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Many of them focused their attention on the classical gradient and scattering forces discussed by Ashkin according to the following de…nitions: the gradient force is proportional to the gradient of intensity and points in the direction of the intensity gradient, while the scattering force is proportional to the optical intensity and points in the direction of the incident light [START_REF] Ashkin | Optical levitation by radiation pressure[END_REF]. The study of gradient and scattering forces is particularly appealing in the Rayleigh regime where the formal computations are facilitated and are even amenable to analytic formulations, e.g. [START_REF] Harada | Radiation forces on a dielectric sphere in the Rayleigh scattering regime[END_REF], [START_REF] Dufresne | Optical tweezer arrays and optical substrates created with di¤ractive optics[END_REF], [START_REF] Zemanek | Optical trapping of Rayleigh particles using a Gaussian standing wave[END_REF], [START_REF] Resnick | Design and construction of a space-borne optical tweezer apparatus[END_REF], [START_REF] Rohrbach | Optical trapping of dielectric particles in arbitrary …elds[END_REF], [START_REF] Nahmias | Analysis of radiation forces in laser trapping and laser-guided direct writing applications[END_REF], [START_REF] Zemanek | Simpli…ed description of optical forces acting on a nanoparticle in the Gaussian standing wave[END_REF] [START_REF] Malagnino | Measurements of trapping e¢ ciency and sti¤ness in optical tweezers[END_REF], [START_REF] Chen | Bottle beam from a bare laser for single-beam trapping[END_REF], [START_REF] Zemanek | Optical forces acting on a Rayleigh particle placed into interference …eld[END_REF], [START_REF] Cizmar | An optical nanotrap array movable over a millimetre range[END_REF], [START_REF] Siler | Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery[END_REF], [START_REF] Neuman | Single-molecule micromanipulation techniques[END_REF], [START_REF] Chen | Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation[END_REF], [START_REF] Kendrick | Wavelength dependence of optical tweezers trapping forces on dye-doped polystyrene microspheres[END_REF], [START_REF] Kumar | Clustering of optically trapped large diameter plasmonic gold nanoparticles by laser beam of hybrid-TEM*11 mode[END_REF] and some reviews above. I shall particularly rely on a paper by J.A. Lock who, in the framework of a study devoted to radiation trapping forces for laser tweezers, provided an analysis of gradient and scattering forces in the Rayleigh regime, in the framework of generalized Lorenz-Mie theory, in the case of an on-axis Gaussian beam described by using a localized approximation in the weak-beam con…nement limit [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF].

In the present paper, a similar study is carried out in the more di¢ cult case of o¤-axis Bessel beams. The opportunity of studying o¤-axis beams instead of on-axis beams is partly due to the fact that some simpli…cations occur due to the fact that the gradient of intensity along the axis z of propagation is always zero for Bessel beams, in deep contrast with the case of Gaussian beams even in an on-axis con…guration. Furthermore, this fact implies a trivial separation between longitudinal gradient and scattering forces since all longitudinal gradient forces are expected to be zero so that only scattering forces act along the longitudinal direction. Another interest of Bessel beams is that the beam shape coe¢ cients encoding the structure of the beams in the framework of generalized Lorenz-Mie theory (GLMT) are available in closed forms, without the need of using a localized approximation. Furthermore, an unexpected result will be the discovery of a new kind of optical forces related to the existence of axicon angles in Bessel beams, which do not occur in Gaussian beams.

The paper is organized as follows. Section 2 provides a background to be used in the sequel, concerning (i) optical forces in the framework of GLMT, (ii) Poynting vector in the framework of GLMT, (iii) basic mathematical formulae for further use and (iv) the description of Bessel beams. Section 3 deals with optical forces for Rayleigh particles exerted by Bessel beams. In Section 4, the optical forces derived in the previous section are analyzed in terms of gradient and scattering forces, revealing the existence of an unexpected new kind of optical forces, namely scattering axicon forces which do not occur for more usual beams whose axicon angle is zero.

