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Introduction

This paper is a contribution to the literature related to Stein's method and also to that addressing properties of the generalized inverse Gaussian and Kummer distributions.

The generalized inverse Gaussian distribution with parameters p ∈ R, a > 0, b > 0, which will be denoted GIG(p, a, b) throughout the paper, has density

g p,a,b (x) = (a/b) p/2
2K p ( √ ab)

x p-1 e -1 2 (ax+b/x) , x > 0 (1.1)

where K p is the modified Bessel function of the third kind. As readily seen from the expression of the normalizing constant in (1.1), if W ∼ GIG(p, a, b) then For more on GIG and Kummer distributions see e.g [START_REF] Jøgensen | Statistical properties of the generalized inverse gaussian distribution[END_REF][START_REF] Koudou | Characterizations of gig laws: a survey[END_REF][START_REF] Piliszek | Change of measure technique in characterizations of the gamma and kummer distributions[END_REF]]. Stein's method was introduced in [START_REF] Stein | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF], where it was shown that a random variable X has a standard normal distribution if and only if, for all real-valued absolutely continuous function f such that E |f (Z)| < ∞ for Z ∼ N (0, 1),

E(W ) = b a K p+1 ( √ ab) K p ( √ ab) , E(W 2 ) = b a K p+2 ( √ ab) K p ( √ ab) . ( 1 
E [f (X) -Xf (X)] = 0.
The related so-called Stein's equation is

f (x) -xf (x) = h(x) -Eh(Z) (1.4)
for a bounded function h and a random variable Z following the standard normal distribution. If f h solves (1.4), then for any random variable X, we have |E [f h (X) -Xf h (X)]| = |Eh(X) -Eh(Z)| . Therefore, in order to control the distance between the distribution of X and the standard normal distribution, bounding |Eh(X) -Eh(Z)| given h amounts to bounding |E [f h (X) -Xf h (X)]|. More details on Stein's method can be found in [START_REF] Chen | Poisson approximation for dependent trials[END_REF][START_REF] Luk | Stein's method for the gamma distribution and related statistical applications[END_REF][START_REF] Ross | Fundamentals of stein's method[END_REF][START_REF] Gaunt | Variance-gamma approximation via stein's method[END_REF]]. Stein's method has been widely applied to other distributions than the standard normal distribution in the literature (see for example [START_REF] Chen | Poisson approximation for dependent trials[END_REF] for the Poisson distribution, [START_REF] Luk | Stein's method for the gamma distribution and related statistical applications[END_REF] for the gamma distribution, [START_REF] Chatterjee | Exponential approximation by stein's method and spectral graph theory[END_REF] for the exponential distribution), and among other tools one generally needs to bound the solution of the Stein's equation and a few of its derivatives. Works on this subject are generally directed to applications in probability theory and statistics, but they can also be considered for the nice mathematics developed in it. For instance, [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] contributed to this literature by developing a general theory of Stein's method for distributions having positive and locally absolutely continuous density g on an interval and such that (s(x)g(x)) = τ (x)g(x)

for some functions s and τ having some prescribed behaviour. See also [START_REF] Schoutens | Orthogonal polynomials in stein's method[END_REF] where such distributions were considered with s a polynomial at most 2 and τ a decreasing linear function. In this paper we are interested in the general bounds provided in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] for the corresponding Stein equation and for its first derivative for Lipschitz test functions. An advantage of the approach developed in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] is that, when these bounds are finite, then they are optimal for Lipschitz test functions. But the bound obtained for the derivative by this general approach is not always finite for all distributions and, for concrete examples, much work remains to do, in order either to obtain an explicit expression or at least to prove the finiteness of this bounds. The aim of this paper is to carry out this work in the case of the generalized inverse Gaussian and Kummer distributions, which is not straightforward although the mathematical arguments involved in the proofs are rather simple. To obtain the bound of the solution for these two distributions, we specialize the general bound of [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] to the framework of the functions s and τ being polynomials of second order with some conditions on the coefficients, in which case we obtain an explicit expression for the bound (see Theorems 3.1, 5.1 and 5.3): for p ∈ R, a > 0, b > 0, for any Lipschitz continuous test function h, the solution f h of the GIG Stein equation satisfies To bound the first derivative of f h for both distributions, we prove that the bound derived in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] is finite for functions s and τ not being necessarily polynomials but having some specific behaviour at 0 and ∞, common to the two distributions (see Theorem 4.1), without being able to derive an explicit expression. The condition that τ be decreasing, under which the result in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] applies, yields some restrictions on the parameters. We also use the iterative argument initiated in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] and further developed in [START_REF] Döbler | An iterative technique for bounding derivatives of solutions of stein equations[END_REF], to establish results on the derivatives of higher order (see Theorem 5.2).

