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Abstract

Monitoring the ratio between two random normal variables plays an
important role in many industrial manufacturing processes. In this pa-
per, we suggest designing two one-sided Shewhart control charts moni-
toring this ratio. The numerical results show that the one-sided charts
have more advantages compared to the two-sided Shewhart chart pro-
posed previously in the literature. Moreover, we investigate the effect
of measurement error on the performance of these control charts where
the measurement error is supposed to follow a linear covariate error
model. The change of model parameters from an in-control condition
to an out-of-control is presented without using a strict assumption
about the independence of the shift size from measurement errors. A
valuable finding from this study is that taking multiple measurements
per item is not an effective way to reduce the negative effect of mea-
surement error on the Shewhart charts’ performance.

Keyword Shewhart control chart, Ratio distribution, Measurement er-
ror, One-sided chart, Linear covariate error.

1 Introduction

Designing a new control chart with higher performance in detecting shifts
is a vital aim in many studies in Statistical Process Control (SPC), see, for
example, Ren et al. 1 , Mukherjee and Rakitzis 2 , Ho et al. 3 , and Nguyen et
al. 4 . However, a requirement of being easy and convenient to implement also
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plays an equally important role in deciding what kind of control chart to use.
As a result, the Shewhart control chart introduced by Shewhart 5 since 1931
is widely used in many industrial processes. Although the performance of
the Shewhart chart in detecting small and moderate shifts is not as good as
the one of the other advanced charts like the CUSUM control chart (Brook
and Evans 6) and the EWMA control chart (Hunter 7), this kind of control
chart has a major advantage of being easy to implement. Moreover, the
Shewhart chart is well-known to be effective in detecting large process shifts.
Consequently, it is usually considered first to monitor a process.

The ratio of two normal variables is a major concern in several indus-
trial manufacturing processes. Several applications of this characteristic in
practice have been pointed out in the literature. Tran et al. 8 provided a
real example in some battery recycling plants in Italy where the requirement
of monitoring the ratio of “recyclable batteries” weight and “total batch”
weight to quantify the economic loss is needed. Celano and Castagliola 9 dis-
cussed another example in the food industry where the weight ratio between
“pumpkin seeds” and “flaxseeds” is the characteristic of interest. Typical
examples of the manufacturing environments that concern the ratio of two
variables wewe mentioned in Tran et al. 10,11 .

In order to enhance the practical use of the ratio chart, the effect of
measurement error has been considered in recent times. In fact, the problem
of measurement error has been investigated broadly in the literature, for
example, Linna et al. 12 , Tang et al. 13 , Tran et al. 14,15,16,17 , Cheng and
Wang 18 , Sabahno et al. 19 , Nguyen et al. 20 , and Zaidi et al. 21 . For the
case of the ratio control charts, Tran et al. 8 was the first to study the effect
of measurement error on a ratio Shewhart chart. However, in this study,
the authors used a relatively tight assumption about the observed value
of process shifts. That is, the observed process shift is independent from
measurement error. In this study, we would like to reduce this assumption
to make the study more practical. We use the same kind of control chart,
which is the Shewhart chart, to monitor the ratio under the presence of
measurement error. The effect of measurement error on the Shewhart ratio
control chart will be explored without using this assumption. The change
of parameters of the process in the presence of the measurement error will
be discussed in detail.

Another problem that should be paid attention to in designing a con-
trol chart monitoring the ratio is the asymmetry of the ratio distribution.
The distribution of a characteristic of interest is a deciding factor that influ-
ences the design of a control chart. For an asymmetric distribution, using
a two-sided control chart to monitor both an increase and a decrease of the
characteristic may lead to an ARL-biased (average run length) property in
the sense that the out-of-control ARL values are sometimes larger than the
in-control value. This issue has been mentioned in several studies such as
Nguyen et al. 22,23,24 , and Nguyen et al. 25 . The two-sided Shewhart control
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chart monitoring the ratio (say, the Shewhart-RZ control chart) suggested by
Celano and Castagliola 9 is also not an exception. An example of the ARL-
biased situation witnessed in Celano and Castagliola 9 will be illustrated in
section 4 of this paper. Therefore, in this study, we suggest designing two
one-sided Shewhart control charts to monitor separately an increase and a
decrease in the ratio. The goal of this paper is then to investigate the per-
formance of these one-sided control charts with or without the presence of
measurement error. Under an assumption of no measurement error, the sim-
ulated results show that the one-sided Shewhart-RZ control charts perform
better the two-sided Shewhart-RZ chart both in avoiding the ARL-biased
problem and in detecting ratio shifts. Under the presence of measurement
error, the effect of each parameter in the linear covariate error model on the
charts’ performance will be studied.

The rest of the paper is organized as follows. In section 2, we present
briefly a review of the sample distribution of the ratio between two normal
variables. Section 3 is to present the design and the implementation of the
two-sided Shewhart-RZ control charts. The performance of these control
charts in the case of no measurement error is given in section 4. Section 5
demonstrates a linear covariate error model for the ratio and an establish-
ment of the change in the model parameters from an in-control condition
to an out-of-control one. The implementation and the design of the two-
sided Shewhart-RZ control charts in the presence of measurement error are
discussed in section 6 while the effect of measurement error on the perfor-
mance of these charts is presented in section 7. An illustrative example of
the implementation of a two-sided Shewhart-RZ control chart under the ap-
pearance of measurement error is given in section 8. Section 9 is for some
concluding remarks.

2 A brief review of the sample distribution the
ratio

Consider a bivariate normal random vector W = (X,Y )T with the mean
vector µW and the variance-covariance matrix ΣW defined by

µW =

(
µX
µY

)
and ΣW =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
, (1)

where ρ is the correlation coefficient between X and Y ; σX and σY are the
standard deviation of X and Y . Let µX and µY denote their mean. Then
the coefficients of variations and the standard-deviation ratio of X and Y
are γX = σX

µX
γY = σY

µY
and ω = σX

σY
, respectively.

The ratio of X to Y is defined as Z = X/Y . A number of studies
on the distribution of Z can be found in the literature, see, for example,
Geary 26 , Hayya et al. 27 , Pham-Gia et al. 28 . Cedilnik et al. 29 proposed
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a general explicit expression for the probability density function (p.d.f) of
Z while its cumulative distribution function (c.d.f) and its inverse c.d.f
could be computed numerically as proposed in Celano et al. 30 . However,
these methods are relatively complicated to be implemented. Therefore, the
approximated distributions are often preferable. According to Celano and
Castagliola 9 , when the coefficient of variation of X and Y is not large, the
distribution of Z can be well approximated by

FZ(z|γX , γY , ω, ρ) ' Φ

(
A

B

)
, (2)

where Φ(.) is the c.d.f of the standard normal distribution, and where A
and B are functions of z, γX , γY , ω and ρ with

A =
z

γY
− ω

γX
,

B =
√
ω2 − 2ρωz + z2.

To be sure of the stability of a processes with normally distributed quality
parameters, the population dispersion should be significantly smaller than
the mean. Thus, the assumption about small values of γX , γY and then the
approximated distribution is reasonable. Based on the c.d.f in (2), it is easy
to show that the p.d.f of Z is

fZ(z|γX , γY , ω, ρ) '
(

1

BγY
− (z − ρω)A

B3

)
× φ

(
A

B

)
, (3)

where φ(.) is the p.d.f of the standard normal distribution. Some pictures
of the p.d.f of Z for the case ρ = 0.4, ω = 0.9γX/γY and different values of
γX and γY are drawn in Figure 1.

In the same way, an approximation for the i.d.f (inverse distribution
function) F−1

Z (p|γX , γY , ω, ρ) of Z is given by

F−1
Z (p|γX , γY , ω, ρ) '


−C2−

√
C2

2−4C1C3

2C1
if p ∈ (0, 0.5],

−C2+
√
C2

2−4C1C3

2C1
if p ∈ [0.5, 1),

(4)

where C1, C2 and C3 are functions of p, γX , γY , ω and ρ, i.e.