Physical and mathematical background.

The GLMT stricto sensu describes the interaction between an arbitrary (structured) shaped beam and a homogeneous spherical particle de…ned by its diameter and its complex refractive index, e.g. [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], and references therein. Also, see reviews [START_REF] Gouesbet | Latest achievements in generalized Lorenz-Mie theories: A commented reference database[END_REF], [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF], in particular for other GLMTs devoted to the interaction between laser beams and other kinds of scatterers. In the present paper, we consider a Rayleigh particle located at the origin O P of a Cartesian coordinate system O P xyz illuminated by an o¤-axis Bessel beam propagating along the z-direction.

2.1

Optical forces.

In the GLMT framework, we express the optical force components F i by using (unnormalized) pressure radiation cross-section components C pr;i (i = x; y; z). In the present paper, we deal only with the longitudinal cross-section (along z direction) reading as:

C pr;z = E 0 H 0 2 4 1 X n=1 n X m= n f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! (1) 
Re

[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E )]g
with notations being the ones of [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF]. However, note that, strictly speaking, C pr;z of Eq.1 would be a pressure radiation cross-section, i.e. would be homogeneous to an area, if we used the normalization condition E 0 H 0 =2 =1. Here, we did not use this condition for the sake of consistency with later expressions concerning the Poynting vector. When using the normalization condition, the forces are related to the cross-sections according to F i = C pr;i =c ( [START_REF] Van De Hulst | Light scattering by small particles[END_REF], p.14). The time-dependence of the wave is exp(+i!t) which is the usual choice in GLMT.

Furthermore, speci…cally, a n and b n are the usual Mie coe¢ cients of the usual Lorenz-Mie theory, g m n;T M and g m ;;T E , with TM and TE standing for "Transverse Magnetic" and "Transverse Electric" respectively, are the beam shape coe¢cients (BSCs) encoding the description of the beam, either in terms of scalar potentials, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] or in terms of vector spherical wave functions [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF], the star denotes a complex conjugation and nm is the Kronecker symbol. Furthermore, we have reintroduced the normation prefactor E 0 H 0 =2 which was set to 1 in original works, e.g. Eq.(3.106) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. In the present paper, we shall consider only the longitudinal force of Eq.1 because it will lead to simpler computations than for the two other force components along x and y, and, more important, because we expect a natural separation between gradient and scattering forces along the z-direction.

Poynting vector.

For the same reasons, we shall only consider the z component S z of the Poynting vector de…ned as:

S z = 1 2 Re(E x H y E y H x ) (2) 
which has been already evaluated to [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

S z = E 0 H 0 2r 2 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p ic pw n c pw p e i(m q)' (3) 
(sin S mq np + cos C mq np )
in which (r; ; ') are spherical coordinates attached to the Cartesian coordinates (x; y; z), c pw n are prefactors appearing in the Bromwich formulation of the Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF], reading as:

c pw n = 1 ik ( i) n 2n + 1 n(n + 1) (4) 
and :

S mq np = kr[ g m n;T M g q p;T M p ( n + 00 n )P jmj n jqj p (5) +g m n;T E g q p;T E n ( p + 00 p )P jqj p jmj n +qg m n;T M g q p;T E 0 p ( n + 00 n )P jmj n jqj p +mg m n;T M g q p;T E 0 n ( p + 00 p )P jqj p jmj n ] C mq np = g m n;T M g q p;T M p 0 n ( jmj n jqj p + mq jmj n jqj p ) (6) +g m n;T M g q p;T E 0 n 0 p (m jmj n jqj p + q jqj p jmj n ) g m n;T E g q p;T M p n (m jmj n jqj p + q jqj p jmj n ) +g m n;T E g q p;T E n 0 p (mq jmj n jqj p + jmj n jqj p )
in which k is the wavenumber, P Associated Legendre functions are de…ned according to Hobson's notation [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P jmj n (cos ) = ( 1) jmj (sin ) jmj d jmj P n (cos ) (d cos ) jmj (7) 
in which P n (cos ) are the usual Legendre polynomials. For the description of Bessel beams, we shall also need associated Legendre functions with a negative superscript. They can be obtained from [START_REF] Wang | Special functions[END_REF]:

