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Abstract In this paper, we investigate the effect of the measurement error
on the performance of cumulative sum (CUSUM) control charts monitoring
the coefficient of variation. The measurement errors are supposed to follow a
linear covariate error model. The obtained results show that the precision error
ratio and the accuracy error have negative impact on the chart performance.
Moreover, in order to overcome the difficulty in predetermining a specific value
for the process shift size, we suggest to optimize parameters of the charts
according to the random shift size in a given interval. The robustness of the
proposed method is studied. An example is given to illustrate the use of the
CUSUM charts on a real quality control problem from sintering process.
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Acronyms

ARL Average Run Length
CUSUM Cumulative Sum
CV Coefficient of Variation
EARL Expected Average Run Length
EWMA Exponentially Weighted Moving Average
SPC Statistical Process Control

1 Introduction

Control chart is a very efficient tool in statistical process control (SPC) to
detect timely deviations in a production process that may lead to defective
items. A signal from the control chart indicates the appearance of assignable
causes that need to be fixed to ensure the process stability. Thence, it allows
to eliminate waste and reduces production costs.

In general, a control chart contains a central line and the control limits.
The process is monitored by sampling, calculating the quality of interest, and
plotting this value on the chart. If the sample point is within the control limit,
the process is said to be in-control. Otherwise, it is said to be out-of-control
and the assignable causes should be considered and removed. During the last
decade, a large number of new advanced control charts has been introduced
and they have been widely applied in many fields of industrial manufacturing.

The coefficient of variation (CV) is an important quality characteristic that
has several applications in applied statistics and SPC. It is defined as a ratio of
the standard deviation σ to the mean µ of a probability distribution. In many
processes, the mean and the variance of the quantity of interest do not need
to be constant or to be independent from others. In fact, the variance of this
quantity could be a function of its mean while the mean itself varies from time
to time. Therefore, the CV should be a characteristic of interest: no matter
how the mean or the variance of the quantity is, the process is still considered
as in-control as long as its CV remains stable. Examples of using CV charts
can be seen in various fields such as materials engineering and manufacturing,
textile industry, and chemical and biological quality control, see Castagliola
et al. 1 .

In the SPC literature, the problem of monitoring the CV was initiated by
Kang et al. 2 with a Shewhart control chart. Then, it was developed with the
exponentially weighted moving average (EWMA) control chart (Castagliola
et al. 1), the synthetic control chart (Calzada and Scariano 3), the Run Rules
control chart (Castagliola et al. 4), the variable sampling interval control chart
(Castalgiola et al.5), the variable sample size control chart (Amdouni et al. 6 ;
Castagliola et al. 7), and the cumulative sum (CUSUM) control chart (Tran
and Tran 8). Other control charts monitoring the CV can be seen in Jian et al. 9

and Abbasi and Adegoke 10 .
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An important problem shoud be considered in designing a control chart
is the existence of the measurement error. In fact, many control charts are
desinged under the assumption that there is no measurement error. This as-
sumption, however, may not be true in practice. Ignoring the presence of the
measurement error may lead to the misunderstanding about the statistical
properties of the desinged control charts. Because of this fact, the effect of the
measurement error has been studied by a number of authors, for example Linna
and Woodall 11 ; Maravelakis 12 ; Hu et al. 13 ; Noorossana and Zerehsaz 14 , and
Tran et al.15. In the recent control charts monitoring the CV, this problem has
been also studied. The first study was perhaps conducted by Yeong et al. 16

with a Shewhart chart to monitor the CV in the presence of the measurement
error using a linear covariate error model. In this study, the author used a
tight assumption that the relation between the in-control CV and the out-of-
control CV is independent from the measurment error. This assumption was
then eliminated in the design of other CV control charts considering the mea-
surement error, see, for example Tran et al. 17 , Tran et al. 18 , Nguyen et al. 19 ,
and Tran and Heuchenne 20 .

It is desirable in practice to design a control chart with high efficiency in
detecting the process shift. Among several control charts monitoring the CV,
the CUSUM control chart brings a better statistical performance compared
to the others (Tran and Tran 8). Therefore, the purpose of this study is to
investigate the effect of the measurement error on the CUSUM control chart
monitoring the CV using the linear covariate error model as suggested by
Linna and Woodall 11 . According to the discussion in Nguyen et al. 19 , we are
going to monitor the CV squared with two one-sided CUSUM charts, denoted
by CUSUM-γ2, instead of monitoring directly the CV. In addition, in order
to overcome the difficulty of predetermining a specific shift size, we suggest
to design the CUSUM chart with parameters optimized based on a possible
interval of the process shift. In particular, in this study we want to investigate

– the impact of the measurement error on the performance of the CUSUM-γ2

control charts,
– the performance of the CUSUM-γ2 control charts with parameters opti-

mized based on the random shift size in a given interval.

The rest of the paper is organized as follows: in Section 2, we introduce
briefly the linear covariate error model for the CV as well as the distribution
of the CV squared in the presence of the measurement error. The implemen-
tation of the two one-sided CUSUM-γ2 control charts in the presence of the
measurement error is presented in Section 3. Section 4 is devoted to analyzing
the effect of measurement errors on the charts performance. Section 5 provides
an illustrative example of the use of the proposed charts. Some suggestions and
remarks are given to conclude in Section 6.
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2 Linear covariate error model for the coefficient of variation

In this section, we present briefly the linear covariate error model for the
CV as suggested in Linna and Woodall 11 . Suppose that a set of n samples,
{Xi,1, Xi,2, . . . , Xi,n}, is taken to monitor the quality of interst X in which the
index i stands for the consecutive times of measuring, i = 1, 2, . . .. Moreover,
it is assumed that Xi,j are independent identically distributed (i.i.d) from
a normal distribution, Xi,j ∼ N(µ0 + aσ0, (bσ0)2). The parameters a and b
represent the mean shift and the standard deviation shift of the process. If
a 6= 0 or b 6= 1, the process has been shifted; on the contrary, the process is
in-control.

In practice, because of the measurement error the true values {Xi,1, Xi,2, . . . ,
Xi,n} are not observable. Instead, we can only observe {X∗

i,j,1, X
∗
i,j,2, . . . , X

∗
i,j,m},

m > 1, where X∗
i,j,k is the kth measurement of the item j at the i sampling and

the symbol “∗” is to imply the actually observed values. Linna and Woodall 11

proposed to use the following linearly covariate error model:

X∗
i,j,k = A+BXi,j + εi,j,k, (1)

where the constants A and B are well-known estimated from phase I data, εi,j,k
is a normal (0, σM ) random error representing the measurement inaccuracy,
which is independent of Xi,j .

Let X̄∗
i,j be the mean of m observed quantities of the same item j at the

ith sampling, then the distribution of X̄∗
i,j can be obtained as

X̄∗
i,j ∼ N(µ∗, σ∗2) = N(A+B(µ0 + aσ0), B2b2σ2

0 +
σ2
M

m
). (2)

Let us denote η = σM

σ0
(the precision error ratio), θ = A

µ0
(the accuracy error),

and γ0 = σ0

µ0
(the in-control CV value). The CV of X̄∗

i,j is therefore

γ∗ =

√
B2b2σ2

0 +
σ2
M

m

A+B(µ0 + aσ0)
=

√
B2b2 + η2

m

θ +B(1 + aγ0)
× γ0, (3)

Let τ denote the shift size, i.e. γ1 = τγ0 where τ1 is the out-of-control value
of the CV. It was shown in Nguyen et al. 19 that

γ∗1 =

√
B2b2 + η2

m

θ + Bb
τ

× γ0. (4)

The sample CV γ̂∗i in the presence of the measurement error is defined as

γ̂∗i =
S∗
i

¯̄X∗
i

, (5)

in which ¯̄X∗
i and S∗

i are the sample mean and the sample standard deviation
of X̄∗

1,j , . . . , X̄
∗
n,j .
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The distribution of the sample CV of normal variables has been studied by
many authors, for example Iglewicz and Myers 25 ; Reh and Scheffler 26 ; Van-
gel 27 . In this paper, we adopt an approximation for the cumulative distribution
function (c.d.f.) of the CV squared suggested by Castagliola et al. 1 as

Fγ̂∗2(x|n, γ∗) = 1− FF
(
n

x

∣∣∣∣1, n− 1,
n

γ∗2

)
(6)

where FF (.) is the c.d.f. of the noncentral F distribution and the parameter
γ∗ is computed from (4).

