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ABSTRACT:  

FFT-based solvers are increasingly used by many researcher groups interested in modelling the 

mechanical behavior associated to a heterogeneous microstructure. A development is reported 

here that concerns the viscoelastic behavior of composite structures generally studied 

experimentally through Dynamic Mechanical Analysis (DMA). A parallelized computation 

code developed under complex-valued quantities provides virtual DMA experiments directly 

in the frequency domain on a heterogenous system described by a voxel grid of mechanical 

properties. The achieved precision and computation times are very good. An effort has been 

made to show the application of such virtual DMA tool starting from two examples found in 

the literature: the modelling of glassy/amorphous systems at a small scale and the modelling of 

experimental data obtained in temperature sweeping mode by DMA on a particulate composite 

made of glass beads and a polystyrene matrix, at a larger scale. Both examples show how virtual 

DMA can contribute to question, analyze, understand relaxation phenomena either on the 

theoretical or experimental point of view.  
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1. Introduction

Dynamic Mechanical Analysis (DMA) is known to be a privileged tool to study materials -

especially polymers and rubbers- whose rheological behavior is viscoelastic by nature, i.e. 

introduces irreversible dissipation of mechanical energy into heat. The technique indeed 

measures a conservative (storage) or dissipative (loss) modulus or compliance, which are the 

real and imaginary parts of their complex nature 𝑀∗(𝜔) = 𝑀′(𝜔) + 𝑖𝑀′′(𝜔) for instance for

the modulus. It relies on harmonic steady-state excitations in strain, applied at pulsation 𝜔 on 

a material specimen and on the recording of the corresponding output stress signal. This latter 

is analyzed with respect to the original input both in amplitude decrease (modulus |𝑀∗|) and

phase lag 𝛿 (reflecting the damping phenomenon associated to some viscous component of the 

behavior). From that information, complex algebra gives eventually access to 𝑀′(𝜔),𝑀′′(𝜔)

with a sweep in frequency allowing for full dynamical characterization of the material. Such a 

spectroscopic probing of the material exists in many different fields of physics like in thermal 

science to produce thermal conductivity/diffusivity measurements (Cahill 1990) but the main 

corpus of publications probably resorts to dielectric properties measurements (Dissado 2017). 

Experimental data on the susceptibility of physical processes as function of frequency is, in a 

general way, a central tool to develop physical model of relaxation processes (Dissado and Hill 

1987, Havriliak and Havriliak 1995, Jonscher 1996) 

DMA is estimated 100 times more sensitive to glass transition than scanning calorimetry 

(Menard and Mennar 2015) and this is probably the reason why the sweeping temperature mode 

is generally elected by material scientists as the perfect way of investigating subtle 

microstructural transitions (motions of polymer chains for example) (Wiley 2008). But for 

solid-liquid rheological characterization, the forced frequency sweep is more desirable as it 

allows behavior’s law modeling assumptions to be checked and associated material parameters 

to be identified. The targeted information is obviously the relaxation spectrum which can be 

precisely investigated with the frequency scanning. Emri and Tschoegl (Emri and Tschoegl 

1995) synthetize the spectrum from temporal data in a collocation-like approach but check the 

consistency with DMA results in frequency mode. In Kim and Lee (Kim and Lee 2009) on the 

contrary, experimental characterization of Frequency Response Functions (FRF) are used to 

identify parameters originating from constitutive rheological models of damping materials. One 

key issue of this study precisely results in the solution offered by virtual DMA to provide 

quickly these data for any kind of material and to test theoretical concepts underlying such 

models. 

It should be pointed that this technique is before anything else a perfect tool to investigate the 

behavior of a material at the scale of a Representative Element of Volume (R.E.V.). Samples 

are generally of small (macroscopic) sizes and excitations of low magnitude (small 

perturbations theoretical framework). Independently of excitation modes and specimen 

geometry (torsion, flexure, compression), this allows retrieving local material parameters 



directly from rheological models. These parameters are the exact reflect of statistically averaged 

microstructural evolutions. 

The concern of this paper is classical in scientific calculus: offering a simulation path to replace 

experiments and exceed their intrinsic limitations or, in other words, to offer a virtual DMA 

simulator capable of analyzing any kind of heterogeneous or composite material. Such 

simulation tool has been already striven after in the past through Finite element approach. 

Brinson and Knauss (Brinson and Knauss 1992) for example have modified a FE code to make 

it possible the computation of real and imaginary complex moduli directly, solving the 

boundary value problem with complex variables.  

New computational tools, more efficient, have made recently possible to rejuvenate this idea 

thanks to two important advances in computational science:  

i. synthesis of virtual composite microstructure using generators working on various 

mathematical basis (Salnikov et al. 2015, Ghazvinian et al. 2014, Quey 2014) or 

alternatively synthesis of real microstructure based on tomography imaging followed 

by appropriate image treatment (Uchic et al. 2007). Virtual DMA performed with FE 

codes was initially limited to very simple idealized microstructures. 

ii. the development of the spectral approach (Fast-Fourier Transform operator) to handle 

the resolution of local equilibrium equations (Moulinec and Suquet 1998, Roters et al. 

2019 for a wide review on the topic, especially for works developed using the Damask 

code). Of course, the harmonic steady-state regime can be obtained from time domain 

simulations based for example on Finite Element approach (Masurel et al. 2015), but 

such approaches are very much less efficient than the spectral ones directly operating in 

frequency domain. 

The idea is before anything else to make the confrontation of both approaches (simulation 

and experiment) a source of better knowledge arising from their respective drawbacks. 