C1 =
1

γ2
Y

− Φ−1(p)2,

C2 = 2ω

(
ρΦ−1(p)2 − 1

γXγY

)
,

C3 = ω2

(
1

γ2
X

− Φ−1(p)2

)
,

and where Φ−1(.) is the i.d.f of the standard normal distribution.
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Figure 1: The probability density function of Z for the case ρ = 0.4, ω =
0.9γX/γY and different values of γX , γY .

3 Implementation of the one-sided Shewhart-RZ
control charts

In order to monitor the ratio Z, a set of n samples of quality characteristic
W at each sampling period, say {Wi,1,Wi,2, ...,Wi,n}, is collected. Suppose
that Wi,2 = (Xi,j , Yi,j)

T is a bivariate normal vector with mean vector

µW,i =

(
µX,i
µY,i

)
(5)

and covariance matrix

ΣW,i =

(
σ2
X,i ρσX,iσY,i

ρσX,iσY,i σ2
Y,i

)
(6)

Similar to Celano and Castagliola 9 , the following assumptions are supposed:

(i) There is a linear relationship between the mean and the standard
deviation of X and Y . That is, we have σX,i = γX × µX,i and
σY,i = γY × µY,i for every i. Since many quality characteristics have a
dispersion proportional to the population mean, it is practical to use
a known and constant coefficient of variation of both X and Y .
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(ii) when the process is in-control, the ratio
µX,i

µY,i
is equal to z0 for ev-

ery samples. This is an expected value to ensure the stability of the
process.

(iii) the sample units are allowed to change from sample to sample, i.e. it
is possible that µW,i 6= µW,k and ΣW,i 6= ΣW,k for i 6= k.

Then, the monitored statistic is

Ẑi =
µ̂X,i
µ̂Y,i

=
X̄i

Ȳi
=

∑n
j=1Xi,j∑n
j=1 Yi,j

, i = 1, 2, . . . (7)

In order to determine the distribution of Ẑi, we firstly consider that X̄i ∼
N(µX,i,

σX,i√
n

) and Ȳi ∼ N(µY,i,
σY,i√
n

). Then, the coefficients of variation of

X̄i and Ȳi are

γX̄ =
µX,i

σX,i
√
n

=
γX√
n
, (8)

γȲ =
µY,i

σY,i
√
n

=
γY√
n
. (9)

Similarly, the standard-deviations ratio ωi at each sampling period i is

ωi =
σX,i
σY,i

=
µX,i
µY,i

γX
γY

= z0 ×
γX
γY

= ω0 ∀i = 1, 2, . . . , (10)

where ω0 is the in-control standard-deviation ratio. The c.d.f and the i.d.f
of Ẑi now can be written as

FẐi
(z | n, γX , γY , z0, ρ0) = FZ(z | n, γX√

n
,
γY√
n
,
z0γX
γY

, ρ0) (11)

F−1

Ẑi
(p | n, γX , γY , z0, ρ0) = F−1

Z (p | n, γX√
n
,
γY√
n
,
z0γX
γY

, ρ0), (12)

with FZ(. . .) and F−1
Z (. . .) defined in (2) and (4).

It can be seen from the distributions in (2)-(3) (and also the Figure 1)
that the distribution of Z is skewed. Therefore, using a single two-sided
chart to monitor both an increase and a decrease in the ratio Z will lead
to a ARL-biased chart as in Celano and Castagliola 9 . We overcome this
problem by designing two one-sided charts monitoring the increase or the
decrease of the ratio separately. Other advantages of using two one-sided
charts to monitor a variable with an asymmetry distribution are further
discussed in Nguyen et al. 20 . In particular, the two one-sided control charts
consist of an upper-sided chart, which aims at detecting an increase in the
ratio (denoted as Shewhart-RZ+ chart in the remainder of the paper), and
a lower-sided chart, which aims at detecting a decrease in the ratio (denoted
as Shewhart-RZ− chart in the remainder of the paper).
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Given an in-control average run length ARL0, the lower control limit
LCL− of the Shewhart-RZ− chart is defined such that the type I error rate
is equal to α0 where ARL0 = 1/α0. Thus, the LCL− is equal to

LCL− = F−1
Z

(
α0 |

γX√
n
,
γY√
n
,
z0γX
γY

, ρ0

)
. (13)

The corresponding upper control limit UCL− of the Shewhart-RZ− chart is
UCL− = +∞.

Similarly, for the upward CV chart, the upper control limit UCL+ is
defined such that the type I error rate is equal to α0 . That means the UCL
is equal to

UCL+ = F−1
Z

(
1− α0 |

γX√
n
,
γY√
n
,
z0γX
γY

, ρ0

)
, (14)

The corresponding upper control limit LCL+ of the Shewhart-RZ− chart is
LCL+ = −∞.

In the implementation of these two control charts, when Ẑ < LCL− in
the Shewhart-RZ− chart or when Ẑ > UCL+ in the Shewhart-RZ+ chart,
the process is considered as out-of-control, and the assignable causes should
be investigated and removed. Otherwise, the process is believed to be still
in-control.

Now, let us assume that the in-control ratio z0 is shifted to z1 = τ × z0,
where τ > 0 is the shift size, and the in-control coefficient of correlation
ρ = ρ0 is shifted to ρ = ρ1 because of an out-of-control condition. For
the Shewhart type chart, the out-of-control average run length ARL1 is
calculated by

ARL =
1

p
(15)

where p is the probability of detecting a shift. In our case, the probability
p is definded as:

• for the Shewhart-RZ− control chart,

p = Pr(Ẑi < LCL−)

= FẐ

(
LCL− | γX√

n
,
γY√
n
,
z0γX
γY

, ρ0

)
, (16)

• for the Shewhart-RZ+ control chart,

p = Pr(Ẑi < UCL+)

= 1− FẐ
(
UCL+ | γX√

n
,
γY√
n
,
z0γX
γY

, ρ0

)
. (17)
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4 Performance of the one-sided Shewhart-RZ con-
trol charts without the presence of measurement
errors

In this section, we investigate the performance of the one-sided Shewhart-
RZ control charts based on an assumption that there is no measurement
error. For purpose of comparison, we consider the follwoing values of the
process parameters, which are exactly the same those considered in9:

• γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2}.

• n ∈ {1, 5, 7, 10, 15}.

• ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8} .

• τ ∈ {0.9, 0.95, 0.98, 0.99} for the Shewhart-RZ− chart and τ ∈ {1.01, 1.02,
1.05, 1.0} for the Shewhart-RZ+ chart.

Also, the in-control ARL is set at ARL0 = 200 and the in-control ratio is
z0 = 1. The control limits of the one-sided Shewhart-RZ control charts for
these parameters are presented in Table 1 (column titled “Without measure-
ment error”). The out-of-control ARL, say ARL1, for different values of the
shift size τ corresponding to these control limits are given in Table 2 (for
γX = γY , ρ0 = ρ1), Table 3 (for γX 6= γY , ρ0 = ρ1), Table 4 (for γX = γY ,
ρ0 6= ρ1) and Table 5 (for γX 6= γY , ρ0 6= ρ1) . Some simple conclusions can
be drawn from these tables as follows.

• In general, the control limits of the one-sided Shewhart-RZ control
charts show the same behavior as those of the two-sided Shewhart-
RZ control chart. Given (γX , γY ), the values of LCL− and UCL+

change with n and ρ0; and given the value of n and ρ0, the values
of LCL− and UCL+ change with (γX , γY ). Moreover, the relation
LCL− = 1/UCL+ still holds only for the case γX = γY . For instance,
with γX = γY = 0.01, ρ0 = 0.0, n = 5, we have LCL− = 0.9838 =
1/1.1064 = 1/UCL+ (Table 1).

• The one-sided Shewhart-RZ control charts overcome the ARL-biased
problem. This is shown by the values less than ARL0 = 200 of the
ARL1 in the one-sided Shewhart-RZ control chart. For example, when
γX = 0.2, γY = 0.01, n = 1, ρ1 = ρ0 = −0.4 and τ = 0.99, we have
ARL1 = 186.5 for the one-sided Shewhart-RZ chart (Table 3 in this
study) while ARL1 = 215.3 > 200 for the two-sided Shewhart-RZ
chart (Table 3 in Celano and Castagliola 9).