3 Implementation of the CUSUM-γ2 control charts with
measurement errors

Denote µ0(γ̂∗2) and σ0(γ̂∗2) the mean and the standard deviation of the sample
γ∗2 when the process is in-control. There is no closed form for these quantities
from the literature. We then apply an accurate approximations provided by
Breunig 21 as:

µ0(γ̂∗2) = γ∗20

(
1− 3γ∗20

n

)
, (7)

σ0(γ̂∗2) =

√
γ∗40

(
2

n− 1
+ γ∗20

(
4

n
+

20

n(n− 1)
+

75γ∗20
n2

))
− (µ0(γ̂∗2)− γ∗20 )2,

(8)

where γ∗0 is defined in (3) with a = 0 and b = 1.
Similar to Tran and Tran 8 , the two separated one-sided CUSUM control

charts for monitoring the CV squared are explored in this paper. More detail
of the reason are discussed in Castagliola et al. 1 . In particular, the proposed
one-sided CUSUM-CV charts in the presence of measurement errors are as
follows:

– an upward CUSUM chart (denoted by “upward CUSUM-γ2”) correspond-
ing to an upper control limit H+ = h+µ0(γ̂∗2) to detect the increase in the
CV,

C+
i = max

{
0, C+

i−1 + (γ̂∗2i − µ0(γ̂∗2)−K+
}
, (9)

where K+ = k+σ0(γ̂∗2) and C+
0 = 0,

– a downward CUSUM chart (denoted as “downward CUSUM-γ2”) corre-
sponding to the lower control limit H− = h−µ0(γ̂∗2) to detect the decrease
in the CV,

C−
i = max

{
0, C−

i−1 − (γ̂∗2i − µ0(γ̂∗2)−K−}, (10)

where K− = k−σ0(γ̂∗2) and C−
0 = 0.
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H0 = γ0
δ

Hi−1

...

Hi 2δ

Hi+1

...

Hp−1

H+

Fig. 1: Control limit interval of upward chart devided into p − 1 subintervals of width 2δ
and first interval of with δ.

The parameters (k+, h+) and (k−, h−) are called the control coefficients of
the upward and the downward CUSUM-γ∗2 control chart, respectively. The
control charts are designed by finding these coefficients.

In order to evaluate the performance of the proposed chart, we use the
average run length (ARL), which is the average number of samples before the
first out-of-control point is plotted in the control chart, see Tran et al. 22 for
more details. A general approach to calculate the ARL is to use the Markov
chain method suggested by Brook and Evans 23 . The method is described in
the sequel.

Firstly, the limit interval of upward (downward) chart is divided into p

sub-intervals in which the first sub-interval is δ = H+

2p−1 (δ = H−

2p−1 ) in width
and the others are 2δ in width. Figure 1 demonstrates this subdivision for
the upward chart. In this figure, each sub-interval (Hj − δ,Hj + δ] represents
a transient state of the Markov chain, where Hj is the midpoint of the sub-
interval j, j = 0, .., p−1; the states 0 to p−1 are in-control states while the state
N is out-of-control. When C+

i (or C−
i ) ∈ (Hj−δ,Hj+δ], the Markov chain is in

the transient sate j for sample i; if not, the chain reaches an absorbing state. p
is choosen sufficiently large so that Hj can be considered as an approximately
representative value of the state j (p is set to be 200 in this paper). In this
subdivision, the zero state has half size of the others, leading to better Markov
chain approximation with the same width of sub-intervals as in Castagliola
et al. 1 .
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The transition probability matrix P of the discrete-time Markov chain is

P =

(
Q r
0T 1

)
=


Q0,0 Q0,1 . . . Q0,p−1 r0
Q1,0 Q1,1 · · · Q1,p−1 r1

...
...

...
Qp−1,0 Qp−1,1 . . . Qp−1,p−1 rp−1

0 0 · · · 0 1

 ,

where Q is the (p, p) matrix of transient probabilities, 0 = (0, 0, . . . , 0)T and
r is p-vector statisfying r = (1 −Q1) (i.e., row probabilities must sum to 1)
with 1 = (1, 1, . . . , 1)T .

Then, the elements Qi,j of the matrix Q is calculated by the following
formulas:

– for the upward chart,

Qi,0 = Fγ̂∗2
(
µ0(γ̂∗2)−Hi +K+ + δ

∣∣n, γ∗1) and (11)

Qi,j = Fγ̂∗2
(
µ0(γ̂∗2) +Hj −Hi + δ +K+

∣∣n, γ∗1)
−Fγ̂∗2

(
µ0(γ̂∗2) +Hj −Hi − δ +K+

∣∣n, γ∗1) ; (12)

– for the downward chart,

Qi,0 = 1− Fγ̂∗2
(
µ0(γ̂∗2) +Hi −K− − δ

∣∣n, γ∗1) and (13)

Qi,j = Fγ̂∗2
(
µ0(γ̂∗2) +Hj −Hi + δ +K+

∣∣n, γ∗1)
−Fγ̂∗2

(
µ0(γ̂∗2) +Hj −Hi − δ +K+

∣∣n, γ∗1) , (14)

where Fγ̂∗2(.) is the c.d.f. of γ̂∗2 in (6).

Let q be the (p − 1, 1) vector of initial probabilities associated with the
p transient states, i.e., q = (q0, q1, . . . , qp−1)T . The zero-state ARL of per-
formance is corresponding to the “restart state” of initial state, namely q =
(1, 0, . . . , 0).

The ARL value of the CUSUM-γ2 control chart is then calculated by

ARL = qT (I−Q)−11. (15)

The design of the CUSUM-γ2 control charts now is to find the chart coef-
ficients (k+, h+) or (k−, h−) such that they optimize the chart’s performance.
In general, these values are found to satisfy two constraints: (1) the in-control
value ARL0 is equal to a predetermined desirable value and (2) the out-of-
control value ARL1 is minimized.

It should be considered that this procedure is based on the ARL, which is
a function of the shift size τ . Thus, to design the CUSUM-γ2 control chart,
the quality practitioners need to predict a possibly specific value for τ and
then calculate the corresponding optimal values (k∗+, h∗+) or (k∗−, h∗−) that
satisfy two constraints mentioned above. However, it is not possible in prac-
tice to give an exact prediction for the shift size because (1) without related
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τ1 τ2 η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.95
0.5 179.09 178.88 178.88 179.13 179.39 179.90
0.7 93.41 93.31 93.27 93.44 93.51 93.68
0.8 32.62 32.57 32.54 32.63 32.65 32.68

1.05
1.3 25.08 25.07 25.08 25.09 25.06 25.00
1.5 52.87 52.86 52.86 52.87 52.80 52.59
2.0 72.59 72.58 72.57 72.57 72.44 72.01

Table 1: Relative errors ∆1 betwwen the ARL corresponding to the parameters optimized
from the predicted shift size (τ1) and the actual shift size (τ2) under the presence of the
measurement error with B = 1,m = 1, θ = 0.05 and n = 5.

historical data they have no information about the entity of next shift size,
and (2) the shift size is usually unstable: it varies from time to time and from
process to process. If the predetermined value of τ , say τ1, is different from the
true shift, say τ2, the run-length properties of the designed control chart will
be seriously affected. Table 1 provides an illustrative example for this problem
where the value

∆1 =
ARLτ1 −ARLτ2

ARLτ2
(16)

is presented. By its definition, ∆1 represents the relative error between the
ARL corresponding to the control coefficients optimized from a predicted shift
τ1, denoted by ARLτ1 , and the ARLs corresponding to the control coefficients
optimized from the true shifts, denoted by ARLτ2 . Since the CUSUM chart
is used to detect the small process shift, we suppose that the value τ1 = 0.95
is anticipated for the downward chart and the value τ1 = 1.05 is anticipated
for the upward chart while the actual shifts are given in the second column
of Table 1, corresponding to the values of τ2. The large value of ∆1 from this
table shows that the performance of the designed charts could be significantly
reduced if the anticipated shift is different from the actual shift. For example,
if one uses the chart parameters designed for the shift size τ1 = 0.95 to detect
the process shift with the size τ2 = 0.7, the chart performance will be reduced
∆1 = 93.27% for the case η = 0.2, θ = 0.05, B = 1,m = 1 and n = 5.