Simulation will always be limited by the idealization of the composite organization: for 

example, if one can faithfully reproduce particulate composite by considering real size 

distributions of particulate, real volume fractions…, there will always be continuity 

assumptions between particles and the matrix. Experiments based on DMA can carry a bias 

inherent to the technique: as an example, one can cite the drift in measurement signals with 

the very long-time durations of these experiments to get low frequency information.  

Of course, the second key idea is the homogenization problem of composite materials. It is 

in that direction that very recent computations of virtual DMA kind have been performed 

with FFT-solvers. In a probably landmark article of 2016, Figliuzzi (Figliuzzi et al. 2016) 

studied the composite material made of a rubber matrix, filled with carbon black fillers. The 

effective mechanical behavior resulting from various models considered for the multiscale 

morphological microstructure description has been successfully computed in 3D with an 

FFT-solver in space and harmonic complex treatment of the dynamic part. The frequency 

dependence of the effective complex bulk modulus and of the effective shear modulus was 



directly achieved and shown as a valuable way to assess the performance of analytical 

effective models. A second study of that type was used by Gallican (Gallican and Brenner 

2019), to investigate the overall properties of composite materials with fractional 

viscoelastic constituents. In the case of particulate composites with polydisperse spherical 

elastic inclusions, the authors develop FFT based computations of the overall complex 

moduli in frequency domain. Such outputs were helpful to assess mean-field approximate 

models and a generalized fractional effective model derived from exact mathematical 

(asymptotic) relations constraining the adjustment of an effective relaxation spectrum. 

It is worthwhile to mention that whatever the virtual DMA computation tool (FEM or FFT-

based solvers), a comfortable aspect is that viscoelastic theories in the linear regime require 

only infinitesimal deformation analysis for strains and displacements.  

The results presented here enter into this movement and favors an account of the benefits that 

can be expected from virtual DMA to explain physical mechanisms or question theoretical 

model assumptions (sections 3 and 4) as well as experimental data (section 4). In section 2 will 

be firstly described the extension to the harmonic steady-state regime of spectral FFT solvers 

used to solve local equilibrium equations generally in the steady state or for temporal responses. 

Validation of the numerical implementation will consider the academic heterogeneous 

checkerboard structure with constituents of Standard Linear Solid (SLS) rheological behavior. 

Additionally, it will illustrate how outputs of virtual DMA can be used to identify material 

transfer functions, a concept which will allow to compute the response of the material to any 

kind of solicitation. Section 3 will be devoted to illustrate what a virtual DMA solver can bring 

to material engineering science in the future. Two test cases will be considered, each of them 

showing a different aspect of the subject. Example 1 will compare the results based on the paper 

of Masurel et al. (Masurel et al. 2015) for a multi-material made of a collection of Maxwell 

units and obtained by time-domain calculations using the FE code Zebulon. Finally, example 2 

will illustrate the benefit of using virtual DMA when trying to interpret experimental results. It 

will rely on data relative to strong experimental works made by Alberola and collaborators 

(Agbossou et al. 1993, Alberola and Mele 1996) on a Particulate Composite of glass beads in a 

polystyrene matrix. It shows also that harmonic effective behavior can be calculated directly 

from the knowledge of either the temperature or frequency-discretized moduli of the 

constituents. This “option” can be very useful for experimentalist where DMA data are often 

produced at a given frequency with a sweep in temperature. 

 

  



2. An FFT-Spectral solver extension to harmonic regime 

2.1. Standard mathematical procedure and numerical implementation 

We consider a heterogeneous multi-material system, with a Representative Volume Element 

(RVE) V, subject to oscillatory boundary conditions with angular frequency 𝜔. The 

heterogeneous harmonic displacement field �̃�(𝐫, 𝑡) in such harmonic regime can easily be 

expressed with a complex form: 

�̃�∗(𝒓, 𝑡) = 𝒖∗(𝒓)𝑒𝑖𝜔𝑡 (1) 

 

𝐮∗(𝐫)  is the complex displacement amplitude. The physical displacement field will be the real 

part of �̃�∗ (𝐫, 𝑡): 

�̃�(𝒓, 𝑡) = 𝓡𝓮[�̃�∗(𝒓, 𝑡)] (2) 

 

Considering the harmonic regime, and in the small perturbation approximation, the local strain 

tensor �̃�(𝐫, 𝑡), depending on �̃�(𝐫, 𝑡), results in an oscillation term that is usually also expressed 

in its complex form: 

�̃�∗(𝒓, 𝑡) = �̃�∗(�̃�∗(𝒓, 𝑡)) = 𝜺∗(𝒖∗(𝒓))𝑒𝑖𝜔𝑡 = 𝜺∗(𝒓)𝑒𝑖𝜔𝑡 (3) 

 

The local stress field �̃�(𝐫, 𝑡) will also be treated in a consistent manner: 

�̃�∗(𝒓, 𝑡) = 𝝈∗(𝒓)𝑒𝑖𝜔𝑡 (4) 

 

The complex amplitudes 𝛆∗(𝐫) and 𝛔∗(𝐫) are second rank tensors, which depend on the 

frequency 𝜔 . 

Now considering a heterogeneous medium made of linear viscoelastic phases and thanks to the 

correspondence principle (Hashin 1970, Suquet 2012), local constitutive laws expressed below 

in terms of relaxation functions can be putted directly in the complex form (Laplace-Carson 

transforms in time where the Laplace variable 𝑝 is set to 𝑖𝜔), with a linear relation: 

𝝈∗(𝒓, 𝑖𝜔) = 𝑯∗(𝒓, 𝑖𝜔): 𝜺∗(𝒓, 𝑖𝜔) (5) 

 

The complex fields 𝛆∗(𝐫, 𝑖𝜔), 𝛔∗(𝐫, 𝑖𝜔), and 𝐇∗(𝐫, 𝑖𝜔) are the time Laplace-Carson transforms 

of the fields �̃�(𝐫, 𝑡), �̃�(𝐫, 𝑡), and 𝐇(𝐫, 𝑡), where 𝐇(𝐫, 𝑡) is the local effective relaxation function. 