f h ≤ 2 √ ab K p+1 ( √ ab) K p ( √ ab) h , (1.5 
In the course of the derivation of our results for the GIG (resp. Kummer) distributions, we retrieve, by using the Stein characterization of the distribution, a well-known recurrence relation and an inequality seemingly new (see Remarks 5.1 and 5.2) for the modified Bessel function of the third kind (resp. the confluent hypergeometric function of the second kind).

Note that bounds for the solution of the Stein equation related to the same distributions, and for its first and second derivatives, were established in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF], but these bounds do not have tractable forms as in the present paper, and are not easily extendable to derivatives of higher order.

The paper is organized as follows. In Section 2 we recall the general bounds of [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF], needed in this paper. In section 3 we compute explicitly the bound of the solution in the case where the functions s and τ satisfy some conditions. Bounds of the first derivative of the solution are treated in Section 4. Specific results for GIG and Kummer distributions are given in Section 5.

Döbler's general bounds

The general framework of this paper is that of a probability density g on (0, ∞) verifying the following condition:

Assumption A: g is positive, differentiable on (0, ∞) and there exist differentiable functions s and τ on (0, ∞), such that s is positive, lim x→0 s(x)g(x) = lim x→∞ s(x)g(x) = 0 and, for all x > 0, (s(x)g(x)) = τ (x)g(x).

(

Distributions satisfying Assumption A can be considered on any interval ( [START_REF] Schoutens | Orthogonal polynomials in stein's method[END_REF], [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF]) but here we focus on (0, ∞), having in mind the applications of our results to the GIG and Kummer distributions.

As observed in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] one can obtain, by using the Stein density approach [START_REF] Chen | Normal approximation by stein's method, Probability and its Applications[END_REF][START_REF] Ley | Stein's density approach and information inequalities[END_REF][START_REF] Schoutens | Orthogonal polynomials in stein's method[END_REF], the following Stein characterization of distributions with density g satisfying Assumption A:

A positive random variable X has density g if and only if for any differentiable function f such that lim

x→0 s(x)g(x)f (x) = lim x→∞ s(x)g(x)f (x) = 0, E [s(X)f (X) + τ (X)f (X)] = 0. (2.2)
The related Stein equation is

s(x)f (x) + τ (x)f (x) = h(x) -Eh(W ) (2.3)
where W is a random variable with density g. The Stein equation (2.3) (see [START_REF] Schoutens | Orthogonal polynomials in stein's method[END_REF], [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF], [START_REF]A stein characterisation of the generalized hyperbolic distribution[END_REF] ) has solution

f h (x) = 1 s(x)g(x) x 0 g(t) [h(t) -Eh(W )] dt = -1 s(x)g(x) +∞ x g(t) [h(t) -Eh(W )] dt.
(2.4)

The following result was established in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF]: Proposition 2.1 (Proposition 3.9 of [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF]). Suppose τ is decreasing. Let W be a random variable with density g. Given a function h, let f h be the solution of the Stein equation (2.3) given by (2.4). For any bounded function h,

|f h (x)| ≤ h -E(h(W )) 2s(q 0.5 )g(q 0.5 ) (2.5)
where q 0.5 is the median of W .

Remark 2.1 One can wonder how the bound given in Proposition 2.1 compares with the following one established in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] under the assumptions of Proposition 2.1:

||f h || ≤ M ||h(.) -Eh(W )|| (2.6)
where

M = max 1 s(α)g(α) α 0 g(t)dt; 1 s(α)g(α) +∞ α g(t)dt
and α is the unique zero of τ on (0, ∞).

As observed in Proposition 3.3 of [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF], the function x → s(x)g(x) reachs its maximum at x = α. Therefore,

1 2s(α)g(α)
≤ 1 2s(q 0.5 )g(q 0.5 ) .

We also have, since

1 2 ≤ max α 0 g(t)dt; +∞ α g(t)dt ≤ 1, 1 2s(α)g(α) ≤ M ≤ 1 s(α)g(α)
.

Thus it is not clear that one of the two bounds in (2.5) and (2.6) is smaller than the other in general. One could perhaps observe that the bound in (2.6) is a little more explicit than the one in (2.5) in the cases, e.g. for GIG and Kummer distributions, where one has an explicit expression of α and not of q 0.5 .

