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Ice accumulation in aircraft is modelled using the Level-Set (LS) method. Current two-dimensional and threedimensional icing models are limited regarding complex re-meshing due to ice accretion. The Level-Set method allows fully multi-step simulation of ice accretion. The solid boundary is treated implicitly or explicitly. The solid body can be defined via a characteristic level set function in the former case, and as a layer or list of points in the later. Consequently, the boundary conditions for the airflow are applied through a penalization term, or by direct forcing. Correspondingly, the droplet transport is computed using an Eulerian approach in an Immersed Boundary Method (IBM) coupled with Level-Set (IBM-LS) framework, in which the droplet fields impinge on an explicit layer of cells defined by the LS function using a discrete IBM formulation of the interface.

INTRODUCTION

Aircraft icing can reduce flight safety in extreme weather conditions. According to the US National Transport Safety Board, this is one of the main causes of flight accidents ( [START_REF] Reehorst | National transportation safety board aircraft accident investigation supported[END_REF]). Icing occurs by the impingement of suspended water droplets on aircraft structures. As a result, the designed aerodynamic surfaces are deformed by the introduction of new solid attached to the surface. The design of adequate de-icing mechanisms requires a thorough knowledge of the icing phenomenon itself. An experimental icing study cannot exceed the scope of a handful of simple cases due to its complexity and cost. On the other hand, the use of numerical modelling makes it possible to simulate all possible configurations while studying a spectrum of different parameters.

Simple ice accretion codes treat the icing process as a single layer in a quasi-steady state. A single icing step is assumed to be divided in four intermediate consecutive steps: 1. Dry airflow topology is evaluated. 2. Suspended water droplets are transported impacting against the surface. 3. A liquid film is generated on the surface; the thermodynamic balance of the film is calculated in order to evaluate ice accretion rate. [START_REF] Beaugendre | Development of a second generation in-flight ic-Figure 8: Deformed Geometry (advected φ) obtained on the second fine mesh using 1,2 and 5 ice shots. ing simulation code[END_REF]. The geometry is finally deformed by the accumulation of ice.

All the parameters evaluated through steps one to three are assumed not to change during the ice accumulation, only the flow parameters and variables of the initial clean geometry are used until the end of the ice accumulation.

The dry airflow simulation is usually achieved using the two-dimensional panel method. Recently, several codes used by the industry are coupled with a Navier-Stokes solver, replacing the traditional panel method as in FENSAP-ICE (McGill University) [START_REF] Beaugendre | Development of a second generation in-flight ic-Figure 8: Deformed Geometry (advected φ) obtained on the second fine mesh using 1,2 and 5 ice shots. ing simulation code[END_REF] or LEWICE3D [START_REF] Bidwell | Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)[END_REF].

The droplet transport can be modelled by either a Lagrangian or an Eulerian approach. In the former, we formulate the droplet dynamics equation derived from Newton's second law [START_REF] Sang | Numerical simulation of icing effect and ice accretion on three-dimensional configurations[END_REF] while in the later we advect a droplet concentration and momentum fields. Following that, the impact rate is calculated geometrically in the Lagrangian formulation or from direct determination in the Eulerian approach [START_REF] Scott | Navier-stokes solution to the flowfield over ice accretion shapes[END_REF]. The Eulerian approach is more advantageous than the traditional Lagrangian approach, mainly due to its simplicity with multi-body and three-dimensional geometries and its direct integration to existing PDE based solvers.

The third step is to evaluate the mass and energy balance of the liquid film accumulated on the surface by the impinging droplets. The simplest method, called the Messinger model, is based on the mass and energy balance [START_REF] Bernard | Equilibrium temperature of an unheated icing surface as a function of air speed[END_REF]. In the Messinger model, the liquid film is computed from the stagnation point and then looping to further downstream cells towards the trailing edge. An improvement of this Method is the Messinger's iterative model [START_REF] Zhu | 3D ice accretion simulation for complex configuration basing on improved messinger model[END_REF], in which it is possible to treat multiple stagnation points and thus three-dimensional geometries. Other recognizable improvements are based on the resolution of ordinary or partial differential equations where the ODE-PDE model the mass and energy conservation. Such method was initially proposed by [START_REF] Myers | Extension to the Messinger model for aircraft icing[END_REF] based on an ODE, and then extended for multi-body geometries by [START_REF] Ozgen | Ice accretion simulation on multi-element aifoils using extended messingermodel[END_REF]. This extension to the Messinger model added the ability to solve a conduction heat transfer equation on the ice and water substrates. Ultimately, [START_REF] Bourgault | Development of a shallow-water icing model in fensapice[END_REF] proposed a PDE method, based on the Messinger model and the shallow water equation, abbreviated as SWIM. Such PDE model integrates perfectly within a Navier-Stokes air solver coupled with an Eulerian droplet model. The main result obtained from this step is the ice accumulation rate, represented as an ice thickness or an icing velocity.

