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New bounds for the solution and derivatives of the Stein equation for

the generalized inverse Gaussian and Kummer distributions

Essomanda KONZOU∗, Angelo Efoévi KOUDOU†, Kossi E. GNEYOU ‡

May 4, 2020

Abstract

For Lipschitz test functions we propose a new bound of the solution of the Stein equation related to the

generalized inverse Gaussian (resp. the Kummer) distribution. This bound is derived using the general approach

established in [4] for distributions satisfying a certain differential equation, and thus is optimal for Lipschitz test

functions. The main contribution of this paper is to establish an explicit expression of the bound as a function of

the parameters of the distribution in terms of the modified Bessel function of the third kind (resp. the confluent

hypergeometric function of the second kind). Under a restriction on the parameters we also obtain an optimal

bound for the first derivative of the solution. A recurrence formula is established using the iterative technique

developed in [4, 5] in order to bound derivatives of any order, for test functions smooth enough.

Keywords: Generalized Inverse Gaussian distribution, Kummer distribution, Stein characterization, Stein equa-

tion.

1 Introduction

This paper is a contribution to the literature related to Stein’s method and also to that addressing properties of

the generalized inverse Gaussian and Kummer distributions.

The generalized inverse Gaussian distribution with parameters p ∈ R, a > 0, b > 0, which will be denoted

GIG(p, a, b) throughout the paper, has density

gp,a,b(x) =
(a/b)

p/2

2Kp(
√
ab)

xp−1e−
1
2 (ax+b/x), x > 0 (1.1)

where Kp is the modified Bessel function of the third kind. As readily seen from the expression of the normalizing

constant in (1.1), if W ∼ GIG(p, a, b) then

E(W ) =

√
b

a

Kp+1(
√
ab)

Kp(
√
ab)

, E(W 2) =
b

a

Kp+2(
√
ab)

Kp(
√
ab)

. (1.2)

For a > 0, b ∈ R, c > 0, the Kummer distribution K(a, b, c) with parameters a, b, c has density

ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa−1(1 + x)−a−be−cx, x > 0
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where ψ is the confluent hypergeometric function of the second kind. If Z ∼ K(a, b, c), then

E(Z) = a
ψ(a+ 1, 2− b; c)
ψ(a, 1− b; c)

; E(Z2) = a(a+ 1)
ψ(a+ 2, 3− b; c)
ψ(a, 1− b; c)

. (1.3)

For more on GIG and Kummer distributions see e.g [8, 10, 13].

Stein’s method was introduced in [16], where it was shown that a random variable X has a standard normal

distribution if and only if, for all real-valued absolutely continuous function f such that E |f ′(Z)| < ∞ for Z ∼
N (0, 1),

E [f ′(X)−Xf(X)] = 0.

The related so-called Stein’s equation is

f ′(x)− xf(x) = h(x)− Eh(Z) (1.4)

for a bounded function h and a random variable Z following the standard normal distribution. If fh solves (1.4),

then for any random variable X, we have |E [f ′h(X)−Xfh(X)]| = |Eh(X)− Eh(Z)| . Therefore, in order to control

the distance between the distribution of X and the standard normal distribution, bounding |Eh(X)− Eh(Z)| given

h amounts to bounding |E [f ′h(X)−Xfh(X)]|. More details on Stein’s method can be found in [2, 12, 14, 6].

Stein’s method has been widely applied to other distributions than the standard normal distribution in the

literature (see for example [2] for the Poisson distribution, [12] for the gamma distribution, [1] for the exponential

distribution), and among other tools one generally needs to bound the solution of the Stein’s equation and a few of

its derivatives. Works on this subject are generally directed to applications in probability theory and statistics, but

they can also be considered for the nice mathematics developed in it. For instance, [4] contributed to this literature

by developing a general theory of Stein’s method for distributions having positive and locally absolutely continuous

density g on an interval and such that

(s(x)g(x))
′

= τ(x)g(x)

for some functions s and τ having some prescribed behaviour. See also [15] where such distributions were considered

with s a polynomial at most 2 and τ a decreasing linear function. In this paper we are interested in the general

bounds provided in [4] for the corresponding Stein equation and for its first derivative for Lipschitz test functions.

An advantage of the approach developed in [4] is that, when these bounds are finite, then they are optimal for

Lipschitz test functions. But the bound obtained for the derivative by this general approach is not always finite

for all distributions and, for concrete examples, much work remains to do, in order either to obtain an explicit

expression or at least to prove the finiteness of this bounds. The aim of this paper is to carry out this work in

the case of the generalized inverse Gaussian and Kummer distributions, which is not straightforward although the

mathematical arguments involved in the proofs are rather simple. To obtain the bound of the solution for these two

distributions, we specialize the general bound of [4] to the framework of the functions s and τ being polynomials of

second order with some conditions on the coefficients, in which case we obtain an explicit expression for the bound

(see Theorems 3.1, 5.1 and 5.3):

for p ∈ R, a > 0, b > 0, for any Lipschitz continuous test function h, the solution fh of the GIG Stein equation

satisfies

‖fh‖ ≤
2√
ab

Kp+1(
√
ab)

Kp(
√
ab)

‖h′‖ , (1.5)

and for a > 0, b ∈ R, c > 0, the solution fh of the Stein equation related to the Kummer distribution K(a, b, c)

satisfies

‖fh‖ ≤
ψ(a+ 1, 2− b; c)
ψ(a, 1− b; c)

‖h′‖ ,

where we denote ||f || = sup
x>0
|f(x)| as in the sequel of the paper.