• Besides overcoming the ARL-biased problem, the one-sided Shewhart-
RZ control charts also outperform the two-sided chart in detecting the
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process shift. For example, with γX = γY = 0.2, ρ0 = ρ1 = 0.8, n = 5
and τ = 1.05, we have ARL1 = 25.5 in the Shewhart-RZ+ chart and
ARL1 = 43.9 in the two-sided Shewhart-RZ chart (Table 2).

PLEASE INSERT TABLE 1 ABOUT HERE

PLEASE INSERT TABLE 2 ABOUT HERE

PLEASE INSERT TABLE 3 ABOUT HERE

PLEASE INSERT TABLE 4 ABOUT HERE

PLEASE INSERT TABLE 5 ABOUT HERE

5 Linear covariate error model for the sample of
the ratio

In this section, we present a linear covariate error model for the sample
ratio. The change of parameters of a process after being shifted under the
presence of measurement error will be modeled accurately.

Consider again the bivariate normal random vector W ∼ N(µW,ΣW)
with the mean µW and the variance-covariacne matrix ΣW defined in (1).
Let {Wi,1,Wi,2, ...,Wi,n} be a set of n independent samples from this ran-
dom vector where Wi,j = (Xi,j , Yi,j)

T represents the quality characteristic
of the jth sample, j = 1, . . . , n at the time i, i = 1, 2, . . ..

The measurement error means that the true quality characteristics Wi,j

is unobservable. Instead, only a set of a multiple measurement from the jth

item at the the time i, say {W∗
i,j,1,W

∗
i,j,2, ...,W

∗
i,j,m},m > 1, is observable.

The linear covariate error model (Linna and Woodall 31) says that these
observations are related to the true value Wi,j by the following formula

W∗
i,j,k = A + BWi,j + εi,j,k, k = 1, . . . ,m, (18)

where A = (aX , aY )T is a (2 × 1) constatnt vector, B is a (2 × 2) matrix,
ε ∼ N(0,ΣM ) is a bivariate normal random vector independent of W. Let
σMX , σMY , and ρM ∈ (−1,+1) be the standard-deviation of measurement
error of X, Y ), and the corresponding coefficient of correlation. Then, the
variance-covariance matrix ΣM of ε is denoted by

ΣM =

(
σ2
MX ρMσMXσMY

ρMσMXσMY σ2
MY

)
, (19)

As in Tran et al. 8 , we consider the case B = I2×2, an identity matrix. That
is a constant vector of accuracy error A within the range of measurements
is assumed.
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Since the true value of Wi,j is not observed, the mean

W
∗
i,j =

1

m

m∑
k=1

W∗
i,j,k = A + BWi,j +

1

m

m∑
k=1

εi,j,k (20)

is often considered as its representation. W
∗
i,j = (X̄∗i,j , Ȳ

∗
i,j) of the observ-

able quantities {W∗
i,j,1, W∗

i,j,2, ...,W
∗
i,j,m} is often considered as a repre-

sented value for the true value Wi,j . Formula (20) shows that W
∗
i,j is also

a bivariate normal random vector with the mean vector

µW∗ = A + BµW (21)

and the variance-covariance matrix

ΣW∗ = BΣWBT + ΣM = ΣW +
1

m
ΣM . (22)

Based on these general formulas, in the sequel we will study the change
of the process parameters under the measurement error when the process is
shifted.

When the process is in-control, we denote the mean vector of the true
value Wi,j = (Xi,j , Yi,j) as µ0,W = (µ0,X , µ0,Y )T and the coefficient of
correlation between Xi,j and Yi,j as ρ = ρ0. As a result, the mean ratio
is z0 =

µ0,X
µ0,Y

. Under an abnormal condition, suppose that the in-control

ratio z0 is shifted to z1 = τz0, where τ is the shift size, and the in-control
coefficient of correlation ρ = ρ0 is shifted to ρ = ρ1. The shift of z0 can
be expressed by the shift of µW from the in-control value µ0,W to the out-

of-control value µ1,W = (µ0,X + δXσX , µ0,Y + δY σY )T , where δX and δY
represent the size of the mean shift of Xi,j and Yi,j , the standard deviation
σX and σY are supposed to be the same. The out-of-control mean ratio is
now equal to

z1 =
µ0,X + δXσX
µ0,Y + δY σY

= τ × z0 = τ × µ0,X

µ0,Y
,

Thus, the shift size τ can be expressed as

τ =
1 + δXγX
1 + δY γY

or equivalent,
1 + δXγX = τ(1 + δY γY ). (23)

Now, if we express the mean vector and the variance-covariance matrix
of W

∗
i,j in the form

µW ∗ =

(
µX∗

µY ∗

)
and ΣW ∗ =

(
σ2
X∗ ρ∗σXσY

ρ∗σX∗σY ∗ σ2
Y ∗

)
, (24)
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the equations (21) and (22) lead to

µX∗ = aX + µX + δXσX , (25)

µY ∗ = aY + µY + δY σY , (26)

σ2
X∗ = σ2

X +
σ2
MX

m
, (27)

σ2
Y ∗ = σ2

Y +
σ2
MY

m
, (28)

ρ∗ =
ρσXσY + ρM

σMXσMY
m

σX∗σY ∗
. (29)

Therefore, the coefficients of variation γX∗ = σX∗
µX∗ and γY ∗ = σY ∗

µY ∗ of X̄∗i,j
and Ȳ ∗i,j are equal to

γX∗ =

√
σ2
X +

σ2
MX
m

aX + µ0,X + δXσX
, (30)

γY ∗ =

√
σ2
Y +

σ2
MY
m

aY + µ0,Y + δXσY
. (31)

If we divide the numerator of the fraction in (30) by σX , its denominator by
µ0,X and then replace 1 + δXσX by τ(1 + δY σY ) as in (23), the coefficient
of variation γX∗ in (30) can be rewritten as

γX∗ =

√
1 +

η2X
m

1 + δXγX + θX
× γX =

√
1 +

η2X
m

τ(1 + δY γY ) + θX
× γX (32)

where ηX = σMX
σX

, θX = aX
µ0,X

, and γX = σX
µ0,X

.

Similarly, the coefficients of variation γY ∗ in (31) and the coefficient of cor-
relation ρ∗ in (29) can be expressed by

γY ∗ =

√
1 +

η2Y
m

1 + δY γY + θY
× γY , (33)

ρ∗ =
ρ+ ρM

ηXηY
m√

1 + η2
X/m

√
1 + η2

Y /m
, (34)

where ηY = σMY
σY

, θY = aY
µ0,Y

and γY = σY
µ0,Y

. In addition, the standard-

deviation ratio ω∗ = σX∗
σY ∗ is equal to

ω∗ =

√√√√1 +
η2X
m

1 +
η2Y
m

× ω, (35)
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where ω = σX
σY

. By these notations, it can be seen that the in-control and
out-of-control ratio under the presence of the measurement error are

z∗0 =
µ0,X∗

µ0,Y ∗
=
µ0,X + aX
µ0,Y + aY

=
1 + θX
1 + θY

× z0 (36)

z∗1 =
µ1,X∗

µ1,Y ∗
=
aX + µ0,X + δXσX
aY + µ0,Y + δY σY

=
1 + θX + δXγX
1 + θY + δY γY

× z0 (37)

The equations (36)-(37) show that in general we do not have z∗1 = τz∗0 .

6 Design and implementation of the Shewhart-RZ
control chart with measurement error

Under the presence of measurement error, the monitored statistic in (7) is
of the form

Ẑ∗i =
µ̂X∗

i

µ̂Y ∗
i

=
X̄∗i
Ȳ ∗i

=

∑n
j=1X

∗
i,j∑n

j=1 Y
∗
i,j

. (38)

where ¯̄X∗i = 1
n

∑n
j=1 X̄

∗
i,j ,

¯̄Y ∗i = 1
n

∑n
j=1 Ȳ

∗
i,j , X̄

∗
i,j and Ȳ ∗i,j are two compo-

nents of the bivariate normal vector W
∗
i,j in (20).