Lastly, having evaluated the ice thickness, the deformed geometry is obtained. Many techniques exist in the literature to obtain the deformed geometry [START_REF] Montreuil | ECLIPPS: 1. threedimensional CFD prediction of the ice accretion[END_REF], [START_REF] Cao | Numerical simulation of three-dimensional ice accretion on an aircraft wing[END_REF], [START_REF] Verdin | Multistep results in icecremo2[END_REF], [START_REF] Hasanzadeh | Wing aerodynamic performance analysis and stall prediction using canice2d-ns icing code[END_REF] such as grid movement techniques, or re-meshing.

An improvement on the single step ice assumption is to model the icing phenomenon as a multi-layer problem, wherein, the ice forms step-by-step, layer-by-layer as a piecewise function of time. At the end of each layer, the flow field properties (steps 1-3) are recalculated. Consequently, the mesh requires to be regenerated at each step. Numerous studies showed that an improvement was achieved when using multi-step icing, notably for glaze ice configurations. However, application are mainly restricted to two dimensional cases, since the automatic grid regeneration is nearly impossible without resulting in low quality grids. Only few three-dimensional cases are mentioned in the literature, and they are not well explained in terms of convergence and mesh quality, and are usually accompanied with poor heat transfer evaluation and poor ice formation calculation.

In this study, we develop an approach to avoid remeshing. Such approach would overcome most of the limitations of re-meshing and most importantly would inspire Quasi-non-Steady ice accretion modelling. The core of such an approach is embedded grid techniques, namely Level-Set (LS) [START_REF] Osher | Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations[END_REF], [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] and Immersed Boundary Method (IBM) [START_REF] Peskin | Flow patterns around heart valves: A numerical[END_REF]. We focused on the use of Level-Set method.

In a Level-Set framework, the solid body is defined implicitly by a characteristic scalar function. The Level-Set was first used in icing to evaluate the ice shedding trajectories by [START_REF] Beaugendre | Computation of ice shedding trajectories using cartesian grids, penalization, and level sets[END_REF]. In this work, the level zero represents the evolving ice/air interface. Also, the inside zone could be used to represent the accreted ice and one can evaluate the heat transfer in this substrate. Likewise, the out-side zone represents the external flow zone. By refining close to the wall, a high quality flow can be obtained. The mesh in question can start from a body-fitted mesh or from any mesh since the grid is embedded and distance normal to the wall is not conditioned. Such embedded-grid method integrates perfectly with the Eulerian formulation of PDEs, overcoming meshing issues. Embedded-grids can be performed using structured grids [START_REF] Angot | A penalization method to take into account obstacles in viscous flows[END_REF][START_REF] Mittal | Immersed boundary methods[END_REF][START_REF] Hu | A conservative interface method for compressible flows[END_REF]. The no slip boundary condition at the wall can be achieved through a penalty term, in which the solid is treated as an impermeable medium in the so called Brinckman-Navier-Stokes equations.

In previous papers [START_REF] Pena | Development of a three-dimensional icing simulation code in the NSMB flow solver[END_REF][START_REF] Laurendeau | A single step ice accretion model using level-set method[END_REF], we developed and validated an icing simulation code in the NSMB flow solver. The Ice solver consisted of four modules: compressible air solver, Eulerian droplet solver, SWIM solver, ALE grid regeneration module. The compressible Navier-Stokes air solver is now implemented with a penalization term to reproduce the no slip boundary condition at the wall. The Eulerian droplet module is integrated with an IBM-LS formulation where the impingement boundary condition is applied to an explicit representation of the solid wall. Currently, we are limited to rime ice configurations, since the third module is still under development. These different modules are integrated within the Level-Set framework, where the zero level represents the advancement of the iced surface. The Level-Set equations are discretised using a fifth order spatial WENO scheme and a third order time Runge-Kutta scheme to ensure consistency. The LS is redistanced after each ice layer by solving a reinitialization equation. The icing velocity evaluated at the interface is propagated throughout the whole domain by solving an additional PDE. The implementation of turbulence wall laws to model the turbulent boundary layer is still under progress. All the modules were developed for multi-block grids parallelised with the MPI environment. Chimera superimposed grids are supported as well since they are used to ensure fine grids close to the wall.