To bound the first derivative of fh for both distributions, we prove that the bound derived in [4] is finite for

functions s and τ not being necessarily polynomials but having some specific behaviour at 0 and ∞, common to
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the two distributions (see Theorem 4.1), without being able to derive an explicit expression. The condition that

τ be decreasing, under which the result in [4] applies, yields some restrictions on the parameters. We also use the

iterative argument initiated in [4] and further developed in [5], to establish results on the derivatives of higher order

(see Theorem 5.2).

In the course of the derivation of our results for the GIG (resp. Kummer) distributions, we retrieve, by using

the Stein characterization of the distribution, a well-known recurrence relation and an inequality seemingly new

(see Remarks 5.1 and 5.2) for the modified Bessel function of the third kind (resp. the confluent hypergeometric

function of the second kind).

Note that bounds for the solution of the Stein equation related to the same distributions, and for its first and

second derivatives, were established in [9], but these bounds do not have tractable forms as in the present paper,

and are not easily extendable to derivatives of higher order.

The paper is organized as follows. In Section 2 we recall the general bounds of [4], needed in this paper. In

section 3 we compute explicitly the bound of the solution in the case where the functions s and τ satisfy some

conditions. Bounds of the first derivative of the solution are treated in Section 4. Specific results for GIG and

Kummer distributions are given in Section 5.

2 Döbler’s general bounds

The general framework of this paper is that of a probability density g on (0,∞) verifying the following condition:

Assumption A: g is positive, differentiable on (0,∞) and there exist differentiable functions s and τ on (0,∞),

such that s is positive, lim
x→0

s(x)g(x) = lim
x→∞

s(x)g(x) = 0 and, for all x > 0,

(s(x)g(x))
′

= τ(x)g(x). (2.1)

Distributions satisfying Assumption A can be considered on any interval ([15], [4]) but here we focus on (0,∞),

having in mind the applications of our results to the GIG and Kummer distributions.

As observed in [9] one can obtain, by using the Stein density approach [3, 11, 15], the following Stein character-

ization of distributions with density g satisfying Assumption A:

A positive random variableX has density g if and only if for any differentiable function f such that lim
x→0

s(x)g(x)f(x) =

lim
x→∞

s(x)g(x)f(x) = 0,

E [s(X)f ′(X) + τ(X)f(X)] = 0. (2.2)

The related Stein equation is

s(x)f ′(x) + τ(x)f(x) = h(x)− Eh(W ) (2.3)

where W is a random variable with density g.

The Stein equation (2.3) (see [15], [4], [7] ) has solution

fh(x) =
1

s(x)g(x)

∫ x

0

g(t) [h(t)− Eh(W )] dt

=
−1

s(x)g(x)

∫ +∞

x

g(t) [h(t)− Eh(W )] dt.

(2.4)

The following result was established in [4]:

Proposition 2.1 (Proposition 3.9 of [4]). Suppose τ is decreasing. Let W be a random variable with density g.

Given a function h, let fh be the solution of the Stein equation (2.3) given by (2.4). For any bounded function h,

|fh(x)| ≤ ‖h− E(h(W ))‖
2s(q0.5)g(q0.5)

(2.5)

where q0.5 is the median of W .
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Remark 2.1 One can wonder how the bound given in Proposition 2.1 compares with the following one established

in [9] under the assumptions of Proposition 2.1:

||fh|| ≤M ||h(.)− Eh(W )|| (2.6)

where

M = max

(
1

s(α)g(α)

∫ α

0

g(t)dt;
1

s(α)g(α)

∫ +∞

α

g(t)dt

)
and α is the unique zero of τ on (0,∞).

As observed in Proposition 3.3 of [4], the function x 7→ s(x)g(x) reachs its maximum at x = α. Therefore,

1

2s(α)g(α)
≤ 1

2s(q0.5)g(q0.5)
.

We also have, since
1

2
≤ max

(∫ α

0

g(t)dt;

∫ +∞

α

g(t)dt

)
≤ 1,

1

2s(α)g(α)
≤M ≤ 1

s(α)g(α)
.

Thus it is not clear that one of the two bounds in (2.5) and (2.6) is smaller than the other in general. One could

perhaps observe that the bound in (2.6) is a little more explicit than the one in (2.5) in the cases, e.g. for GIG and

Kummer distributions, where one has an explicit expression of α and not of q0.5.

Let us recall the results of [4] needed in this paper.

Proposition 2.2 (Proposition 3.13 of [4]). Let W be a random variable with density g satisfying Assumption A,

and distribution function F , such that E(W ) <∞. Given a function h, let fh be the solution of the Stein equation

(2.3) given by (2.4). For any Lipschitz continuous test function h,

1.

|fh(x)| ≤ ‖h′‖
F (x)E(W )−

∫ x

0

yg(y)dy

s(x)g(x)
= ‖h′‖

∫ x

0

(E(W )− yg(y)) dy

s(x)g(x)
; (2.7)

2. If τ is decreasing, then

|f ′h(x)| ≤ ‖h′‖

∫ x

0

F (y)dyG(x) +

∫ ∞
x

(1− F (y)) dyH(x)

s2(x)g(x)
(2.8)

where, for x ∈ (0,∞), the positive functions H(x) and G(x) are defined by

H(x) := s(x)g(x)− τ(x)F (x) and G(x) := H(x) + τ(x).