P m n (cos ) = ( 1) m (n m)! (n + m)! P m n (cos ) (8) 
Associated Legendre functions may then be evaluated according to:

m n (cos ) = dP m n (cos ) d (9) 
m n (cos ) =

P m n (cos ) sin (10) 
Ricatti-Bessel functions n (kr) may be expressed in terms of spherical Bessel functions j n (kr) according to:

n (x) = xj n (x) (11) 
Furthermore, we have:

0 n (x) = (n + 1)j n (x) xj n+1 (x) (12) 
and:

lim x!0 j n (x) = x n (2n + 1)!! (13) 
2.4

Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [START_REF] Durnin | Di¤raction-free beams[END_REF], [START_REF] Durnin | Exact solutions for nondi¤racting beams. I. The scalar theory[END_REF]. They possess the appealing property of being self-healing and non di¤racting, and, more important in the context of the present paper, they furthermore possess a propagation invariance property, namely the intensity of the beam is constant along the direction of propagation. There exist an in…nity of kinds of Bessel beams, in particular depending on the value given to an arbitrary function g( 0 ), in which 0 is the axicon angle (or half-cone angle) of the beam, with di¤erent linear and circular polarizations [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]. All of them generically exhibit the following structure:

K i = k i (x; y)e ikzz , i = x; y; z, K = E or H ( 14 
)
in which k z = k cos is the longitudinal wavenumber. Among all of them, we shall pay a particular attention to circularly symmetric Bessel beams of arbitrary order whose BSCs in an o¤-axis con…guration read as [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]:

g m n;T M = g( 0 )e ikzz0 [i l m+1 e i(l m+1) 0 A m n + i l m 1 e i(l m 1) 0 B m n ] (15) 
g m n;T E = ig( 0 )e ikzz0 [i l m+1 e i(l m+1) 0 A m n i l m 1 e i(l m 1) 0 B m n ] (16) 
in which:

A m n = ( 1) (m jmj)=2 (n m)! (n + jmj)! J l m+1 ( 0 )[ m n (cos 0 ) + m m n (cos 0 )] (17) 
B m n = ( 1) (m jmj)=2 (n m)! (n + jmj)! J l m 1 ( 0 )[ m n (cos 0 ) m m n (cos 0 )] (18) 
in which 0 = k t 0 , k t = k sin 0 is the transverse wavenumber, 0 = (x 2 0 + y 2 0 ) 1=2 , 0 = tan 1 (y 0 =x 0 ), (x 0 ; y 0 ; z 0 ) denotes the location of the beam origin with respect to the origin of the particle coordinate system at which the scatterer is located, and therefore speci…es the o¤-axis location of the beam, and J k (:) is the k-order Bessel function of the …rst kind. When g( 0 ) = (1 + cos 0 )=4, the beam reduces to a Davis circularly symmetric Bessel beam as discussed in [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Mishra | A vector wave analysis of a Bessel beam[END_REF]. When g( 0 ) = 1=2, the beam reduces to another kind of Bessel beam discussed in [START_REF] Cizmar | Sub-micron particle organization by self-imaging of non-di¤racting beams[END_REF], [START_REF] Taylor | Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF]. In the sequel, it will be convenient to introduce the notation C = cos 0 .

3 Optical forces exerted by Bessel beams on Rayleigh particles.

General expressions of optical forces for Rayleigh particles.

