in J 1 . From the proof of item I, for t ∈ J 0 = [0, t 1 ], yields [START_REF] Sundaravadivoo | Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects[END_REF] ξ

0 (t) = S α (t) x 0 + t 0 T α (t -s) [f (s, ξ (s)) + Cξ (s)] ds.
By a similar argument to proof I, the Eq.( 28) has an e-positive mild solution

ξ 1 ∈ C (J 1 , Ω + ) (J 1 = (t 1 , t 2 ]), given by (30) ξ 1 (t) = S α (t) θ 0 + t 0 T α (t -s) [f (s, ξ (s)) + Cξ (s)] ds.
For the impulsive condition and Eq.( 29) and Eq.( 30), yields θ 0 = x 0 + S -1 α (t 1 ) I 1 (ξ 0 (t 1 )) .

So, for t ∈ J 1 = (t 1 , t 2 ], yields [START_REF] Shu | A new study on the mild solution for impulsive fractional evolution equations[END_REF] ξ 1 (t) = S α (t) x 0 + t 0 T α (t -s) [f (s, ξ (s)) + Cξ (s)] ds + S α (t) S -1 α (t 1 ) I 1 (ξ 0 (t 1 )) . Now, consider J 2 = (t 2 , t 3 ] and ξ 2 ∈ C (J 2 , Ω + ) , yields For the impulsive condition and from Eq.( 31), Eq.( 32), yields θ 1 = x 0 + S -1 α (t 1 ) I 1 (ξ 0 (t 1 )) + S -1 α (t 2 ) I 2 (ξ 1 (t 2 )) .

So, for t ∈ J 2 = (t 2 , t 3 ], yields ξ 2 (t) = S α (t) x 0 + t 0 T α (t -s) [f (s, ξ (s)) + Cξ (s)] ds + S α (t) S -1 α (t 1 ) I 1 (ξ 0 (t 1 )) + S α (t) S -1 α (t 2 ) I 2 (ξ 1 (t 2 )) .

Suppose that, for t ∈ J k-1 (k = 4, 5, . . .), the Eq.( 1) has an e-positive mild solution ξ k-1 ∈ C(J k-1 , Ω + ) (k = 4, 5, . . .). So, for t ∈ J k (k = 3, 4, . . .), the IVP with fractional evolution differential equations without impulsive in Ω, given by ( 33 S -1 α (t j ) I j (ξ j-1 (t j )) . (34) Now, we define a u function as [START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF] ξ S -1 α (t j ) I j (ξ (t j )) .

(t) =          ξ 0 (t), t ∈ J 0 , ξ 1 (t), t ∈ J 1 , • • • ξ k (t), t ∈ J k (k =
For the property of global existence of ξ i (t) in J i , i ∈ N, a solution ξ(t) define by Eq.( 35) is a global e-positive mild solution of Eq.(1) in J ∞ .

When Ω is a Banach space that is ordered and complete in a weak and sequential way, we exclude the condition (H 3 ) of noncompactness measure from Theorem 3.2 and obtain the following result: Corollary 2. Let Ω a Banach space ordered and complete in a weak and sequential way, whose positive cone Ω + be normal, -A be an infinitesimal generator of the positive α-resolvent family {S α (t); t 0} and {T α (t); t 0}. Let x 0 σe 1 , f (t, σe 1 ) λ 1 σe 1 for σ > 0 and t ∈ J ∞ . If a non-linearity of the f ∈ C(J ∞ ×Ω + , Ω) satisfy assumptions (H 1 ) and (H 2 ), then the Eq.( 1) has an e-positive mild solution in J ∞ .

Lemma 2 .Lemma 2 . 0 W

 220 [START_REF] Vanterler Da | Fractional calculus and the ESR test[END_REF].[START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF] Let B ⊂ C(J, Ω) limited and equicontinuous. So µ(B(t)) is continuous in J, 16.[START_REF] Wang | Abstract Cauchy problem for fractional differential equations[END_REF][START_REF] Yang | Positive solutions for the initial value problems of impulsive evolution equations[END_REF][START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF] Let S and T be limited sets in a Banach space Ω, either S the closing of S, co(S) the convex hull of S and a a real number. So the measure of noncompactness has the following properties: (1) S ⊂ T ⇒ µ(S) µ(T ); (2) µ({x} ∪ S) = µ(S), ∀x ∈ Ω, ∅ = S ⊂ Ω (3) µ(S) = 0 ⇐⇒ S for compact; (4) µ(S + T ) µ(S) + µ(T ), where S + T = {x + y; x ∈ S, y ∈ T }; (5) µ(S ∪ T ) = max{µ(S), µ(T )}; (6) µ(aS) = |a| µ(S); (7) µ(S) = µ( S) = µ(co(S)); For all W ⊂ C(J; Ω), define t (s)ds = t 0 u(s)ds; u ∈ W , t ∈ J.

(32) ξ 2 0 T

 20 (t) = S α (t) θ 1 + t α (t -s) [f (s, ξ (s)) + Cξ (s)] ds.

2 , 3 , 0 T

 230 . . .) .Of course ξ(t) ∈ P C(J ∞ , Ω + ) is an e-positive mild solution of Eq.(1), satisfyingξ(t) = S α (t)x 0 + t α (t -s) f (s, ξ(s)) + Cξ(s) ds + S α (t) k j=1

  CI)ξ(t) = f (t, ξ(t)) + Cξ(t), t ∈ J k , k = 3, 4, . . . ξ(t + k ) = ξ k-1 (t k ) + I k (ξ k-1 (t k ))has an e-positive mild solution ξ k ∈ C(J k , Ω + ), given byξ k (t) = S α (t) θ k-1 + t 0 T α (t -s) [f (s, ξ (s)) + Cξ (s)] ds = S α (t) x 0 + S -1 α (t 1 ) I 1 (ξ 0 (t 1 )) + S -1 α (t 2 ) I 2 (ξ 1 (t 2 )) + • • • + + S -1 α (t k ) I k (ξ k-1 (t k ))

	t	
	+	T
	0	

) C D α 0+ ξ(t) + (A + α (t -s) [f (s, ξ (s)) + Cξ (s)] ds = S α (t) x 0 + t 0 T α (t -s) [f (s, ξ (s)) + Cξ (s)] ds + S α (t) k j=1
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