Remark 2.2 1. We slightly reformulated this proposition by putting the assumption of τ being decreasing only

in item 2 because we realized that in the proof given in [4], this assumption is not required for item 1.

2. The right-hand side of (2.7) is always bounded. But for the right-hand side of (2.8), its finiteness must be

evaluated for any specific density g. We fill prove that it is the case for GIG and Kummer distributions.

From this general results we elaborate bounds in the case where the functions τ is a polynomial of second order

satisfying some conditions, with the purpose to apply this to GIG and Kummer distributions, which happen to

fulfill these conditions.
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3 On the bound of the solution of the Stein equation

Theorem 3.1 Consider a density g on (0,∞) such that Assumption A holds for some functions s and τ , such that

τ is polynomial and has the form

τ(x) = a2x
2 + a1x+ a0

with a2 < 0 and a0 > 0.

Let fh be the solution of the Stein equation (2.3) defined by (2.4).

1. For any Lipschitz continuous test function h,

‖fh‖ ≤
E(W )

a0
‖h′‖ (3.1)

where W is a random variable with density g.

2. Suppose τ is decreasing. Then, there exist constants B and C such that, for any Lipschitz continuous test

function h,

|f ′h(x)| ≤ B ‖h′‖ , |xf ′h(x)| ≤ C ‖h′‖ .

For the proof we first establish the following proposition where we prove that the function on the right-hand-

side of (2.7) is bounded and provide an explicit expression of its supremum. This is obtained by showing that the

function U : x 7→

∫ x

0

(E(W )− t)g(t)dt

s(x)g(x)
is decreasing on (0,∞) which is not obvious.

Proposition 3.1 The function U : x 7→

∫ x

0

(E(W )− t)g(t)dt

s(x)g(x)
is decreasing on (0,∞) and

lim
x→0

U(x) =
E(W )

a0
<∞, (3.2)

U(x) ∼x→∞
−1

a2x
, (3.3)

lim
x→∞

U(x) = 0, (3.4)

sup
x>0

U(x) =
E(W )

a0
<∞, (3.5)

sup
x>0

xU(x) <∞. (3.6)

By applying the Stein characterization given by (2.2) to the function x 7→ f(x) = 1, we have the following

lemma:

Lemma 3.1 Consider a random variable W with density g. Then

E (τ(W )) = a2E
(
W 2
)

+ a1E (W ) + a0 = 0. (3.7)

Proof of Proposition 3.1

By de l’Hôpital’s rule,

lim
x→0

U(x) = lim
x→0

(E(W )− x)g(x)

(s(x)g(x))′

= lim
x→0

(E(W )− x)g(x)

τ(x)g(x)

=
E(W )

τ(0)

=
E(W )

a0
<∞,
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which proves (3.2), and

lim
x→∞

U(x) = lim
x→∞

(E(W )− x)g(x)

(s(x)g(x))′

= lim
x→∞

(E(W )− x)g(x)

τ(x)g(x)

= lim
x→∞

E(W )− x
a2x2 + a1x+ a0

= 0,

which proves (3.3) and 3.4.

Let m := E(W ). We have, for all x > 0, since (s(x)g(x))′ = τ(x)g(x),

U ′(x) =
(m− x)s(x)g2(x)− τ(x)g(x)

∫ x
0

(m− t)g(t) dt

(s(x)g(x))2

=
(m− x)s(x)g(x)− τ(x)

∫ x
0

(m− t)g(t) dt

s2(x)g(x)
.

Let us prove that A(x) defined by

A(x) := (m− x)s(x)g(x)− τ(x)

∫ x

0

(m− t)g(t) dt (3.8)

is negative for all x > 0.

We have

s(x)g(x) =

∫ x

0

τ(t)g(t) dt.

Thus

A(x) =

∫ x

0

(m− x)τ(t)g(t) dt− τ(x)

∫ x

0

(m− t)g(t) dt

=

∫ x

0

[(m− x)τ(t)− (m− t)τ(x)] g(t) dt. (3.9)

For any x > 0, let

Bx(t) := (m− x)τ(t)− (m− t)τ(x). (3.10)

We have

Bx(t) = (m− x)τ(t)− (m− x+ x− t)τ(x)

= (m− x)τ(t)− (m− x)τ(x) + (t− x)τ(x)

= (m− x)(τ(t)− τ(x)) + (t− x)τ(x)

= (m− x)
(
a2t

2 + a1t+ a0 −
(
a2x

2 + a1x+ a0
))

+ (t− x)τ(x)

= (m− x)
(
a1(t− x) + a2(t2 − x2)

)
+ (t− x)τ(x)

= (m− x)(t− x) (a1 + a2(t+ x)) + (t− x)τ(x)

= (t− x)
[
(m− x) (a1 + a2t+ a2x) + a2x

2 + a1x+ a0
]

= (t− x) [ma1 + a2(m− x)t+ a2mx+ a0]

= (x− t) [a2(x−m)t− a2mx − a1m− a0]

Suppose 0 < x ≤ m. Define

Cx(t) := a2(x−m)t− a2mx − a1m− a0. (3.11)
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Then, t 7→ Cx(t) is increasing, so that, for all t ∈ (0, x],

Cx(t) ≤ Cx(x)

= a2(x−m)x− a2mx − a1m− a0
= a2x

2 − 2a2mx − a1m− a0.

