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Abstract 
 
We formulate and solve the equations governing the dynamics of a microscopic artificial 
swimmer composed of a head and of a tail made of a thin film of permanent magnetic 
material. This is a variant of the model swimmer proposed by Dreyfus et al. in 2005, whose 
tail is a filament obtained from the assembly of super-paramagnetic beads. The swimmer is 
actuated by an oscillating magnetic field, and its geometry is inspired by that of sperm cells. 
Using values for the geometric and material parameters which are realistic for a magnetic 
multi-layer, we show that the model swimmer can reach swimming speeds exceeding one 
body-length per second, under reasonable values of the driving magnetic field. This provides a 
proof of principle for the viability of the concept. In addition, we discuss the possibility to 
steer the system along curved paths. Finally, we compare the propulsion mechanism 
(swimming ‘gait’) of our swimmer with that of sperm cells. The main difference between the 
two is that, contrary to its biological template, our artificial system does not rely on the 
propagation of bending waves along the tail, at least for the range of material and geometric 
parameters explored in this paper. 
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Introduction 
 
Cells and unicellular organisms provide striking examples of microscopic self-propelled 
objects, with length scales in the range from one to one-hundred microns, that are able to 
move freely inside the human body. In fact, traffic of self-propelled creatures inside our bodies 
is quite intense: from leukocytes crawling along tissues and rushing towards a newly opened 
wound in order to start the immune system response, to muscle cells contracting thanks to 
myosin motor proteins walking along actin filaments, to a number of micro-organisms 
swimming inside various cavities and lumens. Two of the most widely studied examples of 
such microscopic swimmers, for which quantitative models and detailed fluid dynamic data 
are now available, are bacteria and sperm cells, see, e.g.1- 5 and the many references quoted 
therein. 
While the idea of building artificial devices emulating these motile capabilities is quite natural, 
much remains to be done for this to be practical. Learning skills from biological organisms 
requires, in particular, that we learn how to move and control continuously deformable objects 
such as filaments, cilia, and flagella. This is, in fact, an instance of bio-inspired soft robotics, 
where novel designs are inspired by the study of how animals exploit soft materials to move 
effectively in complex and unpredictable natural environment 6- 11. 
Artificial devices mimicking sperm cells, in which the payload could be contained in a 
relatively large head, and propulsion forces could be extracted from the beating of a long, thin 
tail, is a natural concept which has been pioneered in Dreyfus et al.12. The idea is particularly 
attractive also because it may lend itself to diverse micro-fabrication techniques. For example, 
one may consider functionalized magnetic multi-layers (MMLs) originally conceived for 
spintronics applications, an idea explored in Courcier et al.13. The flexibility in the fabrication 
procedure could be exploited to target diverse biotechnological applications, by including 
different functional components. In addition, it could be used to tune the magnetic and elastic 
properties in order to optimize performance, controllability, manoeuvrability. For the time 
being, attention is mostly focused on actuation with an externally applied magnetic field, but 
autonomous self-propelled systems can also be envisaged by using built-in motors, such as 
muscle cells like in Feinberg et al.14, or by using active materials, such as in Sawa et al.15. 
 
Having in mind the applications discussed above, in this paper we present and discuss a 
computational tool for the simulation of the behaviour of a model magneto-elastic swimmer, 
consisting of a head and of a tail made of a film of permanent magnetic material, and activated 
by an oscillating magnetic field. This system is inspired by the pioneering concept explored in 
Dreyfus et al.12, based on a magnetic filament consisting of super-paramagnetic beads, and 
thoroughly analyzed 16,17. Recent work on a simpler system made of two rigid magnetic 
segments18 is also relevant to our analysis. Our aim is to provide a feasibility study for the 
concept of a magneto-elastic swimmer based on MML fabrication techniques. 
The main specific questions we address are whether, by restricting oneself to the small 
parameter window of magnetic, elastic, and geometric parameters that are realistic for MMLs, 
and to magnetic field amplitude and actuation frequencies achievable in a laboratory, 
reasonable swimming speeds can be obtained and, if so, thanks to which swimming gaits. Our 
answers to these questions are based on a simplified model that makes the problems of control 
and motion planning tractable. 
The problem is complex, and inherently multiphysics. Indeed, it combines magnetism, 
elasticity, and fluid dynamics in a single system where magnetic torques drive the shape 
changes of an elastic flagellum which, in turn, produce a propulsive force through the 
interaction with a surrounding viscous fluid. While a full description of the system via three 
coupled systems of partial differential equations is, in principle, feasible, our aim is here to 
develop an agile numerical tool that may help the design, optimization, and motion planning 
stages. 
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Our simplifying assumptions reduce the governing equations of our magneto-elastic swimmer 
to a system of ordinary differential equations (ODEs). Solving these does not require the 
complex three-dimensional meshing necessary for the numerical solution of the coupled 
system of partial differential equations of elasticity, magnetostatics, and hydrodynamics. By 
contrast, our system of ODEs can be easily and quickly solved on a small laptop computer. So, 
exploring the effect of varying geometric, material, and actuation parameters becomes a 
feasible task. Given the length scales involved, the induced flows are characterized by very 
low Reynolds numbers. Accordingly, and in view of the slenderness of the tails, we use the 
local drag approximation of Resistive Force Theory19. Bending of the tail is rendered by 
concentrating the elasticity on a finite number of points, so that the tail is modeled as a 
sequence of (many) rigid segments joined by angular springs. Finally, the magnetic behavior 
of the segments is modeled by assuming that their magnetization is always parallel to the 
segment, and with fixed magnitude, and that stray fields can be neglected. In future work, we 
will remove some of the simplifying assumptions leading to the reduced model, as this may be 
required to resolve some finer details. 
The main results of our work are the following. First, we show that by actuating a system 
made of a non-magnetic head and an MML tail with a magnetic field composed of a constant 
longitudinal component and an oscillatory transversal one, one can propel it along the 
longitudinal axis achieving swimming speeds comparable to those observed for bull sperm 
cells in Friedrich et al.3, and using magnetic fields that are easily attainable in a laboratory. We 
use for the magnetic film the material parameters of Permalloy, and geometric parameters that 
are in the range of current manufacturing techniques. This proves that the MML swimmer is a 
viable concept, at least in principle. 
In addition, we compare the swimming gait of our MML swimmer with that of other natural 
and artificial micro-swimmers and, in particular, with sperm cells, whose behaviour is well 
known from the existing literature. It turns out that the mechanisms underlying the motility of 
MML swimmers and of sperm cells are radically different. Sperm cells propel themselves by 
propagating bending waves along the flagellum. Similarly, the behaviour of the model 
swimmer in Dreyfus et al.12 can be understood as arising from the propagation of bending 
waves between free and tethered ends, and it is shown in Roper et al.17 that the resulting gait is 
intermediate between that of eukaryotic sperm cells and the one of a waggled elastic rod. By 
contrast, our MML swimmer moves in the absence of bending waves, through a mechanism 
similar to the one propelling the two-link system studied in 18. The main difference is that, in 
our case, the two rigid links with an angular elastic joint are replaced by a flexible magnetic 
tail, which exhibits a time-dependent spatially constant curvature. 
Finally, we show that the longitudinal magnetic field can be used as a steering device, and that 
by varying its direction one can guide the magneto-elastic swimmer along curved trajectories 
and even bends of sharply curved pipes. 
 