NUMERICAL METHOD AND GOVERNING EQUATIONS

The ice accretion modules are developed in the NSMB Solver (Navier-Stokes Multi-block solver) [START_REF] Jb Vos | Recent Advances in Aerodynamics inside the NSMB (navier-stokes multi-block) Consortium[END_REF][START_REF] Hoarau | Recent Developments of the Navier Stokes Multi Block (NSMB) cfd solver[END_REF]. The NSMB solver uses structured, multi-block, chimera grids, supports grid motion, contains parallel compressible and incompressible NS solvers and is able to treat embedded grid techniques such as IBM and LS.

PENALIZED COMPRESSIBLE FLOW

In the airflow solver module the solid body is defined implicitly through the LS function. In this implicit representation or LS disposition the solid is given by a characteristic function χ s , which is set to a smoothed Heaviside function H. The smoothed Heaviside function in turn uses the signed distance LS function in our model H(-φ). Setting the LS function as a signed distance enhances the numerical accuracy [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF][START_REF] Mulder | Computing interface motion in compressible gas dynamics[END_REF]. A penalty term is added as a source term to the NS equations to respect the no-slip boundary condition at the wall [START_REF] Angot | A penalization method to take into account obstacles in viscous flows[END_REF][START_REF] Abgrall | An immersed boundary method using unstructured anisotropic mesh adaptation combined with levelsets and penalization techniques[END_REF]. This term resembles the continuous Boundary Condition forcing used in IBM. The only difference is that the Heaviside function is constructed from the LS signed distance function. The penalized compressible NS equations take the form seen in Eq. 1

∂ρa ∂t + ∇ ⋅ (ρ a u a ) = 0 ∂ρaua ∂t + ∇ ⋅ (ρ a u a ⊗ u a ) = ∇ ⋅ π + f u ∂ρaea ∂t + ∇ ⋅ ((ρ a e a + p) u a ) = ∇ ⋅ (πu a + q) + f e f u = 1 η χ s (ρ a u a -ρ a u s ) f e = 1 η χ s θ s ρ a ( (T ) -(T s )) + (ρ a u a -ρ a u s ) ⋅ u a . (1) 
The variable ρ represents the air density, u the dry air flow velocity, e the specific total energy, p the pressure, q the heat flux, and π the stress tensor. The new additional terms f u and f e represents the penalty terms, where 1 η is a penalization parameter, and χ s is the characteristic function of the solid. As mentioned earlier, the characteristic function is a smoothed Heaviside function computed from the signed distance LS function, both of which are given in Eq. 2,3

H(φ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 0 φ < - 0.5 1 + φ + sin(πφ ) π φ ≤ 1 φ > (2) 
χ s = H(-φ) (3) 
EULERIAN DROPLET TRANSPORT In the droplet transport module developed in NSMB, we used an Eulerian representation [START_REF] Laurendeau | A single step ice accretion model using level-set method[END_REF]. Wherein, a system of conservation equations of the droplet velocity and volume fraction are solved. The droplets are assumed to have a spherical shape, which flattens under high Reynolds numbers. Furthermore, the size is assumed to have a (LANGMUIR "D") distribution. Readers could refer to [START_REF] Laurendeau | A single step ice accretion model using level-set method[END_REF] where all the other assumptions are justified, or to [START_REF] Scott | Navier-stokes solution to the flowfield over ice accretion shapes[END_REF] who proposed the method. The governing conservation equations are given in Eq. 4

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂αw ∂t + ∇.(α w u w ) = 0 ∂αwuw ∂t + ∇. (α w u w ⊗ u w ) = F D + F BG F D = α w C D Re d 24K (u a -u w ) F BG = α w 1 -ρa ρw 1 F r 2 g (4) 
The variable α w represents the non-dimensionalized water volume fraction, u w non-dimensionalized water droplet velocity field, u a non-dimensionalized air velocity field, ρ w water density, and g gravity vector. The term K = ρdU ∞ 18Lµ is an inertia parameter, L represents the reference length, and d is the droplet median diameter. Re d , the droplets Reynolds number for a spherical particle relative to the air flow phase is defined based on the slip velocity as in Eq. 5.

Re d = ρd u a -u w µ a (5) 
The variable C D is the drag coefficient of the droplets and is given empirically as a function of the droplets shape.