From their definition, it is easy to see that ¯̄X∗i ∼ N(µX∗ , σX∗√
n

) and
¯̄X∗i ∼ N(µY ∗ , σY ∗√

n
), the coefficients of variation of ¯̄X∗i and ¯̄Y ∗i are now

γX̄∗ =
σX∗

µX∗
√
n

=
γX∗√
n
, (39)

γȲ ∗ =
σY ∗

µY ∗
√
n

=
γY ∗√
n
, (40)

and the standard-deviation ratio ω∗i of ¯̄X∗i and ¯̄Y ∗i is

ω∗i =
σX∗/

√
n

σY ∗/
√
n

=
σX∗

σY ∗
= ω∗ (41)

The c.d.f and the inverse c.d.f of Ẑ∗i now can be obtained from (11) and
(12) where γX , γY , ω and ρ are replaced by γ ¯̄X∗ , γ ¯̄Y ∗ , ω∗ and ρ∗ defined in
(39), (40), (41) and (34).

The design and the implementation of the one-sided Shewhart-RZ con-
trol chart under the presence of measurement error are similar to those of
the one-sided Shewhart-RZ control chart without measurement error. The
different is that the distribution of Ẑi in (13)-(14) and (16)-(17) should be
replaced by the distribution of Ẑ∗i .

In the previous section, we evaluate the performance of the Shewhart-
RZ control chart through the ARL. This measurement is calculated based
on a predetermined specific shift size. However, it is no doubt that specific

12



size of the shift in the ratio can not be predetermined exactly. Therefore,
in practice, quality practitioners prefer to consider a range of the shift size,
say Ω = [a, b] rather than a particular size. Moreover, the use of a uniform
distribution has been widely suggested to represent the unknown shift sizes
in the literature. Following this argument, we now evaluate the performance
of the proposed charts in the presence of measurement error through the
EARL (expected average run length), which is defined as

EARL =

∫
Ω
ARL× fτ (τ)dτ, (42)

where fτ (τ) = 1
b−a for τ ∈ Ω. Similar to Tran et al. 8 , the following two

different ranges of the shift size are considered: ΩD = [0.9, 1) for a decreasing
case of τ and ΩI = [1, 1.1) for an increasing case of τ .

7 The effect of measurement error on the one-
sided Shewhart-RZ control charts

The effect of measurement error on the proposed charts is presented in this
section. Without loss of generality, the in-control values of the ratio and the
ARL are supposed to be z0 = 1 and ARL0 = 200. We also suppose that the
size of the mean shift of Yi,j is δY = 1. Moreover, the values of γX , γY and
ρ0 are considered the same as those in the section 4, except for the case of
n: we consider only two values of the sample size, n ∈ {1, 15}, to avoid the
cumbersome in presented results.

Table 1 (the rightmost block titled “with measurement error”) shows
the control limits LCL− and UCL+ of the one-sided Shewhart-RZ control
charts in the presence of measurement error for the case θX = θY = 0.01,
ηX = ηY = 0.01 and ρM = 0.5. As can be seen from this table, the
measurement error affects the value of the control limits. However, the
behavior of the control limits in the presence of the measurement error is
still the same as that in the case of no measurement error. For example, we
still have UCL+ = 1/LCL− when γX = γY .

In order to see the effect of precision errors (represented by ηX and ηY )
on the performance of the one-sided Shewhart-RZ charts, we fix the value
of γX = γY ∈ {0.01, 0.2}, ρM = 0, θX = θY = 0, ρ0 = ρ1 = −0.8 or
ρ0 = −0.4, ρ1 = −0.8, and we considere a range of ηX and ηY , which is
ηX ∈ {0, 0.1, 0.2, . . . , 1} and ηY ∈ {0, 0.1, 0.2, . . . , 1}. The corresponding
EARL values are presented in Figures 2-3. Since the increase of ηX and
ηY leads to the increase of the EARL, we can say that the precision errors
have a negative impact on the charts’ performance. For example, given n =
1,ΩD = (1, 1.1], ρ0 = ρ1 = 0.8, γX = γY = 0.2, we obtain EARL = 151.93
when ηX = ηY = 0.1 and EARL = 168.85 when ηX = ηY = 1 (Figure 2).
However, this influence is negligible when the precision errors are not too
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large. For instance, in Figure 3 with n = 1, ΩI = [0.9, 1), ρ0 = 0.4, ρ1 = 0.8,
γX = γY = 0.01, we have EARL = 5.23 when ηX = ηY = 0.5 compared to
EARL = 4.85 when ηX = ηY = 0.0, which corresponds to the case of no
measurement error.

PLEASE INSERT FIGURE 2 ABOUT HERE
PLEASE INSERT FIGURE 3 ABOUT HERE

We investigate the effect of accuracy errors (represented by θX and θY ) on
the global performance of the Shewhart-RZ control chart in Figures 4-5 by
allowing θX and θY to take the value in {0, 0.005, 0.01, ..., 0.05} and fixing
γX = γY ∈ {0.01, 0.2}, ρM = 0, ηX = ηY = 0, ρ0 = ρ1 = −0.8 (Figure 2) and
ρ0 = −0.4, ρ1 = −0.8 (Figure 3). These figures show that the effect of θX and
θY on the value of EARL depends on the value of ρ0 and ρ1. In this study,
when ρ0 = ρ1 = −0.8, the increase of θX and the decrease of θY lead to the
increase of the EARL (Figure 2). In contrast, when ρ0 = −0.4, ρ1 = −0.8,
the EARL increases when θX decreases and θY increases. Take the case
n = 1,ΩI = [0.9, 1), ρ0 = ρ1 = 0.8, γX = γY = 0.2 in Figure 4 as an example:
we have EARL = 104.60 when θX = 0.005, θY = 0.05 and EARL = 113.56
when θX = 0.05, θY = 0.005. Moreover, it is also important to see that
the larger value of n improves significantly the charts’ performance: the
values of EARL corresponding to n = 15 are always smaller than those
corresponding to n = 1 regardless of the presence of measurement error.

PLEASE INSERT FIGURE 4 ABOUT HERE
PLEASE INSERT FIGURE 5 ABOUT HERE

The effect of ρM on the one-sided Shewhart-RZ control charts is illus-
trated in Figure 6 (for ρ0 = ρ1 = −0.8) and Figure 7 (for ρ0 = −0.4, ρ1 =
−0.8), where we fix γX = γY ∈ {0.01, 0.2}, θX = θY = 0.05, ηX = ηY = 0.28
and we let ρM to take the values in {−1,−0.9, . . . , 0.9, 1}. As can be seen
from these figures, the larger the value of ρM is, the smaller the value of
EARL is. For example, with n = 1, ΩD = [0.9, 1), ρ0 = ρ1 = −0.8, γX =
γY = 0.2, we have EARL = 58.60 when ρM = −0.8 and EARL = 56.19
when ρM = 0.8 (Figure 7).

PLEASE INSERT FIGURE 6 ABOUT HERE
PLEASE INSERT FIGURE 7 ABOUT HERE

It is recommended in several studies in the literature that take multi-
ple measurements per item is a way to compensate for the negative effect
of measurement error on the performance of a control chart. In order to
check if this property is still the case for the Shewhart-RZ control chart,
we calculate the value of EARL when m increases from 1 to 10 given the
values of γX = γY ∈ {0.01, 0.2}, θX = θY = 0.05, and ηX = ηY = 0.28.
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The obtained results are presented in Figures 8-9. These results show a dif-
ferent conclusion that the increase of m does not improve significantly the
Shewhart-RZ charts’ performance. For example, with n = 1, ΩD = [0.9, 1),
γX = γY = 0.2, θX = θY = 0.05, ηX = ηY = 0.28 and ρ0 = −0.4, ρ1 = −0.8
in Figure 9, we obtain an insignificant decrease from EARL = 58.54 when
m = 1 to EARL = 58.18 when m = 10.

