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Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major pollutants in air, soils and sediments. PAH-polluted soils can be cleaned 
rapidly by thermal treatment. PAH volatilization is considered as the main process explaining PAH removal at low tem-
perature, yet other processes may occur. Particularly, we hypothesize that thermal transformation can also explain PAH 
removal, where transformation refers to both degradation and formation of bound PAHs. We thus studied the removal of 
spiked benzo[a]pyrene at 0.5 mg/g in bauxite soil, fluvo-aquic soil, chernozem soil, montmorillonite, humin, and quartz 
sand as control, from 100 to 200 °C. We measured concentrations of benzo[a]pyrene in the volatilized fraction and solid 
residues by high-performance liquid chromatography. We identified transformation products by gas chromatography–mass 
spectrometry. Results show that the contribution of thermal transformation to the removal of benzo[a]pyrene increased 
from 24.7 to 58.4 wt% for bauxite soil, from 4.4 to 38.2 wt% for fluvo-aquic soil, and from 11.5 to 35.9 wt% for chernozem 
soil, with temperature increasing from 100 to 200 °C. Transformation such as oxidation occurred in all samples except in 
benzo[a]pyrene-spiked quartz sands. Transformation of benzo[a]pyrene was thus partly explained by the presence of clay 
minerals, as evidenced for the montmorillonite assay where transformation contributed 74.6 wt% to the total removal of 
benzo[a]pyrene at 200 °C. Overall, our findings demonstrate a major overlooked contribution of transformation to PAH 
removal at low temperature.

Keywords Thermal treatment · Polycyclic aromatic hydrocarbon · Benzo[a]pyrene · Transformation · Volatilization · Clay 
minerals

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of pri-
ority organic pollutants according to the US Environmental 
Protection Agency. PAHs induce teratogenic, carcinogenic 
and mutagenic effects in living organisms (Juhasz and Naidu 
2000; Li et al. 2008; Samanta et al. 2002). About 90% of 
environmental PAHs ultimately end up into soils and sedi-
ments, notably due to their excellent hydrophobic property 
(Eriksson et al. 2000; Field et al. 1992). After entering 
soils and sediments, PAHs are hardly degraded due to their 
chemical stability, oxidation resistance and environmental 
persistence (Jafarabadi et al. 2018; Lichtfouse et al. 1997; 
Zhang et al. 2015). Therefore, rapid and effective methods 
are needed to remove PAHs from contaminated soils (Hen-
ner et al. 1997).

Remediation techniques for PAH-contaminated soils 
include chemical oxidation (Si-Hyun et al. 2009), washing 
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(Trellu et al. 2016), thermal treatment (Bucala et al. 1994; 
Li et al. 2018) and bioremediation (Gan et al. 2009; Harvey 
et al. 2002; Wilson and Jones 1993). Thermal treatment is 
used for fast and efficient remediation (Merino and Bucalá 
2007). Two types of thermal treatment are distinguished 
according to the process involved: desorption at low temper-
atures of 100–300 °C and degradation at high temperatures 
of 300–600 °C (Falciglia et al. 2011). High-temperature 
treatments remove more organic compounds, but require 
more energy and strongly alter soil physicochemical prop-
erties. Alternatively, low-temperature treatment causes mini-
mal damage to soils, requires lower energy, yet still removes 
organic pollutants efficiently (Falciglia et al. 2011). As a 
consequence, low-temperature treatment is widely applied 
to remediate contaminated soils (Gilot et al. 1997; Falciglia 
et al. 2011; Merino and Bucalá 2007).

The main mechanisms proposed to explain removal of 
organic pollutants from soils by low-temperature treatment 
are volatilization and desorption (Falciglia et al. 2011; Gilot 
et al. 1997; Merino and Bucalá 2007; Talley et al. 2004). 
Nevertheless, recent investigations suggest that catalyzed 
oxidation might occur during low-temperature treatment of 
contaminated soils (Wang et al. 2015; Zhang et al. 2019). 
For example, Zhang et al. (2019) found that oxidation was a 
major process during thermal treatment of catechol-contam-
inated soils. Jia et al. (2019) further reported that minerals 
can induce oxidation of PAHs even under natural condi-
tions. These observations suggest that oxidative transforma-
tion might contribute to PAH removal at low temperature. 
However, there is actually little quantitative knowledge on 
the contribution of PAH transformation versus volatilization 
during thermal treatment of PAH-contaminated soils at low 
temperature. Therefore, we investigated the transformation 
and volatilization of benzo[a]pyrene, a carcinogenic PAH, 
from benzo[a]pyrene-spiked soils to explore the underlying 
removal mechanisms.