Expression (5) is an analogy of a classical linear elastic constitutive law, excepting that the 

complex effective stiffness tensor 𝐇∗(𝐫, 𝑖𝜔) contains local complex moduli, i.e. storage and 

loss moduli. 



Considering the volume V, local constitutive equation, local mechanical equilibrium, and by 

assuming an overall prescribed strain loading �̅̃�∗(𝑡) = �̅�∗𝑒𝑖𝜔𝑡, the mechanical problem can be 

expressed with the following relations: 

{

�̃�(𝒓, 𝑡) = 𝒇(�̃�(𝒓, 𝑡), �̇�(𝒓, 𝑡), �̇�(𝒓, 𝑡), … )  ∀𝒓 ∈ 𝑉

𝒅𝒊𝒗 �̃�(𝒓, 𝑡) = 𝟎         𝑡 ∈ [0;+∞[

〈�̃�(𝑡)〉 = 𝓡𝓮[�̅�∗𝑒𝑖𝜔𝑡]

 

 

(6) 

 

In the frequency-spectral domain, these relations take the following expressions: 

{
𝛔∗(𝐫, 𝑖𝜔) = 𝐇∗(𝐫, 𝑖𝜔): 𝛆∗(𝐫, 𝑖𝜔)  ∀𝐫 ∈ 𝑉
𝐝𝐢𝐯 𝛔∗(𝐫, 𝑖𝜔) = 𝟎           𝜔 ∈ [0;+∞[

〈𝛆∗(𝑖𝜔)〉 = �̅�∗
 

 

(7) 

 

They can be solved by making use of Fourier Transform (FFT) numerical scheme (Figliuzzi et 

al. 2016, Moulinec and Suquet 1998, Moulinec and Silva 2014) considering the RVE with 

periodic boundary conditions. The temporal classical scheme introduced by Moulinec 

(Moulinec and Suquet 1998) has to be transposed in the Laplace-Carson domain with complex-

valued quantities. The local complex strain field 𝛆∗(𝐫, 𝑖𝜔) can be split into an average �̅�∗ and a 

space-fluctuating term 𝛅𝛆∗(𝐫, 𝑖𝜔): 

𝛆∗(𝐮∗(𝐫, 𝑖𝜔)) = �̅�∗ + 𝛅𝛆∗(𝛅𝐮∗(𝐫, 𝑖𝜔)) or equivalently 

 

𝒖(𝒓, 𝑖𝜔) = �̅�∗. 𝒓 +  𝜹𝒖∗(𝒓, 𝑖𝜔) 

(8) 

 

In the case of periodic boundary conditions, the fluctuating term 𝛅𝐮∗(𝐫, 𝑖𝜔) is periodic but the 

traction 𝛔∗(𝐫, 𝑖𝜔). 𝐧 is anti-periodic. In the FFT method, problem (7) is solved by introducing 

a reference medium 𝑯𝟎 using a Lippmann-Schwinger type equation (Kröner 1972). The 

following complex polarization field  

𝛕∗(𝐫, 𝑖𝜔) = 𝛔∗(𝐫, 𝑖𝜔) − 𝐇𝟎
∗ ∶ 𝛆∗(𝐫, 𝑖𝜔) ∀𝐫 ∈ 𝑉 , 𝜔 ∈ [0;+∞[ (9) 

 

is introduced, and problem (7) can be rewritten as: 

𝛆∗(𝐫, 𝑖𝜔) = −𝚪𝟎
∗ ∗ 𝛕∗(𝐫, 𝑖𝜔) + �̅�∗ ∀𝐫 ∈ 𝑉 , 𝜔 ∈ [0;+∞[ (10) 

 

or directly in the Fourier space, as a function of space frequencies 𝐤 : 

�̂�∗(𝐤, 𝑖𝜔) = −�̂�𝟎
∗(𝐤): �̂�∗(𝐤, 𝑖𝜔) ∀𝐤 ≠ 𝟎 ,      �̂�∗(𝟎, 𝑖𝜔) = �̅�∗ ,  𝜔 ∈ [0;+∞[ (11) 

 

Where 𝚪𝟎
∗ is a periodic Green’s operator, associated to the reference medium 𝐇𝟎

∗ . To solve the 

Lipmann-Schwinger equations (10-11) and to ensure that complex fields 𝛆∗(𝐫, 𝑖𝜔)  and 



𝛔∗(𝐫, 𝑖𝜔)  remain symmetric, the stiffness reference tensor 𝐇𝟎
∗   has to be real (Figliuzzi et al.

