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Abstract

After Arthur Ashkin’s pioneering work in optical levitation and ma-
nipulation, the study of optical forces exerted by laser beams on particles
has become an active field of research. The present paper is a contribution
to this issue. The interest of Bessel beams is that their intensity does not
have any longitudinal gradient along the direction of propagation leading
to a trivial separation between gradient and scattering forces. Beside the
classical gradient and scattering forces, we shall however exhibit a new
kind of optical forces associated with the existence of non zero axicon
angles.

Keywords: optical forces; gradient and scattering optical forces; Bessel
beams; generalized Lorenz-Mie theory; Rayleigh regime.

1 Introduction.

After Arthur Ashkin’s pioneering work in optical levitation and manipula-
tion, e.g. a collection of preprints in [1], a great deal of work has been devoted
to the study of optical forces exerted by laser beams on particles,e.g. [2], [3],
[4], [5], [6], [7], [8], [9], [10] for reviews.
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Many of them focused their attention on the classical gradient and scattering
forces discussed by Ashkin according to the following definitions: the gradient
force is proportional to the gradient of intensity and points in the direction of
the intensity gradient, while the scattering force is proportional to the optical
intensity and points in the direction of the incident light [11]. The study of
gradient and scattering forces is particularly appealing in the Rayleigh regime
where the formal computations are facilitated and are even amenable to analytic
formulations, e.g. [12], [13], [14], [15], [16], [17], [18] [19], [20], [21], [22], [23],
[24], [25], [26], [27] and some reviews above. I shall particularly rely on a paper
by J.A. Lock who, in the framework of a study devoted to radiation trapping
forces for laser tweezers, provided an analysis of gradient and scattering forces in
the Rayleigh regime, in the framework of generalized Lorenz-Mie theory, in the
case of an on-axis Gaussian beam described by using a localized approximation
in the weak-beam confinement limit [28].
In the present paper, a similar study is carried out in the more diffi cult case

of off-axis Bessel beams. The opportunity of studying off-axis beams instead of
on-axis beams is partly due to the fact that some simplifications occur due to
the fact that the gradient of intensity along the axis z of propagation is always
zero for Bessel beams, in deep contrast with the case of Gaussian beams even
in an on-axis configuration. Furthermore, this fact implies a trivial separation
between longitudinal gradient and scattering forces since all longitudinal gradi-
ent forces are expected to be zero so that only scattering forces act along the
longitudinal direction. Another interest of Bessel beams is that the beam shape
coeffi cients encoding the structure of the beams in the framework of generalized
Lorenz-Mie theory (GLMT) are available in closed forms, without the need of
using a localized approximation. Furthermore, an unexpected result will be the
discovery of a new kind of optical forces related to the existence of axicon angles
in Bessel beams, which do not occur in Gaussian beams.
The paper is organized as follows. Section 2 provides a background to be

used in the sequel, concerning (i) optical forces in the framework of GLMT, (ii)
Poynting vector in the framework of GLMT, (iii) basic mathematical formulae
for further use and (iv) the description of Bessel beams. Section 3 deals with
optical forces for Rayleigh particles exerted by Bessel beams. In Section 4, the
optical forces derived in the previous section are analyzed in terms of gradient
and scattering forces, revealing the existence of an unexpected new kind of
optical forces, namely scattering axicon forces which do not occur for more
usual beams whose axicon angle is zero.

2 Physical and mathematical background.

The GLMT stricto sensu describes the interaction between an arbitrary
(structured) shaped beam and a homogeneous spherical particle defined by its
diameter and its complex refractive index, e.g. [29], [30], [31], and references
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therein. Also, see reviews [32], [33], in particular for other GLMTs devoted to
the interaction between laser beams and other kinds of scatterers. In the present
paper, we consider a Rayleigh particle located at the origin OP of a Cartesian
coordinate system OPxyz illuminated by an off-axis Bessel beam propagating
along the z-direction.