In order to overcome this problem, we suggest to evaluate the statistical
performance of the CUSUM-γ2 control chart by using the expected average
run length (EARL) which is defined by

EARL =

∫
Ω

ARL× fτ (τ)dτ, (17)

where fτ (τ) is the density function of the shift size τ over its support Ω.
The design procedure of CUSUM-γ2 charts is now implemented by finding

out the optimial couples (k∗+, h∗+) and (k∗−, h∗−) satisfying:

– for downward chart,{
(k∗−, h∗−) = argmin(k−,h−)EARL(n,m,B, η, γ∗0 , τ, k

−, h−),

ARL(n,m,B, η, γ∗0 , τ = 1, k−, h−) = ARL0;
(18)
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– for upward chart,{
(k∗+, h∗+) = argmin(k+,h+)EARL(n,m,B, η, γ∗0 , τ, k

+, h+),

ARL(n,m,B, η, γ∗0 , τ = 1, k+, h+) = ARL0.
(19)

By using the measure EARL, the quality practitioners do not need to prede-
termine a specific value for τ . Instead, they only need to anticipate an interval
for τ , which is possible based on their experience in practice. If there is no infor-
mation about the shape of fτ (τ), a uniform distribution, i.e. fτ (τ) = 1

b−a over
the guessed interval Ω = [a, b], could be applied. In the following, we consider
this distribution with two different ranges of the process shift: ΩD = [0.5, 1)
and ΩI = (1, 2], corresponding to the decreasing and the increasing case, re-
spectively.

4 The effect of measurement errors on the CUSUM-γ2 control
charts

In this section, we show the performance of the proposed CUSUM-γ2 control
chart in the presence of the measurement error. Without loss of generality,
the shift in the variance is assumed to be unit, i.e. b = 1. The in-control
value ARL0 is set at 370.4. We consider three possible values of γ0, i.e. γ0 ∈
{0.05, 0.1, 0.2} and the sample size n ∈ {5, 7, 10, 15}. We also cover in our cal-
culation many scenarios of other parameters, where η ∈ {0, 0.1, 0.2, 0.3, 0.5, 1},
θ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}, B ∈ {1, 2, 3, 4, 5} and m ∈ {1, 3, 5, 7, 10}.

Given the values of m,n,B, η, θ and γ0, the optimal couple (k∗−, h∗−)
in equation (18) for downward chart and the optimal (k∗+, h∗+) in equation
(19) for upward chart are solved. These couples define the CUSUM-γ2 control
charts.

Using these optimized coefficients, we evaluate the chart’s performance
by calculating the out-of-control value ARL1. Tables 4-7 present the value
of these optimal couples and the corresponding ARL1 for some specifice shift
sizes. Some conclusions can be drawn from the obtainted results in these tables
as follows.

– Given the value of n, θ,m,B and γ0 in Table1, the increase of η leads
to the slight increase of ARL1. However, in the case this ratio relatively
small, η 6 0.3, its impact on ARL1 are not significant. For example, when
n = 7, B = 1, γ0 = 0.05,m = 1 and τ = 1.3, we obtain ARL1 = 12.70 for
η = 0 and ARL1 = 12.72 for η = 0.3.

– Given the value of n, η,m,B and γ0 in Table 2, the lager the value of θ,
the larger the value of ARL1. That is to say, the the accuracy error has
a negative impact on the CUSUM-γ2 control charts. For example, when
n = 5, B = 1, γ0 = 0.05,m = 1 and τ = 0.8, we have ARL1 = 23.52 for
θ = 0 and ARL1 = 24.54 for θ = 0.05.

– The results in Table 3 say that the rise of B leads to better performance
of the CUSUM-γ2 chart. Take the case n = 7, η = 0.28, γ0 = 0.2,m = 1
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and τ = 0.8 as an example; for B = 1 we have ARL1 = 18.39 while
ARL1 = 17.77 when B = 5.

– Table 4 shows the effect of the number of multiple measurements per item
on the charts’ performance: the larger the value of m, the smaller the
value of ARL1, i.e. the bettter the charts’ performance. In general, this
result is fit to the finding in Maravelakis 12 that the multiple measure-
ment is an effective way to compensate for the impact of the measurement
error. However, it can be seen from Table 4 that the influence of m on
the CUSUM-γ2 charts’ performance is not significant. In most case, the
value of ARL1 for different values of m changes trivially. For example,
with n = 15, η = 0.28, γ0 = 0.2, B = 1, we have ARL1 = 4.09 for m = 1
and ARL1 = 4.08 for m = 10.

– The sample size n has a great impact on the chart performance. When n
increases, the ARL1 decreases significantly. For example, with η = 0.5, θ =
0.05, B = 1,m = 1, γ0 = 0.1 and τ = 0.8, we have ARL1 = 24.59 when
n = 5 and ARL1 = 9.73 when n = 15 (Table 4).

PLEASE INSERT TABLE 4 HERE
PLEASE INSERT TABLE 5 HERE
PLEASE INSERT TABLE 6 HERE
PLEASE INSERT TABLE 7 HERE

The effect of the measurement error on the overall performance of the
CUSUM-γ2 control charts measured by EARL for n = 5 and n = 15 is
presented in Figures 3-5. In general the obtained results are consistent with
those discussed in the previous items. The value of EARL sharply increases
as θ increases given others parameters. For example, EARL = 18.4 for θ = 0
while EARL = 19.3 for θ = 0.05 (n = 10, γ0 = 0.2, B = 1,m = 1) (Table 6).
This tendency is also true for the case of η, but the effect of η on the value of
EARL is weaker than those the effect of θ. In contrast, the increase of B and
m leads to a better performance of the proposed charts.

PLEASE INSERT FIGURE 3 HERE
PLEASE INSERT FIGURE 4 HERE
PLEASE INSERT FIGURE 5 HERE

In the previous section, we have shown that designing the CUSUM-γ2

control charts with the optimal parameters corresponding to a specifice shift
size may reduce the charts’ performance when the acttual shift size is different
from the anticipated shift size. This is reflected by the large value of ∆1 in
Table 1. In order to evaluate the robustness of the proposed method in which
the charts’ coefficients are optimized according to the random shift size in an
interval, we calculate

∆2 =
ARLΩ −ARLτ2

ARLτ2
, (20)

where ARLΩ is the ARL value corresponding to the control coefficients op-
timized from an interval Ω of the shift size, and the ARLτ2 is the ARL cor-
responding to the control coefficients optimized from the true shift τ2. ∆2
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Interval τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

Ω = [0.5, 1)
0.5 92.07 92.01 92.08 92.07 90.79 92.43
0.7 38.47 38.45 38.47 38.48 37.64 38.53
0.8 5.35 5.35 5.35 5.35 5.04 5.35

Ω = (1, 2]
1.3 3.17 3.16 3.12 3.12 3.17 3.16
1.5 17.75 17.74 17.65 17.65 17.74 17.65
2.0 32.37 32.36 32.24 32.24 32.32 32.11

Table 2: Relative errors ∆2 betwwen the ARL corresponding to the parameters optimized
from a predicted interval of the shift size (Ω) and the actual shift size (τ2) under the presence
of the measurement error with B = 1,m = 1, θ = 0.05 and n = 5.

τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

0.5
(6.4, 6.5, 7.5) (6.5, 6.5, 7.5) (6.5, 6.5, 7.5) (6.6, 6.6, 7.5) (6.6, 6.6, 7.5) (6.6, 6.8, 7.6)
(6.8, 7.1, 8.7) (6.8, 7.1, 8.7) (6.9, 7.2, 8.7) (6.9, 7.2, 8.7) (6.9, 7.27, 8.7) (7.0, 7.3, 8.7)

0.7
(8.8, 8.8, 10.1) (8.8, 8.9, 10.1) (8.9, 8.9, 10.1) (9.0, 9.0, 10.2) (9.1, 9.1, 10.2) (9.1, 9.3, 10.3)
(10.0, 10.5, 13.1) (10.1, 10.5, 13.1) (10.1, 10.6, 13.1) (10.2, 10.7, 13.1) (10.3, 10.7, 13.2) (10.4, 10.8, 13.2)

0.8
(16.0, 16.1, 17.7) (16.2, 16.3, 17.8) (16.4, 16.4, 18.0) (16.6, 16.6, 18.1) (16.7, 16.8, 18.2) (16.9, 17.1, 18.3)
(20.0, 21.0, 27.5) (20.2, 21.2, 27.6) (20.4, 21.4, 27.7) (20.6, 21.6, 27.8) (20.8, 21.8, 27.8) (21.0, 22.0, 27.9)