PLEASE INSERT FIGURE 8 ABOUT HERE
PLEASE INSERT FIGURE 9 ABOUT HERE

8 Illustrative example

In this section, we present an illustrative example of the implementation of
the one-sided Shewhart-RZ control chart in the presence of the measurement
error. We consider a real situation of managing waste batteries in some
battery recycling plants in Italy, which was introduced in Tran et al. 8 .

At the first step of the recycling process, the batteries are received by
collecting facilities incoming disposed material into designated drums, sacks
or boxes, denoted as “batches”. Many disposed materials that are not re-
cyclable batteries like small electronic devices, metals and other kinds of
waste might be included in these batches. To reduce the recycling cost, re-
moving these disposed materials from the batches is required. In a recycling
plant, the ratio Z of recyclable batteries weight (denoted by X) to total
batch weight (denoted by Y ) is monitored to quantify the cost. Similar to
Tran et al. 8 , we suppose that a value of 0.95 is the value of interest for the
in-control ratio z0 to avoid an economic loss.

At regular intervals i = 1, 2, . . ., a sample of n = 5 is collected with
batches having nominal weight 100kg in the process of monitoring the ratio
Z. Because of the variability, the batch weight is considered as a random
normal variable Y ∼ N(100, 1). The recyclable batteries’ weight within each
batch is also considered as a normal random variable with a mean of µX =
95kg. The sample average weights X̄∗i = 1

n

∑n
j=1X

∗
i,j and Ȳ ∗i = 1

n

∑n
j=1 Y

∗
i,j

are recorded. a set of simulated samples of incoming material in the battery
recycling process introduced in Tran et al. 8 has been reproduced in Table
6. A decreasing shift has been simulated from sample #11 with the size up
to 1% of the in-control ratio z0. Moreover, the coefficients of variations of
two variables are γX = 0.01 and γY = 0.01, and the in-control correlation
coefficient between them is ρ0 = 0.8.

We suppose the following parameters of the linear covariate error model:
θX = θY = 0, ηX = ηY = 0.28, ρ1 = 0.8 and ρM = 0. Also, we apply a
smoothing value of λ = 0.2. Then, the control limit of the Shewhart-RZ−

control chart with measurement errors is LCL− = 0.9419487.
The Shewhart-RZ− control chart corresponding to this experiment is

illustrated in Figure 10. As can be seen from this figure, the samples #11 is
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plotted below the control limit, indicating that an assignable cause may have
appeared to shift the process to the out-of-control condition. This result is
in accord with the finding in Tran et al. 8 .

PLEASE INSERT TABLE 6 ABOUT HERE

PLEASE INSERT FIGURE 10 ABOUT HERE

9 Concluding remarks

In this paper, we have proposed two one-sided Shewhart control charts to
monitor the ratio between two random normal variables. This is to over-
come the ARL-biased problem of the two-sided Shewhart-RZ control chart
designed in Celano and Castagliola 9 . These one-sided charts also outper-
form the two-sided Shewhart-RZ control chart in detecting process shifts.
Moreover, we have modeled the change of parameters when the process is
shifted from an in-control condition to an out-of-control status under the
presence of measurement error in detail. The negative effect of measure-
ment errors on the performance of the two one-sided Shewhart-RZ charts
has been also explored. Reducing these negative effects on the ratio control
chart by combining with adaptive strategies like variable sampling interval
or with run rules could be an interest in future research.
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Table 1: Values of LCL− (first row) and UCL+ (second row) for the
one-sided Shewhart-RZ control charts in the presence of Measurement Er-
ror, for z0 = 1, ARL0 = 200, θX = θY = 0.01, ηX = ηY = 0.28,
ρM = 0.5, n ∈ {1, 5, 7, 10, 15}, γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2} and
ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}

Without measurement error With measurement error

γX γY ρ0 n = 1 n = 5 n = 7 n = 10 n = 15 n = 1 n = 5 n = 7 n = 10 n = 15

0.01 0.01 −0.8 0.9523 0.9784 0.9817 0.9847 0.9875 0.9527 0.9786 0.9819 0.9848 0.9876
1.0501 1.0221 1.0186 1.0156 1.0127 1.0496 1.0219 1.0185 1.0154 1.0126

−0.4 0.9578 0.9809 0.9838 0.9865 0.9889 0.9580 0.9810 0.9839 0.9865 0.9890
1.0441 1.0195 1.0164 1.0137 1.0112 1.0438 1.0193 1.0163 1.0136 1.0111

0.0 0.9642 0.9838 0.9863 0.9885 0.9906 0.9642 0.9838 0.9863 0.9886 0.9906
1.0371 1.0164 1.0139 1.0116 1.0095 1.0371 1.0164 1.0139 1.0116 1.0094

0.4 0.9722 0.9875 0.9894 0.9911 0.9927 0.9718 0.9873 0.9893 0.9910 0.9927
1.0286 1.0127 1.0107 1.0090 1.0073 1.0290 1.0129 1.0109 1.0091 1.0074

0.8 0.9838 0.9927 0.9939 0.9949 0.9958 0.9827 0.9922 0.9934 0.9945 0.9955
1.0164 1.0073 1.0062 1.0052 1.0042 1.0176 1.0078 1.0066 1.0055 1.0045

0.20 0.20 −0.8 0.3375 0.6405 0.6877 0.7320 0.7757 0.4141 0.6904 0.7321 0.7710 0.8091
2.9631 1.5613 1.4542 1.3662 1.2891 2.4147 1.4483 1.3658 1.2970 1.2359

−0.4 0.3800 0.6746 0.7184 0.7593 0.7992 0.4561 0.7203 0.7588 0.7944 0.8291
2.6316 1.4823 1.3919 1.3171 1.2512 2.1924 1.3883 1.3179 1.2588 1.2062

0.0 0.4377 0.7166 0.7559 0.7922 0.8274 0.5109 0.7564 0.7908 0.8222 0.8527
2.2849 1.3955 1.3229 1.2624 1.2087 1.9574 1.3220 1.2646 1.2162 1.1728

0.4 0.5236 0.7721 0.8049 0.8347 0.8634 0.5883 0.8032 0.8317 0.8576 0.8825
1.9100 1.2952 1.2424 1.1980 1.1582 1.6997 1.2451 1.2024 1.1660 1.1332

0.8 0.6853 0.8611 0.8821 0.9009 0.9186 0.7212 0.8744 0.8933 0.9103 0.9263
1.4592 1.1614 1.1337 1.1100 1.0886 1.3866 1.1437 1.1194 1.0986 1.0795

0.01 0.20 −0.8 0.6462 0.8052 0.8304 0.8542 0.8778 0.6823 0.8290 0.8517 0.8729 0.8939
2.1053 1.3114 1.2516 1.2025 1.1596 1.8208 1.2553 1.2078 1.1684 1.1335

−0.4 0.6527 0.8088 0.8336 0.8569 0.8801 0.6878 0.8319 0.8542 0.8751 0.8957
2.0843 1.3056 1.2468 1.1987 1.1566 1.8063 1.2508 1.2042 1.1654 1.1311

0.0 0.6594 0.8125 0.8368 0.8597 0.8824 0.6934 0.8350 0.8569 0.8774 0.8976
2.0632 1.2996 1.2420 1.1948 1.1536 1.7916 1.2463 1.2005 1.1624 1.1288

0.4 0.6662 0.8162 0.8401 0.8625 0.8848 0.6992 0.8381 0.8596 0.8797 0.8995
2.0419 1.2936 1.2372 1.1909 1.1505 1.7769 1.2417 1.1967 1.1594 1.1264

0.8 0.6734 0.8201 0.8434 0.8654 0.8872 0.7051 0.8412 0.8623 0.8820 0.9015
2.0203 1.2875 1.2322 1.1869 1.1473 1.7619 1.2370 1.1929 1.1563 1.1239