Formulation of the problem 
 
Following 20, we think of our swimmer as composed by N segments (𝐿#)%&#&', which move in 
the plane	  𝑧 = 0. The first segment is special, as it describes the non-magnetic ‘head’ where the 
payload is located. Accordingly, it experiences different hydrodynamic drag, as described 
below. The other segments are characterized by thickness 𝑡#	  (in direction perpendicular to the 
filament axis), width 𝑤#	  (in direction perpendicular to the plane 𝑧 = 0), and length 𝑙# (along 
the filament axis) such that 𝑡# ≪ 𝑤# ≪ 𝑙# . We take 𝑙% = 𝑙0123 , 𝑡% = 𝑡0123, 	  𝑤% = 𝑤0123, and 
𝑙# = 𝑙52#6  , 𝑤# = 𝑤52#6 , 𝑡# = 𝑡52#6  for	  𝑖 = 2, … , 𝑁. The actual values used for these geometric 
parameters in the concrete examples analyzed later are given in Table 1. 
The position at time t of segment 𝐿#	  is specified by the position of its first end 𝒙# = (𝑥#, 𝑦#, 0), 
and the angle 𝜃#	  that 𝐿#	  makes with the x−axis. We also denote by 𝒆#,∥ = (cos 𝜃#, sin 𝜃#, 0)	   
(resp. 	  𝒆#,F = (−sin 𝜃#, cos 𝜃#, 0)	   ) the unit vector along (resp. orthogonal to) the axis of 
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segment 𝐿#. 
The segments are linked together, so that the first end of 𝐿#H% coincides with the second end of 
𝐿#, namely, 𝒙#H% = 𝒙# + 𝑙#𝒆#. We rewrite these kinematic constraints in the explicit form 
 

𝑥#H% = 𝑥# + 𝑙# 	  cos 𝜃# 	  ,
𝑦#H% = 𝑦# + 𝑙# 	  sin 𝜃# 	   .

     (1) 
 
The three different physical mechanisms governing the motion of our magneto-elastic 
swimmer are rendered in the way described below. 
 
 
Elasticity 
 
We account for the elasticity of the structure by using a discrete beam theory. At the junction 
between segments 𝐿# and 𝐿#H% , a torsional spring with spring constant κ independent of i is 
assumed to be present. The spring exerts a torque with the same magnitude 𝑻#,𝒙L

16 = 𝜅(𝜃#H% −
𝜃#)𝒆N, but with opposite signs, on each of the two neighboring segments	  𝐿# and 𝐿#H%  of the 
swimmer. The spring constant is given by 
 

𝜅 = (OP)QRLS
6QRLS

      (2) 
where E is Young’s modulus and J is the moment of inertia of the cross-section of the tail 
segments 

𝐽 =
1
12
𝑤52#6𝑡52#6V . 

 
The actual values used in the next section for these geometric and material parameters are 
given in Table 1. 
 
 
Hydrodynamics 
 
We assume for simplicity that the swimmer is neutrally buoyant, and that its size and the 
actuation frequency are such that the induced flows are governed by low Reynolds number 
hydrodynamics21. We model the interaction with the surrounding fluid by using the local drag 
approximation of Resistive Force Theory19. This assumes a linear dependence between the 
hydrodynamic drag force per unit length acting on the swimmer at a point x and the velocity at 
that point through the relation 
 

𝒇0 𝒙 = −𝜉#𝒖∥ 𝒙 − 𝜂#𝒖F 𝒙 .     (3) 
 
Here x is the current location of a point on the i−th link, while 𝒖∥ 𝒙 	  and 𝒖F 𝒙  stand for the 
components of the velocity vector of the swimmer at x (and thus of the fluid at the same point 
x, due to the no-slip boundary condition) along 𝒆# and 𝒆#,F, respectively. 
The shortcomings of the local drag approximation are well known. In particular, the relation     
(3) being local, hydrodynamic interactions between the different elements of the swimmer are 
neglected. Nevertheless, it gives satisfactory results, which are often in striking agreement 
with experiments, at least for very slender filaments in low Reynolds number flows (see e.g. 
Friedrich et al.3). 
Noticing that at 𝒙 = 𝒙# + 𝑠𝒆#,∥ , we have 𝒖 𝒙 = 𝒙# + 𝑠𝜃#	  	  𝒆#,F , we can compute the total 
hydrodynamic force on 𝐿#	  which is given by 
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𝑭#0 = 𝒇0(𝒙) 𝑑𝒙^L
_ = −𝑙#𝜉# 𝒙# ∙ 𝒆#,∥ 𝒆#,∥ − (𝑙#𝜂# 𝒙# ∙ 	  𝒆#,F + 6L

a

b
𝜂#𝜃#)	  	  	  𝒆#,F	  .    (4) 