Let us recall the results of [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF] needed in this paper.

Proposition 2.2 (Proposition 3.13 of [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF]). Let W be a random variable with density g satisfying Assumption A, and distribution function F , such that E(W ) < ∞. Given a function h, let f h be the solution of the Stein equation (2.3) given by (2.4). For any Lipschitz continuous test function h,

1. |f h (x)| ≤ h F (x)E(W ) - x 0 yg(y)dy s(x)g(x) = h x 0 (E(W ) -yg(y)) dy s(x)g(x) ; (2.7) 2. If τ is decreasing, then |f h (x)| ≤ h x 0 F (y)dyG(x) + ∞ x (1 -F (y)) dyH(x) s 2 (x)g(x) (2.8)
where, for x ∈ (0, ∞), the positive functions H(x) and G(x) are defined by

H(x) := s(x)g(x) -τ (x)F (x) and G(x) := H(x) + τ (x).
Remark 2.2 1. We slightly reformulated this proposition by putting the assumption of τ being decreasing only in item 2 because we realized that in the proof given in [START_REF] Döbler | Stein's method of exchangeable pairs for the beta distribution and generalizations[END_REF], this assumption is not required for item 1.

2. The right-hand side of (2.7) is always bounded. But for the right-hand side of (2.8), its finiteness must be evaluated for any specific density g. We fill prove that it is the case for GIG and Kummer distributions.

From this general results we elaborate bounds in the case where the functions τ is a polynomial of second order satisfying some conditions, with the purpose to apply this to GIG and Kummer distributions, which happen to fulfill these conditions.

3 On the bound of the solution of the Stein equation Theorem 3.1 Consider a density g on (0, ∞) such that Assumption A holds for some functions s and τ , such that τ is polynomial and has the form τ (x) = a 2 x 2 + a 1 x + a 0 with a 2 < 0 and a 0 > 0. Let f h be the solution of the Stein equation (2.3) defined by (2.4).

For any Lipschitz continuous test function h,

f h ≤ E(W ) a 0 h (3.1)
where W is a random variable with density g.

2. Suppose τ is decreasing. Then, there exist constants B and C such that, for any Lipschitz continuous test function h,

|f h (x)| ≤ B h , |xf h (x)| ≤ C h .
For the proof we first establish the following proposition where we prove that the function on the right-handside of (2.7) is bounded and provide an explicit expression of its supremum. This is obtained by showing that the

function U : x → x 0 (E(W ) -t)g(t)dt s(x)g(x)
is decreasing on (0, ∞) which is not obvious.

Proposition 3.1 The function U : x → x 0 (E(W ) -t)g(t)dt s(x)g(x)
is decreasing on (0, ∞) and

lim x→0 U (x) = E(W ) a 0 < ∞, (3.2) 
U (x) ∼ x→∞ -1 a 2 x , (3.3) 
lim x→∞ U (x) = 0, (3.4) sup x>0 U (x) = E(W ) a 0 < ∞, (3.5) 
sup x>0 xU (x) < ∞. (3.6) 
By applying the Stein characterization given by (2.2) to the function x → f (x) = 1, we have the following lemma:

Lemma 3.1 Consider a random variable W with density g. Then E (τ (W )) = a 2 E W 2 + a 1 E (W ) + a 0 = 0. (3.7)
Proof of Proposition 3.1 By de l'Hôpital's rule,

lim x→0 U (x) = lim x→0 (E(W ) -x)g(x) (s(x)g(x)) = lim x→0 (E(W ) -x)g(x) τ (x)g(x) = E(W ) τ (0) = E(W ) a 0 < ∞,
which proves (3.2), and

lim x→∞ U (x) = lim x→∞ (E(W ) -x)g(x) (s(x)g(x)) = lim x→∞ (E(W ) -x)g(x) τ (x)g(x) = lim x→∞ E(W ) -x a 2 x 2 + a 1 x + a 0 = 0,
which proves (3.3) and 3.4.

Let m := E(W ). We have, for all x > 0, since (s(x)g(x)) = τ (x)g(x),

U (x) = (m -x)s(x)g 2 (x) -τ (x)g(x) x 0 (m -t)g(t) dt (s(x)g(x)) 2 = (m -x)s(x)g(x) -τ (x) x 0 (m -t)g(t) dt s 2 (x)g(x)
.