For spherical droplets we use the form suggested by [START_REF] Schiller | A drag coefficient correlation[END_REF].

For super large droplets (SLD), the droplets are assumed to deform into discs. This results in a modification of the drag coefficient. A more elaborate drag coefficient takes the form in equation 6

C d = (C d,sphere + ee (C d,disk -C d,sphere )) × Re d (6)
The variable ee is a weight factor and is given by another empirical equation 7 and is a measure of the deformation of the droplet from a sphere to a disk, C d,sphere the drag coefficient of a sphere, and C d,disk that of a disk.

ee = 1 -(1 + 0.007W e 0.5 ) -6 (7) 
W e is the Weber number which measures the relative importance of the droplet's inertia to its surface tension. It is given by equation 8.

W e = ρ d u a -u w 2 D σ (8) 
The variable σ is the droplets surface tension approximated at 0.0756 N/m for water.

Because of the assumption that all droplets are captured by the surface and the fact that the model treats the icing in quasi-steady state, special treatment is required for the droplets boundary condition. Droplets are assumed to disappear on the solid body in zones where they impact against the solid body. In other words, the solid acts as a Neumann outlet. However, in dry zones where droplets do not impact against the solid body, the solid should act as a Dirichlet BC. The droplet velocity vector is checked at the interface and the appropriate BC is applied locally accordingly. This method applied in [START_REF] Jung | Numerical modeling for eulerian droplet impingement in supercooled large droplet conditions[END_REF] is given by equation 9

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ if u ⋅ n < 0 W et → N euman ∂u ∂n = 0, ∂α ∂n = 0 if u ⋅ n > 0 Dry → Dirichlet u = 0, α = 0 (9) 
In a Level-Set disposition this adaptive boundary condition cannot be applied implicitly, no continuous penalty term can achieve such behavior, at least to our knowledge. An explicit forcing of the boundary condition using a IBM representation of the LS implicit function can easily achieve this adaptive BC. Consequently, we use the first layer of cells adjacent to the interface to directly enforce the required boundary condition.

IBM-LS Technique: Droplet BC Consider Fig. 1. The adaptive BC is imposed on the cells marked with x and are henceforth called immersed boundary IB points. The procedure is summarized in the following points:

(1) First we detect this layer of points outside the interface by detecting the change of sign(φ) with neighbors. An array containing their indexes is saved IBp ind .

(2) Each point is mirrored against the solid surface resulting in an image point (im) further from the interface at a distance ∆ from the IB point along the normal direction. The normal direction is available from the signed-distance LS function n = ∇φ. The distance ∆ is calculated from the cell size to ensure that the image point (im) is close to a fluid cell and outside the IB point.

(3) The coordinates of these image points are calculated via Eq. 10 and are saved in an array → X im .

(4) The distance to the wall at these image points which is the same as the LS function is calculated via Eq. 11 and saved in a third array φ im .

(5) An algorithm searches for the fluid cell closest to the image point. The indexes of the closest point are saved in an array CP ind .

(6) This closest point is used to interpolate the state vector Q to the image point. The gradient of the droplet state vector is calculated at our list of closest points ∇Q cp and is then used to interpolate the state vector Q cp to the image point as given in Eq. 12.

(7) The required BC is imposed by checking the droplet velocity component normal to the wall. Consequently, we impose Q IB = Q ip for the wet zones where u w ⋅n < 0 and Q IB = Q ip * φ ip φ im for the dry zones where u w ⋅ n > 0.

(8) If and only if the Level-Set is moved by advection, resulting in a new interface, the arrays IBp ind , → X im , φ im , and CP ind are re-evaluated.

→ X im = → X W p + ∇φ W p * ∆ ( 10 
)
φ im = φ W p + ∆ (11) 
Q ip = Q cp -∇Q cp ⋅ (∆ ⋅ ∇φ) (12) 
This method was also developed using two image points to better apply the Neumann BC on the wall. Another variation of the method was also developed, where we reconstruct the flux at the wall instead of at the cell center as proposed by [START_REF] Capizzano | A eulerian method for water droplet impingement by means of an immersed boundary technique[END_REF]. However, we do not follow the method depicted in [START_REF] Capizzano | A eulerian method for water droplet impingement by means of an immersed boundary technique[END_REF], where he extrapolates from the image point to the wall without enforcing a zero gradient. We found that the first variation presented here was more stable than the two others. Collection Efficiency The collection efficiency is directly calculated using the formula in Eq. 13.