Materials and methods

Chemicals

Benzo[a]pyrene, of 98% purity, HPLC-grade methanol, was 
purchased from J&K Chemical Ltd., Beijing, China. Dichlo-
romethane and acetone of analytical grade were from Sin-
opharm Chemical Reagent Co., Shanghai, China. 100 mesh 
acid-purified quartz sands were from Tianjin Kemiou Chem-
ical Reagent Co., Tianjin, China. SWy-3 montmorillonite 
was from the Clay Minerals Society, West Lafayette, USA. 
Humin was extracted from peat according to the method of 
the International Humic Substances Society (IHSS) (Saab 
and Martin-Neto 2008).

Soil sample collection and benzo[a]pyrene‑spiked 
sample preparation

Three cultivated soils including bauxite soil, fluvo-aquic soil 
and chernozem soil were sampled from the 0–20 cm soil 
surface layer in Shaanxi, Henan and Heilongjiang provinces 
in China, respectively. Soils were air-dried for 24 h at 25 °C 
and sieved through 100-mesh prior to analysis.

Benzo[a]pyrene-spiked soil samples were prepared with 
previously described methods (Jia et al. 2018; Zhao et al. 
2017). Samples included three soils: bauxite soil, fluvo-aquic 
soil and chernozem soil, and pure components: montmoril-
lonite, humic acid and quartz sands. Typically, 1 g of sample 
was mixed with 1 mL of acetone containing 500 mg/L of 
benzo[a]pyrene. The sample-benzo[a]pyrene suspensions 
were mixed for 0.5 h and then placed in the dark at 25 °C 
until acetone was completely evaporated in about  5 min. The 
final concentration of benzo[a]pyrene in samples was deter-
mined after extracting by a mixture of acetone and dichlo-
romethane (1/1 v/v), and the concentration values were in 
the range of 0.497–0.502 mg/g. The prepared samples were 
stored at − 4 °C before use.

Low‑temperature treatment

Samples contaminated with benzo[a]pyrene were heated 
using an experimental apparatus (Fig. 1), consisting of an 
oil bath heater from DragonLAB, MS-H-Pro+, China, a 
two-necked round-bottom flask, two porous gas washing 
bottles for capturing volatilized-benzo[a]pyrene by a mix-
ture of acetone and dichloromethane (1/1 v/v), and a round-
bottomed flask filled with water to absorb the exhaust gas. 
As the oil bath temperature reached 100, 125, 150, 175 or 
200 °C, the two-necked round-bottom flask was put into the 
oil bath and kept for 60 min. After that, soil samples were 
collected and cooled down at 25 °C and then stored in the 
sealed polyethylene bags prior to analysis. The solution in 
porous gas washing bottles was collected and dried to 5 mL 
by a rotary evaporator from DragonLAB, RE100-Pro, China, 
and then analyzed using a U3000 high-performance liquid 
chromatograph (HPLC) from Thermo Scientific, Germer-
ing, Germany. Blanks of non-spiked samples and control of 
benzo[a]pyrene-spiked quartz sands were thermally treated 
in parallel as mentioned above. Each treatment was repeated 
three times. The removal (%Re) including transformed- and 
volatilized-benzo[a]pyrene are calculated as follows

where %Re corresponds to the total removal of benzo[a]
pyrene after thermal treatment, M0 and Mf correspond, 

%Re =
M

0
−M

f

M
0

× 100 = %Re
transformed

+ %Re
volatilized



respectively, to the initial and final extractable amounts 
of benzo[a]pyrene in the samples, %Retransformed and 
%Revolatilized correspond, respectively, to the removal of 
benzo[a]pyrene by transformation and volatilization.

Chemical analysis

Organic carbon (OC), clay and metal contents, pH and cation 
exchange capacity (CEC) of the collected soil samples were 
determined with methods previously reported by Droge and 
Goss (2013). Briefly, the soil OC was measured by a total 
organic carbon (TOC) analyzer from Elementar vario series, 
Hesse-Darmstadt, Germany. To analyze metals, soil samples 
first were fully microwave-digested in aqua regia solutions 
(Janssen et al. 1997). The resulting digested solutions were 
measured using inductively coupled plasma atomic emission 
spectrometer (ICP–AES) from Thermo Scientific iCAP6300, 
Waltham, USA. For measuring pH, 5 g of soil was mixed 
with 25 mL of deionized water (1/5 m/v soil to water ratio) 
for 1 h, and then, the supernatant pH was measured. Cation 
exchange capacity (CEC) was determined by adding 0.2 M 
 NH4Cl into the supernatant for substituting exchangeable 
cations of  K+,  Na+,  Ca2+,  Mg2+, and  Al3+ and then analyzed 
by ICP–AES. Clays in particle-size fractions below 2 mm of 
the target soils were determined semi-quantitatively by X-ray 
diffraction analysis (XRD, D8-ADVANCE). Soil textures 
were analyzed using a hydrometer method (Wen et al. 2002).