0.20 0.01 −0.8 0.4750 0.7625 0.7990 0.8316 0.8624 0.4668 0.7591 0.7961 0.8292 0.8604
1.5476 1.2420 1.2042 1.1706 1.1392 1.5540 1.2451 1.2069 1.1729 1.1410

−0.4 0.4798 0.7659 0.8020 0.8343 0.8646 0.4712 0.7623 0.7990 0.8317 0.8625
1.5322 1.2364 1.1997 1.1669 1.1362 1.5393 1.2398 1.2025 1.1693 1.1382

0.0 0.4847 0.7694 0.8051 0.8369 0.8669 0.4758 0.7656 0.8019 0.8342 0.8647
1.5166 1.2308 1.1951 1.1632 1.1332 1.5246 1.2345 1.1982 1.1658 1.1354

0.4 0.4897 0.7730 0.8083 0.8397 0.8692 0.4805 0.7690 0.8049 0.8368 0.8669
1.5010 1.2251 1.1904 1.1594 1.1302 1.5097 1.2291 1.1937 1.1622 1.1325

0.8 0.4950 0.7767 0.8115 0.8425 0.8716 0.4854 0.7724 0.8079 0.8395 0.8691
1.4851 1.2193 1.1856 1.1555 1.1271 1.4946 1.2236 1.1892 1.1585 1.1296
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Table 2: ARL of the one-sided Shewhart-RZ control charts for γX ∈ {0.01, 0.2}, γY ∈
{0.01, 0.2}, γX = γY , ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, ρ0 = ρ1, n ∈ {1, 5, 7, 10, 15}.

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
τ n = 1 n = 5 n = 7 n = 10 n = 15 n = 1 n = 5 n = 7 n = 10 n = 15

ρ0 = ρ1 = −0.8
0.90 1.0 1.0 1.0 1.0 1.0 112.1 42.1 32.0 23.2 15.4
0.95 1.8 1.0 1.0 1.0 1.0 150.7 90.5 77.8 64.7 50.8
0.98 15.3 2.4 1.7 1.3 1.1 178.9 145.2 136.3 126.0 113.4
0.99 49.1 12.2 8.3 5.4 3.3 189.2 170.3 164.9 158.5 150.1
1.01 49.8 12.5 8.5 5.6 3.4 189.3 170.6 165.3 158.8 150.6
1.02 16.0 2.5 1.7 1.3 1.1 179.3 146.1 137.3 127.1 114.6
1.05 2.0 1.0 1.0 1.0 1.0 152.8 93.9 81.3 68.2 54.0
1.10 1.0 1.0 1.0 1.0 1.0 118.4 48.3 37.5 27.7 18.8

ρ0 = ρ1 = −0.4
0.90 1.0 1.0 1.0 1.0 1.0 105.5 35.2 26.0 18.3 11.8
0.95 1.5 1.0 1.0 1.0 1.0 146.4 82.1 69.3 56.4 43.1
0.98 11.7 1.8 1.4 1.1 1.0 176.8 139.5 129.8 118.8 105.5
0.99 41.5 9.2 6.2 4.0 2.5 188.1 166.9 160.9 153.8 144.7
1.01 42.1 9.4 6.3 4.1 2.5 188.2 167.2 161.3 154.2 145.1
1.02 12.2 1.9 1.4 1.1 1.0 177.3 140.5 130.9 120.0 106.8
1.05 1.6 1.0 1.0 1.0 1.0 148.6 85.6 72.8 59.8 46.1
1.10 1.0 1.0 1.0 1.0 1.0 112.1 40.9 30.9 22.2 14.6

ρ0 = ρ1 = 0.0
0.90 1.0 1.0 1.0 1.0 1.0 95.7 26.8 19.1 12.9 8.0
0.95 1.2 1.0 1.0 1.0 1.0 139.7 70.7 58.1 45.8 33.7
0.98 8.0 1.4 1.1 1.0 1.0 173.6 131.0 120.4 108.5 94.4
0.99 32.2 6.2 4.1 2.7 1.8 186.4 161.7 154.9 146.8 136.6
1.01 32.7 6.3 4.2 2.8 1.8 186.5 162.0 155.2 147.2 137.1
1.02 8.4 1.4 1.1 1.0 1.0 174.1 132.1 121.6 109.8 95.8
1.05 1.2 1.0 1.0 1.0 1.0 142.1 74.2 61.4 48.9 36.4
1.10 1.0 1.0 1.0 1.0 1.0 102.7 31.8 23.1 16.0 10.1

ρ0 = ρ1 = 0.4
0.90 1.0 1.0 1.0 1.0 1.0 79.3 16.5 11.1 7.2 4.3
0.95 1.0 1.0 1.0 1.0 1.0 127.5 53.7 42.0 31.5 21.7
0.98 4.3 1.1 1.0 1.0 1.0 167.6 116.5 104.6 91.7 76.9
0.99 20.6 3.3 2.3 1.6 1.2 183.2 152.3 144.1 134.5 122.7
1.01 21.0 3.4 2.3 1.6 1.2 183.3 152.7 144.6 135.1 123.3
1.02 4.5 1.1 1.0 1.0 1.0 168.1 117.7 105.9 93.0 78.3
1.05 1.0 1.0 1.0 1.0 1.0 130.4 57.0 45.1 34.1 23.8
1.10 1.0 1.0 1.0 1.0 1.0 86.6 20.2 13.9 9.1 5.5

ρ0 = ρ1 = 0.8
0.90 1.0 1.0 1.0 1.0 1.0 42.3 4.6 3.0 2.0 1.4
0.95 1.0 1.0 1.0 1.0 1.0 93.8 23.3 16.2 10.8 6.6
0.98 1.4 1.0 1.0 1.0 1.0 148.6 80.2 67.1 54.2 40.9
0.99 6.2 1.2 1.1 1.0 1.0 172.6 125.7 114.3 101.9 87.3
1.01 6.3 1.2 1.1 1.0 1.0 172.8 126.2 115.0 102.5 88.0
1.02 1.4 1.0 1.0 1.0 1.0 149.5 81.6 68.5 55.5 42.1
1.05 1.0 1.0 1.0 1.0 1.0 97.3 25.5 18.0 12.0 7.4
1.10 1.0 1.0 1.0 1.0 1.0 49.0 5.9 3.8 2.4 1.6

18



Table 3: ARL of the one-sided Shewhart-RZ control charts for γX ∈ {0.01, 0.2}, γY ∈
{0.01, 0.2}, γX 6= γY , ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, ρ0 = ρ1, n ∈ {1, 5, 7, 10, 15}.

(γX = 0.01, γY = 0.2) (γX = 0.2, γY = 0.01)
τ n = 1 n = 5 n = 7 n = 10 n = 15 n = 1 n = 5 n = 7 n = 10 n = 15

ρ0 = ρ1 = −0.8
0.90 31.7 9.6 6.9 4.8 3.1 96.3 20.3 13.2 8.1 4.6
0.95 75.4 36.4 29.1 22.3 15.7 140.3 61.4 47.6 35.1 23.6
0.98 133.6 96.7 87.1 76.6 64.3 174.0 123.9 111.0 96.9 80.7
0.99 163.1 138.0 130.7 122.1 111.2 186.6 157.2 148.7 138.7 126.1
1.01 186.8 157.6 149.1 139.2 126.6 163.4 138.5 131.2 122.6 111.9
1.02 174.5 125.0 112.3 98.3 82.1 134.7 98.0 88.5 77.9 65.7
1.05 142.7 64.8 50.8 37.9 25.8 78.8 39.2 31.6 24.3 17.4
1.10 103.3 24.6 16.4 10.3 5.9 36.8 11.9 8.7 6.1 3.9