2016) (Upperscript “*“ will be omitted from now on). Considering an isotropic reference 

material, with lame coefficients 𝜆0and 𝜇0, 𝚪𝟎 can be given explicitly in the Fourier space and 

take the form  

�̂�0,𝑖𝑗𝑘ℎ(𝐤) =
1

4𝜇0|𝐤|𝟐
(𝛿𝑘𝑖𝑘ℎ𝑘𝑗 + 𝛿ℎ𝑖𝑘𝑘𝑘𝑗 + 𝛿𝑘𝑗𝑘ℎ𝑘𝑖 + 𝛿ℎ𝑗𝑘𝑘𝑘𝑖)

−
𝜆0 + 𝜇0

𝜇0(𝜆0 + 2𝜇0)

𝑘𝑖𝑘𝑗𝑘𝑘𝑘ℎ
|𝐤|𝟒

(12) 

Equation (11) can be solved in Fourier domain (spatial discretization) and for the harmonic 

regime described by any angular-frequency set ∈ [0;+∞[ and with fully complex local 

𝛆∗(𝐫, 𝑖𝜔) and 𝛔∗(𝐫, 𝑖𝜔) fields. A numerical scheme is necessary, of fixed-point type, to obtain

convergence along an iterative process where iterate 1n +  is updated from the previous iterate 

n  according to: 

𝛕∗,𝑛+1 = 𝛕∗,𝑛 − 2𝐇𝟎: 𝚪𝟎 ∗ 𝛔
∗,𝑛 + 2𝚫𝟎 ∗ 𝛆

∗,𝑛 − (〈𝛕∗,𝑛〉 − �̅�∗) (13) 

where �̅�∗ is the prescribed polarization field, and 𝚫𝟎 is called the “stress Green’s tensor”

(Kröner 1972, Bhattacharya and Suquet 2005), which is related to �̂�𝟎(𝐤)in Fourier space

through 

�̂�𝟎(𝒌) = 𝑯𝟎 −𝑯𝟎: �̂�𝟎(𝒌):𝑯𝟎  ∀𝐤 ≠ 𝟎  and  �̂�𝟎(𝟎) = 𝟎 (14) 

Considering potentially high mechanical contrasts in the RVE makes a classical fixed-point 

scheme to be time consuming and accelerated schemes are required (Eyre and Milton 1999, 

Moulinec and Silva 2014) with a sign change of 𝑯𝟎 in (13). In practice, prescribed macroscopic 

strain �̅�∗ is more commonly used than prescribed macroscopic polarization �̅�∗. The Eyre and

Milton scheme makes (13) to become 

𝝉∗,𝑛+1 = 𝝉∗,𝑛 − 2𝑯𝟎: 𝜞𝟎 ∗ 𝝈
∗,𝑛 − 2𝜟𝟎 ∗ 𝜺

∗,𝑛 − 2𝑯𝟎: (〈𝜺
∗,𝑛〉 − �̅�∗) (15) 

where 𝛕∗(𝐫, 𝑖𝜔) = 𝛔∗(𝐫, 𝑖𝜔) + 𝐇𝟎 ∶ 𝛆
∗(𝐫, 𝑖𝜔) = (𝐇∗(𝐫, 𝑖𝜔) + 𝐇𝟎): 𝛆

∗(𝐫, 𝑖𝜔), and equivalently

(𝑯∗ +𝑯𝟎): 𝜺
∗,𝒏+𝟏 = 𝝉∗,𝒏+𝟏

= (𝑯∗ −𝑯𝟎): 𝜺
∗,𝒏 + 𝟐𝑯𝟎: [−𝜞𝟎 ∗ (𝑯

∗ −𝑯𝟎): 𝜺
∗,𝒏 + �̅�∗]

(16) 

Knowing 𝛕∗,𝑛+1, the equation 𝛕∗,𝑛+1 = (𝐇∗ + 𝐇𝟎): 𝛆
∗,𝑛+1 is solved to obtain 𝛆∗,𝑛+1(𝐫, 𝑖𝜔) and

𝛔∗,𝑛+1(𝐫, 𝑖𝜔) = 𝐇∗,𝑛+1(𝐫, 𝑖𝜔): 𝛆∗,𝑛+1(𝐫, 𝑖𝜔)



A convergence test is computed at each iteration. It consists in checking the deviation from 

equilibrium 𝑒𝑒𝑞𝑢, from compatibility 𝑒𝑐𝑜𝑚𝑝 and from the prescribed loading conditions 𝑒𝑙𝑜𝑎𝑑. 

The iterative procedure is stopped when these 3 criteria are smaller than some prescribed values 

(most of the times fixed to 10−4).  

The deviation from equilibrium is obtained with the following dimensionless criterium, 

calculated in the Fourier space:  

 

*

( ) *

1 1 2 2 3 3

ˆ ˆ
( )d

d ˆ ˆ ˆ ˆ ˆ ˆ

eq eqk

eq uilibrium
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div V
e
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= =

   +  + 





f f

f f f f f f




n

.n
(17) 

with the following expression of the forces (the prime symbol refers to a complex conjugate). 

𝐟𝑒𝑞(𝐤) = �̂�∗(𝐤): 𝑖𝐤 . 𝑑𝑉

𝐟1(𝐤) = �̂�∗(𝐤): 𝐧𝟏 . 𝑑𝑥2𝑑𝑥3
𝐟2(𝐤) = �̂�∗(𝐤): 𝐧𝟐 . 𝑑𝑥1𝑑𝑥3
𝐟3(𝐤) = �̂�∗(𝐤): 𝐧𝟑 . 𝑑𝑥2𝑑𝑥1

The deviation from compatibility is obtained with the following expression calculated in the 

Fourier space 

𝑒𝑐𝑜𝑚𝑝 =
max𝐤 (max𝑗=1,…,6(|�̂�𝑗(𝐤)|)) . max(𝐿1, 𝐿2, 𝐿3)

2

√∑ ε̂𝑖𝑗
∗ (𝐤)𝐤 . ε̂𝑖𝑗

∗ ′(𝐤)

(18) 

where 𝐿𝑖 = 𝑁𝑖𝑑𝑥𝑖  is the size of the box in direction 𝑖 = 1, 2, 3 

and with  

�̂�1(𝐤) = −𝑘2𝑘2ε̂11
∗ (𝐤) − 𝑘1𝑘1ε̂22

∗ (𝐤) + 2𝑘1𝑘2ε̂12
∗ (𝐤) 