After thermal treatment, 50 mg of each sample was sac-
rificed and extracted by 1 mL of a mixture of acetone and 
dichloromethane (1/1 v/v) for three cycles. Extracts were 
collected and mixed and then filtrated using syringes with 
0.45 μm membrane filters. Benzo[a]pyrene in the filtrate was 
quantified by HPLC equipped with a Cosmosil C18 column 

(25 cm × 4.6 mm, 5 μm particle size). Pure methanol was 
used as mobile phase in isocratic mode with a flow rate of 
1.0 mL/min. The sample injection volume was 10 μL with 
an auto-sampler. The oven temperature was kept at 30 °C.

Thermal transformation products were identified with an 
Agilent 7890B–5977B gas chromatograph–mass spectrom-
eter (GC–MS) by scanning from m/z 40 to m/z 500. A Rtx-
5MS capillary column of 30 m × 0.25 mm internal diameter 
(i.d.) and 0.25 μm film thickness was used, and the He flow 
rate was 1.0 mL/min. The temperature program for separa-
tion started at 80 °C and held for 2 min, set at 10 °C/min 
to 290 °C and held for 10 min. The inlet temperature was 
290 °C, and the detector temperature was 200 °C.

Results and discussion

Amount of removal of benzo[a]pyrene

We studied the transformation and volatilization of benzo[a]
pyrene in the benzo[a]pyrene-spiked samples after 60 min 
at 100–200 °C. Samples included three soils: bauxite soil, 
fluvo-aquic soil and chernozem soil, and pure components: 
montmorillonite, humin, and quartz sands. Uncontaminated 
samples were also run under the same conditions as blanks.

Our results show that the removal of benzo[a]pyrene 
(%Re) in all samples increased with temperature (Fig. 2). 
For example, the concentration of benzo[a]pyrene in the 
bauxite soil decreased from 0.501 to 0.362 mg/g at 100 °C 
for 60 min. At 200 °C, the concentration of benzo[a]pyrene 
reduced to 0.169 mg/g, resulting in a removal 0.193 mg 
of benzo[a]pyrene. Similar results were also obtained 
for fluvo-aquic and chernozem soils, with reduction of 

Fig. 1  Experimental apparatus 
for the thermal treatment of 
benzo[a]pyrene-spiked sand, 
montmorillonite, humin and 
soils. A, two-necked round-
bottom flask; B and C, porous 
gas washing bottles; D, round-
bottomed flask filled with water. 
The samples in A was collected 
and extracted after thermal 
treatment, and then, the residual 
benzo[a]pyrene was measured. 
The volatilized-benzo[a]pyrene 
was adsorbed by solvents in 
both B and C and then mixed 
for measurement

N2

Water



benzo[a]pyrene of 0.194 mg and 0.155 mg, respectively. 
These results are consistent with previous reports (Fal-
ciglia et al. 2011; Talley et al. 2004).

We observed the highest removal of benzo[a]pyrene in 
pure quartz sands, reaching 92.2% at 200 °C (Fig. 2). This 
finding suggests that soil components such as organic mat-
ter and minerals display strong interactions with PAHs 
during thermal treatment. These interactions either pro-
mote or inhibit PAH removal. For instance, montmorillon-
ite promotes benzo[a]pyrene removal, with a high decrease 
of concentration to 0.111 mg/g at 200 °C, in agreement 
with our previous report on the impact of clays (Jia et al. 
2016). On the contrary, results show that humin, a major 
organic component, inhibits benzo[a]pyrene removal, with 
a concentration almost unchanged (0.494 mg/g) versus 
initial concentration (0.503 mg/g), at 100 °C for 60 min. 
This protecting effect is also observed in fluvo-aquic and 
chernozem soils.

Overall, our results demonstrate the strong interactions 
of benzo[a]pyrene with soil components, either promoting 
removal by clays or inhibiting removal by organic matter. 
The next section deciphers removal mechanisms, in particu-
lar the respective contribution of PAH transformation versus 
PAH volatilization.