1.3
(11.6, 11.7, 12.2) (11.8, 11.9, 12.4) (12.0, 12.1, 12.6) (12.2, 12.3, 12.8) (12.4, 12.5, 13.0) (12.5, 12.7, 13.2)
(10.4, 10.6, 11.3) (10.6, 10.8, 11.5) (10.8, 10.9, 11.7) (11.0, 11.1, 11.8) (11.2, 11.3, 12.0) (11.4, 11.5, 12.2)

1.5
(5.1, 5.1, 5.3) (5.2, 5.2, 5.4) (5.2, 5.3, 5.5) (5.3, 5.4, 5.6) (5.4, 5.5, 5.7) (5.5, 5.6, 5.8)
(4.0, 4.1, 4.4) (4.1, 4.1, 4.4) (4.2, 4.2, 4.5) (4.2, 4.3, 4.6) (4.3, 4.4, 4.7) (4.4, 4.5, 4.8)

2.0
(2.4, 2.4, 2.5) (2.4, 2.4, 2.6) (2.5, 2.5, 2.6) (2.5, 2.5, 2.7) (2.6, 2.6, 2.7) (2.6, 2.7, 2.8)
(1.7, 1.8, 1.9) (1.8, 1.8, 1.9) (1.8, 1.8, 2.0) (1.8, 1.9, 2.0) (1.9, 1.9, 2.0) (1.9, 1.9, 2.1)

Table 3: Compare the performance of CUSUM-γ2 control charts (first rows) and the EWMA-
γ2 control charts (second rows) in the presence of measurement errors for η = 0.28, B = 1,
m = 1, γ0 = 0.05 (left side), γ0 = 0.1 (middle), γ0 = 0.2 (right side) and different values of
θ.

represents the relative error between ARLΩ and ARLτ2 . The value of ∆2 for
several values of τ2 is presented in Table 2. As can be seen from Table 1 and
Table 2 that with the same value of the shift size τ2, ∆2 is significantly smaller
than ∆1. Especially, when the actual shift size is small, say τ2 = 0.8 or τ2 = 1.3
in this study, the difference between ARLΩ and ARLτ2 is quite small. That is
to say, the chart parameters optimized from an interval of the shift size can be
considered as robust alternatives to the chart parameters optimized from the
actual shift size that is not possible to known exactly in practice. This result
is similar to the findings in Castagliola et al. 1 .

In addition, it is desirable to make a comparison between the performance
of the proposed CUSUM-γ2 control charts in this study and the EWMA-γ2

control charts desinged in Tran et al. 17 under the presence of the measurement
error. Table 3 shows the comparison results for the case m = 1, B = 1, η =
0.28, n = 5 and θ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05}.

In fact, this comparison is not really fair since the EWMA-γ2 control
charts in Tran et al. 17 has been desinged for the specific shift sizes while the
CUSUM-γ2 control charts in our study has been desinged without predeter-
mining a specific shift size. However, the obtained results show that the ARL1

value corresponding to the downward CUSUM-γ2 control chart is smaller than
that the ARL1 value corresponding to the downward EWMA-γ2 control chart
with the same parameters. That is to say, the downward CUSUM-γ2 chart
outperforms the downward EWMA-γ2 chart in the presence of the measure-
ment error. Moreover, although the ARL1 value corresponding to the upward
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CUSUM-γ2 control chart is larger than that the ARL1 corresponding to the
downward EWMA-γ2 control chart, the difference betwwen them are not sig-
nificant. Therefore, we can conclude that the proposed method leads to a quite
effective performance while its implementation has more practical meaning as
a particular shift size is not required.

5 Application in real industrial scenarios

Control charts are widely used in a large number of industrial processes where
the out-of-control state should be recognized quickly to guarantee the product
quality. In order to monitor these processes, the quantity of interest is calca-
luted from the collected data, which commonly contain measurement errors.
For the processes where the CV squared is considered, that means only γ∗2 is
observable and the true value γ2 is not obtained. However, by monitoring γ∗2,
one can still detect changes in the actual CV, and then the process variability.

In this section, we present the implementation of the upward CUSUM-γ2

control chart in the presence of the measurement error. We consider real indus-
trial data from a sintering process in an Italian company that manufactures
sintered mechanical parts. These data have been introduced in Castagliola
et al. 1 .

According to the description in Castagliola et al. 1 , in order to guarantee
a pressure test, the process manufactures parts drop time Tpd from 2 bar
to 1.5 bar larger than 30 sec as a quality chaxacteristic related to the pore
shrinkage. It is stated that the preliminary regression study relating Tpd to the
quantity QC of molten copper has demonstrated the presence of a constant
proportionality σpd = γpd×µpd between the standard deviation of the pressure
drop time and its mean. The quality practitioner then decided to monitor the
CV γpd = σpd/µpd to detect changes in the process variability. Based on a root
mean square computation, an estimate γ̂0 = 0.417 is calculated from a Phase
I dataset. The phase II data are reproduced in the first five columns of Table
8.

In Castagliola et al. 1 , the control chart is designed for the specifice shift size
τ = 1.25 based on the process engineer’s experience. However, as analyzed in
previous sections, this could seriously affect the statistical run-length proper-
ties of the chart. Therefore, in this example, we design the upward CUSUM-γ2

control chart that optimizes the EARL over the interval Ω = (1, 2]. The con-
trol coefficients are found to be k∗+ = 0.3898930 and h∗+ = 12.264137. Then,
we obtain K+ = 0.064062 and H+ = 1.910097. The values of C∗

i are then
presented in the rightmost column in Table 8 and plotted in Figure 2 along
with and the control limit H+. This figure confirms that from sample #13 on-
ward, the process is clearly out-of-control. This result is similar to the finding
in Castagliola et al. 1 . However, in our implementation, a specifice shift size is
not necessary to be predetermined.

PLEASE INSERT TABLE 8 HERE
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Fig. 2: The upward CUSUM-γ2 control chart in the presence of the measurement error
corresponding to the Phase II data in Table 8.

6 Concluding remarks

We have investigated in this paper the effects of the measurement error on
the performance of the CUSUM-γ2 control charts. We have found that the
presence of the measurement error have siggnificant effect on the performance
of the proposed charts. In particular, both the precision error ratio and the
accuracy error have negative impact on the chart performance: the increase of
them reduces the power of the CUSUM-γ2 control charts in detecting changes
in the process. Although the increase of the multiple measurement per item
leads to the decrease of ARL1, its impact is not significant. Therefore, in order
to improve the chart performance, one should consider to increase the sample
size n or improve the measurement system rather than increasing the number
of multiple measurements m. Moreover, we have suggested to optimize the
chart parameters according to the random shift size in a given interval. An
advantage of this method is that it does not require a specifice shift size to be
predetermined. The robutness of the proposed method is also pointed out.
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τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1
n = 5

k∗− (0.11, 0.10, 0.06) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.09, 0.04)
h∗− (6.42, 6.54, 6.97) (6.43, 6.54, 6.97) (6.42, 6.53, 6.96) (6.42, 6.53, 6.95) (6.41, 6.50, 6.90) (6.38, 6.43, 6.33)

0.5 (10.37, 10.45, 10.73) (10.38, 10.45, 10.73) (10.37, 10.44, 10.71) (10.37, 10.43, 10.69) (10.36, 10.39, 10.58) (10.30, 10.26, 9.79)
0.7 (14.02, 14.12, 14.45) (14.03, 14.12, 14.45) (14.02, 14.11, 14.43) (14.01, 14.09, 14.40) (14.00, 14.05, 14.28) (13.94, 13.88, 13.34)
0.8 (24.54, 24.67, 25.18) (24.55, 24.67, 25.18) (24.54, 24.66, 25.16) (24.53, 24.64, 25.13) (24.51, 24.59, 25.01) (24.44, 24.42, 24.07)

k∗+ (0.20, 0.21, 0.24) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.26) (0.20, 0.22, 0.29)
h∗+ (6.08, 6.23, 6.89) (6.08, 6.24, 6.90) (6.07, 6.24, 6.93) (6.08, 6.25, 6.97) (6.09, 6.28, 7.13) (6.17, 6.44, 7.92)