�̂�2(𝐤) = −𝑘3𝑘3ε̂22
∗ (𝐤) − 𝑘2𝑘2ε̂33

∗ (𝐤) + 2𝑘2𝑘3ε̂23
∗ (𝐤)

�̂�3(𝐤) = −𝑘1𝑘1ε̂33
∗ (𝐤) − 𝑘3𝑘3ε̂11

∗ (𝐤) + 2𝑘1𝑘3ε̂13
∗ (𝐤)

�̂�4(𝐤) = −𝑘2𝑘3ε̂11
∗ (𝐤) + 𝑘1𝑘2ε̂13

∗ (𝐤) + 𝑘1𝑘3ε̂12
∗ (𝐤) + 𝑘1𝑘1ε̂23

∗ (𝐤)

�̂�5(𝐤) = −𝑘3𝑘1ε̂22
∗ (𝐤) + 𝑘2𝑘3ε̂12

∗ (𝐤) + 𝑘2𝑘1ε̂23
∗ (𝐤) + 𝑘2𝑘2ε̂13

∗ (𝐤)

�̂�6(𝐤) = −𝑘1𝑘2ε̂33
∗ (𝐤) + 𝑘3𝑘1ε̂23

∗ (𝐤) + 𝑘3𝑘2ε̂13
∗ (𝐤) + 𝑘3𝑘3ε̂12

∗ (𝐤)

In the case of a prescribed macroscopic strain ε̅𝑖𝑗
∗ , the deviation from the prescribed loading is 

given by  



( ) ( )* * * ** *

* * *

:ij ij ij ij

load

ij ij

e
    

  


− −−

= =


(19) 

Other loading conditions, like prescribed stress or direction of stress, can be treated in a similar 

way. In the Eyre and Milton scheme, and considering a multi-material system with M linear 

viscoelastic phases the optimal choice for bulk and shear moduli for the isotropic reference 

medium is (ibid): 

𝜇0 = √max𝑖,𝜔(ℛℯ[𝜇i(𝑖𝜔)]).min𝑗,𝜔(ℛℯ[𝜇j(𝑖𝜔)])  𝑖 ≠ 𝑗      𝑖, 𝑗 ∈ 1, … ,𝑀 

𝐾0 = √max𝑖,𝜔(ℛℯ[𝐾i(𝑖𝜔)]).min𝑗,𝜔(ℛℯ[𝐾j(𝑖𝜔)])      𝜔 > 0   and  𝜔 ∈ [𝜔𝑚𝑖𝑛 ; 𝜔𝑚𝑎𝑥]
(20) 

This mathematical procedure has been implemented as a new option in a spectral solver 

software named CRAFT for Composite Response And Fourier Transform developed at LMA 

laboratory (http://craft.lma.cnrs-mrs.fr) by several scientists since the initial version raised by 

Moulinec and Suquet (1998). This option takes advantage of all recent developments of the 

solver in terms of accelerated convergence schemes and is available in parallelized 

configuration for enhanced computation times. 

Spectral solvers imposed themselves as an alternative approach for computing mechanical 

problems on heterogeneous structures with the following recognized advantages: precision and 

very fast computational times. Note that for stochastic materials, the latter is a crucial one as 

multiple simulations are required for identical statistical figures to obtain an averaged 

meaningful response of the heterogenous RVE. Among the drawbacks, one can cite two of 

them, being already subjected to proposal for reducing their nuisance. Spectral solvers can 

produce high frequency oscillations on the mechanical fields (Gélébart and Ouaki 2015). Also, 

because the voxel distribution is fixed once (no remeshing), the resolution in the case of 

complicated interfaces can be enhanced by considering a procedure of composite voxels 

(Mareau 2017, Charière et al. 2020).  

2.2. Numerical Validation: the checkerboard case 

We consider the academic case of the checkerboard composite, classically used for validating 

the FFT simulations (Lebensohn 2005). The microstructure is made of a periodic 2D, 2-phase 

composite whose unit cell consists of four “tiles” with the “crystallographic” orientations of the 

two pairs of opposite grains being at +90° and 0°. Each material has a rheological behavior 

described by the 3-parameters SLS solid 

http://craft.lma.cnrs-mrs.fr/


𝜎(𝑠)

𝜀(̅𝑠)
|
𝑠=𝑗𝜔

= 𝐺(𝑘)(𝑗𝜔) =
𝐺𝑟
(𝑘)

+ 𝐺𝑔
(𝑘)
𝑗𝜔𝜏(𝑘)

1 + 𝑗𝜔𝜏(𝑘)
 𝑘 = 1,2 (21) 

Where 

𝐺𝑔 , 𝐺𝑟 , 𝜏  denotes respectively the glass (instantaneous) modulus, the relaxed modulus and a 

relaxation time. The effective behavior of this checkerboard structure with 2 constituents and 2 

orientations submitted to an overall shear excitation has an analytical solution. The Hashin 

principle states that  

�̃� = √𝐺(1)(𝑗𝜔) 𝐺(2)(𝑗𝜔) (22) 

Hence 

�̃�𝑆𝐿𝑆 = �̃�𝑔

√

(𝑗𝜔 +
1

𝜏𝑧
(1)) (𝑗𝜔 +

1

𝜏𝑧
(2))

(𝑗𝜔 +
1

𝜏
(1)) (𝑗𝜔 +

1

𝜏
(2))

(23) 

with �̃�𝑔 = √𝐺𝑔
(1) 𝐺𝑔

(2)
 and

1

𝜏𝑧
(𝑘) =

𝐺𝑟
(𝑘)

𝐺𝑔
(𝑘)
𝜏
(𝑘)  𝜏𝑧

(𝑘)
 figures the relaxation time which appears in

the zeros of the rational function in Eq.(23). Note that we will also have �̃�𝑟 = √𝐺𝑟
(1) 𝐺𝑟

(2)
.