We now observe that a2x
2 − 2a2mx − a1m− a0, polynomial in x, has discriminant

∆ = 4a22m
2 + 4a2(a1m+ a0) = 4a2

[
a2m

2 + a1m+ a0
]

= 4a2

[
a2 (E(W ))

2
+ a1E(W ) + a0

]
. (3.12)

By Lemma 3.1, we have a2E
(
W 2
)

+ a1E (W ) + a0 = 0, which implies

a1E (W ) + a0 = −a2E(W 2),

so that

∆ = 4a2

[
a2 (E(W ))

2 − a2E(W 2)
]

= 4a22[(E(W ))2 − E(W 2)]

= −4a22V ar(W )

< 0.

As a consequence, since a2 < 0, we have a2x
2 − 2a2mx − a1m − a0 < 0 for all x. It follows that, if 0 < x ≤ m,

then Cx(t) < 0 for all t ∈ (0, x], and therefore

Bx(t) = (x− t)Cx(t) ≤ 0

for all t ∈ (0, x]. Thus, by (3.9), for all x ∈ (0,m],

A(x) =

∫ x

0

Bx(t)g(t) dt ≤ 0.

Suppose now that x > m. The function A defined by (3.8) can be written as

A(x) = (m− x)s(x)g(x) + τ(x)

∫ ∞
x

(m− t)g(t) dt

=

∫ ∞
x

− [(m− x)τ(t)− (m− t)τ(x)] g(t) dt

=

∫ ∞
x

−Bx(t)g(t) dt

=

∫ ∞
x

(t− x)Cx(t)g(t) dt

where Bx(t) is again defined by (3.10) and Cx(t) is defined by (3.11). Since x > m, the function t 7→ Cx(t) is

decreasing, so that, for all t ∈ [x,∞), Cx(t) ≤ Cx(x) and the conclusion follows as previously. Thus U is decreasing

and (3.5) follows. (3.6) follows from (3.2), (3.3) and from the continuity of U . �

Remark 3.1 Let us describe another way to obtain that Cx(x) < 0. The discriminant ∆ defined by (3.12) can be

written as

∆ = 4a2

[
a2 (E(W ))

2
+ a1E(W ) + a0

]
= 4a2τ(E(W )). (3.13)

Since τ(x) = a2x
2+a1x+a0 with a2 < 0, then −τ is strictly convex and, by Jensen’s inequality, τ(E(W )) ≥ E(τ(W ))

and, since W is not constant, τ(E(W )) > E(τ(W )).

By Lemma 3.1, E(τ(W )) = 0, therefore, τ(E(W )) > 0 and we conclude by (3.13) that ∆ < 0.
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4 On the bound of the derivative of the solution of the Stein equation

Theorem 4.1 Consider a density g on (0,∞) such that Assumption A holds for some functions s and τ . Suppose

there exists a constant a2 < 0 such that

τ(x) ∼x→∞ a2s(x), τ(0) > 0, s(x) ∼x→∞ x2, s(0) = 0, τ(0) + s′(0) 6= 0. (4.1)

Let

G(x) = s(x)g(x) + τ(x)(1− F (x)),

H(x) = s(x)g(x)− τ(x)F (x),

R(x) =

G(x)

∫ x

0

F (t)dt+H(x)

∫ +∞

x

(1− F (t))dt

s(x)2g(x)
.

Then

lim
x→0

R(x) =
1

τ(0) + s′(0)
− τ ′(0)E(W )

τ(0)(τ(0) + s′(0))
, (4.2)

lim
x→∞

R(x) = 0. (4.3)

As a consequence,

sup
x≥0

R(x) <∞, (4.4)

sup
x≥0

xR(x) <∞. (4.5)

and

sup
x≥0

x2R(x) <∞. (4.6)

Remark 4.1 Assertions (4.4), (4.5) and (4.6) follow from the other results of Theorem 4.1, as R is clearly con-

tinuous on (0,∞). We have not obtained an explicit expression of the supremum of R on (0,∞) as in (3.5).

The proof of Theorem 4.1 is based on the following proposition.

Proposition 4.1 Under the notation of Proposition 4.1, consider

R1(x) =

G(x)

∫ x

0

F (t)dt

s(x)2g(x)
,

R2(x) =

H(x)

∫ +∞

x

(1− F (t))dt

s(x)2g(x)
.