2.1 Optical forces.

In the GLMT framework, we express the optical force components Fi by
using (unnormalized) pressure radiation cross-section components Cpr,i (i =
x, y, z). In the present paper, we deal only with the longitudinal cross-section
(along z−direction) reading as:

Cpr,z = E0H
∗
0

λ2

4π

∞∑
n=1

n∑
m=−n

{ 1

(n+ 1)2
(n+ 1 + |m|)!
(n− |m|)! (1)

Re[(an + a
∗
n+1 − 2ana∗n+1)gmn,TMgm∗n+1,TM

+(bn + b
∗
n+1 − 2bnb∗n+1)gmn,TEgm∗n+1,TE ]

+m
2n+ 1

n2(n+ 1)2
(n+ |m|)!
(n− |m|)!

Re[i(2anb
∗
n − an − b∗n)gmn,TMgm∗n,TE)]}

with notations being the ones of [29]. However, note that, strictly speaking,
Cpr,z of Eq.1 would be a pressure radiation cross-section, i.e. would be homo-
geneous to an area, if we used the normalization condition E0H∗0/2 =1. Here,
we did not use this condition for the sake of consistency with later expressions
concerning the Poynting vector. When using the normalization condition, the
forces are related to the cross-sections according to Fi = Cpr,i/c ([34], p.14).
The time-dependence of the wave is exp(+iωt) which is the usual choice in
GLMT.
Furthermore, specifically, an and bn are the usual Mie coeffi cients of the usual

Lorenz-Mie theory, gmn,TM and gm,,TE , with TM and TE standing for "Transverse
Magnetic" and "Transverse Electric" respectively, are the beam shape coeffi -
cients (BSCs) encoding the description of the beam, either in terms of scalar
potentials, e.g. [31] or in terms of vector spherical wave functions [35], the star
denotes a complex conjugation and δnm is the Kronecker symbol. Furthermore,
we have reintroduced the normation prefactor E0H∗0/2 which was set to 1 in
original works, e.g. Eq.(3.106) in [31]. In the present paper, we shall consider
only the longitudinal force of Eq.1 because it will lead to simpler computations
than for the two other force components along x and y, and, more important,
because we expect a natural separation between gradient and scattering forces
along the z-direction.
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2.2 Poynting vector.

For the same reasons, we shall only consider the z−component Sz of the
Poynting vector defined as:

Sz =
1

2
Re(ExH

∗
y − EyH∗x) (2)

which has been already evaluated to [36], [37]:

Sz =
−E0H∗0
2r2

Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

icpwn cpw∗p ei(m−q)ϕ (3)

(sin θSmqnp + cos θC
mq
np )

in which (r, θ, ϕ) are spherical coordinates attached to the Cartesian coordi-
nates (x, y, z), cpwn are prefactors appearing in the Bromwich formulation of the
Lorenz-Mie theory [38], reading as:

cpwn =
1

ik
(−i)n 2n+ 1

n(n+ 1)
(4)

and :

Smqnp = kr[−gmn,TMg
q∗
p,TMψp(ψn + ψ

′′

n)P
|m|
n τ |q|p (5)

+gmn,TEg
q∗
p,TEψn(ψp + ψ

′′

p )P
|q|
p τ |m|n

+qgmn,TMg
q∗
p,TEψ

′

p(ψn + ψ
′′

n)P
|m|
n π|q|p

+mgmn,TMg
q∗
p,TEψ

′

n(ψp + ψ
′′

p )P
|q|
p π|m|n ]

Cmqnp = −gmn,TMg
q∗
p,TMψpψ

′

n(τ
|m|
n τ |q|p +mqπ|m|n π|q|p ) (6)

+gmn,TMg
q∗
p,TEψ

′

nψ
′

p(mπ
|m|
n τ |q|p + qπ|q|p τ

|m|
n )

−gmn,TEg
q∗
p,TMψpψn(mπ

|m|
n τ |q|p + qπ|q|p τ

|m|
n )

+gmn,TEg
q∗
p,TEψnψ

′

p(mqπ
|m|
n π|q|p + τ |m|n τ |q|p )
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in which k is the wavenumber, P |m|n = P
|m|
n (cos θ) are associated Legendre

functions, τ |m|n = τ
|m|
n (cos θ) and π|m|n = π

|m|
n (cos θ) are generalized Legendre

functions, and ψn = ψn(kr) are Ricatti-Bessel functions, while a prime de-
notes a derivative with respect to the argument (and a double prime a second
derivative). In Eqs.5-6, arguments are omitted for convenience

2.3 Mathematical background.

Associated Legendre functions are defined according to Hobson’s notation
[39]:

P |m|n (cos θ) = (−1)|m|(sin θ)|m| d
|m|Pn(cos θ)

(d cos θ)|m|
(7)

in which Pn(cos θ) are the usual Legendre polynomials. For the description of
Bessel beams, we shall also need associated Legendre functions with a negative
superscript. They can be obtained from [40]:

P−mn (cos θ) = (−1)m (n−m)!
(n+m)!