 
Similarly, the (component perpendicular to the plane z = 0 of the) torque with respect to any 
point 𝒙_ is given by 

𝒆N ∙ 𝑻#,𝒙c
0 = 𝒆N ∙ 𝒙 − 𝒙_ ×𝒇0 𝒙 𝑑𝑥 = −

𝑙#b

2

^L

_

𝜂# 𝒙# ∙	   𝒆#,F +
𝑙#V

3
𝜂#𝜃#	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +(𝒙# − 𝒙_)× 𝑙#𝜉# 𝒙# ∙ 𝒆#,∥ 𝒆#,∥ + 𝑙#𝜂𝑖 𝒙# ∙ 	  𝒆#,F + 6L
a

b
𝜂#𝜃# 𝒆#,F ∙ 𝑒N.  (5) 

 
For simplicity, we will assume that the drag coefficients are constant along the tail and set 
𝜉# = 𝜁52#6,∥	  ,	  𝜂# = 𝜁52#6,F	  , for i = 2, . . . , N . The first segment describing the ‘head’ is special, 
and we take 𝜉% = 𝜂% = 𝜁0123	   . The actual values used in Section 3 for these material 
parameters are given in Table 1. 
 
 
Magnetism 
 
We assume that each segment, excluding only the first one describing the head, is constantly 
magnetized, and we make the simplifying assumption that the magnetization on each segment 
stays permanently aligned with the segment axis. We also neglect the magneto-static coupling 
between different segments, in particular through the stray-field induced by the magnetic 
distribution along the swimmer. The only magnetic interaction we consider is that with an 
external applied field: we assume that each segment experiences a (magnetic) torque due to the 
external magnetic field that is imposed to the swimmer. For the i−th segment, this torque takes 
the form 

𝑻#h = 𝑴#×𝑩      (6) 
 

where Mi is the (total) magnetization of the i−th segment, B the external magnetic field, and i 
ranges from 2 to N. In view of our assumptions, the magnetization of the i−th segment can be 
written as 

𝑴# = 𝑀	  𝑙#	  𝒆#,∥.      (7) 
 

Here M stands for the magnetization per unit length of each segment, which is given by 
 

𝑀 = 𝑀l𝑡52#6𝑤52#6, 
 
where Ms is the saturation magnetization. The actual values used, in the section giving the 
results, for these material parameters are given in Table 1. 
 
 
Governing equations 
 
It remains to assemble the equations governing the motion of the magneto-elastic swimmer, by 
putting together the various contributions to forces and torques described above. 
We start by observing that the swimmer is completely described - both for its position and 
shape - by the 3N variables (𝑥#,𝑦#,𝜃#)%&#&'	  satisfying the 2(N − 1) constraints (1). Therefore, 
we need to write N + 2 additional equations. To that aim, and recalling that the motion takes 
place in the plane z = 0, we write the balance of forces on the whole system (2 equations) and 
a balance of the torque components perpendicular to z = 0 with respect to 𝒙m on each of the 
subsystems consisting of all the segments from k to N, for k = 1,···,N (N equations). Since 
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inertia is assumed to be negligible, and since the (spatially uniform) external magnetic field 
exerts no forces but only torques on the various parts of the swimmer, these equations take the 
form 
 

𝑭 = 𝑭#0 = 0,'
#n%

𝒆N ∙ 𝑻#,𝒙o
0 + 𝑻#h = 0,'

#n%

𝒆N ∙ (𝑻#,𝒙a
0'

#nb + 𝑻#h) = −𝜅(𝜃b − 𝜃%),
⋮

𝒆N ∙ (𝑻#,𝒙q
0'

#nm + 𝑻#h) = −𝜅(𝜃m − 𝜃mr%),
⋮

𝒆N ∙ 𝑻',𝒙s
0 + 𝑻'h = −𝜅 𝜃' − 𝜃'r% .

    (8) 

 
In view of equations (4), (5), (6) and (7), we see that all quantities appearing in system (8) 
above depend linearly on the rate of positional and orientational changes (xu, yu, θu)%&u&x . 
Therefore, if we append to equations (8) above the time derivative of˙ the 2(N − 1) constraints 
(1), namely, 
 

𝑥#H% − 𝑥# + 𝑙# sin 𝜃# 𝜃# = 0
𝑦#H% − 𝑦#+𝑙# cos(𝜃#) 𝜃# = 0

     (9) 

 
then we end up with a system of ODEs which completely determines the evolution of the 
magneto-elastic swimmer. This system takes the form 
 

𝑨

𝑥%
⋮
𝑥'
𝑦%
⋮
𝑦'
𝜃%
⋮
𝜃'

= 𝑭_ + 𝑭%𝐵{ 𝑡 + 𝑭b𝐵| 𝑡 	  .    (10) 

 
The explicit expressions of the matrix A and of the vector-fields F0 , F1 , and F2 are given in 
Appendix A. Assembling and solving this system numerically, for a given external field B(t) = 
(Bx(t), By(t)) is a relatively straightforward task, see e.g. Alouges et al.20. 

 
A case study 

 
We consider the swimmer depicted in Figure 1, which consists of a large (say, disk shaped) 
head linked to a tail composed of 10 segments. Each segment, including the head, is 10µm 
long, so that the length of the whole system is 110µm. For the head, we take 𝑤0123 = 𝑙0123 
and 𝑡0123 = 𝑡52#6. For the magneto-elastic parameters we use the values of Permalloy: E = 
1011 Nm−2 and Ms = 8 · 105 Am−1. As for the drag coefficients, we follow Friedrich et al.3 and 
take 𝜁52#6,∥= 6.2 · 10−3 Nsm−2,	  𝜁52#6,F= 12.4 · 10−3 Nsm−2, 𝜁0123= 0.05 Nsm−2 . The values for 
the other parameters used in the numerical simulations are given in Table 1. 
 