Then

lim
x→0

R1(x) =
1

τ(0) + s′(0)
. (4.7)

lim
x→0

R2(x) = − τ ′(0)E(W )

τ(0)(τ(0) + s′(0))
. (4.8)

R1(x) ∼x→∞ −
τ ′(x)

a2(xτ(x) + s(x))
, lim

x→∞
R1(x) = 0. (4.9)

R2(x) ∼x→∞ −
1

τ(x)
, lim

x→∞
R2(x) = 0. (4.10)
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PROOF :

4.1 Computing limx→0 R1(x)

By the definition of G, we have

lim
x→0

G(x) = τ(0). (4.11)

We also have limx→0

∫ x

0

F (t)dt = 0 and limx→0 s(x)2g(x) = 0. By de l’Hôpital’s rule, as x→ 0,

∫ x

0

F (t)dt

s(x)2g(x)
∼ F (x)

(s(x)2g(x))
′

=
F (x)

s(x)g(x)(τ(x) + s′(x))

∼ F (x)

s(x)g(x)(τ(0) + s′(0))
.

Taking once again the derivatives we have∫ x

0

F (t)dt

s(x)2g(x)
∼ g(x)

τ(x)g(x)(τ(0) + s′(0))

=
1

τ(x)(τ(0) + s′(0))
. (4.12)

Combining (4.12) with (4.11) we get (4.7).

4.2 Computing limx→0 R2(x)

Recall that

R2(x) =

H(x)

∫ +∞

x

(1− F (t))dt

s(x)2g(x)

We have

lim
x→0

H(x) = 0

since H(x) = G(x)− τ(x). We have

lim
x→0

H(x)

∫ +∞

x

(1− F (t))dt = 0

and

lim
x→0

s(x)2g(x) = 0.

By partial integration, we have∫ +∞

x

(1− F (t))dt =

∫ +∞

x

tg(t)dt− x(1− F (x))

= E(W )−
∫ x

0

tg(t)dt− x(1− F (x))

which implies that

lim
x→0

∫ +∞

x

(1− F (t))dt = E(W ).
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Therefore, by de l’Hôpital’s rule, as x→ 0,

R2(x) ∼ H(x)

s(x)2g(x)
E(W )

=
H ′(x)

s(x)g(x)(τ(x) + s′(x))
E(W )

=
−τ ′(x)F (x)

s(x)g(x)(τ(x) + s′(x))
E(W )

∼ E(W )
−τ ′(0)

τ(0) + s′(0)
× F (x)

s(x)g(x)

∼ E(W )
−τ ′(0)

τ(0) + s′(0)
× g(x)

τ(x)g(x)

∼ E(W )
−τ ′(0)

τ(0) + s′(0)
× 1

τ(0)

which proves (4.8).

4.3 Computing limx→∞R1(x)

By integration by part we have ∫ x

0

F (t)dt = xF (x)−
∫ x

0

tg(t)dt,

so that, as x→∞, since F (x)→ 1 and

∫ x

0

tg(t)dt→ E(W ), we have

∫ x

0

F (t)dt ∼ x

so that, as x→∞,

R1(x) ∼ xG(x)

s(x)2g(x)

and, since s(x) ∼x→∞ x2,

R1(x) ∼ G(x)

xs(x)g(x)
.

By de l’Hôpital’s rule,

R1(x) ∼ τ ′(x)(1− F (x))

xτ(x)g(x) + s(x)g(x)

=
τ ′(x)(1− F (x))

g(x)(xτ(x) + s(x))
. (4.13)

Furthermore,

1− F (x)

g(x)
∼x→∞

−g(x)

g′(x)

=
−s(x)

τ(x)− s′(x)

∼x→∞
−x2

τ(x)

=
−1

a2
. (4.14)

(4.13) and (4.14) imply (4.9).
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4.4 Computing limx→∞R2(x)

H(x) = s(x)g(x)− τ(x)F (x)

= −τ(x)F (x)

(
1− s(x)g(x)

τ(x)F (x)

)
∼x→∞ −τ(x).

Therefore,

R2(x) =

∫ +∞

x

(1− F (t))dt

s(x)g(x)
× H(x)

s(x)

∼x→∞
F (x)− 1

τ(x)g(x)
× −τ(x)

s(x)

=
1− F (x)

s(x)g(x)

∼x→∞
−g(x)

τ(x)g(x)
=
−1

τ(x)
→ 0,

which proves (4.10)

�

In the following session we apply the results to the GIG and Kummer distributions.

5 Application to the Stein equation for GIG and Kummer distribu-

tions

5.1 Bounds in the GIG case

Recall that the density of the GIG distribution with parameters p ∈ R, a > 0, b > 0 is

gp,a,b(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−
1
2 (ax+b/x), x > 0, (5.1)

where Kp is the modified Bessel function of the third kind.

Let

s(x) = x2 and τp,a,b(x) =
b

2
+ (p+ 1)x− a

2
x2. (5.2)

Then, as observed in [7], the GIG density gp,a,b satisfies

(s(x)gp,a,b(x))
′

= τp,a,b(x)gp,a,b(x). (5.3)

Following (2.2) we have the following Stein characterization of the GIG distribution:

A random variable X follows the GIG distribution with density gp,a,b if and only if, for all real-valued and dif-

ferentiable function f such that lim
x→∞

gp,a,b(x)f(x) = lim
x→0

gp,a,b(x)f(x) = 0, and such that the following expectation

exists, we have:

E
[
X2f ′(X) +

(
b

2
+ (p+ 1)X − a

2
X2

)
f(X)

]
= 0.