Real and imaginary parts of the effective SLS complex modulus �̃�𝑆𝐿𝑆  can be calculated exactly

from (23) and directly compared to the numerical FFT-solver outputs in virtual DMA mode. 

Figure 1 below plots the results in the case of a strong contrast in mechanical properties (same 

values as those in Suquet (2012). Table 1 below synthesizes the input and output data. 

It is clear from Fig.1 that the virtual DMA computations are in perfect agreement with the exact 

solution. Anticipating the discussion in section 3 about virtual DMA advantages, inverse 

parameter identification (i.e. metrology of material parameters) can be applied to virtual DMA 

CRAFT outputs, providing an effective model has been selected. The 2-order of magnitude 

ratio between 𝜏(1), 𝜏(2) implies a marked spectrum of the dissipative (loss) modulus. An

effective model could be proposed through the collocation method applied with a two-terms 

Prony series. This leads in Laplace domain to a rational admittance 𝑌(𝑗𝜔) having 2 poles (the 

relaxation times) and one zero. 

𝑌(𝑗𝜔) = 𝐺𝑔 + (𝐺𝑟 − 𝐺𝑔)
(1 + 𝑗𝜔𝜏𝑧0)

(1 + 𝑗𝜔𝜏𝑝1) (1 + 𝑗𝜔𝜏𝑝2)
(24)



Instantaneous 

(glassy) 

modulus 

Relaxed 

modulus 

Relaxation times 

Constituent 1 10 MPa 9 MPa 5 s 

Constituent 2 100 MPa 50 MPa 0.05 s 

Effective 

Exact SLS 
SLSG

1000gG = 450rG =
(1) 5s=

(2) 0.05s= (1) 50
9z s= (2) 1

10z s=

Effective 

identified 

model (2-

term Prony 

series) 

31.62gG = 21.21rG = 1 4.97p s= 2 0.059p s=
0 4.42z s=

Table 1: Input/Output values of the checkerboard test case. 

Table 1 gives the virtual measurements of the material parameters of this model as resulting 

from a least-square minimization of the residuals between a (here virtual) DMA experiment 

and the candidate effective model (Eq.24). The agreement here is perfect which means that the 

mathematical structure of the collocation model (Biot model) catch all the physical content of 

the signal and would be able to predict the response of the composite material to any kind of 

input excitation. The moduli are perfectly recovered and the relaxation times (the two poles of 

the admittance fraction in this case) are shown to be very close to those of the constitutive 

materials. 

Figure 1: Validation of CRAFT virtual DMA implementation by reference of the exact effective 

real (storage) and imaginary (loss) moduli as function of frequency. 



3. Virtual DMA Applications and Interest 

 

3.1: Application 1: Heterogeneous dynamics in Glass/amorphous Polymers 

3.1.1 The heterogeneous problem 

The composite material under concern in this section was studied by Masurel and coll., 

(Masurel et al. 2015) as an academic approach to understand dynamical heterogeneities which 

take place in amorphous polymers in the glass transition. We named it a multi-material 

composite as it is built from a grid of elements with individual behavior being of Standard 3-

parameter Maxwell rheological type (Fig.2 -Left). It can be considered as a kind of construction 

of an “averaged” object representing the entire system at all sub-scales. Observed relaxation 

processes in disordered systems reveal a kind of universal nature, with now well identified 

features and/or explicative ideas (cooperative dynamics, cluster formations, energy –criterion 

arguments…) and this multi-material composite aims at catching some of these general features 

from basic ingredients that are used in a composite view. This is fully motivated by 

experimental evidences that non-exponential responses of a macroscopic sample results for 

example from a relaxation-rate distribution of independently randomly sized mesoscopic 

regions (Jurlewicz and Weron 2002).  

 

 
 

Figure 2: (Left) Domains of the heterogeneous multi-material having a Standard Linear solid 

Maxwell rheological behavior with all glassy and rubber moduli identical but different, 

randomly distributed, relaxation times i
 . (Right) Example of a sampled material repartition in 

40 40 1600X =  voxels for virtual DMA simulation. 

Here the domains are of identical sizes but dynamics on each domain are randomly distributed. 

A few identical elements can be associated to form a domain i  having a constant relaxation 

time i
  (same mechanical response) and domains are associated randomly to build the polymer 

coarse-grained model. The spectrum of relaxation times has been chosen according to a normal 

distribution of width s  with maximum centered on 𝜏𝑚𝑎𝑥 = 1𝑠 and in logarithmic scale. The 



glassy and rubber elastic constants 
g

G  and r
G  respectively, being identical for all domain, they 

applied then to the homogenized composite. This is a strong assumption of the approach which 

has the advantage to isolate the only contribution of heterodynamics to the homogenized 

relaxation spectrum (if any). In frequency domain, the model is then built from a distribution 

of complex moduli of the form (Eq. 21) 

𝐺𝑖
∗(𝜔) = 𝐺𝑟 + 𝐺

𝑖𝜔𝜏𝑖

1+𝑖𝜔𝜏𝑖
 , 𝐺 = 𝐺𝑔 − 𝐺𝑟 and in time domain the stresses are related to the strain 

through the integral constitutive form 

𝜎(𝑡) = ∫ (𝐶𝑟 + 𝐶𝑒−𝑡 𝜏𝑖⁄ )
𝜕𝜀(𝑠)

𝜕𝑠

𝑡

0
𝑑𝑠 where 𝐶𝑟 and 𝐶 are fourth order material tensors given by the 

very well known relations in the isotropic case in terms of Lame coefficients. 