 
Straight swimming 
 
We first consider the case where the swimmer, originally in the horizontal position, is excited 
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by a magnetic field with a constant horizontal component and an oscillating vertical one 
 

𝑩 𝑡 = (𝐵{, 𝐵| sin(𝜔𝑡))5     (11) 
 
where Bx, By have the (fixed) values given in Table 1. These values have been selected on a 
trial-and-error basis, as field strengths of magnitude achievable in a laboratory and 
producing interesting performance. Notice that the presence of a nonzero value of Bx 
proved necessary to obtain stable net motion along the horizontal axis. 
We explore the dynamics of the swimmer by varying the driving frequency ω/2π in the 
range 3-70 Hz. We see from Figure 2 that the net horizontal displacement per cycle is 
maximized at about 8 Hz, while the maximal swimming speed is attained around 50 Hz. 
The value of this maximal displacement is close to 5 µm, while the maximal swimming 
speed is around 70 µm/s. 
The evolving shape of the swimmer is well characterized by the angle Ψ(s, t) between the 
horizontal axis and the tangent to the swimmer at arc-length distance s from the external 
end of the head segment. Following 3, we compute the Fourier coefficients of Ψ(s, ·) 
 

Ψ� 𝑠 = Ψ 𝑠, 𝑡 exp 𝑖𝑛𝜔𝑡 𝑑𝑡
b�
�

_
 

 
in order to capture its periodic behavior, and remark that only the term 	  Ψ% 𝑠  cor-
responding to the smaller frequency (i.e. the frequency of the magnetic field) is non 
negligible. We plot in Fig. 3 the complex values of Ψ% 𝑠 	  normalized in such a way that 

Ψ%(0) is real (in other words, we plot �o l 	  �o(_)
|�o _ |

 ). These graphs, shown for the three 

frequencies highlighted in Figure 2, clearly show that Ψ%(s) is well approximated by a 
function of the type Ψ%(s) = λ + µs exp(i𝜑) which indicates a behaviour of Ψ(𝑠, 𝑡) that is 
well approximated by the function 
 

Ψ(𝑠, 𝑡) ∼ Re(Ψ% 𝑠 exp 𝑖𝜔𝑡 ) ∼ 𝜆 cos 𝜔𝑡 + 𝜇𝑠 cos(𝜔𝑡 + 𝜑) . (12) 
  

The deformation of the swimmer is thus composed of a global rotation (the spatially 
constant term) and of a term describing bending with a spatially constant curvature (the 
term linear in s), which both oscillate in time with angular frequency ω and a phase shift ϕ. 
According to (12), there is no travelling wave of curvature propagating along the tail of the 
swimmer. Therefore, this swimming mechanism is very different from the one observed in 
sperm cells3, but also from the one observed in the artificial system described in Dreyfus et 
al.12, which is also actuated by an external oscillating magnetic field. In particular, notice 
that by differentiating (12) with respect to s, we obtain that the curvature remains constant 
along the tail of the swimmer (i.e., s-independent) at every time, while being modulated by 
a time-dependent amplitude. 
 
 
Swimming in circles 
 
The previous section shows that, as it was pointed out already in Dreyfus et al.12, the 
constant horizontal component of the magnetic field (which is parallel to the initial straight 
configuration of the magnetic tail, and then parallel to its average orientation during the 
motion), acts in a stabilizing way, keeping the average orientation of the swimmer always 
aligned with it. Indeed, the swimmer oscillates, following the oscillations of the transversal 
component of the applied field, but its average motion is that of a translation along the 
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average direction of the oscillating magnetic field, which is horizontal. 
If we now consider an external magnetic field which is obtained by superposing fast 
transversal oscillations with frequency ω on a slowly varying longitudinal field, oscillating 
at frequency 𝜔� ≪ 𝜔, we expect that we can use the direction of the slowly varying field to 
steer the swimmer. As an example, consider an external magnetic field of the form 
 

𝑩 = 𝐵∥𝒆�(5) + 𝐵F sin(𝜔𝑡)𝒆�(5)
F      (13) 

 
where eθ(t) is the unit vector forming an angle θ(t) with the horizontal axis given by 
 

𝜃 𝑡 = 2𝜋𝑡
𝑇h2{      (14) 

 
and 𝐵∥ and 𝐵F  have the same values of 𝐵{  and 𝐵|, respectively, given in Table 1. 
Here, in order to have a clear separation of the time scales associated with fast and slow 
oscillations, we take ω/2π = 8 Hz, and 𝑇h2{= 40s, which, in view of (14) leads to a 
frequency 𝜔�/2π = 0.025 Hz	  ≪	  ω/2π. 
The swimmer traces now a circular trajectory, and its average orientation follows the slow 
modulations of the applied magnetic field (see Fig. 5, where only the part of the trajectory 
following one quarter of a circle is shown). 
 
 
Turning abruptly 

 
In this last section we push further the idea developed in the previous section. Indeed, we 
take the same parameters as before, given in Tab. 1, and use now a magnetic field given by  
(13) which oscillates around an average orientation 𝒆�(5)	  that now varies in time according 
to 

𝜃 𝑡 = �
�
1 + tanh 30 5

��R�
− %

b
	  .    (15) 

Notice that θ(t) experiences a sudden jump from 0 to �
b
  around t = ��R�

b
. The result we 

obtain is displayed in Fig. 6 and shows clearly a sudden change in the swimming direction, 
which would allow the swimmer to navigate along an elbow in a pipe. Here, we are tacitly 
assuming that the pipe is wide enough with respect to the size of the swimmer so that the 
hydrodynamics effects of the walls can be neglected. Enriching the model to consider 
explicitly the confining effects due to the pipe walls would be interesting, also in view of 
recent results in 22, but will not be done here.   

 
 

The swimming mechanism: propagation of bending waves along the tail is not 
necessary for propulsion 

 
In order to shed light on the mechanism propelling our swimmer, it is useful to introduce 
the angles 𝜃�: = 𝜃'	  and 𝜃^: = 𝜃% giving the orientations of the right-most segment and of 
the left-most one (the head), respectively. Figure 7 shows that the dynamics is such that the 
point 𝜃^ 𝑡 , 𝜃�(𝑡)  traces a loop. By contrast, the orientation of the second link is always 
very near the one of the first link, and the corresponding loop (shown in red in Figure 7) is 
close to a single line. The right panel shows snapshots of the swimming stroke along the 
beat cycle and the dots in the left panel locate them along the loop in the 𝜃^, 𝜃�  plane.  
 