The corresponding Stein equation is

x2f ′(x) +

(
b

2
+ (p+ 1)x− a

2
x2
)
f(x) = h(x)− Eh(W ) (5.4)
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where h is a bounded function and W a random variable following the GIG distribution with parameters p, a, b.

As in the general case (2.4), the solution of Stein’s equation (5.4) is given by

fh(x) =
1

s(x)gp,a,b(x)

∫ x

0

gp,a,b(t) [h(t)− Eh(W )] dt

=
−1

s(x)gp,a,b(x)

∫ +∞

x

gp,a,b(t) [h(t)− Eh(W )] dt.

(5.5)

5.1.1 Bound of the solution

Equations (5.1), (5.2) and (5.3) show that τp,a,b and gp,a,b satisfy the assumptions of Theorem 3.1 with

s(x) = x2, τ(x) = τp,a,b(x) =
b

2
+ (p+ 1)x− a

2
x2, g = gp,a,b.

If W is a random variable following the GIG distribution with parameters p, a, b then E(W ) is given by (1.2). Apply

Theorem 3.1, we have the following new bound of the solution of the Stein equation for the GIG distribution.

Theorem 5.1 Let p ∈ R, a > 0, b > 0. Let fh be the solution of the GIG Stein equation defined by (5.5). For any

Lipschitz continuous test function h,

‖fh‖ ≤
2√
ab

Kp+1(
√
ab)

Kp(
√
ab)

‖h′‖ . (5.6)

.

Remark 5.1 1. The fact that τp,a,b(E(W )) ≥ 0 (see Remark 3.1) implies that E(W ) ≤ α, where

α =
p+ 1 +

√
(p+ 1)2 + ab

a

is the unique zero of τp,a,b on (0,∞). This yields the following property of the modified Bessel function of the

third kind: for all, p ∈ R, a > 0, b > 0,

√
ab
Kp+1(

√
ab)

Kp(
√
ab)

≤ p+ 1 +
√

(p+ 1)2 + ab. (5.7)

2. Using Lemma 3.1 and plugging in (3.7) the expressions of E(W ) and E(W 2) given in (1.2) we obtain

Kp+2(
√
ab)

Kp(
√
ab)

= 1 +
2(p+ 1)√

ab

Kp+1(
√
ab)

Kp(
√
ab)

which is equivalent to the following well-known recurrence relation for the modified Bessel function of the third

kind:

Kp+2(
√
ab) = Kp(

√
ab) +

2(p+ 1)√
ab

Kp+1(
√
ab). (5.8)

5.1.2 Bounds of the derivatives of the solution

Let Fp,a,b be the distibution function of W ∼ GIG(p, a, b). Define

G(p,a,b(x) = x2gp,a,b(x) + τp,a,b(x)(1− Fp,a,b(x)), (5.9)

Hp,a,b((x) = x2gp,a,b(x)− τp,a,b(x)Fp,a,b(x). (5.10)

Define

Ap,a,b =
2√
ab

Kp+1(
√
ab)

Kp(
√
ab)

. (5.11)
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By (4.4) and (4.5) in Theorem 4.1, if p ≤ −1, then

Bp,a,b := sup
x>0

Gp,a,b((x)

∫ x

0

Fp,a,b((t)dt+Hp,a,b(x)

∫ +∞

x

(1− Fp,a,b(t))dt

x4gp,a,b((x)
<∞ (5.12)

and

Cp,a,b := sup
x>0

Gp,a,b((x)

∫ x

0

Fp,a,b(t)dt+Hp,a,b((x)

∫ +∞

x

(1− Fp,a,b(t))dt

x3gp,a,b(x)
<∞. (5.13)

An interesting feature of Theorem 5.1 is that we have an explicit expression of the constant Ap,a,b in terms

of the modified Bessel function of the third kind. We did not succed in deriving such an explicit expression for

the constants Bp,a,b and Cp,a,b, but still a useful contribution of this paper is that they are finite. They can be

computed numerically, given p, a and b. The following theorem gives the bounds of the successive derivatives of the

solution of the GIG Stein equation.

Theorem 5.2 Let p ∈ R, a > 0, b > 0. Let fh be the solution of the GIG Stein equation defined by (5.5). Let

x > 0.

1. Suppose p ≤ −1. If h is differentiable with bounded derivative, then

|f ′h(x)| ≤ Bp,a,b ‖h′‖ , |xf ′h(x)| ≤ Cp,a,b ‖h′‖ .

2. Suppose p ≤ −3. If h is twice differentiable with bounded first and second derivatives, then

|f ′′h (x)| ≤ Bp+2,a,b [‖h′′‖+ (Ap,a,b + (p+ 1)Bp,a,b + aCp,a,b) ‖h′‖] ,

|xf ′′h (x)| ≤ Cp+2,a,b [‖h′′‖+ (Ap,a,b + (p+ 1)Bp,a,b + aCp,a,b) ‖h′‖] .