Let us consider Eq.1 which contains an in…nite number of Mie coe¢ cients. For Rayleigh particles, the Mie coe¢ cients reduce to [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], and [START_REF] Van De Hulst | Light scattering by small particles[END_REF], pp. 143-144:

a 1 = 2i 3 m 2 1 m 2 + 2 3 + O(i 5 ) + 4 9 ( m 2 1 m 2 + 2 ) 2 6 (19) b 1 = O(i 5 ) ( 20 
)
in which m is the refractive index (here taken to be real) with respect to the surrounding medium and the size parameter d= . The other coe¢ cients a n and b n (n > 1) involves still higher powers of : Real parts are then proportional to 6 and imaginary parts are proportional to 3 while higher powers are discarded and we therefore retain only:

Im(a 1 ) = 2 3 m 2 1 m 2 + 2 3 (21) Re(a 1 ) = 4 9 ( m 2 1 m 2 + 2 ) 2 6 ( 22 
)
We then start from Eq.1, retain only the (n = 1)-partial wave and the Mie coe¢ cient a 1 , leading to:

C pr;z = E 0 H 0 3 2 8 Re(a 1 G) (23) 
in which:

G = g 1 1;T M (g 1 2;T M + ig 1 1;T E ) + g 1 1;T M (g 1 2;T M ig 1 1;T E ) + 1 3 g 0 1;T M g 0 2;T M (24) 
This becomes:

C pr;z = E 0 H 0 3 2 8 [Re(a 1 ) Re(G) Im(a 1 ) Im(G)] (25) 
in which we recall that Re(a 1 ) 6 and Im(a 1 ) 3 . According to the literature, e.g. [START_REF] Harada | Radiation forces on a dielectric sphere in the Rayleigh scattering regime[END_REF], [START_REF] Dufresne | Optical tweezer arrays and optical substrates created with di¤ractive optics[END_REF], [START_REF] Chen | Bottle beam from a bare laser for single-beam trapping[END_REF], [START_REF] Chen | Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation[END_REF], [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], and many other papers already quoted in the introduction, the 6 -term and the 3 -term correspond to the scattering and the gradient forces respectively so that C pr;z is the sum of two terms according to C pr;z = C s pr;z + C g pr; Z in which, using Eqs.21-22, we obtain:

C s pr;z = E 0 H 0 2 6 ( m 2 1 m 2 + 2 ) 2 Re(G) 6 (26) 
C g pr;z = E 0 H 0 2 4 m 2 1 m 2 + 1 Im(G) 3 (27) 
in which the subscripts s and g recall that we expect that C s pr;z and C g pr;z correspond to scattering and gradient forces respectively (this expectation will not be perfectly ful…lled). We shall now specify these expressions to the case of circularly symmetric Bessel beams of arbitrary order whose BSCs in an o¤-axis con…guration are given by Eqs.15-18. A remark is worthwhile to be done here, namely that G occur both in C s pr;z and in C g pr;z , i.e. that both quantities would be expressed in terms of the same set of BSCs. This suggests that it is in general impossible to express the original GLMT series of …elds as a decomposition of sub-…elds leading to di¤erent kinds of optical forces related to di¤erent sets of BSCs, as con…rmed in a more general context by [START_REF] Du | Tailoring optical gradient force and optical scattering and absorption force[END_REF], [START_REF] Zheng | Gcforce: Decomposition of optical force into gradient and scattering parts[END_REF]. [START_REF] Wang | Gradient and scattering forces of anti-re ‡ection-coated spheres in an aplanatic beam[END_REF].

3.2

Term with imaginary part of G for circularly symmetric Bessel beams.