The presence of a loop in the 𝜃^, 𝜃�  plane shows that the dynamics of the swimmer is not 
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time reversible: net motion in the horizontal direction arises precisely from this lack of time 
reversibility. In order to make this statement clearer and more quantitative, we compare the 
swimming gait of our swimmer with the one of a simplified system consisting of two rigid 
magnetic links joined by an elastic spring where all the bending elasticity is concentrated. 
A somewhat similar system has been analyzed in 18. In our case, the first link has also a 
passive head attached, and hence experiences larger hydrodynamic forces and torques than 
those acting on the second link. The total length and the magnetic properties of the two 
swimmers are otherwise identical. Figure 8 shows that the larger hydrodynamic forces 
acting on the left link cause a delay of its response with respect to the right link, hence a 
loop in the 𝜃^, 𝜃� 	  plane. Thus, the behaviour of the simpler two-link system reproduces 
the one of our original system, made of a stiff but deformable magnetoelastic tail.  
Figure 8 also shows that no loop is generated in the two-link system when the passive head 
is removed (dashed curve). Indeed, in this case the two links are subject to the same 
hydrodynamic forces and no net displacement is produced, as expected. 
 
The dynamics of the simpler two-link system can be easily analyzed. Indeed, in this case, 
the horizontal velocity of the left-most end of the swimmer is given in terms of 𝜃^, 𝜃�  as 
 

𝑥 = 𝑔^ 𝜃^, 𝜃� 𝜃^ + 𝑔� 𝜃^, 𝜃� 𝜃� 
 
where the functions 𝑔^, 𝑔� are defined in Appendix B. 
 
Integrating this equation over a swimming cycle, and using Stokes theorem, we obtain  
 

Δx = − curl g�, g 

	  

¡

θ�, θ  dθ�dθ 	   

where γ denotes the region enclosed by the closed loop traced by θ%(t), θb(t) 	  during the 
cycle. The minus sign comes from the fact that the loops are traced clockwise (in the 
direction ABCD in Figures 7 and 8). Assuming that the amplitudes of the two angles are 
sufficiently small, the leading order term of Δx becomes 
 

Δx ≃ −	  Area γ 	  curl g�, g  0,0 	  .    (16) 
 
We can therefore conclude that the net horizontal displacement is proportional to the area 
of the loop, with a non-vanishing factor given by 

 

curl 𝑔^, 𝑔� 0,0 = −
5
2
𝑙(𝜁52#6,F − 𝜁52#6,∥)(50𝜁52#6,F + 11𝜁0123)
10𝜁52#6,∥ + 𝜁0123 10𝜁52#6,F + 𝜁0123

 

(see Appendix B). 
 
 
Discussion and Conclusions 
 
The results of our analysis provide a feasibility study for the engineering of microscopic 
artificial swimmers consisting of a cargo head and of a flexible thin film tail made of a 
permanent magnetic material, and propelled by an external oscillating magnetic field. Our 
results indicate that for a system characterized by geometric parameters consistent with 
those achievable by current manufacturing techniques, and by realistic values of the 
magneto-elastic parameters (consistent with those of Permalloy), interesting swimming 
performance can be achieved by using magnetic fields that are easily attainable in a 
laboratory (field magnitude of a few tens of mT, frequencies of a few tens of Hz). 
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As shown in Figure 2, the maximum displacement per cycle we obtain is 5 µm, namely, 
0.05 body lengths, and the maximum swimming speed is 70 µm/s namely, 0.64 body 
lengths per second. By tuning and optimizing the geometry and magneto-elastic properties 
of the tail, one can easily obtain better performance. Consider, for example, the case of a 
tail made of a magnetic multilayer consisting of a magnetic core of thickness 𝑡% =
50	  𝑛𝑚	   and Young modulus 𝐸% = 𝐸  (here we use again the material parameters of 
Permalloy given in Table 1), coated by two non-magnetic layers of thickness 𝑡b and Young 
modulus 𝐸b (we take 𝑡b = 25 nm and 𝐸b = 70 GPa, the value for Al). Then, formula (2) 
above is replaced by 
 

𝜅 =
(𝐸𝐽)1©©
𝑙52#6

 

where 
 

(𝐸𝐽)1©© =
𝑤52#6
12

𝐸%𝑡%V + 8𝐸b
𝑡%
2
+ 𝑡b

V
−

𝑡%
2

V
 

 
while the magnetization per unit length of each segment reads 
 

𝑀 = 𝑀l𝑡%𝑤52#6	  . 
 
This more compliant tail leads to an increase of performance, as shown in Figure 9. We 
obtain a maximum displacement per cycle, which is now 6.5 µm, and a maximum 
swimming speed of 90 µm/s. 
A further increase in performance can be obtained with an even more compliant design, in 
which the non-magnetic coating is removed in a central portion of the tail of length 10 µm. 
This central section acts as an additional elastic joint, where large bending deformations are 
localized. These lead to larger loops in the 𝜃^, 𝜃�  plane (not shown), and the maximum 
displacement per cycle and the maximum speed reach the values 9.5 µm and 125 µm/s, 
respectively (see Figure 8). This speed is larger than one body length per second, and 
exceeds the ones observed for bull sperm cells in water, which are reported to be around 
100 µm/s 3. We finally remark that a swimmer made with a very flexible tail consisting of 
only a 50 nm thick layer with the magnetoelastic properties of Permalloy would in principle 
produce even better performance. But whether a 110 µm long MML film that is only 50 nm 
thick can be realized in practice, maintaining integrity and mechanical stability when 
actuated, is possibly questionable. Exploring further variations in the design, and 
optimizing them subject to the constraints of practical realizability and mechanical integrity 
is obviously a very interesting problem, but this is beyond the scope of the present paper. 
 