ρ0 = ρ1 = −0.4
0.90 30.4 9.2 6.6 4.6 3.0 95.6 19.6 12.7 7.8 4.4
0.95 73.6 35.2 28.1 21.4 15.1 139.8 60.3 46.6 34.2 22.9
0.98 132.2 95.2 85.6 75.1 62.9 173.8 123.0 110.0 95.8 79.6
0.99 162.2 136.9 129.5 120.8 109.9 186.5 156.7 148.0 137.9 125.1
1.01 186.6 157.1 148.5 138.4 125.7 162.5 137.4 130.0 121.4 110.5
1.02 174.3 124.2 111.3 97.2 81.0 133.2 96.5 87.0 76.5 64.3
1.05 142.3 63.8 49.8 37.0 25.1 76.9 37.9 30.5 23.4 16.7
1.10 102.6 23.9 15.9 9.9 5.7 35.4 11.4 8.3 5.8 3.8

ρ0 = ρ1 = 0.0
0.90 29.1 8.7 6.3 4.4 2.9 94.9 19.0 12.2 7.4 4.2
0.95 71.6 34.0 27.1 20.6 14.4 139.3 59.3 45.6 33.3 22.1
0.98 130.6 93.6 84.0 73.6 61.5 173.5 122.1 109.0 94.7 78.4
0.99 161.2 135.6 128.2 119.5 108.5 186.4 156.1 147.3 137.0 124.1
1.01 186.5 156.5 147.8 137.5 124.7 161.5 136.1 128.7 120.0 109.1
1.02 174.0 123.3 110.3 96.1 79.8 131.7 94.9 85.4 74.9 62.8
1.05 141.8 62.7 48.8 36.0 24.3 75.0 36.6 29.4 22.5 16.0
1.10 101.9 23.2 15.3 9.5 5.4 34.0 10.9 7.9 5.5 3.6

ρ0 = ρ1 = 0.4
0.90 27.8 8.3 6.0 4.1 2.7 94.1 18.4 11.7 7.1 4.0
0.95 69.6 32.7 26.0 19.7 13.8 138.8 58.2 44.6 32.3 21.4
0.98 128.9 91.9 82.4 72.0 60.0 173.3 121.2 107.9 93.5 77.1
0.99 160.1 134.3 126.8 118.0 107.0 186.2 155.5 146.6 136.1 123.1
1.01 186.4 155.9 147.0 136.7 123.7 160.5 134.9 127.4 118.6 107.7
1.02 173.8 122.3 109.2 94.9 78.5 130.0 93.2 83.8 73.3 61.3
1.05 141.3 61.6 47.7 35.0 23.5 73.0 35.3 28.3 21.6 15.2
1.10 101.2 22.5 14.7 9.1 5.2 32.5 10.3 7.5 5.2 3.4

ρ0 = ρ1 = 0.8
0.90 26.4 7.8 5.6 3.9 2.6 93.4 17.7 11.3 6.8 3.8
0.95 67.5 31.5 24.9 18.8 13.1 138.3 57.1 43.5 31.4 20.6
0.98 127.2 90.1 80.7 70.3 58.4 173.0 120.2 106.8 92.3 75.8
0.99 159.0 133.0 125.4 116.6 105.5 186.1 154.9 145.8 135.2 122.0
1.01 186.2 155.3 146.3 135.7 122.6 159.3 133.5 126.0 117.2 106.1
1.02 173.5 121.4 108.1 93.7 77.2 128.3 91.5 82.0 71.6 59.7
1.05 140.8 60.5 46.6 34.0 22.7 70.8 34.0 27.1 20.7 14.5
1.10 100.4 21.7 14.2 8.7 4.9 31.0 9.8 7.1 4.9 3.2
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Table 4: ARL of the one-sided Shewhart-RZ control charts for γX ∈ {0.01, 0.2}, γY ∈
{0.01, 0.2}, γX = γY , ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, ρ0 6= ρ1, n ∈ {1, 5, 7, 10, 15}.

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
τ n = 1 n = 5 n = 7 n = 10 n = 15 n = 1 n = 5 n = 7 n = 10 n = 15

ρ0 = −0.4, ρ1 = −0.2
0.90 1.0 1.0 1.0 1.0 1.0 156.1 49.8 35.5 23.8 14.4
0.95 1.4 1.0 1.0 1.0 1.0 221.6 130.2 108.0 85.9 63.3
0.98 14.4 1.8 1.3 1.1 1.0 271.1 237.2 220.5 200.6 176.0
0.99 60.9 10.9 7.0 4.3 2.5 289.4 290.7 281.6 269.4 252.5
1.01 61.9 11.2 7.2 4.4 2.6 289.6 291.3 282.3 270.1 253.4
1.02 15.1 1.9 1.4 1.1 1.0 271.8 239.1 222.7 203.0 178.5
1.05 1.6 1.0 1.0 1.0 1.0 225.3 136.4 114.2 91.7 68.4
1.10 1.0 1.0 1.0 1.0 1.0 166.6 59.1 43.1 29.6 18.5

ρ0 = −0.4, ρ1 = −0.8
0.90 1.0 1.0 1.0 1.0 1.0 59.1 21.7 16.9 12.7 8.8
0.95 1.5 1.0 1.0 1.0 1.0 78.9 43.4 37.6 31.7 25.4
0.98 8.8 1.8 1.4 1.2 1.0 93.4 66.8 62.5 57.9 52.4
0.99 24.6 7.2 5.2 3.6 2.4 98.7 77.4 74.4 71.3 67.5
1.01 24.8 7.4 5.3 3.7 2.5 98.7 77.5 74.6 71.4 67.7
1.02 9.1 1.9 1.5 1.2 1.0 93.6 67.2 63.0 58.3 52.9
1.05 1.6 1.0 1.0 1.0 1.0 80.0 44.9 39.1 33.2 26.9
1.10 1.0 1.0 1.0 1.0 1.0 62.3 24.6 19.5 14.9 10.6

ρ0 = 0.4, ρ1 = 0.2
0.90 1.0 1.0 1.0 1.0 1.0 42.8 11.2 8.2 5.8 3.8
0.95 1.0 1.0 1.0 1.0 1.0 64.4 28.6 23.4 18.6 13.9
0.98 3.8 1.1 1.0 1.0 1.0 81.7 52.7 48.0 43.1 37.4
0.99 13.3 3.1 2.2 1.6 1.2 88.3 65.2 61.8 58.2 53.9
1.01 13.5 3.1 2.3 1.7 1.3 88.4 65.3 62.0 58.4 54.1
1.02 4.0 1.1 1.0 1.0 1.0 81.9 53.2 48.5 43.6 37.9
1.05 1.1 1.0 1.0 1.0 1.0 65.6 29.9 24.8 19.8 14.9
1.10 1.0 1.0 1.0 1.0 1.0 46.2 13.2 9.8 7.0 4.7

ρ0 = 0.4, ρ1 = 0.8
0.90 1.0 1.0 1.0 1.0 1.0 1896.1 238.2 93.6 32.5 9.8
0.95 1.0 1.0 1.0 1.0 1.0 3636.7 4118.2 2539.1 1311.8 527.7
0.98 9.8 1.0 1.0 1.0 1.0 5166.3 25821.2 24225.5 20072.3 14146.4
0.99 491.2 5.5 2.5 1.4 1.0 5772.3 48187.6 53082.5 53249.5 47992.7
1.01 516.4 5.8 2.6 1.4 1.1 5778.6 48487.2 53500.0 53774.2 48590.5
1.02 10.9 1.0 1.0 1.0 1.0 5189.1 26458.4 24975.6 20843.3 14824.3
1.05 1.0 1.0 1.0 1.0 1.0 3743.4 4752.0 3018.0 1609.2 669.9
1.10 1.0 1.0 1.0 1.0 1.0 2148.4 389.4 161.8 58.0 17.3
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Table 5: ARL of the one-sided Shewhart-RZ control charts for γX ∈ {0.01, 0.2}, γY ∈
{0.01, 0.2}, γX 6= γY , ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, ρ0 6= ρ1, n ∈ {1, 5, 7, 10, 15}.