Let us prove that A(x) defined by

A(x) := (m -x)s(x)g(x) -τ (x) x 0 (m -t)g(t) dt (3.8)
is negative for all x > 0.

We have

s(x)g(x) = x 0 τ (t)g(t) dt.
Thus

A(x) = x 0 (m -x)τ (t)g(t) dt -τ (x) x 0 (m -t)g(t) dt = x 0 [(m -x)τ (t) -(m -t)τ (x)] g(t) dt. (3.9) 
For any x > 0, let

B x (t) := (m -x)τ (t) -(m -t)τ (x). (3.10) 
We have

B x (t) = (m -x)τ (t) -(m -x + x -t)τ (x) = (m -x)τ (t) -(m -x)τ (x) + (t -x)τ (x) = (m -x)(τ (t) -τ (x)) + (t -x)τ (x) = (m -x) a 2 t 2 + a 1 t + a 0 -a 2 x 2 + a 1 x + a 0 + (t -x)τ (x) = (m -x) a 1 (t -x) + a 2 (t 2 -x 2 ) + (t -x)τ (x) = (m -x)(t -x) (a 1 + a 2 (t + x)) + (t -x)τ (x) = (t -x) (m -x) (a 1 + a 2 t + a 2 x) + a 2 x 2 + a 1 x + a 0 = (t -x) [ma 1 + a 2 (m -x)t + a 2 mx + a 0 ] = (x -t) [a 2 (x -m)t -a 2 mx -a 1 m -a 0 ] Suppose 0 < x ≤ m. Define C x (t) := a 2 (x -m)t -a 2 mx -a 1 m -a 0 . (3.11) 
Then, t → C x (t) is increasing, so that, for all t ∈ (0, x],

C x (t) ≤ C x (x) = a 2 (x -m)x -a 2 mx -a 1 m -a 0 = a 2 x 2 -2a 2 mx -a 1 m -a 0 .
We now observe that a 2 x 2 -2a 2 mx -a 1 m -a 0 , polynomial in x, has discriminant

∆ = 4a 2 2 m 2 + 4a 2 (a 1 m + a 0 ) = 4a 2 a 2 m 2 + a 1 m + a 0 = 4a 2 a 2 (E(W )) 2 + a 1 E(W ) + a 0 . (3.12) 
By Lemma 3.1, we have a 2 E W 2 + a 1 E (W ) + a 0 = 0, which implies

a 1 E (W ) + a 0 = -a 2 E(W 2 ), so that ∆ = 4a 2 a 2 (E(W )) 2 -a 2 E(W 2 ) = 4a 2 2 [(E(W )) 2 -E(W 2 )] = -4a 2 2 V ar(W ) < 0.
As a consequence, since a 2 < 0, we have a 2 x 2 -2a 2 mx -a 1 m -a 0 < 0 for all x. It follows that, if 0 < x ≤ m, then C x (t) < 0 for all t ∈ (0, x], and therefore

B x (t) = (x -t)C x (t) ≤ 0
for all t ∈ (0, x]. Thus, by (3.9), for all x ∈ (0, m],

A(x) = x 0 B x (t)g(t) dt ≤ 0.
Suppose now that x > m. The function A defined by (3.8) can be written as

A(x) = (m -x)s(x)g(x) + τ (x) ∞ x (m -t)g(t) dt = ∞ x -[(m -x)τ (t) -(m -t)τ (x)] g(t) dt = ∞ x -B x (t)g(t) dt = ∞ x (t -x)C x (t)g(t) dt
where B x (t) is again defined by (3.10) and C x (t) is defined by (3.11). Since x > m, the function t → C x (t) is decreasing, so that, for all t ∈ [x, ∞), C x (t) ≤ C x (x) and the conclusion follows as previously. Thus U is decreasing and (3.5) follows. (3.6) follows from (3.2), (3.3) and from the continuity of U . Remark 3.1 Let us describe another way to obtain that C x (x) < 0. The discriminant ∆ defined by (3.12) can be written as

∆ = 4a 2 a 2 (E(W )) 2 + a 1 E(W ) + a 0 = 4a 2 τ (E(W )). (3.13)
Since τ (x) = a 2 x 2 +a 1 x+a 0 with a 2 < 0, then -τ is strictly convex and, by Jensen's inequality, τ (E(W )) ≥ E(τ (W )) and, since W is not constant, τ (E(W )) > E(τ (W )). By Lemma 3.1, E(τ (W )) = 0, therefore, τ (E(W )) > 0 and we conclude by (3.13) that ∆ < 0.