β = αu.n (13) 
In the IBM-LS configuration this variable can be calculated at either the first layer of cells outside which are accessible through the array W P ind , or at the cells whose Dirac Delta δ(φ) is higher than zero and whose LS function φ is positive.

THERMODYNAMIC MODELLING OF THE LIQUID FILM

The thermodynamic model developed in NSMB is based on the work of [START_REF] Bourgault | Development of a shallow-water icing model in fensapice[END_REF], [START_REF] Beaugendre | FENSAP-ICE's three-dimensional in-flight ice accretion module: ICE3D[END_REF] called the Shallow-Water for Ice Modelling SWIM. The SWIM module is based on conservation equations of mass and energy. The interested reader can refer to [START_REF] Laurendeau | A single step ice accretion model using level-set method[END_REF] where the implementation of the model is fully explained. In an embedded grid framework, we are currently still developing the appropriate variation of the model. Consequently, only dry rime ice configurations are being studied so far, where the impinging mass is assumed to solidify on impact. Thus, resultant mass rate of ice accretion ṁice is evaluated through Eq. 14.

ṁice = ṁimp = LW C ⋅ V ∞ ⋅ β ( 14 
)
The variable LW C represents the liquid water content and V ∞ the free stream or far fields velocity.

LEVEL-SET FUNCTION The Level-Set approach was developed in [START_REF] Laurendeau | A single step ice accretion model using level-set method[END_REF] to track the ice air interface evolution. The ice/air interface is represented implicitly by the zero iso-contour of the Level-Set function φ. The LS function φ is set as a signed distance function [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. A signed distance function is given by: φ( → x ) = d( → x ). It is initialized in the computational domain as follows:

• φ = d, in the outside zone (air)

• φ = -d, in the inside zone (ice,solid)

• Γ = x φ(x, t) = 0, the interface
The variable d is the distance to the interface Γ.

The LS approach replaces the need for an initial solid with body fitted mesh. However, one can still start from an initial solid with a body fitted mesh; in such case, the negative part of the LS function, the inside zone, can be used to define the ice substrate where it is possible to solve a heat transfer equation. The accumulation of ice resulting in deformation of the solid/air interface is achieved by advecting the LS function. Consequently, The Level-Set advection equation given in Eq. 15.

∂φ ∂t + → v ice ∇.φ = 0 (15) 
The variable → v ice represents the LS velocity field. This velocity is equal to the ice accretion velocity on the interface. The velocity at the interface is calculated in Eq. 16.

→ v wall = ṁice ρ ice .∇φ (16) 
This velocity calculated at the interface is then propagated in the normal direction through the whole domain. An important assumption made here is that ice forms normal to the solid. To propagate the icing velocity in the normal direction an additional PDE system is solved as given in Eq. 17

∂w ∂t + sign(φ)( → ∇φ) ⋅ ∇w = 0 (17) 
The variable w represents the propagation of v wall normal to the wall. The steady state solution of Eq. 17 gives the required Level-Set velocity w steady = → v ice . The resulting velocity field is fed to Eq. 15 to advance the geometry by advecting the LS function φ.

When the LS function is advected (after each ice layer), the signed distance feature of the LS function φ is no more guaranteed. While advecting the LS function (during a single ice layer but at iteration steps of Eq. 15), the signed distance feature can get deteriorated based on the grid and the discretization methods used. Reinitializing φ while being advected can restore the values around the interface to signed distance. Advecting a signed distance function is numerically stable and ameliorates conservation. Reinitializing φ at the end of each ice layer is essentially required to calculate the new solid characteristic function χ s from the smoothed Heaviside function H(φ). To recover Φ( → x ) = d( → x ) we solve the reinitialization equation Eq. 18 proposed by [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. This equation can be rewritten in the form in Eq. 19 to allow a conservative finite volume discretization.

∂φ ∂t + ∇φ = 1 (18) 
∂φ ∂t + sign(φ) ∇φ ∇φ ⋅ ∇φ = sign(φ) (19) 
Where the sign(φ) is approximated numerically by the smooth function in Eq.20.

sign(φ) = φ φ 2 + ∇φ 2 ∆x 2 (20) 
It was shown that Eq. 19 does not respect local mass conservation at the interface. In other words, while redistancing φ in the domain the cells in which the zero interface passes do not conserve the sides of the interface. The distance being calculated perfectly all around the interface, it does not guarantee that the interface would not move locally in the cells through which it passes. In ice accretion simulation, the ice mass or icing rate is the most critical variable. An alteration of the local amount of ice recurring each time φ is re-distanced would make the whole approach lose its appeal. Many methods exist in the literature to preserve the interface. We chose to use the method advised by [START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF], initially proposed by [START_REF] Sussman | An efficient interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow[END_REF], and given in Eq. 21