Pmn (cos θ) (8)

Associated Legendre functions may then be evaluated according to:

τmn (cos θ) =
dPmn (cos θ)

dθ
(9)

πmn (cos θ) =
Pmn (cos θ)

sin θ
(10)

Ricatti-Bessel functions ψn(kr) may be expressed in terms of spherical
Bessel functions jn(kr) according to:

ψn(x) = xjn(x) (11)

Furthermore, we have:

ψ′n(x) = (n+ 1)jn(x)− xjn+1(x) (12)

and:

lim
x→0

jn(x) =
xn

(2n+ 1)!!
(13)
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2.4 Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [41], [42].
They possess the appealing property of being self-healing and non diffracting,
and, more important in the context of the present paper, they furthermore
possess a propagation invariance property, namely the intensity of the beam is
constant along the direction of propagation. There exist an infinity of kinds
of Bessel beams, in particular depending on the value given to an arbitrary
function g(α0), in which α0 is the axicon angle (or half-cone angle) of the beam,
with different linear and circular polarizations [43], [44], [45], [46]. All of them
generically exhibit the following structure:

Ki = ki(x, y)e
−ikzz, i = x, y, z, K = E or H (14)

in which kz = k cosα is the longitudinal wavenumber. Among all of them,
we shall pay a particular attention to circularly symmetric Bessel beams of
arbitrary order whose BSCs in an off-axis configuration read as [46]:

gmn,TM = −g(α0)eikzz0 [il−m+1ei(l−m+1)φ0Amn + il−m−1ei(l−m−1)φ0Bmn ] (15)

gmn,TE = ig(α0)e
ikzz0 [il−m+1ei(l−m+1)φ0Amn − il−m−1ei(l−m−1)φ0Bmn ] (16)

in which:

Amn = (−1)(m−|m|)/2
(n−m)!
(n+ |m|)!Jl−m+1(σ0)[τ

m
n (cosα0) +mπ

m
n (cosα0)] (17)

Bmn = (−1)(m−|m|)/2 (n−m)!
(n+ |m|)!Jl−m−1(σ0)[τ

m
n (cosα0)−mπmn (cosα0)] (18)

in which σ0 = ktρ0, kt = k sinα0 is the transverse wavenumber, ρ0 = (x
2
0 +

y20)
1/2, φ0 = tan

−1(y0/x0), (x0, y0, z0) denotes the location of the beam origin
with respect to the origin of the particle coordinate system at which the scatterer
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is located, and therefore specifies the off-axis location of the beam, and Jk(.)
is the k-order Bessel function of the first kind. When g(α0) = (1 + cosα0)/4,
the beam reduces to a Davis circularly symmetric Bessel beam as discussed in
[43], [47]. When g(α0) = 1/2, the beam reduces to another kind of Bessel beam
discussed in [48], [49], [50]. In the sequel, it will be convenient to introduce the
notation C = cosα0.

3 Optical forces exerted by Bessel beams on Rayleigh
particles.

3.1 General expressions of optical forces for Rayleigh
particles.

Let us consider Eq.1 which contains an infinite number of Mie coeffi cients.
For Rayleigh particles, the Mie coeffi cients reduce to [28], and [34], pp. 143-144:

a1 =
2i

3

m2 − 1
m2 + 2

α3 +O(iα5) +
4

9
(
m2 − 1
m2 + 2

)2α6 (19)

b1 = O(iα5) (20)

in which m is the refractive index (here taken to be real) with respect to the
surrounding medium and α the size parameter πd/λ. The other coeffi cients an
and bn (n > 1) involves still higher powers of α. Real parts are then propor-
tional to α6 and imaginary parts are proportional to α3 while higher powers are
discarded and we therefore retain only:

Im(a1) =
2

3

m2 − 1
m2 + 2

α3 (21)

Re(a1) =
4

9
(
m2 − 1
m2 + 2

)2α6 (22)

We then start from Eq.1, retain only the (n = 1)-partial wave and the
Mie coeffi cient a1, leading to:

Cpr,z = E0H
∗
0

3λ2

8π
Re(a1G) (23)
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in which:

G = g−11,TM (g
−1∗
2,TM + ig−1∗1,TE) + g

1
1,TM (g

1∗
2,TM − ig1∗1,TE) +

1

3
g01,TMg

0∗
2,TM (24)

This becomes:

Cpr,z = E0H
∗
0

3λ2

8π
[Re(a1)Re(G)− Im(a1) Im(G)] (25)

in which we recall that Re(a1) ∼ α6 and Im(a1) ∼ α3. According to the
literature, e.g. [12], [13], [20], [25], [28], and many other papers already quoted in
the introduction, the α6-term and the α3-term correspond to the scattering and
the gradient forces respectively so that Cpr,z is the sum of two terms according
to Cpr,z = Cspr,z + C

g
pr,Z in which, using Eqs.21-22, we obtain:

Cspr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2Re(G)α6 (26)

Cgpr,z = −E0H∗0
λ2

4π

m2 − 1
m2 + 1

Im(G)α3 (27)

in which the subscripts s and g recall that we expect that Cspr,z and C
g
pr,z

correspond to scattering and gradient forces respectively (this expectation will
not be perfectly fulfilled). We shall now specify these expressions to the case of
circularly symmetric Bessel beams of arbitrary order whose BSCs in an off-axis
configuration are given by Eqs.15-18. A remark is worthwhile to be done here,
namely that G occur both in Cspr,z and in C

g
pr,z, i.e. that both quantities would

be expressed in terms of the same set of BSCs. This suggests that it is in general
impossible to express the original GLMT series of fields as a decomposition of
sub-fields leading to different kinds of optical forces related to different sets of
BSCs, as confirmed in a more general context by [51], [52]. [53].

3.2 Term with imaginary part of G for circularly sym-
metric Bessel beams.

Let us consider Eq.24. It is convenient to rewrite it as:

G = G1 +G2 +G3 (28)
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in which:

G1 = g−11,TM (g
−1∗
2,TM + ig−1∗1,TE) (29)

G2 = g11,TM (g
1∗
2,TM − ig1∗1,TE) (30)

G3 =
1

3
g01,TMg

0∗
2,TM (31)

We now evaluate these quantities using Eqs.15-18, and obtain, after a
significant amount of computations:

G1 = − |g(α0)|2 {−A−11 A−12 +A−11 A−11 −B−11 B−12 −B−11 B−11 (32)

+e2iφ0 [A−11 B−12 +A−11 B−11 ] + e−2iφ0 [B−11 A−12 −B−11 A−11 ]}

G2 = |g(α0)|2 {A11A12 +A11A11 +B11B12 −B11B11 (33)

+e2iφ0 [A11B
1
1 −A11B12 ]− e−2iφ0 [B11A12 +B11A11]}

G3 =
1

3
|g(α0)|2 [A01A02 +B01B02 − e2iφ0A01B02 − e−2iφ0B01A02] (34)

Recalling that Amn and Bmn are real quantities, we then have:

Im(G3) = −
1

3
|g(α0)|2 sin 2φ0[A01B02 −B01A02] (35)

Expressing the coeffi cients Amn and Bmn involved in Eq.35 by using
Eqs.17-18, we obtain: A01 = Jl+1τ

0
1, B

0
2 = Jl−1τ

0
2, B

0
1 = Jl−1τ

0
1 and A02 =

Jl+1τ
0
2, in which arguments σ0 and C = cosα0 are omitted, immediately imply-

ing, without the need to specify the expressions for the τ’s:

A01B
0
2 −B01A02 = 0 (36)

and therefore:
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Im(G3) = 0 (37)

We now deal with (G1+G2), i.e. not with G1 and G2 separately. From
Eqs.32-33, recalling again that Amn and Bmn pertain to R, we obtain:

Im(G1 +G2) = |g(α0)|2 sin 2φ0G12 (38)

in which:

G12 = −A−11 B−12 −A−11 B−11 +B−11 A−12 −B−11 A−
−1

1 (39)

+A11B
1
1 −A11B12 +B11A12 +B11A11

Evaluating the coeffi cients Amn and Bmn involved in Eq.39, we obtain after
a bit of algebra, omitting again the arguments:

G12 = 2JlJl+2[−τ−11 π−12 − τ−11 τ−11 + π−11 τ−12 + π−11 π−11 ] (40)

+
1

6
JlJl−2[3τ

1
1τ
1
1 − 3π11π11 + τ11π12 − π11τ12]

The τ’s and π’s involved in Eq.40 are then evaluated using the expres-
sions provided in subsection 2.3, leading to: P 11 = −S, P 12 = −3SC, P−11 = S/2,
P−12 = SC/2, τ11 = −C, π11 = −1, π12 = −3C, τ12 = 3(S2 − C2), τ−11 = C/2,
π−11 = 1/2, π−12 = C/2, τ−12 = (C2 − S2)/2, in which we again use C = cosα0
and furthermore introduced S = sinα0, leading eventually to:

Im(G1 +G2) = 0 (41)

Therefore, as a whole, we have Im(G) = 0 and:

Cgpr,z = 0 (42)
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3.3 Term with real part of G for circularly symmetric
Bessel beams.

For Cspr,z of Eq.26, calculations run in a similar way. We however make a
decomposition of G of Eq.24 which is different from the one of Eq.28, into three
terms, according to:

G = G11 +G12 +G0 (43)

in which:

G11 = i[g−11,TMg
−1∗
1,TE − g

1
1,TMg

1∗
1,TE ] (44)

G12 = g−11,TMg
−1∗
2,TM + g11,TMg

1∗
2,TM ] (45)

G0 =
1

3
g01,TMg

0∗
2,TM (46)

Cspr,z may then be decomposed into three terms according to:

Cspr,z = Cs11pr,z + C
s12
pr,z + C

s0
pr,z (47)

in which:

Cs11pr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2Re(G11)α6 (48)

Cs12pr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2Re(G12)α6 (49)

Cs0pr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2Re(G0)α6 (50)

Re(G11) is then evaluated in the usual manner by (i) expressing the
BSCs in terms of Amn ’s and B

m
n ’s leading to:
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Re(G11) = − |g(α0)|2 [(A−11 )2 − (B−11 )2 − (A11)2 + (B11)2], (51)

(ii) afterward expressing the Amn ’s and Bmn ’s involved in Eq.51 according
to: A−11 = −Jl+2(τ−11 − π−11 ), B−11 = −Jl(τ−11 + π−11 ), A11 =

1
2Jl(τ

1
1 + π11),

B11 =
1
2Jl−2(τ

1
1 − π11) and (iii) evaluating the τ’s and π’s according to: τ−11 =

C/2, π−11 = 1/2, τ11 = −C, π11 = −1, to obtain Re(G11) and eventually:

Cs11pr,z = −E0H∗0
λ2

24π
(
m2 − 1
m2 + 2

)2 |g(α0)|2 {(C−1)2[(Jl+2)2+(Jl−2)2]−2(C+1)2(Jl)2}α6

(52)

We similarly obtain:

Cs0pr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2 |g(α0)|2 C(1−C2)[J2l+1+J2l−1−2 cos(2φ0)Jl+1Jl−1]α6

(53)

and:

Cs12pr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2 |g(α0)|2 (54)

[
C3

2
(J2l+2 + J

2
l−2 + 2J

2
l )−

3C2 − 1
4

(J2l+2 + J
2
l−2 − 2J2l )

−C(C2 − 1)(JlJl+2 + JlJl−2) cos(2φ0)]α6

4 Gradient, scattering and scattering axicon forces.

4.1 Gradient force.

On the one hand, we have found that Cgpr,z is 0, e.g. Eq.42. On the other
hand, Eq.14 immediately implies that E.E∗ does not depend on z, i.e. 5(
E.E∗) is zero. This confirms our expectation that Cgpr,z must be interpreted as
a gradient cross-section. Let us interestingly note that [ε0E.E

∗ + µ0H.H
∗] and

the Poynting vector (E ×H∗) do not depend as well on z, meaning that their
z−gradient components are both 0 as well, i.e. the time-averaged energy density
and the Poynting vector as well have no gradient in the z-direction.
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4.2 Scattering and scattering axicon forces.