4 On the bound of the derivative of the solution of the Stein equation Theorem 4.1 Consider a density g on (0, ∞) such that Assumption A holds for some functions s and τ . Suppose there exists a constant a 2 < 0 such that

τ (x) ∼ x→∞ a 2 s(x), τ (0) > 0, s(x) ∼ x→∞ x 2 , s(0) = 0, τ (0) + s (0) = 0. (4.1) Let G(x) = s(x)g(x) + τ (x)(1 -F (x)), H(x) = s(x)g(x) -τ (x)F (x), R(x) = G(x) x 0 F (t)dt + H(x) +∞ x (1 -F (t))dt s(x) 2 g(x) .
Then

lim x→0 R(x) = 1 τ (0) + s (0) - τ (0)E(W ) τ (0)(τ (0) + s (0)) , (4.2) 
lim x→∞ R(x) = 0. (4.3)
As a consequence, 

sup x≥0 R(x) < ∞, (4.4 
R 1 (x) = G(x) x 0 F (t)dt s(x) 2 g(x) , R 2 (x) = H(x) +∞ x (1 -F (t))dt s(x) 2 g(x)
. We also have lim x→0

Then lim x→0 R 1 (x) = 1 τ (0) + s (0) . (4.7) lim x→0 R 2 (x) = - τ (0)E(W ) τ (0)(τ (0) + s (0)) . (4.8) R 1 (x) ∼ x→∞ - τ (x) a 2 (xτ (x) + s(x)) , lim x→∞ R 1 (x) = 0. (4.9) R 2 (x) ∼ x→∞ - 1 τ (x) , lim x→∞ R 2 (x) = 0. ( 4 
x 0 F (t)dt = 0 and lim x→0 s(x) 2 g(x) = 0. By de l'Hôpital's rule, as x → 0,

x 0 F (t)dt s(x) 2 g(x) ∼ F (x) (s(x) 2 g(x)) = F (x) s(x)g(x)(τ (x) + s (x)) ∼ F (x) s(x)g(x)(τ (0) + s (0))
.

Taking once again the derivatives we have

x 0 F (t)dt s(x) 2 g(x) ∼ g(x) τ (x)g(x)(τ (0) + s (0)) = 1 τ (x)(τ (0) + s (0)) . (4.12) 
Combining (4.12) with (4.11) we get (4.7).

Computing

lim x→0 R 2 (x) Recall that R 2 (x) = H(x) +∞ x (1 -F (t))dt s(x) 2 g(x)
We have lim

x→0 H(x) = 0 since H(x) = G(x) -τ (x). We have lim x→0 H(x) +∞ x (1 -F (t))dt = 0 and lim x→0 s(x) 2 g(x) = 0.
By partial integration, we have

+∞ x (1 -F (t))dt = +∞ x tg(t)dt -x(1 -F (x)) = E(W ) - x 0 tg(t)dt -x(1 -F (x))
which implies that

lim x→0 +∞ x (1 -F (t))dt = E(W ).
Therefore, by de l'Hôpital's rule, as x → 0,

R 2 (x) ∼ H(x) s(x) 2 g(x) E(W ) = H (x) s(x)g(x)(τ (x) + s (x)) E(W ) = -τ (x)F (x) s(x)g(x)(τ (x) + s (x)) E(W ) ∼ E(W ) -τ (0) τ (0) + s (0) × F (x) s(x)g(x) ∼ E(W ) -τ (0) τ (0) + s (0) × g(x) τ (x)g(x) ∼ E(W ) -τ (0) τ (0) + s (0) × 1 τ (0)
which proves (4.8).

Computing lim x→∞ R 1 (x)

By integration by part we have

x 0 F (t)dt = xF (x) - x 0 tg(t)dt, so that, as x → ∞, since F (x) → 1 and x 0 tg(t)dt → E(W ), we have x 0 F (t)dt ∼ x so that, as x → ∞, R 1 (x) ∼ xG(x) s(x) 2 g(x)
and, since s(x)

∼ x→∞ x 2 , R 1 (x) ∼ G(x) xs(x)g(x)
.