(γX = 0.01, γY = 0.2) (γX = 0.2, γY = 0.01)
τ n = 1 n = 5 n = 7 n = 10 n = 15 n = 1 n = 5 n = 7 n = 10 n = 15

ρ0 = −0.4, ρ1 = −0.2
0.90 32.2 9.4 6.7 4.6 3.0 98.7 20.2 13.0 7.9 4.4
0.95 79.6 37.0 29.4 22.2 15.5 144.6 62.9 48.5 35.5 23.6
0.98 145.6 102.3 91.6 80.0 66.7 179.9 129.4 115.8 100.9 83.7
0.99 179.9 148.3 139.8 130.0 117.8 193.2 165.3 156.4 145.8 132.4
1.01 193.3 165.7 156.8 146.3 133.0 180.2 148.9 140.4 130.6 118.5
1.02 180.4 130.6 117.2 102.3 85.2 146.8 103.7 93.1 81.5 68.2
1.05 147.2 66.6 51.9 38.4 25.9 83.4 39.9 31.9 24.4 17.2
1.10 106.0 24.7 16.3 10.1 5.7 37.6 11.7 8.5 5.9 3.8

ρ0 = −0.4, ρ1 = −0.8
0.90 27.5 8.8 6.4 4.5 3.0 89.8 18.6 12.2 7.5 4.3
0.95 63.5 32.1 25.9 19.9 14.2 130.9 55.7 43.2 31.8 21.5
0.98 110.5 83.2 75.4 66.7 56.4 162.4 111.7 99.8 86.9 72.3
0.99 134.0 117.7 112.1 105.2 96.4 174.2 141.5 133.3 123.9 112.3
1.01 174.3 141.8 133.6 124.3 112.8 134.3 118.1 112.5 105.7 96.9
1.02 162.8 112.7 100.9 88.1 73.6 111.3 84.3 76.5 67.8 57.5
1.05 133.2 58.8 46.1 34.4 23.5 66.3 34.4 28.0 21.7 15.7
1.10 96.3 22.6 15.1 9.5 5.5 31.8 10.8 8.0 5.6 3.7

ρ0 = 0.4, ρ1 = 0.2
0.90 26.3 8.1 5.9 4.1 2.7 91.0 17.9 11.5 7.0 4.0
0.95 64.2 31.1 24.9 19.0 13.4 134.0 55.7 42.8 31.1 20.7
0.98 116.6 85.3 76.8 67.4 56.5 167.1 115.0 102.4 88.7 73.2
0.99 143.8 123.6 117.1 109.4 99.6 179.6 147.1 138.4 128.4 116.1
1.01 179.7 147.5 138.9 128.9 116.6 144.1 124.1 117.6 109.9 100.2
1.02 167.6 116.1 103.6 90.0 74.6 117.6 86.5 78.1 68.7 57.7
1.05 136.4 59.0 45.7 33.7 22.7 67.2 33.5 27.0 20.8 14.8
1.10 97.8 21.8 14.4 8.9 5.1 30.6 10.0 7.3 5.1 3.4

ρ0 = 0.4, ρ1 = 0.8
0.90 31.3 8.7 6.2 4.2 2.7 100.9 19.5 12.3 7.4 4.1
0.95 83.1 36.5 28.6 21.3 14.7 149.3 63.7 48.6 35.0 22.9
0.98 160.7 107.8 95.7 82.7 68.1 186.7 135.2 120.7 104.6 86.0
0.99 202.7 160.8 150.6 139.0 124.9 200.8 174.6 165.3 153.9 139.3
1.01 201.0 175.1 165.8 154.5 140.0 203.1 161.4 151.2 139.7 125.7
1.02 187.3 136.6 122.2 106.1 87.6 162.1 109.5 97.4 84.4 69.7
1.05 152.0 67.6 52.1 38.0 25.2 87.4 39.5 31.2 23.5 16.3
1.10 108.5 24.0 15.6 9.5 5.3 37.0 10.9 7.8 5.4 3.5
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Figure 2: The effect of ηX and ηY on the overall performance of the
Shewhart-RZ control chart in the presence of measurement error for θX =
θY = 0, ρM = 0, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}, and ρ0 = ρ1.

ρ1 = ρ0 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 3: The effect of ηX and ηY on the overall performance of the
Shewhart-RZ control chart in the presence of measurement error for θX =
θY = 0, ρM = 0, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}, and ρ0 6= ρ1.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)
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Figure 4: The effect of θX and θY on the overall performance of the
Shewhart-RZ control chart in the presence of measurement error for ηX =
ηY = 0, ρM = 0, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}, and ρ0 = ρ1.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 5: The effect of θX and θY on the overall performance of the
Shewhart-RZ control chart in the presence of measurement error for ηX =
ηY = 0, ρM = 0, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}, and ρ0 6= ρ1.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 6: The effect of ρM on the overall performance of the Shewhart-RZ
control chart in the presence of measurement error for n = 1 (-�-) and n = 15
(-�-), ηX = ηY = 0.28, θX = θY = 0.05, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}
and ρ0 = ρ1 = −0.8.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 7: The effect of ρM on the overall performance of the Shewhart-RZ
control chart in the presence of measurement error for n = 1 (-�-) and n = 15
(-�-), ηX = ηY = 0.28, θX = θY = 0.05, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}
and ρ0 = −0.4, ρ1 = −0.8.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 8: The effect of m on the overall performance of the Shewhart-RZ
control chart in the presence of measurement error for n = 1 (-�-) and n = 15
(-�-), ηX = ηY = 0.28, θX = θY = 0.05, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}
and ρ0 = ρ1 = −0.8.

ρ0 = ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 9: The effect of m on the overall performance of the Shewhart-RZ
control chart in the presence of measurement error for n = 1 (-�-) and n = 15
(-�-), ηX = ηY = 0.28, θX = θY = 0.05, n ∈ {1, 15}, γX = γY ∈ {0.01, 0.2}
and ρ0 = −0.4, ρ1 = −0.8.

ρ0 = −0.4; ρ1 = −0.8; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Table 6: The battery recycling industry example data

Sample
X∗i,j [kg] X̄∗i [kg]

Ẑ∗i =
X̄∗

i

Ȳ ∗
iY ∗i,j [kg] Ȳ ∗i [kg]

1 95.864 94.731 94.643 94.193 94.328 94.752
0.951

100.891 100.143 100.340 97.740 99.295 99.682

2 94.969 94.935 94.270 94.663 93.961 94.560
0.956

98.903 96.883 97.329 101.021 100.278 98.883

3 93.274 95.927 94.961 96.021 95.429 95.122
0.945

101.525 100.461 100.826 98.936 101.398 100.629

4 95.350 96.128 96.610 95.022 95.737 95.769
0.955

101.137 101.127 100.052 98.796 100.115 100.245

5 94.697 96.827 94.392 94.197 96.205 95.264
0.955

98.996 100.356 99.860 100.082 99.377 99.734

6 94.623 93.930 96.532 94.197 93.573 94.571
0.953

99.309 99.727 98.908 98.534 99.745 99.245

7 94.419 95.445 94.328 95.120 95.880 95.038
0.946

99.936 99.836 101.138 99.668 101.850 100.486

8 96.144 94.121 96.163 93.803 94.900 95.026
0.953

98.212 100.667 99.683 99.044 101.184 99.758

9 94.151 94.786 95.127 94.098 94.307 94.494
0.948

99.173 100.873 100.487 100.635 98.675 99.969

10 96.006 96.319 94.026 94.660 93.948 94.992
0.949

99.392 98.783 100.008 101.235 101.325 100.149

11 93.436 94.988 93.583 94.831 92.875 93.9426
0.934

100.491 100.976 100.815 100.102 100.685 100.614

12 95.832 95.250 94.402 95.221 95.698 95.281 0.947
100.007 101.654 100.648 101.531 99.040 100.576

13 95.746 93.764 92.958 94.811 94.250 94.306
0.943

99.164 100.864 100.174 99.642 100.309 100.031

14 95.897 95.408 95.121 94.810 96.402 95.528
0.956

101.025 98.955 100.267 99.332 100.238 99.963

15 95.481 95.595 94.547 95.299 94.600 95.104
0.944

99.933 99.406 102.736 100.533 101.300
100.782
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Figure 10: The Shewhart-RZ− control chart in the presence of measurement
error for the battery recycling industry dataset
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