Let us consider Eq.24. It is convenient to rewrite it as:

G = G 1 + G 2 + G 3 (28) 
in which:

G 1 = g 1 1;T M (g 1 2;T M + ig 1 1;T E ) (29) 
G 2 = g 1 1;T M (g 1 2;T M ig 1 1;T E ) (30) 
G 3 = 1 3 g 0 1;T M g 0 2;T M (31) 
We now evaluate these quantities using Eqs.15-18, and obtain, after a signi…cant amount of computations:

G 1 = jg( 0 )j 2 f A 1 1 A 1 2 + A 1 1 A 1 1 B 1 1 B 1 2 B 1 B 1 1 (32) 
+e 2i 0 [A 1 1 B 1 2 + A 1 1 B 1 1 ] + e 2i 0 [B 1 1 A 1 2 B 1 A 1 1 ]g G 2 = jg( 0 )j 2 fA 1 1 A 1 2 + A 1 1 A 1 1 + B 1 1 B 1 2 B 1 1 B 1 1 ( 33 
)
+e 2i 0 [A 1 1 B 1 1 A 1 1 B 1 2 ] e 2i 0 [B 1 1 A 1 2 + B 1 1 A ]g G 3 = 1 3 jg( 0 )j 2 [A 0 1 A 0 2 + B 0 1 B 0 2 e 2i 0 A 0 1 B 0 2 e 2i 0 B 0 1 A 0 2 ] (34) 
Recalling that A m n and B m n are real quantities, we then have:

Im(G 3 ) = 1 3 jg( 0 )j 2 sin 2 0 [A 0 1 B 0 2 B 0 1 A 0 2 ] (35) 
Expressing the coe¢ cients A m n and B m n involved in Eq.35 by using Eqs.17-18, we obtain:

A 0 1 = J l+1 0 1 , B 0 2 = J l 1 0 2 , B 0 1 = J l 1 0 1 and A 0 2 = J l+1 0 2
, in which arguments 0 and C = cos 0 are omitted, immediately implying, without the need to specify the expressions for the 's:

A 0 1 B 0 2 B 0 1 A 0 2 = 0 (36) 
and therefore:

3.3

Term with real part of G for circularly symmetric Bessel beams.

For C s pr;z of Eq.26, calculations run in a similar way. We however make a decomposition of G of Eq.24 which is di¤erent from the one of Eq.28, into three terms, according to:

G = G 11 + G 12 + G 0 (43) 
in which:

G 11 = i[g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E ] (44) 
G 12 = g 1 1;T M g 1 2;T M + g 1 1;T M g 1 2;T M ] (45) 
G 0 = 1 3 g 0 1;T M g 0 2;T M (46) 
C s pr;z may then be decomposed into three terms according to:

C s pr;z = C s11 pr;z + C s12 pr;z + C s0 pr;z [START_REF] Mishra | A vector wave analysis of a Bessel beam[END_REF] in which:

C s11 pr;z = E 0 H 0 2 6 ( m 2 1 m 2 + 2 ) 2 Re(G 11 ) 6 (48) 
C s12 pr;z = E 0 H 0 2 6 ( m 2 1 m 2 + 2 ) 2 Re(G 12 ) 6 (49) 
C s0 pr;z = E 0 H 0 2 6 ( m 2 1 m 2 + 2 ) 2 Re(G 0 ) 6 (50) 
Re(G 11 ) is then evaluated in the usual manner by (i) expressing the BSCs in terms of A m n 's and B m n 's leading to:

Next, we remember that the particle is located at the origin of the coordinate system, i.e. at r = 0. The quantities C mq np above do not occur alone in Eq.3 but as combinations of the form C mq np =r. We therefore have to consider the limit of these various quantities as r ! 0. We then recall Eqs.11-13 and establish:

lim r!0 2 (kr) 0 1 (kr) r 2 = lim r!0 1 (kr) 0 2 (kr) r 2 = lim r!0 1 (kr) 1 (kr) r 2 = 0 (63) 
so that we are left with the terms C 1 1 11 =r 2 and C 11 11 =r 2 reading as:

C 1 1 11 = 8k 2 9 g 1 1;T M g 1 1;T E (64) 
C 11 11 = 8k 2 9 g 1 1;T M g 1 1;T E (65) 
in which we have used