1.3 (16.46, 16.59, 17.12) (16.47, 16.59, 17.13) (16.46, 16.59, 17.15) (16.46, 16.60, 17.18) (16.47, 16.63, 17.31) (16.53, 16.76, 17.91)
1.5 (7.22, 7.28, 7.52) (7.22, 7.28, 7.52) (7.22, 7.28, 7.53) (7.22, 7.28, 7.55) (7.22, 7.29, 7.60) (7.26, 7.35, 7.87)
2.0 (3.40, 3.43, 3.54) (3.40, 3.43, 3.54) (3.40, 3.43, 3.54) (3.40, 3.43, 3.55) (3.40, 3.44, 3.58) (3.42, 3.46, 3.70)

n = 7
k∗− (0.20, 0.19, 0.11) (0.20, 0.19, 0.11) (0.20, 0.19, 0.11) (0.20, 0.18, 0.11) (0.20, 0.19, 0.10) (0.20, 0.18, 0.09)
h∗− (3.80, 3.85, 4.63) (3.79, 3.84, 4.63) (3.80, 3.85, 4.66) (3.81, 3.93, 4.69) (3.80, 3.86, 4.80) (3.82, 3.90, 4.41)

0.5 (6.68, 6.71, 7.55) (6.67, 6.71, 7.56) (6.68, 6.71, 7.58) (6.69, 6.81, 7.61) (6.68, 6.72, 7.72) (6.69, 6.75, 7.20)
0.7 (9.18, 9.22, 10.24) (9.16, 9.22, 10.24) (9.18, 9.22, 10.27) (9.19, 9.33, 10.32) (9.18, 9.23, 10.45) (9.19, 9.27, 9.84)
0.8 (16.95, 17.01, 18.29) (16.93, 17.01, 18.30) (16.95, 17.01, 18.34) (16.96, 17.14, 18.40) (16.95, 17.03, 18.58) (16.96, 17.11, 18.02)

k∗+ (0.22, 0.23, 0.26) (0.22, 0.23, 0.26) (0.22, 0.23, 0.26) (0.22, 0.23, 0.26) (0.22, 0.23, 0.27) (0.23, 0.24, 0.30)
h∗+ (4.63, 4.73, 5.15) (4.63, 4.73, 5.16) (4.63, 4.74, 5.17) (4.64, 4.75, 5.20) (4.64, 4.76, 5.30) (4.66, 4.87, 5.79)

1.3 (12.59, 12.70, 13.16) (12.59, 12.70, 13.17) (12.59, 12.70, 13.19) (12.60, 12.72, 13.22) (12.60, 12.73, 13.32) (12.62, 12.85, 13.82)
1.5 (5.57, 5.62, 5.83) (5.57, 5.62, 5.83) (5.57, 5.62, 5.84) (5.58, 5.63, 5.86) (5.57, 5.64, 5.90) (5.59, 5.69, 6.13)
2.0 (2.67, 2.70, 2.80) (2.67, 2.70, 2.80) (2.67, 2.70, 2.80) (2.67, 2.70, 2.81) (2.67, 2.70, 2.83) (2.68, 2.73, 2.94)

n = 10
k∗− (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.21, 0.17) (0.22, 0.20, 0.14)
h∗− (3.00, 2.96, 3.07) (3.00, 2.96, 3.08) (3.00, 2.96, 3.10) (3.00, 2.97, 3.08) (3.01, 2.98, 3.11) (3.01, 3.03, 3.21)

0.5 (5.29, 5.23, 5.32) (5.29, 5.23, 5.32) (5.29, 5.23, 5.34) (5.29, 5.23, 5.32) (5.29, 5.25, 5.35) (5.29, 5.29, 5.44)
0.7 (7.18, 7.10, 7.24) (7.18, 7.10, 7.24) (7.18, 7.10, 7.27) (7.18, 7.11, 7.24) (7.18, 7.13, 7.28) (7.18, 7.19, 7.42)
0.8 (13.04, 12.95, 13.21) (13.04, 12.95, 13.22) (13.04, 12.95, 13.26) (13.04, 12.96, 13.23) (13.04, 12.99, 13.31) (13.03, 13.08, 13.58)

k∗+ (0.25, 0.2622, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.29) (0.25, 0.27, 0.31)
h∗+ (3.53, 3.57, 3.85) (3.50, 3.57, 3.85) (3.53, 3.57, 3.86) (3.51, 3.58, 3.88) (3.51, 3.59, 3.94) (3.54, 3.65, 4.25)

1.3 (9.63, 9.68, 10.07) (9.59, 9.69, 10.07) (9.63, 9.68, 10.09) (9.60, 9.70, 10.12) (9.60, 9.71, 10.19) (9.64, 9.80, 10.60)
1.5 (4.32, 4.34, 4.52) (4.30, 4.34, 4.52) (4.32, 4.34, 4.53) (4.31, 4.35, 4.54) (4.30, 4.35, 4.57) (4.32, 4.39, 4.76)
2.0 (2.12, 2.13, 2.22) (2.11, 2.13, 2.22) (2.12, 2.13, 2.22) (2.12, 2.14, 2.23) (2.11, 2.14, 2.25) (2.12, 2.16, 2.34)

n = 15
k∗− (0.25, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.24, 0.21) (0.26, 0.24, 0.19)
h∗− (2.33, 2.27, 2.29) (2.33, 2.27, 2.29) (2.33, 2.22, 2.30) (2.33, 2.23, 2.30) (2.33, 2.27, 2.32) (2.20, 2.24, 2.39)

0.5 (4.12, 4.07, 4.08) (4.12, 4.07, 4.08) (4.12, 4.04, 4.08) (4.12, 4.04, 4.09) (4.12, 4.07, 4.10) (4.03, 4.05, 4.14)
0.7 (5.55, 5.44, 5.47) (5.55, 5.44, 5.47) (5.55, 5.36, 5.47) (5.55, 5.37, 5.48) (5.55, 5.44, 5.51) (5.34, 5.39, 5.61)
0.8 (9.88, 9.72, 9.82) (9.88, 9.72, 9.82) (9.88, 9.63, 9.84) (9.87, 9.64, 9.85) (9.87, 9.73, 9.91) (9.60, 9.68, 10.11)

k∗+ (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.30, 0.33)
h∗+ (2.56, 2.61, 2.79) (2.56, 2.61, 2.79) (2.56, 2.60, 2.80) (2.56, 2.62, 2.81) (2.57, 2.63, 2.85) (2.58, 2.67, 3.04)

1.3 (7.11, 7.18, 7.49) (7.11, 7.18, 7.49) (7.11, 7.18, 7.50) (7.11, 7.20, 7.52) (7.12, 7.21, 7.58) (7.13, 7.28, 7.89)
1.5 (3.25, 3.28, 3.42) (3.25, 3.28, 3.42) (3.25, 3.28, 3.43) (3.25, 3.29, 3.44) (3.25, 3.30, 3.46) (3.26, 3.33, 3.60)
2.0 (1.65, 1.67, 1.74) (1.65, 1.67, 1.74) (1.65, 1.67, 1.74) (1.65, 1.67, 1.75) (1.65, 1.68, 1.76) (1.66, 1.69, 1.83)

Table 4: ARL1 values of CUSUM-γ2 control charts in the presence of measurement errors
for different values of η, τ , n, fixed θ = 0.05, B = 1, m = 1, γ0 = 0.05 (left side), γ0 = 0.1
(middle) and γ0 = 0.2 (right side).



Title Suppressed Due to Excessive Length 17

τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05
n = 5

k∗− (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05)
h∗− (6.41, 6.51, 6.92) (6.42, 6.52, 6.93) (6.42, 6.52, 6.94) (6.42, 6.52, 6.94) (6.42, 6.53, 6.95) (6.42, 6.53, 6.96)

0.5 (10.17, 10.22, 10.44) (10.21, 10.26, 10.49) (10.25, 10.31, 10.54) (10.29, 10.35, 10.60) (10.33, 10.39, 10.65) (10.37, 10.44, 10.70)
0.7 (13.61, 13.67, 13.93) (13.69, 13.75, 14.03) (13.77, 13.84, 14.12) (13.86, 13.93, 14.22) (13.94, 14.01, 14.32) (14.02, 14.10, 14.41)
0.8 (23.52, 23.61, 24.04) (23.72, 23.82, 24.26) (23.92, 24.02, 24.48) (24.13, 24.23, 24.70) (24.33, 24.44, 24.92) (24.54, 24.65, 25.14)

k∗+ (0.21, 0.22, 0.26) (0.21, 0.22, 0.25) (0.20, 0.22, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25)
h∗+ (6.06, 6.241, 7.02) (6.05, 6.23, 7.00) (6.06, 6.23, 7.00) (6.07, 6.24, 6.98) (6.08, 6.25, 6.97) (6.08, 6.2, 6.96)