By de l'Hôpital's rule, 

R 1 (x) ∼ τ (x)(1 -F (x)) xτ (x)g(x) + s(x)g(x) = τ (x)(1 -F (x)) g(x)(xτ (x) + s(x)) . (4.13) Furthermore, 1 -F (x) g(x) ∼ x→∞ -g(x) g (x) = -s(x) τ (x) -s (x) ∼ x→∞ -x 2 τ (x) = -1 a 2 . ( 4 

Computing

lim x→∞ R 2 (x) H(x) = s(x)g(x) -τ (x)F (x) = -τ (x)F (x) 1 - s(x)g(x) τ (x)F (x) ∼ x→∞ -τ (x). Therefore, R 2 (x) = +∞ x (1 -F (t))dt s(x)g(x) × H(x) s(x) ∼ x→∞ F (x) -1 τ (x)g(x) × -τ (x) s(x) = 1 -F (x) s(x)g(x) ∼ x→∞ -g(x) τ (x)g(x) = -1 τ (x) → 0,
which proves (4.10)

In the following session we apply the results to the GIG and Kummer distributions.

5 Application to the Stein equation for GIG and Kummer distributions

Bounds in the GIG case

Recall that the density of the GIG distribution with parameters p ∈ R, a > 0, b > 0 is

g p,a,b (x) = (a/b) p/2 2K p ( √ ab) x p-1 e -1 2 (ax+b/x) , x > 0, (5.1) 
where K p is the modified Bessel function of the third kind. Let

s(x) = x 2 and τ p,a,b (x) = b 2 + (p + 1)x - a 2 x 2 . (5.2) 
Then, as observed in [START_REF]A stein characterisation of the generalized hyperbolic distribution[END_REF], the GIG density g p,a,b satisfies

(s(x)g p,a,b (x)) = τ p,a,b (x)g p,a,b (x). (5.3) 
Following (2.2) we have the following Stein characterization of the GIG distribution: A random variable X follows the GIG distribution with density g p,a,b if and only if, for all real-valued and differentiable function f such that lim x→∞ g p,a,b (x)f (x) = lim x→0 g p,a,b (x)f (x) = 0, and such that the following expectation exists, we have:

E X 2 f (X) + b 2 + (p + 1)X - a 2 X 2 f (X) = 0.
The corresponding Stein equation is

x 2 f (x) + b 2 + (p + 1)x - a 2 x 2 f (x) = h(x) -Eh(W ) (5.4)
where h is a bounded function and W a random variable following the GIG distribution with parameters p, a, b.

As in the general case (2.4), the solution of Stein's equation (5.4) is given by 

f h (x) = 1 s(x)g p,a,b (x) x 0 g p,a,b (t) [h(t) -Eh(W )] dt = -1 s(x)g p,a,b (x) +∞ x g p,a,b (t) [h(t) -Eh(W )] dt.
s(x) = x 2 , τ (x) = τ p,a,b (x) = b 2 + (p + 1)x - a 2 x 2 , g = g p,a,b .
If W is a random variable following the GIG distribution with parameters p, a, b then E(W ) is given by (1.2). Apply Theorem 3.1, we have the following new bound of the solution of the Stein equation for the GIG distribution. 

Theorem 5.1 Let p ∈ R, a > 0, b > 0. Let f h be
K p+2 ( √ ab) K p ( √ ab) = 1 + 2(p + 1) √ ab K p+1 ( √ ab) K p ( √ ab)
which is equivalent to the following well-known recurrence relation for the modified Bessel function of the third kind: 1. Suppose p ≤ -1. If h is differentiable with bounded derivative, then

K p+2 ( √ ab) = K p ( √ ab) + 2(p + 1) √ ab K p+1 ( √ ab). ( 5 
|f h (x)| ≤ B p,a,b h , |xf h (x)| ≤ C p,a,b h .
2. Suppose p ≤ -3. If h is twice differentiable with bounded first and second derivatives, then

|f h (x)| ≤ B p+2,a,b [ h + (A p,a,b + (p + 1)B p,a,b + aC p,a,b ) h ] , |xf h (x)| ≤ C p+2,a,b [ h + (A p,a,b + (p + 1)B p,a,b + aC p,a,b ) h ] . 3. Let k ≥ 1. Suppose p ≤ -2k + 1. If h is at least k times differentiable with h (j) bounded for j = 1, . . . , k, then f (k) h (x) ≤ B p+2k-2,a,b h k-1 and xf (k) h (x) ≤ C p+2k-2,a,b h k-1 where h k-1 (x) = h (k-1) (x) -(k -1)(p + k -1 -ax)f (k-2) (x) + 3 + (k -4)(k + 1) 2 af (k-3) (x).
Proof of items 2 and 3 f h satisfies the differential equation