We now intend to examine whether Cspr,z indeed corresponds to scattering
forces as expected, i.e. whether Cspr,z is proportional to the intensity of the beam
that we shall state as being given by the Poynting vector. More specifically, we
have to consider the component Sz of the Poynting vector taken at the location
of the particle. We then start from Eqs.3-6, in order to evaluate Eq.3. This
equation is to be evaluated on the axis z (where the particle is located). Then all
sin θ-terms are cancelled and we are left with the coeffi cients Cmqnp only. Next, we
remember that Eq.26 has been derived from Eq.24 which contains the following
combinations of BSCs: g−11,TMg

−1∗
2,TM , g

−1
1,TMg

−1∗
1,TE , g

1
1,TMg

1∗
2,TM , g

1
1,TMg

1∗
1,TE and

g01,TMg
0∗
2,TM . Therefore, among the quantities C

mq
np of Eq.6, we only have to

consider the following quantities: C−1−112 , C−1−121 , C−1−111 , C1112 , C
11
21 , C

11
11 , C

00
12

and C0021 . These quantities, restricted to the combinations of BSCs previously
given, read as:

C̃−1−112 = −g−11,TMg
−1∗
2,TMψ2ψ

′

1(τ
1
1τ
1
2 + π

1
1π

1
2) (55)

C̃−1−121 = −g−12,TMg
−1∗
1,TMψ1ψ

′

2(τ
1
2τ
1
1 + π

1
2π

1
1) (56)

C̃−1−111 = −2(g−11,TMg
−1∗
1,TEψ

′
1ψ
′

1 − g−11,TEg
−1∗
1,TMψ1ψ1)π

1
1τ
1
1 (57)

C̃1112 = −g11,TMg1∗2,TMψ2ψ
′

1(τ
1
1τ
1
2 + π

1
1π

1
2) (58)

C̃1121 = −g12,TMg1∗1,TMψ1ψ
′

2(τ
1
2τ
1
1 + π

1
2π

1
1) (59)

C̃1111 = −2(g11,TEg1∗1,TMψ1ψ1 − g11,TMg1∗1,TEψ
′
1ψ
′
1)π

1
1τ
1
1 (60)

C̃0012 = −g01,TMg0∗2,TMψ2ψ
′
1τ
0
1τ
0
2 (61)

C̃0021 = −g02,TMg0∗1,TMψ1ψ
′
2τ
0
2τ
0
1 (62)

in which the tilde is meant to insist on the fact that these quantities are
given with the mentioned restrictions to the combinations of BSCs.
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Next, we remember that the particle is located at the origin of the
coordinate system, i.e. at r = 0. The quantities Cmqnp above do not occur alone
in Eq.3 but as combinations of the form Cmqnp /r. We therefore have to consider
the limit of these various quantities as r → 0. We then recall Eqs.11-13 and
establish:

lim
r→0

ψ2(kr)ψ
′
1(kr)

r2
= lim
r→0

ψ1(kr)ψ
′
2(kr)

r2
= lim
r→0

ψ1(kr)ψ1(kr)

r2
= 0 (63)

so that we are left with the terms C−1−111 /r2 and C1111/r
2 reading as:

C−1−111 = −8k
2

9
g−11,TMg

−1∗
1,TE (64)

C1111 =
8k2

9
g11,TMg

1∗
1,TE (65)

in which we have used [τ11(cos θ)]θ=0 = −1, [π11(cos θ)]θ=0 = −1 and limr→0 ψ′1(kr)ψ′1(kr)/r2 =
4k2/9. Inserting these results into Eq.3 and noting that cpw1 cpw∗1 = 9/(4k2), we
obtain a reduced expression of Sz, now denoted as S̃z reading as:

S̃z = E0H
∗
0 Re[i(g

−1
1,TMg

−1∗
1,TE − g

1
1,TMg

1∗
1,TE)] (66)

which is to be compared with Eqs.44, 48 leading to:

Cs11pr,z = E0H
∗
0

λ2

6π
(
m2 − 1
m2 + 2

)2Re[i(g−11,TMg
−1∗
1,TE − g

1
1,TMg

1∗
1,TE)]α

6 (67)

showing that Cs11pr,z, otherwise given by Eq.52, is proportional to S̃z, therefore
complying with the definition of a scattering force.