1.3 (15.24, 15.38, 15.97) (15.48, 15.62, 16.21) (15.72, 15.86, 16.45) (15.97, 16.10, 16.69) (16.22, 16.35, 16.93) (16.47, 16.60, 17.18)
1.5 (6.62, 6.68, 6.94) (6.73, 6.80, 7.06) (6.85, 6.91, 7.18) (6.98, 7.04, 7.30) (7.10, 7.16, 7.42) (7.22, 7.28, 7.54)
2.0 (3.07, 3.09, 3.21) (3.13, 3.16, 3.28) (3.20, 3.22, 3.35) (3.27, 3.29, 3.41) (3.33, 3.36, 3.48) (3.40, 3.43, 3.55)

n = 7
k∗− (0.21, 0.19, 0.10) (0.21, 0.19, 0.10) (0.21, 0.19, 0.10) (0.20, 0.19, 0.10) (0.20, 0.19, 0.11) (0.20, 0.18, 0.11)
h∗− (3.73, 3.78, 4.76) (3.74, 3.79, 4.75) (3.74, 3.80, 4.73) (3.77, 3.82, 4.71) (3.79, 3.83, 4.70) (3.81, 3.93, 4.68)

0.5 (6.48, 6.50, 7.55) (6.51, 6.55, 7.56) (6.54, 6.59, 7.57) (6.60, 6.63, 7.58) (6.64, 6.67, 7.59) (6.69, 6.81, 7.61)
0.7 (8.80, 8.84, 10.11) (8.88, 8.92, 10.15) (8.93, 8.99, 10.19) (9.03, 9.07, 10.23) (9.11, 9.15, 10.27) (9.19, 9.33, 10.31)
0.8 (16.07, 16.13, 17.74) (16.24, 16.31, 17.87) (16.40, 16.48, 18.00) (16.60, 16.66, 18.13) (16.77, 16.84, 18.26) (16.96, 17.14, 18.39)

k∗+ (0.23, 0.24, 0.27) (0.23, 0.24, 0.27) (0.23, 0.24, 0.27) (0.23, 0.24, 0.27) (0.23, 0.23, 0.27) (0.22, 0.23, 0.26)
h∗+ (4.60, 4.71, 5.22) (4.60, 4.71, 5.22) (4.61, 4.72, 5.21) (4.62, 4.73, 5.21) (4.62, 4.73, 5.20) (4.63, 4.74, 5.20)

1.3 (11.65, 11.76, 12.29) (11.83, 11.95, 12.47) (12.02, 12.14, 12.65) (12.21, 12.33, 12.84) (12.40, 12.52, 13.03) (12.59, 12.71, 13.21)
1.5 (5.11, 5.16, 5.39) (5.20, 5.25, 5.48) (5.29, 5.34, 5.57) (5.38, 5.44, 5.67) (5.48, 5.53, 5.76) (5.57, 5.63, 5.85)
2.0 (2.42, 2.44, 2.55) (2.46, 2.49, 2.60) (2.52, 2.54, 2.65) (2.57, 2.59, 2.70) (2.62, 2.65, 2.76) (2.67, 2.70, 2.81)

n = 10
k∗− (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18)
h∗− (3.01, 2.90, 3.05) (3.00, 2.92, 3.05) (3.00, 2.93, 3.06) (3.00, 2.94, 3.07) (3.00, 2.96, 3.07) (3.00, 2.97, 3.08)

0.5 (5.20, 5.08, 5.20) (5.22, 5.11, 5.22) (5.23, 5.14, 5.24) (5.25, 5.17, 5.27) (5.27, 5.21, 5.30) (5.29, 5.24, 5.33)
0.7 (6.97, 6.81, 6.99) (7.01, 6.87, 7.04) (7.05, 6.93, 7.08) (7.10, 6.99, 7.14) (7.14, 7.05, 7.20) (7.18, 7.12, 7.25)
0.8 (12.46, 12.27, 12.61) (12.57, 12.41, 12.72) (12.69, 12.55, 12.85) (12.81, 12.68, 12.98) (12.92, 12.83, 13.11) (13.04, 12.97, 13.24)

k∗+ (0.26, 0.26, 0.29) (0.25, 0.26, 0.29) (0.25, 0.26, 0.29) (0.25, 0.26, 0.29) (0.25, 0.26, 0.28) (0.25, 0.26, 0.28)
h∗+ (3.47, 3.57, 3.88) (3.47, 3.56, 3.88) (3.48, 3.56, 3.88) (3.49, 3.57, 3.88) (3.49, 3.57, 3.88) (3.50, 3.58, 3.88)

1.3 (8.87, 8.99, 9.40) (9.01, 9.12, 9.54) (9.16, 9.26, 9.68) (9.30, 9.40, 9.82) (9.45, 9.55, 9.97) (9.60, 9.69, 10.11)
1.5 (3.94, 4.00, 4.18) (4.01, 4.06, 4.25) (4.08, 4.13, 4.32) (4.16, 4.20, 4.39) (4.23, 4.28, 4.46) (4.30, 4.35, 4.53)
2.0 (1.92, 1.95, 2.04) (1.95, 1.98, 2.07) (1.99, 2.02, 2.11) (2.03, 2.06, 2.15) (2.07, 2.10, 2.19) (2.11, 2.14, 2.23)

n = 15
k∗− (0.26, 0.25, 0.22) (0.26, 0.25, 0.22) (0.26, 0.25, 0.22) (0.26, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.25, 0.22)
h∗− (2.26, 2.21, 2.29) (2.26, 2.21, 2.29) (2.26, 2.21, 2.29) (2.26, 2.21, 2.29) (2.33, 2.21, 2.29) (2.33, 2.23, 2.30)

0.5 (4.03, 3.99, 4.04) (4.04, 3.99, 4.04) (4.05, 4.00, 4.05) (4.05, 4.01, 4.06) (4.11, 4.02, 4.07) (4.12, 4.04, 4.09)
0.7 (5.29, 5.19, 5.30) (5.32, 5.22, 5.33) (5.35, 5.25, 5.36) (5.38, 5.28, 5.39) (5.52, 5.32, 5.43) (5.55, 5.37, 5.48)
0.8 (9.31, 9.18, 9.40) (9.40, 9.26, 9.48) (9.48, 9.35, 9.57) (9.57, 9.43, 9.65) (9.79, 9.53, 9.74) (9.88, 9.63, 9.85)

k∗+ (0.29, 0.30, 0.32) (0.29, 0.30, 0.32) (0.29, 0.29, 0.32) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31)
h∗+ (2.54, 2.59, 2.80) (2.54, 2.59, 2.80) (2.54, 2.60, 2.79) (2.54, 2.60, 2.80) (2.55, 2.61, 2.81) (2.56, 2.61, 2.81)

1.3 (6.58, 6.65, 6.99) (6.68, 6.76, 7.09) (6.79, 6.88, 7.19) (6.89, 6.98, 7.30) (7.00, 7.08, 7.41) (7.11, 7.19, 7.51)
1.5 (2.99, 3.02, 3.17) (3.04, 3.07, 3.22) (3.09, 3.13, 3.27) (3.14, 3.18, 3.33) (3.19, 3.23, 3.38) (3.25, 3.29, 3.43)
2.0 (1.51, 1.52, 1.60) (1.53, 1.55, 1.63) (1.56, 1.58, 1.66) (1.59, 1.61, 1.69) (1.62, 1.64, 1.72) (1.65, 1.67, 1.75)

Table 5: ARL1 values of CUSUM-γ2 control charts in the presence of measurement errors
for different values of θ, τ , n, fixed η = 0.28, B = 1, m = 1, γ0 = 0.05 (left side), γ0 = 0.1
(middle) and γ0 = 0.2 (right side).
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τ B = 1 B = 2 B = 3 B = 4 B = 5
n = 5

k∗− (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05)
h∗− (6.42, 6.53, 6.96) (6.42, 6.53, 6.96) (6.42, 6.53, 6.96) (6.42, 6.53, 6.95) (6.42, 6.53, 6.95)

0.5 (10.37, 10.44, 10.70) (10.28, 10.34, 10.60) (10.24, 10.31, 10.57) (10.23, 10.29, 10.55) (10.22, 10.28, 10.54)
0.7 (14.02, 14.10, 14.41) (13.82, 13.90, 14.21) (13.75, 13.83, 14.14) (13.72, 13.80, 14.11) (13.70, 13.78, 14.08)
0.8 (24.54, 24.65, 25.14) (24.03, 24.15, 24.63) (23.86, 23.98, 24.46) (23.78, 23.90, 24.37) (23.73, 23.84, 24.32)

k∗+ (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.21, 0.21, 0.25) (0.20, 0.21, 0.25)
h∗+ (6.08, 6.25, 6.96) (6.06, 6.23, 6.93) (6.06, 6.23, 6.93) (6.04, 6.23, 6.93) (6.05, 6.23, 6.93)