The objective of the study was to observe the effective behavior of such model in terms of 

effective relaxation spectrum as well as the local mechanical fields interplay. To this aim, FE 

simulations were performed using Zebulon code [Z-set: http://www.zset-software.com/] in 2D 

plane strain condition (frame axis 1,2), assuming incompressibility with a bulk modulus fixed 

to𝐾 = 105𝐺𝑔, periodic boundary conditions, and a pure shearing test (imposed macroscopic 

shear step strain 𝜀12 = 0.01). A logarithmic time step was used to simulate the stress response. 

We must point here that this time domain simulation (Masurel et al. 2015) does not give a 

direct way of computing the complex, frequency dependent, modulus 𝐺 ∗ (𝜔). The authors use 

then a procedure to express it from the time response of the macroscopic 〈𝜎12(𝑡)〉. They 

consider this latter to be described by a weighted sum over a set of SLS Maxwellian units 

〈𝜎12(𝑡)〉 = ∫ 𝐹(𝜏)(𝐺𝑟 + 𝐺𝑒−𝑡 𝜏⁄ )
∞

0
𝑑𝜏   with ∫ 𝐹(𝜏)𝑑𝜏

∞

0
= 1 and again 𝐺 = 𝐺𝑔 − 𝐺𝑟 

From 〈𝜎12(𝑡)〉 curves obtained by the time-domain FE simulations, a fitting procedure allows 

identification of 𝐹(𝜏) -as a discrete function based on a set of 𝑁 sampled relaxation times- 

which lastly enables the effective complex modulus to be calculated according to (Fourier 

transform of the above equation) 

�̃�∗(𝜔) = ∫ 𝐹(𝜏) (𝐺𝑟 + 𝐺
𝑖𝜔𝜏

1 + 𝑖𝜔𝜏
)

∞

0

𝑑𝜏 

 

  

http://www.zset-software.com/


3.1.2 Spectral solver direct solution and comparison with other theoretical published results. 

Craft solver in harmonic and parallelized version was used to perform calculations directly in 

frequency domain (virtual DMA). The exact same inputs have been used as those given in 

Masurel paper and Fig. 2 (Right) shows an example of the aleatory relaxation times assignment 

over the voxels used in the FFT solver.  

Below in Fig 3 are presented the real and imaginary parts of the complex modulus for various 

cases of the ratio 𝐺𝑔/𝐺𝑟 as published by Masurel (dotted curves) and the present results obtained 

with a 3D spectral solver (solid lines). The results are very close also some differences can be 

observed for large 𝐺𝑔/𝐺𝑟 ratio which constitutes the most severe case to simulate. It is not useful 

here to discuss the origin of such discrepancies because they can be numerous. It can just be 

underlined that  

i) the spectral solver is much more adapted to the multi-material case presented here than FE 

simulations as the spectral solver directly proceeds on the cubic (or squared) voxels. There is 

no error introduced here through some meshing of FE type (edge effects, location of quadrature 

nodes…) as the geometry of the problem is perfectly respected into the FFT scheme. This means 

that no errors can be made that are connected to the spatial resolution considered. In the FE 

approach, on the contrary, the authors had to perform a preliminary sensitivity analysis to obtain 

a representative multi-material which preserves accessible computation times. The number of 

domains N has to be large enough to be representative of a bulk sample with a quasi-continuous 

distribution of relaxation times (they found an optimum around 4 elements for each domain, 

and a total number of domains 𝑁 = 40 × 40) for a width 𝑠 = 2 of the logarithmic distribution 

of times 𝜏𝑖. No such kind of security is needed in the FFT approach.  

ii) the procedure to obtain the complex modulus is direct with the FFT solver and indirect in 

the FE approach, which must be coupled to an identification of a discretized weighted function.  

Some errors are introduced in each of this feature specific to the FE approach and precludes 

any further investigation at this stage. Note that 3D simulations were probably beyond reach 

with FE approach whereas they can be done in very reasonable CPU times with the FFT solver. 

 

 



 

 

Figure 3: Storage (upper fig.) and dissipative (lower fig.) moduli as function of frequency for 

different contrasts 𝐺𝑔/𝐺𝑟 in the glassy and relaxed moduli. Spectral solver results shown in 

solid lines, Datas from Masurel et al. shown in dots. 

 



The local behavior of the spectral solver approach can also be compared to the FEM ones by 

comparing maps of the local (microdomains) stress relaxations (simulations performed now in 

time domain for both numerical approaches). The exact same behavior is obtained in terms of 

the various stages leading to the establishment of a network of paths supporting the global 

stress. 

  
  

Figure 4: Calculated reduced shear modulus 
𝜎12
𝑖 (𝑡)

〈𝜎12
𝑖 (𝑡)〉

 for different times of the macroscopic 

relaxation with CraFT (left) and from (Masurel et al. 2015 Fig.11) (right). Calculations were 

performed taking 𝐺𝑔/𝐺𝑟 = 103, 𝜇 = 0 , 𝑠 = 2 and (a) 𝑡∗ = 3 × 10−4, (b) 𝑡∗ = 10−2, (c) 𝑡∗ =

10−1, (d) 𝑡∗ = 1, (e) 𝑡∗ = 10, (f) 𝑡∗ = 40, (g) 𝑡∗ = 400, (h) 𝑡∗ = 104, (i) 𝑡∗ = 106. 