Our analysis shows that the magneto-elastic swimmer we have described in this paper 
propels itself with a mechanism, which is very different from the ones previously reported 
in the literature for flexible magneto-elastic filaments. Indeed, the deformation of the 
swimmer is composed of a global rotation and of a bending deformation with a spatially 
constant curvature, which both oscillate in time at the same frequency of the external 
magnetic field, but with a phase shift, see (12). A movie illustrating the corresponding 
motion can be found in 23. 
By contrast, sperm cells and artificial swimmers exploiting control of their curvature propel 
themselves by propagating internally activated waves of bending along the flagellum3, 20. 
This mechanism can be understood in terms of the classical swimming sheet model of G.I. 
Taylor24, since the flagellum is able to produce travelling waves of bending, propagating 
from tail to head. Consistently with the swimming sheet analysis, this produces motion 



 11 

with average speed in direction opposite to the one of the travelling bending waves, hence 
head first. 
The behaviour of the magneto-elastic filament driven by an external oscillating magnetic 
field presented in Dreyfus et al.12 has also been analyzed through the same paradigm. 
Indeed, its behaviour is rationalized in terms of travelling waves of bending which are now 
emerging from external activation, rather than being internally produced, and are then 
observed to propagate from tail to head. This swimmer swims tail first, rather than head 
first, while exhibiting bending waves propagating form tail to head, again in agreement 
with the swimming sheet paradigm. In the more detailed study contained in Roper et al.17, 
it is further shown that filament propulsion arising from the propagation of bending waves 
between free and tethered ends leads to a swimming gait that is intermediate between a 
eukaryotic cell and a waggled elastic rod (see, in particular, Fig. 7 in 17). 
By contrast, in our case there are no travelling bending waves, as shown in the discussion 
of equation (12). Just like Purcell’s idealized scallop25, whose shape is described by the 
angle between the two rigid links mimicking the valves, the shape of our swimmer is 
governed by a single scalar parameter, the spatially constant curvature, evolving in time in 
a reciprocal fashion. Nevertheless, the swimmer exhibits nonzero net displacements under 
cyclic actuation.  
There is, however, no contradiction with the celebrated Scallop Theorem25, which applies 
to systems subject to zero external forces and torques, and powered only by periodic shape 
changes. In the presence of external torques, the picture changes completely, and non-
reciprocal translational motion is no longer incompatible with shape changes that are 
reciprocal. This has been already observed, e.g., in Burton et al.26, where it is shown that in 
the presence of external torques due to the offset between center of mass and center of 
buoyancy, a two-link device (Purcell’s idealized scallop) can swim at low Reynolds 
numbers. Moreover, it has been recently shown in 18 that a magnetic system made with two 
rigid segments, one of which magnetic, joined by an angular elastic spring can be propelled 
by magnetic fields of the same type we have considered. Our swimmer is propelled by a 
similar mechanism, with the only difference that our magnetic element is flexible, and it 
exhibits a time-dependent (but spatially constant) curvature. 
As shown above, magnetic multilayers lead to films that are relatively stiff in bending. The 
consequence is that a magneto-elastic swimmer whose flexible magnetic tail is made out of 
a magnetic multilayer film will likely be too stiff to support the propagation of bending 
waves. Nevertheless, it will still be able to swim, thanks to the different mechanism 
illustrated above. The interesting design principle one learns in this way is that, in the 
presence of an external torque (here of magnetic origin), it is not necessary to engineer the 
flexible tail endowing it with deformation modes that are not reciprocal in time. The 
interaction between global (head) rotation and a standing wave of (tail) curvature, both 
oscillating in time at the same frequency and with a phase shift as predicted by eq. (12), is 
enough to produce translational motion. 
Contrary to the behaviour of sperm cells, our swimmer swims tail first. Also the steering 
mechanism we use to produce curved trajectories differs from the one used by sperm cells. 
Our swimmer curves by maintaining the alignment between its average orientation and the 
average orientation of the external magnetic field. Sperm cells (and, similarly, artificial bio-
mimetic devices based on internal actuation providing curvature control) can turn by 
actuating their tails with waves of curvature with non-zero spatial average, producing 
trajectories whose curvatures are proportional to the average curvature of the tail, see 3, 20.  
 
In summary, we have shown through a theoretical and numerical study, that it should be 
possible to extract interesting swimming performance from a system composed of a passive 
cargo head, a magnetoelastic tail made of a magnetic multilayer, and activated by an 
external oscillating field. We have discussed the role of tail stiffness in determining 
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swimming performance and found that, all other things being equal, more flexible tails lead 
to higher swimming speeds (see Figures 9,10). 
Magnetic multilayers are relatively stiff in bending: too stiff to allow the propagation of 
bending waves along the tail. However, we found that even though stiff tails only deform 
as standing waves, they can still be used to power a swimmer, thanks to a mechanism that 
is different from the prevailing paradigm in the field (namely, that swimming can only 
arise from shape changes that are not time-reversible). 
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Appendix A 
 
The 3N × 3N matrix A appearing in equation (10) is given by blocks as 
 

𝑨 =

𝐹{,{ 𝐹{,| 𝐹{,�
𝐹|,{ 𝐹|,| 𝐹|,�
𝑇{
𝐶{,{
0

𝑇|
0
𝐶|,|

𝑇�
𝐶{,�
𝐶|,�

 

 
according to the force, torque and constraint equations (8)-(9). The F matrices are 1 × N 
row vectors given component-wise by 
 

(𝐹{,{)%,# = −𝑙#(𝜉# cos	  b 𝜃# + 𝜂# 	  sin 	  b𝜃#), (𝐹|,{)%,# = −𝑙#(𝜉# − 𝜂#) sin 𝜃# cos 𝜃#,
(𝐹{,|)%,# = (𝐹|,{)%,#	  , (𝐹{,|)%,# = −𝑙#(𝜉# − 𝜂#) sin 𝜃# cos 𝜃#,