It then happens that Cs0pr,zof Eq.53 and C
s12
pr,z of Eq.54 are associated

with two unexpected extra-kinds of forces. The interpretation of Eq.53 is
easy. It is zero when the axicon angle is zero, i.e. when C = 1. The term
Cs0pr,z may then be called an axicon pressure radiation cross-section, associated
with an axicon force. It is conjectured that such forces may occur whenever the
beam description exhibits an axicon angle, i.e. for Bessel beams whatever the
polarization, but also for other kinds of beams including other polarizations of
Bessel beams, frozen waves, Mathieu and Lommel beams, which are formed by
various superpositions of Bessel beams, e.g. [54], [55], [56], [57], [58], [59], [60],
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[61], [62], [63], or Laguerre-Gauss beams focused by a lens, e.g. [64], [65], [66],
[67], [68].

The term Cs12pr,z corresponds to another kind of axicon optical forces
which, however, are not zero when the axicon angle is zero. However, in this
case, we obtain from Eqs.52 and 54:

Cs11pr,z = Cs12pr,z = E0H
∗
0

λ2

3π
(
m2 − 1
m2 + 2

)2 |g(0)|2 J2l (σ0)α6 (68)

in which we reintroduced the argument of the Bessel function Jl, so that
Cs12pr,z, as well as C

s11
pr,z, is proportional to S̃z, therefore complying as well to

the usual definition of a scattering force, regardless of the on-axis (σ0 = 0) or
off-axis (σ0 6= 0) location of the beam. This makes sense because, when α0 = 0,
the angular spectrum decomposition of the Bessel beam only contains incident
plane waves which behaves identically irrespectively of their off-axis location.
Furthermore, for an on-axis location, due to the relation Jl(0) = δl0, we have
Cs11pr,z = Cs12pr,z = 0 except for l = 0.

Next, instead of specifying first α0 = 0 (no axicon angle) and afterward
σ0 = 0 (on-axis location), we may consider an on-axis location straight away.
Then, both Cs11pr,z and C

s12
pr,z are zero (i.e. are proportional with a constant of

proportionality equal to 0) for l 6= 0,±2. If, furthermore α0 = 0 , then, for
l = 0, both Cs11pr,z and C

s12
pr,z are equal and are given by Eq.68, i.e. they are

proportional with a constant of proportionality equal to 1 and, for l = ±2, both
Cs11pr,z and C

s12
pr,z are found to be zero, i.e. they are proportional with a constant

of proportionality equal to 0. Therefore, in all cases, Cs12pr,z may be viewed as a
genuine scattering force, whether it is zero or not, in the on-axis location, while it
provides a new kind of scattering axicon forces otherwise. Let us also remember
that the dichotomy between the cases (l 6= 0,±2) and (l = 0,±2) correspond
as well to a dichotomy between dark and non-dark beams, i.e. between beams
possessing or not a hole of intensity on the axis [69].

5 Conclusion.

The study of the decomposition between gradient and scattering forces ex-
erted by laser beams on Rayleigh particles is an issue propitious to the formal
understanding of the role of such forces. The case of Bessel beams is of particular
interest for the understanding of such issues because such beams have no gradi-
ent of intensity along the direction of propagation, therefore implying a natural
separation between gradient forces (which should be zero) and scattering forces.
Furthermore, although similar studies up to now focused on on-axis configura-
tions, the study of off-axis configurations, although much more intensive from a
formal computation point of view, might provide complementary insights. This
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has been the case for the present study devoted to the study of longitudinal
optical forces exerted by off-axis Bessel beams in the case of Rayleigh particles.
The most important result of this paper is the occurrence of a new kind of
optical forces which may be called scattering axicon forces associated with an
axicon propagation term of the form exp(ik cosα0z) in which α0 is an axicon
angle, which are zero if the axicon angle is zero. Future works will be devoted
to associated complementary studies, such as the systematic study of on-axis
configurations for Bessel beams, or to the case of transverse optical forces in
off-axis Bessel configurations.
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