Mechanisms of removal of benzo[a]pyrene

Volatilization

Here, we assume that the removal of benzo[a]pyrene dur-
ing thermal treatment is explained either by PAH vola-
tilization or PAH transformation, in which transformed-
benzo[a]pyrene includes thermal-degraded, e.g., oxidized, 
and soil-bound benzo[a]pyrene. Results show that propor-
tion of volatilized-benzo[a]pyrene in all samples increased 
with temperature from 100 to 200  °C (Fig.  3, orange 
bars). For instance, using cultivated soils, the volatilized-
benzo[a]pyrene accounted, respectively, for 3.1–7.8 wt% 
in the bauxite soil, 3.1–7.9 wt% in the fluvo-aquic soils, 
and 3.9–9.9 wt% in the chernozem soil. Similarly, vola-
tilization accounted ti 1.4–3.2 wt% for montmorillonite 
and 0.6–1.4 wt% for humin, in agreement with a previous 
report (Karimi-Lotfabad et al. 1996). By contrast, using 
pure quartz sands, volatilization accounted up to 97.3 wt% 
of removal. These findings reveal that the interaction of 
soil components with benzo[a]pyrene strongly reduce 
volatilization.

Fig. 2  Removal of benzo[a]pyrene in bauxite soil, fluvo-aquic soil, 
chernozem soil, montmorillonite, humin, and quartz sands during 
thermal treatment from 100 to 200  °C. Gray bars show the initial 
concentration of spiked benzo[a]pyrene. Blue bars depict the residual 
concentration of benzo[a]pyrene after treatment. Note the increasing 

removal with temperature, the highest removal for pure quartz sands, 
the high removal for montmorillonite clay and the low removal for 
humin, a major soil organic component. Those findings reveal the 
strong interactions of soil components with PAHs, either promoting 
removal for clays, or inhibiting removal for humin



Transformation

The concentration of transformed-benzo[a]pyrene 
increased with temperature and, more importantly, 
accounted for a much higher proportion of removal (Fig. 3, 
green bars) compared to volatilization. For example, trans-
formation accounted for 24.7–58.4 wt% in the bauxite soil, 
4.4–38.2 wt% in the fluvo-aquic soil, and 11.5–35.9 wt% 
in the chernozem soil. By contrast, transformation was 
very low in pure quartz sands. These findings reveal again 
the strong interactions of benzo[a]pyrene with two soil 
components, clays and organic matter. Indeed, results for 
the montmorillonite clay display a 42.7–74.6 wt% contri-
bution of transformation. The clay influence is also sup-
ported by the clay content of our soil samples, of 26 wt% 
for the bauxite soil, 18.2 wt% for the fluvo-aquic soil and 
19.3 wt% for the chernozem soil. These observations are 
supported by our previous studies showing that benzo[a]
pyrene interacts with the clay surface via cation-π compl-
exation, then promotes electron transfer followed by oxi-
dation (Jia and Wang 2013; Jia et al. 2016). Alternatively, 
transformation of benzo[a]pyrene may be triggered by oxi-
dative degradation in the presence of manganese and iron 

oxide in soil during heating (Umeh et al. 2018), as sug-
gested by the presence of Mn and Fe in our soil samples 
(Table S1). Overall, minerals such as clays are likely to 
play a major role in benzo[a]pyrene transformation.

Concerning the role of organic matter, results for humin 
show up to 43.9 wt% of transformed-benzo[a]pyrene at 
200 °C (Fig. 3). This observation is supported by the for-
mation of humin-bound hydrophobic compounds such 
n-alkanes (Lichtfouse et al. 1998a, b) and benzo[a]pyrene 
(Zeng et al. 2018). PAHs strongly adsorb onto organic 
matters (Celis et al. 2006), thus enhancing PAH retention 
in soils and inhibiting the mineral-mediated transforma-
tion (Jia et al. 2015).

Overall, our findings show that transformation accounts 
for a major proportion of benzo[a]pyrene removal in soils, 
clay and humin, versus volatilization, during thermal treat-
ment at 100-200 °C. Transformation of benzo[a]pyrene is 
explained by two possible processes, sequestration into 
soil organic matter as humin-bound compounds and oxida-
tive degradation, the quantitative contribution of which is 
unknown. We further gained insights on the oxidation pro-
cess by studying degradation products in the next section.