1.3 (16.47, 16.60, 17.18) (15.84, 15.97, 16.52) (15.64, 15.77, 16.32) (15.53, 15.67, 16.21) (15.47, 15.61, 16.15)
1.5 (7.22, 7.28, 7.54) (6.91, 6.97, 7.22) (6.81, 6.87, 7.12) (6.76, 6.83, 7.06) (6.73, 6.80, 7.03)
2.0 (3.40, 3.43, 3.55) (3.23, 3.26, 3.37) (3.18, 3.20, 3.31) (3.14, 3.18, 3.29) (3.13, 3.16, 3.27)

n = 7
k∗− (0.20, 0.18, 0.11) (0.20, 0.19, 0.11) (0.21, 0.19, 0.11) (0.21, 0.19, 0.11) (0.21, 0.19, 0.11)
h∗− (3.81, 3.93, 4.68) (3.76, 3.81, 4.68) (3.75, 3.80, 4.68) (3.74, 3.79, 4.69) (3.74, 3.79, 4.69)

0.5 (6.69, 6.81, 7.61) (6.58, 6.60, 7.53) (6.54, 6.57, 7.51) (6.53, 6.55, 7.51) (6.51, 6.54, 7.50)
0.7 (9.19, 9.33, 10.31) (8.99, 9.02, 10.15) (8.92, 8.96, 10.11) (8.89, 8.93, 10.09) (8.87, 8.91, 10.08)
0.8 (16.96, 17.14, 18.39) (16.51, 16.56, 17.99) (16.36, 16.42, 17.86) (16.28, 16.35, 17.80) (16.24, 16.30, 17.77)

k∗+ (0.22, 0.23, 0.26) (0.23, 0.24, 0.27) (0.23, 0.24, 0.27) (0.23, 0.24, 0.27) (0.23, 0.24, 0.27)
h∗+ (4.63, 4.74, 5.20) (4.61, 4.72, 5.17) (4.60, 4.71, 5.17) (4.60, 4.72, 5.17) (4.60, 4.71, 5.17)

1.3 (12.59, 12.71, 13.21) (12.11, 12.22, 12.70) (11.95, 12.07, 12.55) (11.88, 11.99, 12.47) (11.83, 11.94, 12.42)
1.5 (5.57, 5.63, 5.85) (5.34, 5.39, 5.60) (5.26, 5.31, 5.53) (5.22, 5.27, 5.48) (5.20, 5.25, 5.46)
2.0 (2.67, 2.70, 2.81) (2.54, 2.56, 2.67) (2.50, 2.52, 2.63) (2.48, 2.50, 2.60) (2.46, 2.49, 2.59)

n = 10
k∗− (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18)
h∗− (3.00, 2.97, 3.08) (3.00, 2.93, 3.05) (3.00, 2.92, 3.05) (3.00, 2.92, 3.05) (3.00, 2.92, 3.03)

0.5 (5.29, 5.24, 5.33) (5.24, 5.16, 5.25) (5.23, 5.13, 5.23) (5.22, 5.12, 5.22) (5.22, 5.12, 5.21)
0.7 (7.18, 7.12, 7.25) (7.08, 6.95, 7.10) (7.04, 6.90, 7.06) (7.02, 6.88, 7.04) (7.01, 6.87, 7.01)
0.8 (13.04, 12.97, 13.24) (12.75, 12.61, 12.89) (12.65, 12.50, 12.79) (12.60, 12.44, 12.74) (12.58, 12.41, 12.69)

k∗+ (0.25, 0.26, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.29) (0.25, 0.26, 0.29) (0.26, 0.26, 0.29)
h∗+ (3.50, 3.58, 3.88) (3.48, 3.56, 3.86) (3.48, 3.56, 3.86) (3.48, 3.56, 3.86) (3.47, 3.56, 3.85)

1.3 (9.60, 9.69, 10.11) (9.23, 9.32, 9.73) (9.12, 9.21, 9.61) (9.05, 9.15, 9.55) (9.01, 9.11, 9.50)
1.5 (4.30, 4.35, 4.53) (4.12, 4.16, 4.35) (4.07, 4.11, 4.29) (4.03, 4.08, 4.26) (4.01, 4.06, 4.23)
2.0 (2.11, 2.14, 2.23) (2.01, 2.04, 2.13) (1.98, 2.00, 2.09) (1.96, 1.99, 2.08) (1.95, 1.98, 2.06)

n = 15
k∗− (0.25, 0.25, 0.22) (0.26, 0.25, 0.22) (0.26, 0.25, 0.22) (0.26, 0.25, 0.22) (0.26, 0.25, 0.22)
h∗− (2.33, 2.23, 2.30) (2.26, 2.21, 2.29) (2.26, 2.21, 2.30) (2.26, 2.21, 2.26) (2.26, 2.21, 2.26)

0.5 (4.12, 4.04, 4.09) (4.05, 4.01, 4.05) (4.04, 4.00, 4.05) (4.04, 4.00, 4.03) (4.04, 3.99, 4.02)
0.7 (5.55, 5.37, 5.48) (5.37, 5.26, 5.38) (5.34, 5.24, 5.37) (5.33, 5.22, 5.30) (5.32, 5.22, 5.29)
0.8 (9.88, 9.63, 9.85) (9.53, 9.39, 9.60) (9.46, 9.32, 9.55) (9.42, 9.28, 9.45) (9.40, 9.26, 9.42)

k∗+ (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.30, 0.32) (0.29, 0.30, 0.32)
h∗+ (2.56, 2.61, 2.81) (2.54, 2.60, 2.79) (2.54, 2.60, 2.78) (2.54, 2.59, 2.78) (2.54, 2.59, 2.78)

1.3 (7.11, 7.19, 7.51) (6.84, 6.92, 7.22) (6.75, 6.84, 7.13) (6.71, 6.78, 7.08) (6.68, 6.75, 7.06)
1.5 (3.25, 3.29, 3.43) (3.11, 3.16, 3.29) (3.07, 3.12, 3.24) (3.05, 3.08, 3.22) (3.04, 3.07, 3.21)
2.0 (1.65, 1.67, 1.75) (1.58, 1.60, 1.67) (1.55, 1.58, 1.64) (1.54, 1.56, 1.63) (1.53, 1.55, 1.62)

Table 6: ARL1 values of CUSUM-γ2 control charts in the presence of measurement errors
for different values of B, τ , n, fixed η = 0.28, θ = 0.01, m = 1, γ0 = 0.05 (left side), γ0 = 0.1
(middle) and γ0 = 0.2 (right side).
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τ m = 1 m = 3 m = 5 m = 7 m = 10
n = 5

k∗− (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05) (0.11, 0.10, 0.05)
h∗− (6.42, 6.53, 6.96) (6.42, 6.54, 6.97) (6.42, 6.54, 6.97) (6.43, 6.54, 6.97) (6.42, 6.54, 6.97)

0.5 (10.37, 10.44, 10.70) (10.37, 10.45, 10.72) (10.38, 10.45, 10.72) (10.38, 10.45, 10.73) (10.38, 10.45, 10.73)
0.7 (14.02, 14.10, 14.41) (14.02, 14.11, 14.44) (14.03, 14.11, 14.45) (14.03, 14.11, 14.45) (14.03, 14.11, 14.45)
0.8 (24.54, 24.65, 25.14) (24.54, 24.66, 25.17) (24.54, 24.67, 25.17) (24.54, 24.67, 25.18) (24.54, 24.67, 25.18)

k∗+ (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25) (0.20, 0.21, 0.25)
h∗+ (6.08, 6.25, 6.96) (6.08, 6.24, 6.93) (6.09, 6.23, 6.90) (6.08, 6.24, 6.90) (6.08, 6.23, 6.90)