x 2 f (x) + b 2 + (p + 3)x - a 2 x 2 f (x) = h (x) -(p + 1 -ax)f (x). (5.14) Let h 1 (x) = h (x) -(p + 1 -ax)f h (x)
. Then, by equation (5.14), f h solves the differential equation We have satisfies the differential equation

x 2 f (x) + b 2 + (p + 3)x - a 2 x 2 f (x) = h 1 (x) ( 5 
|h 1 (x)| = |h (x) -(p + 1 -ax)f h (x) + af h (x)| ≤ h -(p + 1) f h + a |xf h (x)| + a f h ≤ h -(p + 1)B p,a,b h + aC p,a,b h + a 2 √ ab K p+1 ( √ ab) K p ( √ ab) h = h + 2 √ aK p+1 ( √ ab) √ bK p ( √ 
x 2 f (k) (x) + b 2 + (p -1 + 2k)x - a 2 x 2 f (k-1) (x) = h k-1 (x) (5.16) 
where

h k-1 (x) = h (k-1) (x) -(k -1)(p + k -1 -ax)f (k-2) (x) + 3 + (k -4)(k + 1) 2 af (k-3) (x).
(5.17) Equation (5.16) shows that f (k)

h solves the Stein equation of the distribution GIG(p + 2(k -1), a, b) with right-handside h k given by (5.17). Since p ≤ -2k + 1, we have (p + 2(k -1) ≤ -1 and all the assumptions of Theorem 3.1 and Theorem 4.1 are satisfied. Thus,

f (k) h (x) ≤ B p+2(k-1),a,b h k-1 and xf (k) h (x) ≤ C p+2(k-1),a,b h k-1 .
We have 2) .

h k-1 (x) = h (k) (x) -(k -1)(p + k -1 -ax)f (k-1) (x) + (k -1)af (k-2) (x) + 3 + (k -4)(k + 1) 2 af (k-2) (x) ≤ h (k) -(k -1)(p + k -1) f (k-1) + (k -1)a xf (k-1) h (x) + 3 + (k -4)(k + 1) 2 a f (k-
By induction on k, we can bound h k-1 . (5.23)

Bounds for the Kummer distribution case

. 2 )

 2 For a > 0, b ∈ R, c > 0, the Kummer distribution K(a, b, c) with parameters a, b, c has densityk a,b,c (x) = 1 Γ(a)ψ(a, a -b + 1; c) x a-1 (1 + x) -a-b e -cx , x > 0where ψ is the confluent hypergeometric function of the second kind. If Z ∼ K(a, b, c), thenE(Z) = a ψ(a + 1, 2 -b; c) ψ(a, 1 -b; c) ; E(Z 2 ) = a(a + 1)ψ(a + 2, 3 -b; c) ψ(a, 1 -b; c) .(1.3)

  ) and for a > 0, b ∈ R, c > 0, the solution f h of the Stein equation related to the Kummer distribution K(a, b, c) satisfies f h ≤ ψ(a + 1, 2 -b; c) ψ(a, 1 -b; c) h , where we denote ||f || = sup x>0 |f (x)| as in the sequel of the paper.

Remark 4 . 1 Proposition 4 . 1

 4141 Assertions (4.4), (4.5) and (4.6) follow from the other results of Theorem 4.1, as R is clearly continuous on (0, ∞). We have not obtained an explicit expression of the supremum of R on (0, ∞) as in(3.5).The proof of Theorem 4.1 is based on the following proposition. Under the notation of Proposition 4.1, consider

4 . 1

 41 Computing lim x→0 R 1 (x) By the definition of G, we have lim x→0 G(x) = τ (0). (4.11)

( 5 . 5 ) 5 . 1 . 1

 55511 Bound of the solution Equations (5.1), (5.2) and (5.3) show that τ p,a,b and g p,a,b satisfy the assumptions of Theorem 3.1 with