(𝐹{,�)%,# =
𝑙#b

2
𝜂# sin 𝜃# 	   , (𝐹|,�)%,# = −

𝑙#b

2
𝜂# cos 	   𝜃# 	   ,

 

 
for i = 1 · · · N . Matrices T are N × N matrices given by 
 

(𝑇{)# = 𝜂
𝑙b

2
sin 𝜃 − (𝑥 − 𝑥#)𝑙(𝜉 − 𝜂) sin 𝜃 cos 𝜃 + (𝑦 − 𝑦#)𝑙(𝜉 cos 	  b𝜃 + 𝜂 sin 	  b𝜃),

(𝑇{)# = 𝜂
𝑙b

2
cos 𝜃 + (𝑥 − 𝑥#)𝑙(𝜂 cos 	  b𝜃 + 𝜉 sin 	  b𝜃) − (𝑦 − 𝑦#)𝑙𝑙(𝜉 − 𝜂) sin 𝜃 cos 𝜃

(𝑇�)# = −𝜂
𝑙V

3
− 𝑥 − 𝑥#

𝑙b

2
𝜂 cos 𝜃 − (𝑦 − 𝑦#)

𝑙b

2
𝜂 sin 𝜃.

 

 
for i, j ranging from 1 to N . Finally, matrices C are (N − 1) × N matrices for which the non-
vanishing terms are given by 
 

(𝐶{,{)## = −1	  , (𝐶{,{)#,#H% = 1	  , (𝐶{,�)## = 𝑙# sin 𝜃# 	   ,
(𝐶|,|)## = −1	  , (𝐶|,|)#,#H% = 1	  , (𝐶{,�)## = −𝑙# cos 𝜃#	  ,

 

 
 

for i ranging from 1 to N − 1. For what concerns the vector-fields appearing in equation (12), 
we have 
 

𝑭_ = −𝜅(0,0,0, 𝜃b − 𝜃%, … , 𝜃' − 𝜃'r%, 0, … ,0)5	  ,

𝑭% = −𝑀l(0,0, sin 𝜃#, … , sin 𝜃#, … , sin 𝜃', 0, … ,0)5
'

#nm

'

#n%

	   ,

𝑭b = −𝑀l(0,0, cos 𝜃#, … , cos 𝜃#, … , cos 𝜃', 0, … ,0)5	  .
'

#nm

'

#n%

 

 
 

Notice that the 2(N − 1) zeros at the end of the vector-fields correspond to the (differential) 
constraint equations (11). 

  

 



 15 

Appendix B 
 
In Section 3.4 we focus on a swimmer made with two unequal rigid and magnetized links, one 
of which has a passive head attached, and joined by an elastic rotational spring. The length of 
each link is 5 l, the one of the head is l. The drag coefficient of the head is 𝜁0123 and the ones 
for the tail are 𝜁52#6,∥ and 𝜁52#6,F. 
We derive the equation of motion for this system from (10) by setting N=3 and 𝜃b = 𝜃%.	   The 
last assumption is made to fix the orientation of head to be equal to the one of the first 
segment. 
Considering the subsystem made by the first 2 rows of (10) and by noticing that the 2 first 
components of vector fields F0, F1 and F2 are null (see Appendix A), we get 
 

𝑴 {o
|o

= (𝑮^,, 𝑮�)
�¯
�𝑹

     (17) 
 
where M is a symmetric matrix defined by 
 

𝑴 =
𝑚%% 𝑚%b
𝑚%b 𝑚bb

 

with 
𝑚11 = 5𝑙 𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥ cos2𝜃𝐿 + cos2𝜃𝑅 − 10	  𝜁𝑡𝑎𝑖𝑙,⊥𝑙 − 𝜁ℎ𝑒𝑎𝑑	  𝑙,

𝑚%b = 5𝑙 𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥ (sin 𝜃𝐿 cos 𝜃𝐿 + sin 𝜃𝑅 cos 𝜃𝑅) ,

𝑚bb = −5𝑙 𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥ cos2𝜃𝐿 + cos2𝜃𝑅 − 10	  𝜁𝑡𝑎𝑖𝑙,∥𝑙 − 𝜁ℎ𝑒𝑎𝑑	  𝑙.

 

	  
Here  𝑮𝒊 = (𝐺#%, 𝐺#b) with 𝑖 = 𝐿, 𝑅,	   are two column vectors whose expression is 

𝐺^% = −30𝑙b cos 𝜃� 𝜁52#6,F − 𝜁52#6,∥ (sin 𝜃^ cos 𝜃� − sin 𝜃� cos 𝜃^) +
1
2
𝑙b sin 𝜃^ 95𝜁52#6,F + 𝜁0123 	   ,

𝐺^b = −30𝑙b cos 𝜃� 𝜁52#6,F − 𝜁52#6,∥ (sin 𝜃^ sin 𝜃� + cos 𝜃� cos 𝜃^) −
1
2
𝑙b cos 𝜃^( 𝜁0123 + 35𝜁52#6,F + 60𝜁52#6,∥)	  ,

𝐺�% =
25
2
𝜁52#6,F sin 𝜃�𝑙b 	   ,

𝐺�b = −
25
2
𝜁52#6,F cos 𝜃�𝑙b 	   .

 

 
The first component of system (17) is 
 

𝑥 = 𝑔^ 𝜃^, 𝜃� 𝜃^ + 𝑔� 𝜃^, 𝜃� 𝜃� 
 
where each function 𝑔# depends on (𝜃^, 𝜃�) and is equal to 𝑴r%𝑮# ∙ 𝒆{. Integrating this 
over a cycle we obtain eq. (16), namely,  
 

Δ𝑥	   ≃ −Area 𝛾 curl 𝑔^, 𝑔� 0,0 . 
 
To compute explicitly the quantities above, let us recall that curl 𝑔^, 𝑔� (𝜃^, 𝜃�)  is 
defined by 
 

curl 𝑔^, 𝑔� (𝜃^, 𝜃�) =
º»¼
º�¯

(𝜃^, 𝜃�) −
º»¯
º�¼

	  (𝜃^, 𝜃�) 
 

Therefore, the derivative of 𝑔# with respect to 𝜃, 𝑖	  , 𝑗 = 𝐿, 𝑅	  and	  𝑖 ≠ 𝑗, evaluated at (0,0) 
is equal to 
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𝜕𝑔#
𝜕𝜃

0,0 =
𝜕𝑴r%

𝜕𝜃
	  𝑮# 	  + 𝑴r% 	  

𝜕𝑮#
𝜕𝜃 �¯,�¼ n _,_

∙ 	  𝒆{	  . 