1.3 (16.47, 16.60, 17.18) (16.46, 16.59, 17.14) (16.47, 16.59, 17.13) (16.46, 16.59, 17.12) (16.46, 16.59, 17.12)
1.5 (7.22, 7.28, 7.54) (7.22, 7.28, 7.53) (7.23, 7.28, 7.52) (7.22, 7.28, 7.52) (7.22, 7.28, 7.52)
2.0 (3.40, 3.43, 3.55) (3.40, 3.43, 3.54) (3.40, 3.43, 3.54) (3.40, 3.43, 3.54) (3.40, 3.43, 3.54)

n = 7
k∗− (0.20, 0.18, 0.11) (0.20, 0.19, 0.11) (0.20, 0.19, 0.11) (0.20, 0.19, 0.11) (0.20, 0.19, 0.11)
h∗− (3.81, 3.93, 4.68) (3.80, 3.86, 4.65) (3.80, 3.84, 4.63) (3.80, 3.84, 4.63) (3.80, 3.84, 4.63)

0.5 (6.69, 6.81, 7.61) (6.68, 6.72, 7.57) (6.68, 6.71, 7.56) (6.68, 6.71, 7.56) (6.68, 6.71, 7.56)
0.7 (9.19, 9.33, 10.31) (9.18, 9.23, 10.26) (9.18, 9.22, 10.25) (9.18, 9.22, 10.25) (9.18, 9.22, 10.24)
0.8 (16.96, 17.14, 18.39) (16.95, 17.03, 18.32) (16.95, 17.01, 18.31) (16.95, 17.01, 18.30) (16.95, 17.01, 18.30)

k∗+ (0.22, 0.23, 0.26) (0.22, 0.23, 0.26) (0.22, 0.23, 0.26) (0.22, 0.23, 0.26) (0.22, 0.23, 0.26)
h∗+ (4.63, 4.74, 5.20) (4.63, 4.73, 5.17) (4.63, 4.73, 5.17) (4.63, 4.73, 5.16) (4.63, 4.73, 5.15)

1.3 (12.59, 12.71, 13.21) (12.59, 12.70, 13.18) (12.59, 12.70, 13.18) (12.59, 12.70, 13.17) (12.59, 12.70, 13.17)
1.5 (5.57, 5.63, 5.85) (5.57, 5.62, 5.84) (5.57, 5.62, 5.84) (5.57, 5.62, 5.83) (5.57, 5.62, 5.83)
2.0 (2.67, 2.70, 2.81) (2.67, 2.70, 2.80) (2.67, 2.70, 2.80) (2.67, 2.70, 2.80) (2.67, 2.70, 2.80)

n = 10
k∗− (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18) (0.22, 0.22, 0.18)
h∗− (3.00, 2.97, 3.08) (3.00, 2.95, 3.07) (3.00, 2.96, 3.06) (3.00, 2.96, 3.06) (3.00, 2.96, 3.07)

0.5 (5.29, 5.24, 5.33) (5.29, 5.22, 5.32) (5.29, 5.23, 5.30) (5.29, 5.23, 5.31) (5.29, 5.23, 5.32)
0.7 (7.18, 7.12, 7.25) (7.18, 7.09, 7.24) (7.18, 7.10, 7.22) (7.18, 7.10, 7.23) (7.18, 7.10, 7.24)
0.8 (13.04, 12.97, 13.24) (13.04, 12.93, 13.22) (13.04, 12.95, 13.20) (13.04, 12.95, 13.20) (13.04, 12.95, 13.22)

k∗+ (0.25, 0.26, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.28) (0.25, 0.26, 0.28)
h∗+ (3.50, 3.58, 3.88) (3.50, 3.57, 3.86) (3.53, 3.57, 3.85) (3.53, 3.57, 3.85) (3.53, 3.57, 3.85)

1.3 (9.60, 9.69, 10.11) (9.59, 9.69, 10.08) (9.63, 9.69, 10.08) (9.63, 9.69, 10.07) (9.63, 9.69, 10.07)
1.5 (4.30, 4.35, 4.53) (4.30, 4.34, 4.52) (4.32, 4.35, 4.52) (4.32, 4.34, 4.52) (4.32, 4.35, 4.52)
2.0 (2.11, 2.14, 2.23) (2.11, 2.13, 2.22) (2.12, 2.14, 2.22) (2.12, 2.13, 2.22) (2.12, 2.14, 2.22)

n = 15
k∗− (0.25, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.25, 0.22) (0.25, 0.25, 0.22)
h∗− (2.33, 2.23, 2.30) (2.33, 2.22, 2.30) (2.33, 2.27, 2.29) (2.33, 2.27, 2.29) (2.33, 2.27, 2.29)

0.5 (4.12, 4.04, 4.09) (4.12, 4.03, 4.08) (4.12, 4.07, 4.08) (4.12, 4.07, 4.08) (4.12, 4.07, 4.08)
0.7 (5.55, 5.37, 5.48) (5.55, 5.35, 5.47) (5.55, 5.44, 5.47) (5.55, 5.44, 5.47) (5.55, 5.44, 5.46)
0.8 (9.88, 9.63, 9.85) (9.88, 9.62, 9.83) (9.88, 9.73, 9.83) (9.88, 9.72, 9.83) (9.88, 9.72, 9.82)

k∗+ (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31) (0.29, 0.29, 0.31)
h∗+ (2.56, 2.61, 2.81) (2.56, 2.60, 2.79) (2.56, 2.61, 2.79) (2.56, 2.61, 2.79) (2.56, 2.61, 2.79)

1.3 (7.11, 7.19, 7.51) (7.11, 7.18, 7.49) (7.11, 7.18, 7.49) (7.11, 7.19, 7.49) (7.11, 7.19, 7.49)
1.5 (3.25, 3.29, 3.43) (3.25, 3.28, 3.42) (3.25, 3.28, 3.42) (3.25, 3.29, 3.42) (3.25, 3.28, 3.42)
2.0 (1.65, 1.67, 1.75) (1.65, 1.67, 1.74) (1.65, 1.67, 1.74) (1.65, 1.67, 1.74) (1.65, 1.67, 1.74)

Table 7: ARL1 values of CUSUM-γ2 control charts in the presence of measurement errors
for different values of m, τ , n, fixed η = 0.28, θ = 0.05, B = 1, γ0 = 0.05 (left side), γ0 = 0.1
(middle) and γ0 = 0.2 (right side).
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i X̄∗
i S∗

i γ̂ γ̂∗2 C∗+
i

1 906.4 476.0 0.525 0.27563 0.05581
2 805.1 493.9 0.614 0.37700 0.21300
3 1187.2 1105.9 0.932 0.86862 0.86181
4 663.4 304.8 0.459 0.21068 0.85269
5 1012.1 367.4 0.363 0.13177 0.76465
6 863.2 350.4 0.406 0.16484 0.70967
7 1561.0 1562.2 1.058 1.11936 1.60923
8 697.1 253.2 0.363 0.13177 1.52119
9 1024.6 120.9 0.118 0.01392 1.31531
10 355.3 235.2 0.662 0.43824 1.53374
11 485.6 106.5 0.219 0.04796 1.36189
12 1224.3 915.4 0.748 0.55950 1.70159
13 1365.0 1051.6 0.770 0.59290 2.07468
14 704.0 449.7 0.639 0.40832 2.26319
15 1584.7 1050.8 0.663 0.43957 2.48295
16 1130.0 680.6 0.602 0.36240 2.62555
17 824.7 393.5 0.477 0.22753 2.63327
18 921.2 391.6 0.425 0.18062 2.59408
19 870.3 730.0 0.839 0.70392 3.07820
20 1068.3 150.8 0.141 0.01988 2.87827

Table 8: Illustrative example of Phase II dataset.
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Downward chart, k− = 0.2, B = 1; m = 1; ΩD = [0.5; 1)

γ = 0.05 γ = 0.2
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Upward chart, k+ = 0.2, B = 1; m = 1; ΩI = (1; 2]
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Fig. 3: The effect of η and θ on the overall performance of the CUSUM-γ2 control charts in
the presence of the measurement error.
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Downward chart, k− = 0.2, η = 0.28,; θ = 0.05, m = 1; ΩD = [0.5; 1)
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Upward chart, k+ = 0.2, η = 0.28,; θ = 0.05, m = 1; ΩI = (1; 2]
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Fig. 4: The effect of B on the overall performance of the CUSUM-γ2 charts in the presence
of the measurement error for n = 5 (-�-) and n = 15 (−�−)
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Downward chart, k− = 0.2, η = 0.28,; θ = 0.05, B = 1; ΩD = [0.5; 1)

γ = 0.05 γ = 0.2
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Upward chart, k+ = 0.2, η = 0.28,; θ = 0.05, B = 1; ΩI = (1; 2]
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Fig. 5: The effect of m on the overall performance of the CUSUM-γ2 charts in the presence
of the measurement error for n = 5 (-�-) and n = 15 (−�−)