. 8 ) 5 . 1 . 2 0 F( 1 - 0 F( 1 -

 85120101 Bounds of the derivatives of the solution Let F p,a,b be the distibution function of W ∼ GIG(p, a, b). Define G( p,a,b (x) = x 2 g p,a,b (x) + τ p,a,b (x)(1 -F p,a,b (x)), (5.9) H p,a,b ((x) = x 2 g p,a,b (x) -τ p,a,b (x)F p,a,b (x). (5.10) Define A p,a,b = 2 √ ab K p+1 ( √ ab) K p ( √ ab) . (5.11) By (4.4) and (4.5) in Theorem 4.1, if p ≤ -1, then B p,a,b := sup x>0 G p,a,b ((x) x p,a,b ((t)dt + H p,a,b (x) +∞ x F p,a,b (t))dt x 4 g p,a,b ((x) < ∞ (5.12) and C p,a,b := sup x>0 G p,a,b ((x) x p,a,b (t)dt + H p,a,b ((x) +∞ x F p,a,b (t))dt x 3 g p,a,b (x) < ∞. (5.13) An interesting feature of Theorem 5.1 is that we have an explicit expression of the constant A p,a,b in terms of the modified Bessel function of the third kind. We did not succed in deriving such an explicit expression for the constants B p,a,b and C p,a,b , but still a useful contribution of this paper is that they are finite. They can be computed numerically, given p, a and b. The following theorem gives the bounds of the successive derivatives of the solution of the GIG Stein equation. Theorem 5.2 Let p ∈ R, a > 0, b > 0. Let f h be the solution of the GIG Stein equation defined by (5.5). Let x > 0.

. 15 )

 15 which is the GIG(p + 2, a, b) Stein equation. Since p ≤ 3, we have p + 2 ≤ -1 and by item 1 of Theorem 3.1, |f h (x)| ≤ B p+2,a,b h 1 and |xf h (x)| ≤ C p+2,a,b h 1 .

  Lets(x) = x(1 + x) and τ (x) = (1 -b)x -cx(1 + x) + a.(5.18)Then the density k a,b,c of the Kummer distribution given byk a,b,c (x) = 1 Γ(a)ψ(a, a -b + 1; c) x a-1 (1 + x) -a-b e -cx , x > 0 for a > 0, b ∈ R, c > 0, satisfies (s(x)k a,b,c (x)) = τ (x)k a,b,c (x).As earlier, we have the following Stein characterization of the Kummer distribution: A random variable X follows the Kummer distribution with density k a,b,c if and only if, for all differentiable function f such that the expectation exists,E [X(1 + X)f (X) + [(1 -b)X -cX(1 + X) + a] f (X)] = 0.The corresponding Stein equation isx(x + 1)f (x) + [(1 -b)x -cx(1 + x) + a] f (x) = h(x) -Eh(W ) (5.19)where h is a bounded function and W has K(a,b,c) distribution. The bounded solution of (5.19) isf h (x) = 1 x(1 + x)k a,b,c (x) x 0 k a,b,c (t) [h(t) -Eh(W )] dt = -1 x(1 + x)k a,b,c (x)+∞ x k a,b,c (t) [h(t) -Eh(W )] dt.

( 5 .

 5 20)As in the case of the GIG distribution, the assumptions of Theorem 3.1 are fulfilled withs(x) = x(x + 1), τ (x) = (1 -b)x -cx(1 + x) + a, g = k a,b,c .Therefore, we have the following new bound of the solution f h of the Stein equation related to the Kummer distribution, using the expectation given by (1.3): Theorem 5.3 Let f h be the solution of the Kummer Stein equation defined by (5.20). For any Lipschitz continuous test function h,f h ≤ ψ(a + 1, 2 -b; c) ψ(a, 1 -b; c) h .(5.21)For the bounds of the derivatives, Theorem 5.2 holds, with all the constants defined by replacing the GIG density with the Kummer one.Remark 5.21. As in Remark 5.1, the fact that τ (E(W )) ≥ 0 implies that E(W ) ≤ β, whereβ = 1 -b -c + (1 -b -c) 2 + 4ac 2cis the unique zero of τ on (0, ∞). And we have the following property of the confluent hypergeometric function of the second kind: for all,a > 0, b ∈ R, c > 0, 2ac ψ(a + 1, 2 -b; c) ψ(a, 1 -b; c) ≤ 1 -b -c + (1 -b -c) 2 + 4ac. (5.22) 2. Using Lemma 3.1 and plugging in (3.7) the expressions of E(W ) and E(W 2 ) given in (1.3) we obtain -ac(a + 1) ψ(a + 2, 3 -b; c) ψ(a, 1 -b; c) + (1 -b -c)a ψ(a + 1, 2 -b; c) ψ(a, 1 -b; c) + a = 0 from which one gets the reccurence relation ψ(a + 2, b + 2; c) = 1 c(a + 1) ((b -c)ψ(a + 1, b + 1; c) + ψ(a, b; c)) .

  the solution of the GIG Stein equation defined by(5.5). For any Lipschitz continuous test function h,

				f h ≤	2 √ ab	K p+1 ( K p ( √ √ ab) ab)	h .	(5.6)
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