[ 1 1 (cos )] =0 = 1, [ 1 1 (cos ) 
] =0 = 1 and lim r!0 0 1 (kr) 0 1 (kr)=r 2 = 4k 2 =9. Inserting these results into Eq.3 and noting that c pw 1 c pw 1 = 9=(4k 2 ), we obtain a reduced expression of S z , now denoted as f S z reading as:

f S z = E 0 H 0 Re[i(g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E )] (66) 
which is to be compared with Eqs.44, 48 leading to:

C s11 pr;z = E 0 H 0 2 6 ( m 2 1 m 2 + 2 ) 2 Re[i(g 1 1;T M g 1 1;T E g 1 1;T M g 1 1;T E )] 6 (67) 
showing that C s11 pr;z , otherwise given by Eq.52, is proportional to f S z , therefore complying with the de…nition of a scattering force.

It then happens that C s0 pr;z of Eq.53 and C s12 pr;z of Eq.54 are associated with two unexpected extra-kinds of forces. The interpretation of Eq.53 is easy. It is zero when the axicon angle is zero, i.e. when C = 1: The term C s0 pr;z may then be called an axicon pressure radiation cross-section, associated with an axicon force. It is conjectured that such forces may occur whenever the beam description exhibits an axicon angle, i.e. for Bessel beams whatever the polarization, but also for other kinds of beams including other polarizations of Bessel beams, frozen waves, Mathieu and Lommel beams, which are formed by various superpositions of Bessel beams, e.g. [START_REF] Ambrosio | Analytical approach of ordinary frozen waves for optical trapping and micromanipulation[END_REF], [START_REF] Ambrosio | Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams[END_REF], [START_REF] Ambrosio | Circularly symmetric frozen waves: Vector approach for light scattering calculations[END_REF], [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF], [START_REF] Ambrosio | Assessing the validity of the localized approximation for discrete superposition of Bessel beams[END_REF], [START_REF] Ambrosio | Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz-Mie theory[END_REF], [START_REF] Cha…q | Paraxial approximation of Mathieu beams through an apertured ABCD optical system[END_REF], has been the case for the present study devoted to the study of longitudinal optical forces exerted by o¤-axis Bessel beams in the case of Rayleigh particles. The most important result of this paper is the occurrence of a new kind of optical forces which may be called scattering axicon forces associated with an axicon propagation term of the form exp(ik cos 0 z) in which 0 is an axicon angle, which are zero if the axicon angle is zero. Future works will be devoted to associated complementary studies, such as the systematic study of on-axis con…gurations for Bessel beams, or to the case of transverse optical forces in o¤-axis Bessel con…gurations.

  ) are generalized Legendre functions, and n = n (kr) are Ricatti-Bessel functions, while a prime denotes a derivative with respect to the argument (and a double prime a second derivative). In Eqs.5-6, arguments are omitted for convenience2.3Mathematical background.
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Im(G 3 ) = 0 [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] We now deal with (G 1 + G 2 ), i.e. not with G 1 and G 2 separately. From Eqs.32-33, recalling again that A m n and B m n pertain to R, we obtain: [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] in which:

Evaluating the coe¢ cients A m n and B m n involved in Eq.39, we obtain after a bit of algebra, omitting again the arguments:

The 's and 's involved in Eq.40 are then evaluated using the expressions provided in subsection 2.3, leading to:

, in which we again use C = cos 0 and furthermore introduced S = sin 0 , leading eventually to:

Therefore, as a whole, we have Im(G) = 0 and:

(ii) afterward expressing the A m n 's and B m n 's involved in Eq.51 according to:

1 ) and (iii) evaluating the 's and 's according to:

) and eventually:

We similarly obtain:

and:

4 Gradient, scattering and scattering axicon forces.

4.1

Gradient force.