Fig. 3  Contribution of volatilized-benzo[a]pyrene (orange) and trans-
formed-benzo[a]pyrene (green) to its total removal amount (grey) in 
bauxite soil, fluvo-aquic soil, chernozem soil, montmorillonite, humin 
and quartz sands during thermal treatment from 100 to 200 °C. Note 
the high contribution of transformation versus volatilization, except 

in quartz sand. This finding reveals the major contribution of soil 
components, in particular clay and organic matter, to the transforma-
tion of benzo[a]pyrene. Transformation refers both to degraded, e.g., 
oxidized benzo[a]pyrene, and benzo[a]pyrene sequestrated into soil 
organic matter



Mechanisms of thermal degradation of benzo[a]
pyrene

Further insights on the contribution of thermal degradation 
to the transformation of benzo[a]pyrene was obtained by gas 

chromatography–mass spectrometry (GC–MS). For quartz 
sands as control assay, benzo[a]pyrene is a major compound 
(Fig. 4a). This finding is consistent with our results showing 
that almost all of the spiked benzo[a]pyrene, about 97.3 wt%, 
in quartz sands was volatilized during thermal treatment at 

Fig. 4  Total ion current and mass spectra of products of thermal treatment of benzo[a]pyrene-spiked samples, for quartz sand (a) and the bauxite 
soil (b), obtained by gas chromatography–mass spectrometry (GC–MS)



200 °C (see previous section). In contrast, several degradation 
products were identified in benzo[a]pyrene-spiked soils, i.e., in 
the bauxite soil, such as benzo[a]pyrene-1,6-dione, benzo[a]
pyrene-6,12-dione, formic acid phenyl ester, acetic acid phenyl 
ester, and phenol (Fig. 4b). Noteworthy, some of those com-
pounds were also observed in the Fenton oxidation of benzo[a]
pyrene (Lee and Hosomi 2001). Our findings thus confirm 
the occurrence of oxidative transformation of benzo[a]pyrene 
during thermal treatment at 100–200 °C.

Thermal degradation may be induced by electron transfer 
between benzo[a]pyrene molecules and clay minerals (Jia et al. 
2016). This assumption is strengthened by findings showing 
that benzo[a]pyrene can be adsorbed on clays by complexa-
tion of exchangeable cations on mineral surfaces (Celis et al. 
2006). Direct electron transfer from benzo[a]pyrene molecules 
to the active sites of soil minerals may thus occur, producing 
the electron-deficient intermediates. In turn, these unstable 
intermediates react with dioxygen to form oxygenated com-
pounds (Zhao et al. 2017). Oxidation is also supported by the 
reported production of reactive oxygen species (ROS) during 
thermal treatment (Zhang et al. 2019). ROS may thus react 
with adsorbed benzo[a]pyrene to generate oxidative cleavage 
products. As a result, oxidation is likely to contribute to the 
removal of benzo[a]pyrene by thermal treatment.

Conclusion

We studied the mechanisms for benzo[a]pyrene removal 
in soils during thermal treatment at 100–200 °C. Results 
showed that heating temperature and soil components had 
significant impacts on the volatilization and transformation 
of benzo[a]pyrene. The contribution of thermal transforma-
tion to the removal of benzo[a]pyrene increased with tem-
perature. Clay minerals such as montmorillonite promote 
the oxidation of benzo[a]pyrene, producing oxygenated-
benzo[a]pyrene and other aromatic compounds. Transfor-
mation, rather than volatilization, accounts for a major part 
of benzo[a]pyrene removal in soils at 100–200 °C.
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Table S1  

Physicochemical properties of bauxite soil, fluvo-aquic soil, chernozem soil, 

montmorillonite, and humin. 

Soil 

characteristics 

Sample 

Bauxite Fluvo-aquic soil Chernozem Montmorillonite  Humin 

Location 

Shannxi 

34o11′N, 

113o01′E 

Henan 

35o00′N, 

113o41′E 

Heilongjiang 

45o40′N, 

126o37′E 

pH 7.90 8.07 6.27 6.54 7.00 

OC*, wt% 0.96 1.03 2.07 7.89 

Clay, wt% 26.01 18.18 19.33 100.00 

CEC**, cmol/kg 22.37 16.01 28.59 

Total Fe, g/kg 17.13 20.76 25.56 12.80 3.60 

Total Mn, g/kg 0.37 0.46 0.63 0.09 0.07 

Total Cu, g/kg / / / / / 

Total Zn, g/kg 0.06 0.07 0.13 0.09 0.03 

Total Pb, g/kg / / 0.09 / 0.02 

Total Mg, g/kg 5.72 7.98 5.20 7.40 0.30 

Total Ca, g/kg 90.9 141.3 23.2 24.5 7.1 
* OC: organic carbon.
**CEC: cation exchange capacity. 
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