∂φ ∂t + sign(φ 0 ) ∇φ ∇φ ⋅ ∇φ = sign(φ) + λδ(φ 0 ) ∇φ 0 (21) 
The variable λ represents the Correction Factor that enforces local mass conservation and is given in Eq. 22, and δ(φ 0 ) is the smoothed Dirac Delta function given in Eq. 23

λ = - ∫ Ω i,j,k δ(φ 0 )(φ n+1 -φ 0 ) ∆t ∫ Ω i,j,k δ 2 (φ 0 ) ∇φ 0 (22) 
δ(φ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 0 φ < - 0.5 (1 + sin(πφ )) φ ≤ 1 φ > (23) 
Both integrals in Eq.22 are an integration over the cell Ω i,j,k and are evaluated from a 9-point stencil in 2d Eq. 24 or from a 27-point stencil in 3d as given in Eq. 25

Ωi,j f = ∆x 2 24 ⎛ ⎝ 16f i,j + 1 m,n=-1;(m,n)≠(0,0) f i+m,j+n ⎞ ⎠ (24) 
Ω i,j,k f = ∆x 3 78 ⎛ ⎝ 52f i,j,k + 1 m,n,q=-1;(m,n,q)≠(0,0,0) f i+m,j+n,k+q ⎞ ⎠ (25)
Eq. 19 is first solved as a prediction step then Eq. 21 corrects φ. The additional source term impacts the φ only at the interface where δ(φ) > 0. So one can avoid the computational cost of the correction step by calculating the correction term only at points where δ(φ) > 0.

The LS equations [START_REF] Bernard | Equilibrium temperature of an unheated icing surface as a function of air speed[END_REF][START_REF] Montreuil | ECLIPPS: 1. threedimensional CFD prediction of the ice accretion[END_REF][START_REF] Mulder | Computing interface motion in compressible gas dynamics[END_REF] are discretized using a WENO5 spatial scheme and a RK3 temporal scheme. To limit communication time in the MPI environment, only two ghost cells are communicated between neighbouring blocks, and only two ghost cells are interpolated and communicated for chimera blocks. Thus, the WENO5 scheme falls to a TVD scheme with a flux limiter on the block connectivity. This is because the WENO5 stencil needs three neighbouring cells, whereas the TVD scheme used uses only two neighbouring cells.

The final algorithm is shown in Fig. 2. 

CURRENT RESULTS

In this section, icing simulations are performed on twodimensional NACA0012 airfoil. The flow field is solved explicitly. The flow is restricted to laminar, since wall laws for the LS embedded grids are under development. We only present rime ice configurations. Three Cartesian meshes have been generated. The coarse mesh contains 318×288 cells in a single block and the size of cells close to the wall is 0.008, the second mesh 1300 × 1000 with cell size 0.002 and in 64 blocks, and the third mesh a chimera mesh 16800 × 16800 with cell size 0.0006 and in 128 blocks.

LEVEL-SET EQUATIONS The signed distance function is first initialized to -1 inside and +1 outside. The distance is then manually initialized in a small band around the interface. Without this manual initialization, the interface is highly deformed. The manual initialization compares the distance between a cell and all the points used to generate the NACA0012 profile. Using this well initialized φ we solve the reinitialization equation 21. If we use the equation 19 without the correction term the interface gets deteriorated as seen in figure 3. The optimized result obtained with equation 21 is seen in figure 4 Reinitialization of the LS function φ is carried out after each icing layer. The time step is a function of the cell sizes since the temporal scheme is a RK3 explicit scheme. Since the advecting velocity is the gradient of φ which has a magnitude of 
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 1 Figure 1: Schematics of IBM-LS framework. ∎: flow domain, x: IB cells layer, ○: solid domain.
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 2 Figure 2: IBM-LS multi-layer ice accretion algorithm diagram.
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 3 Figure 3: Re-distancing the well initialized φ without local conservation.
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 4 Figure 4: Re-distancing the well initialized φ with conservation
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 5 Figure 5: The x component of v ice propagated normal to the wall for the coarsest grid.
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 6 Figure 6: The z component of v ice propagated normal to the wall for the second multi-block grid and the resulting φ.
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 7 Figure 7: Deformed Geometry (advected φ) obtained on the coarse mesh using 1,2,5 and 10 ice shots.