3. Let k ≥ 1. Suppose p ≤ −2k+ 1. If h is at least k times differentiable with h(j) bounded for j = 1, . . . , k, then∣∣∣f (k)h (x)
∣∣∣ ≤ Bp+2k−2,a,b

∥∥h′k−1∥∥ and
∣∣∣xf (k)h (x)

∣∣∣ ≤ Cp+2k−2,a,b
∥∥h′k−1∥∥

where

hk−1(x) = h(k−1)(x)− (k − 1)(p+ k − 1− ax)f (k−2)(x) +

(
3 +

(k − 4)(k + 1)

2

)
af (k−3)(x).

Proof of items 2 and 3

f ′h satisfies the differential equation

x2f ′′(x) +

(
b

2
+ (p+ 3)x− a

2
x2
)
f ′(x) = h′(x)− (p+ 1− ax)f(x). (5.14)

Let h1(x) = h′(x)− (p+ 1− ax)fh(x). Then, by equation (5.14), f ′h solves the differential equation

x2f ′(x) +

(
b

2
+ (p+ 3)x− a

2
x2
)
f(x) = h1(x) (5.15)

which is the GIG(p+ 2, a, b) Stein equation. Since p ≤ 3, we have p+ 2 ≤ −1 and by item 1 of Theorem 3.1,

|f ′′h (x)| ≤ Bp+2,a,b ‖h′1‖ and |xf ′′h (x)| ≤ Cp+2,a,b ‖h′1‖ .
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We have

|h′1(x)| = |h′′(x)− (p+ 1− ax)f ′h(x) + afh(x)|

≤ ‖h′′‖ − (p+ 1) ‖f ′h‖+ a |xf ′h(x)|+ a ‖fh‖

≤ ‖h′′‖ − (p+ 1)Bp,a,b ‖h′‖+ aCp,a,b ‖h′‖+ a
2√
ab

Kp+1(
√
ab)

Kp(
√
ab)

‖h′‖

= ‖h′′‖+

(
2
√
aKp+1(

√
ab)√

bKp(
√
ab)

− (p+ 1)Bp,a,b + aCp,a,b

)
‖h′‖ ,

which proves item 2.

Let us prove item 3. By induction, the function f
(k−1)
h satisfies the differential equation

x2f (k)(x) +

(
b

2
+ (p− 1 + 2k)x− a

2
x2
)
f (k−1)(x) = hk−1(x) (5.16)

where

hk−1(x) = h(k−1)(x)− (k − 1)(p+ k − 1− ax)f (k−2)(x) +

(
3 +

(k − 4)(k + 1)

2

)
af (k−3)(x). (5.17)

Equation (5.16) shows that f
(k)
h solves the Stein equation of the distribution GIG(p+2(k−1), a, b) with right-hand-

side hk given by (5.17). Since p ≤ −2k + 1, we have (p + 2(k − 1) ≤ −1 and all the assumptions of Theorem 3.1

and Theorem 4.1 are satisfied. Thus,∣∣∣f (k)h (x)
∣∣∣ ≤ Bp+2(k−1),a,b

∥∥h′k−1∥∥ and
∣∣∣xf (k)h (x)

∣∣∣ ≤ Cp+2(k−1),a,b
∥∥h′k−1∥∥ .

We have∣∣h′k−1(x)
∣∣ =

∣∣∣∣h(k)(x)− (k − 1)(p+ k − 1− ax)f (k−1)(x) + (k − 1)af (k−2)(x) +

(
3 +

(k − 4)(k + 1)

2

)
af (k−2)(x)

∣∣∣∣
≤
∥∥∥h(k)∥∥∥− (k − 1)(p+ k − 1)

∥∥∥f (k−1)∥∥∥+ (k − 1)a
∣∣∣xf (k−1)h (x)

∣∣∣+

(
3 +

(k − 4)(k + 1)

2

)
a
∥∥∥f (k−2)∥∥∥ .

By induction on k, we can bound h′k−1.

�

5.2 Bounds for the Kummer distribution case

Let

s(x) = x(1 + x) and τ(x) = (1− b)x− cx(1 + x) + a. (5.18)

Then the density ka,b,c of the Kummer distribution given by

ka,b,c(x) =
1

Γ(a)ψ(a, a− b+ 1; c)
xa−1(1 + x)−a−be−cx, x > 0

for a > 0, b ∈ R, c > 0, satisfies

(s(x)ka,b,c(x))
′

= τ(x)ka,b,c(x).

As earlier, we have the following Stein characterization of the Kummer distribution:

A random variable X follows the Kummer distribution with density ka,b,c if and only if, for all differentiable

function f such that the expectation exists,

E [X(1 +X)f ′(X) + [(1− b)X − cX(1 +X) + a] f(X)] = 0.
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The corresponding Stein equation is

x(x+ 1)f ′(x) + [(1− b)x− cx(1 + x) + a] f(x) = h(x)− Eh(W ) (5.19)

where h is a bounded function and W has K(a,b,c) distribution.

The bounded solution of (5.19) is

fh(x) =
1

x(1 + x)ka,b,c(x)

∫ x

0

ka,b,c(t) [h(t)− Eh(W )] dt

=
−1

x(1 + x)ka,b,c(x)

∫ +∞

x

ka,b,c(t) [h(t)− Eh(W )] dt.