On the one hand, we have found that C g pr;z is 0, e.g. Eq.42. On the other hand, Eq.14 immediately implies that E:E does not depend on z, i.e. 5( E:E ) is zero. This con…rms our expectation that C g pr;z must be interpreted as a gradient cross-section. Let us interestingly note that [" 0 E:E + 0 H:H ] and the Poynting vector (E H ) do not depend as well on z; meaning that their z gradient components are both 0 as well, i.e. the time-averaged energy density and the Poynting vector as well have no gradient in the z-direction.

4.2

Scattering and scattering axicon forces.

We now intend to examine whether C s pr;z indeed corresponds to scattering forces as expected, i.e. whether C s pr;z is proportional to the intensity of the beam that we shall state as being given by the Poynting vector. More speci…cally, we have to consider the component S z of the Poynting vector taken at the location of the particle. We then start from Eqs.3-6, in order to evaluate Eq.3. This equation is to be evaluated on the axis z (where the particle is located). Then all sin -terms are cancelled and we are left with the coe¢ cients C mq np only. Next, we remember that Eq.26 has been derived from Eq.24 which contains the following combinations of BSCs:

T E and g 0 1;T M g 0 2;T M . Therefore, among the quantities C mq np of Eq.6, we only have to consider the following quantities: C and C 00 21 . These quantities, restricted to the combinations of BSCs previously given, read as:

in which the tilde is meant to insist on the fact that these quantities are given with the mentioned restrictions to the combinations of BSCs.

[61], [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF], [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF], or Laguerre-Gauss beams focused by a lens, e.g. [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF], [START_REF] Török | The use of Gauss-Laguerre vector beams in STED microscopy[END_REF], [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF], [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF].

The term C s12 pr;z corresponds to another kind of axicon optical forces which, however, are not zero when the axicon angle is zero. However, in this case, we obtain from Eqs.52 and 54:

in which we reintroduced the argument of the Bessel function J l , so that C s12 pr;z , as well as C s11 pr;z , is proportional to f S z , therefore complying as well to the usual de…nition of a scattering force, regardless of the on-axis ( 0 = 0) or o¤-axis ( 0 6 = 0) location of the beam. This makes sense because, when 0 = 0, the angular spectrum decomposition of the Bessel beam only contains incident plane waves which behaves identically irrespectively of their o¤-axis location. Furthermore, for an on-axis location, due to the relation J l (0) = l0 , we have C s11 pr;z = C s12 pr;z = 0 except for l = 0. Next, instead of specifying …rst 0 = 0 (no axicon angle) and afterward 0 = 0 (on-axis location), we may consider an on-axis location straight away. Then, both C s11 pr;z and C s12 pr;z are zero (i.e. are proportional with a constant of proportionality equal to 0) for l 6 = 0; 2. If, furthermore 0 = 0 , then, for l = 0, both C s11 pr;z and C s12 pr;z are equal and are given by Eq.68, i.e. they are proportional with a constant of proportionality equal to 1 and, for l = 2, both C s11 pr;z and C s12 pr;z are found to be zero, i.e. they are proportional with a constant of proportionality equal to 0. Therefore, in all cases, C s12 pr;z may be viewed as a genuine scattering force, whether it is zero or not, in the on-axis location, while it provides a new kind of scattering axicon forces otherwise. Let us also remember that the dichotomy between the cases (l 6 = 0; 2) and (l = 0; 2) correspond as well to a dichotomy between dark and non-dark beams, i.e. between beams possessing or not a hole of intensity on the axis [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF].

Conclusion.

The study of the decomposition between gradient and scattering forces exerted by laser beams on Rayleigh particles is an issue propitious to the formal understanding of the role of such forces. The case of Bessel beams is of particular interest for the understanding of such issues because such beams have no gradient of intensity along the direction of propagation, therefore implying a natural separation between gradient forces (which should be zero) and scattering forces. Furthermore, although similar studies up to now focused on on-axis con…gurations, the study of o¤-axis con…gurations, although much more intensive from a formal computation point of view, might provide complementary insights. This