 
Moreover, 
 

𝜕𝑴r%

𝜕𝜃 �¯,�¼ n _,_
= − (𝑴r% ∙

𝜕𝑴	  

𝜕𝜃
∙ 𝑴r%)

�¯,�¼ n _,_
 

 
with 

𝑴r%
�¯,�¼ n _,_ =

1
𝑙

1
−10𝜁𝑡𝑎𝑖𝑙,∥ − 𝜁ℎ𝑒𝑎𝑑

0

0
1

−10𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁ℎ𝑒𝑎𝑑

, 

 
𝜕𝑴	  

𝜕𝜃 �¯,�¼ n _,_
= 5𝑙

0 𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥
𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥ 0 , 

 
𝑮^ �¯,�¼ n _,_ = − 6a

b
_

ÀÁ𝜁𝑡𝑎𝑖𝑙,⊥+𝜁ℎ𝑒𝑎𝑑
,   𝑮� �¯,�¼ n _,_ = − bÁ

b
𝑙b _

𝜁𝑡𝑎𝑖𝑙,⊥
, 

 
º𝑮¯	  

º�¼ �¯,�¼ n _,_
= 30𝑙b 𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥

1
0 ,         

º𝑮¼	  

º�¯ �¯,�¼ n _,_
= _

_ , 

 
 

From these expressions, we get 
𝜕𝑔�
𝜕𝜃^

0,0 = −
125
2

𝑙(𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥)𝜁𝑡𝑎𝑖𝑙,⊥
10𝜁𝑡𝑎𝑖𝑙,∥ + 𝜁ℎ𝑒𝑎𝑑 10𝜁𝑡𝑎𝑖𝑙,⊥ + 𝜁ℎ𝑒𝑎𝑑

	  , 

 
and 
 

𝜕𝑔^
𝜕𝜃�

0,0 =
5
2
𝑙(𝜁𝑡𝑎𝑖𝑙,⊥ − 𝜁𝑡𝑎𝑖𝑙,∥)(25𝜁𝑡𝑎𝑖𝑙,⊥ + 11𝜁ℎ𝑒𝑎𝑑)

(10𝜁𝑡𝑎𝑖𝑙,∥ + 𝜁ℎ𝑒𝑎𝑑)(10𝜁𝑡𝑎𝑖𝑙,⊥ + 𝜁ℎ𝑒𝑎𝑑)
	  . 

 
Finally, we obtain  
 

curl 𝑔^, 𝑔� 0,0 = −
5
2
𝑙(𝜁52#6,F − 𝜁52#6,∥)(50𝜁52#6,F + 11𝜁0123)
10𝜁52#6,∥ + 𝜁0123 10𝜁52#6,F + 𝜁0123

	  . 
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Ms 8 · 105 Am−1 
E 1011 Nm−2 
lhead 10 µm 
ltail 10 µm 
wtail 1 µm 
ttail 0.1 µm 
ζhead 0.05 Nsm−2 
ζtail,⊥ 12.4 · 10−3 Nsm−2 

ζtail,|| 6.2 · 10−3 Nsm−2 
Bx 0.01 T 
By 0.01 T 

 
Table 1: Values of the parameters used in the numerical simulations 
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Figure 1: The magneto-elastic swimmer: initial configuration, before the application of the 
external magnetic field. Lengths are in µm. 
 
Figure 2: Horizontal displacement during one period of the external field (left) and velocity 
of the swimmer (right). Very small and very high frequencies are not effective and a 
maximum displacement is obtained for a frequency of about 8 Hz. Three bullets indicate 
the frequencies 3, 8 and 50 Hz that are used in the sequel for a more thorough analysis 
 
Figure 3: The Fourier mode Ψ%(s) corresponding to the three frequencies 50 Hz (black), 8 
Hz (red), and 3 Hz (blue). The circles, represented in the complex plane, correspond to the 
data obtained from the numerical simulations, and we have interpolated them with straight 
lines. This linear approximation leads to formula (12) 
 
Figure 4: Trajectory of the head of the swimmer with the magnetic field given by (11) with 
ω = 8 Hz. The close-up view in the right panel emphasizes the oscillations in the head 
movement. Lengths are in µm. 
 
Figure 5: Trajectory of the head of the swimmer with the magnetic field given by equations 
(13), (14). The average direction of the magnetic field experiences a low frequency circular 
motion together with a high frequency oscillation. The swimmer follows the slow 
modulations of the applied magnetic field by tracing a circular trajectory. Lengths are in 
µm. 
 
Figure 6: Trajectory of the head of the swimmer with the magnetic field given by equations 
(13), (15), where we have used ω/2π = 8 Hz and 𝑇h2{= 10s. The sudden rotation of the axis 
along which the magnetic field oscillates induces a sudden change in the swimming 
direction that could allow the swimmer to navigate along the elbow of a pipe (not shown). 
Lengths are in µm. 
 
Figure 7: Left - The loop in the θ�, θ   traced by the MML swimmer is indicated in blue. 
The curve described by θ�, θb  is given in red. Right - Snapshots of the swimming stroke 
along the beat cycle corresponding to points A, B, C and D. 
 
Figure 8: Left - The loop in the 𝜃^, 𝜃�  plane traced by the 2-link swimmer is indicated in 
blue. The dashed curve gives the corresponding picture when no passive head is attached to 
the first link. Right - Snapshots of the swimming stroke along the beat cycle corresponding 
to points A, B, C and D. 
 
Figure 9: Horizontal displacement during one cycle of the external field (left) and velocity 
(right) for the swimmer with a tail made of a magnetic multilayer (thickness of layers 
constant along filament length). 
 
Figure 10: Horizontal displacement during one cycle of the external field (left) and velocity 
(right) for the swimmer with a tail made of a magnetic multilayer with an elastic joint in 
the middle. 
 
 

 
 






