(5.20)

As in the case of the GIG distribution, the assumptions of Theorem 3.1 are fulfilled with

s(x) = x(x+ 1), τ(x) = (1− b)x− cx(1 + x) + a, g = ka,b,c.

Therefore, we have the following new bound of the solution fh of the Stein equation related to the Kummer

distribution, using the expectation given by (1.3):

Theorem 5.3 Let fh be the solution of the Kummer Stein equation defined by (5.20). For any Lipschitz continuous

test function h,

‖fh‖ ≤
ψ(a+ 1, 2− b; c)
ψ(a, 1− b; c)

‖h′‖ . (5.21)

For the bounds of the derivatives, Theorem 5.2 holds, with all the constants defined by replacing the GIG density

with the Kummer one.

Remark 5.2 1. As in Remark 5.1, the fact that τ(E(W )) ≥ 0 implies that E(W ) ≤ β, where

β =
1− b− c+

√
(1− b− c)2 + 4ac

2c

is the unique zero of τ on (0,∞). And we have the following property of the confluent hypergeometric function

of the second kind: for all, a > 0, b ∈ R, c > 0,

2ac
ψ(a+ 1, 2− b; c)
ψ(a, 1− b; c)

≤ 1− b− c+
√

(1− b− c)2 + 4ac. (5.22)

2. Using Lemma 3.1 and plugging in (3.7) the expressions of E(W ) and E(W 2) given in (1.3) we obtain

−ac(a+ 1)
ψ(a+ 2, 3− b; c)
ψ(a, 1− b; c)

+ (1− b− c)aψ(a+ 1, 2− b; c)
ψ(a, 1− b; c)

+ a = 0

from which one gets the reccurence relation

ψ(a+ 2, b+ 2; c) =
1

c(a+ 1)
((b− c)ψ(a+ 1, b+ 1; c) + ψ(a, b; c)) . (5.23)
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[5] C. Döbler, R. E. Gaunt, and S. J. Vollmer, An iterative technique for bounding derivatives of solutions of stein

equations, Electron. J. Probab. 22 (2017), no. 96, 39 pp, MR3724564.

[6] R. E. Gaunt, Variance-gamma approximation via stein’s method, Electron. J. Probab. 19 (2014), no. 38, 33,

MR3194737.

[7] , A stein characterisation of the generalized hyperbolic distribution, ESAIM Probab. Stat. 21 (2017),

303–316, MR3743916.

[8] B. Jøgensen, Statistical properties of the generalized inverse gaussian distribution, Lecture Notes in Statistics,

9. Springer-Verlag, New York-Berlin, 1982, MR0648107.

[9] E. Konzou and E. Koudou, About the stein equation for the generalized inverse gaussian and kummer distri-

butions, ESAIM Probab. Stat., 2020, 10.1051/ps/2020009.

[10] A. E. Koudou and C. Ley, Characterizations of gig laws: a survey, Probab. Surv. 11 (2014), 161–176,

MR3264557.

[11] C. Ley and Y. Swan, Stein’s density approach and information inequalities, Electron. Commun. Probab. 18

(2013), no. 7, 14, MR3019670.

[12] H. M. Luk, Stein’s method for the gamma distribution and related statistical applications, Ph.D. thesis, Uni-

versity of Southern California, 1994, MR2693204, p. 74.

[13] A. Piliszek and J. Weso l owski, Change of measure technique in characterizations of the gamma and kummer

distributions, J. Math. Anal. Appl. 458 (2018), no. 2, 967–979, MR3724710.

[14] N. Ross, Fundamentals of stein’s method, Probab. Surv. 8 (2011), 210–293, MR2861132.

[15] W. Schoutens, Orthogonal polynomials in stein’s method, J. Math. Anal. Appl. 253 (2001), no. 2, 515–531,

MR1808151.

[16] C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random

variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley:

University of California Press 2 (1972), 583–602, MR0402873.

http://www.ams.org/mathscinet-getitem?mr=MR2732624
http://www.ams.org/mathscinet-getitem?mr=MR3418541
http://www.ams.org/mathscinet-getitem?mr=MR3724564
http://www.ams.org/mathscinet-getitem?mr=MR3194737
http://www.ams.org/mathscinet-getitem?mr=MR3743916
http://www.ams.org/mathscinet-getitem?mr=MR0648107
https://doi.org/10.1051/ps/2020009
http://www.ams.org/mathscinet-getitem?mr=MR3264557
http://www.ams.org/mathscinet-getitem?mr=MR3019670
http://www.ams.org/mathscinet-getitem?mr=MR2693204
http://www.ams.org/mathscinet-getitem?mr=MR3724710
http://www.ams.org/mathscinet-getitem?mr=MR2861132
http://www.ams.org/mathscinet-getitem?mr=MR1808151
http://www.ams.org/mathscinet-getitem?mr=MR0402873

	Introduction
	Döbler's general bounds
	On the bound of the solution of the Stein equation
	On the bound of the derivative of the solution of the Stein equation
	 Computing limx0R1(x)
	Computing limx0R2(x)
	Computing limxR1(x)
	Computing limxR2(x)

	Application to the Stein equation for GIG and Kummer distributions 
	Bounds in the GIG case
	Bound of the solution
	Bounds of the derivatives of the solution

	Bounds for the Kummer distribution case