 

 

3.1.3. Interest of virtual DMA 

The direct results of the virtual DMA spectral solver can be very useful in such kind of 

applications to gain insight about physical theories of disordered structures. The multi-material 

proposed by Masurel and co-workers aimed at offering some alternative modeling of disordered 

microstructures in order to understand complex cooperative phenomena during a relaxation test 

(of any kind). The DMA observables virtually obtained here can now be confronted to physical 

models established mainly from microscopic and statistical considerations in order to see if 

some consistency can be achieved from both approaches. Such types of physical models are 

plethoric in the literature and for a pure pedagogical objective, we will here focus on two of 

them: the HN model (Havriliak and Negami 1995) and the JPC model established by Johari, 

Perez and Cavaille (Cavaille at al. 1989). 

 HN model: Initially proposed on empirical basis as a fitting model for DMA outputs 

(real and imaginary components of the material relaxation function in frequency domain) 

obtained on complex systems, this model further receives physical significance from 

probabilistic approaches to relaxation phenomenon (Jurlewicz and Veron 2002). 
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The HN relaxation function has the following analytical expression 

𝐺𝐻𝑁
∗ (𝜔) =

1

(1 + (𝑖𝜔 𝜔𝑀⁄ )𝜈)𝛾
 

 

(25) 

where ,   are non-integer coefficients 

JPC model: This model comes from a molecular kinetic theory for the rheology of glass, 

which is considered valid in its extension to amorphous polymers and which has two sides:  

- Physical mechanisms associated to uncorrelated rotational-transitional motions of 

molecules within a frozen bath of randomly distributed high energy sites. Assumed 

of a fast character, they generate an anelastic deformation which characterizes the 

so-called   relaxation. 

- Physical mechanisms associated to cooperative, but hierarchically constrained, 

motions of cluster of molecules (referred to as shear microdomains in the paper for 

additional reasons). Assumed of slow character, they generate an irrecoverable 

deformation which characterizes the so-called 𝛼 relaxation. 

These mechanisms are fairly well recognized in the glass scientific community, and have 

obviously been considered by Masurel et al. to propose such kind of hetero-dynamics scenario. 

It is then naturally considered here as capable to treat relaxation correctly regardless of the 

precise nature and scale of local interactions. As it offers a direct formulation of real and 

imaginary moduli as function of frequency, we can illustrate the interest of virtual DMA 

computations to confirm or validate assumptions introduced in physical approaches. The 

rheological equations are 

𝐺′𝐽𝑃𝐶(𝜔) =
𝐽′(𝜔)

𝐽′(𝜔)2 + 𝐽′′(𝜔)2
+ 𝐺𝑅 

 

(26a) 

𝐺′′𝐽𝑃𝐶(𝜔) =
𝐽′′(𝜔)

𝐽′(𝜔)2 + 𝐽′′(𝜔)2
 

 

(26b) 

With 𝐽′(𝜔) , 𝐽′′(𝜔)  being the sum of two contributions (𝛽 and 𝛼 relaxations) 

𝐽′(𝜔) = 𝐽′𝛽 +
1

𝐺𝑔
[1 + (𝜔𝜏𝑚)

−𝜅𝑐𝑜𝑠
𝜅𝜋

2
+ 𝐶(𝜔𝜏𝑚)

−𝜒𝑐𝑜𝑠
𝜒𝜋

2
] 

 

(27a) 

𝐽"(𝜔) = 𝐽′′𝛽 +
1

𝐺𝑔
[(𝜔𝜏𝑚)

−𝜅𝑠𝑖𝑛
𝜅𝜋

2
+ 𝐶(𝜔𝜏𝑚)

−𝜒𝑠𝑖𝑛
𝜒𝜋

2
] 

 

(27b) 

 

Where 𝐽′𝛽 , 𝐽′′𝛽 are given by Eqs.(27) along with all additional necessary information. Formally, 

this model reaches an amount of 10 parameters which would necessitate a very detailed 

sensitivity analysis study if any strong and metrological application to real data is required. 



Here we will perform an inverse parameter estimation without any prior sensitivity analysis 

considering that  

i. some of them are known (𝐺𝑔 , 𝐺r that can be identified from low and high frequency 

asymptotes of the real and imaginary moduli but are known here as the inputs of the 

virtual DMA computations, 𝑇𝑔 the glass transition temperature of the polymer)  

ii. the others respect realistic physical numerical values. 

iii. no noise was added to virtual DMA data  

The figure below confronts both HN and JPC models in their adjustment performance to the 

virtual DMA results obtained on the multidomain material and for the case 𝐺𝑔/𝐺𝑟 = 103 . 

Adjustment of the models to the virtual DMA data is obtained through a Least-Square 

minimization of the residuals norm, considering either a simplex or Levenberg-Marquardt 

algorithm in order to check the good behavior of the parameter estimation process (sensitivity 

to initial values, stability of the results). Input parameters for virtual DMA simulations of the 

elastic unrelaxed 𝐺𝑔 and relaxed 𝐺𝑅 moduli (line (1) – Table 2) are considered as known 

parameters in the P.E.P. for both the HN and JPC models. As a result all supplementary 

identified parameters are involved in the sole modeling approach of the relaxation(s) kinetics 

(lines (2) and (3)). Note that in the JPC model, the parameter 𝜏𝑚𝑎𝑥 refers to the kinetics of the 

  relaxation, the characteristic time associated to the 𝛼 relaxation being explicitly absent from 

the parameters of the model but implicitly present and related to it through an assumption that 

parameter 𝜏𝛼 = 𝜏𝑚𝑎𝑥𝛽(𝐴𝛼𝐺𝑔/𝜅)
−(1/𝜅)

 (see eq.(48) in Cavaille et al. 1988).  

Figure 5a) plots the real and imaginary components of the complex equivalent modulus at 

convergence of the PEP as a function of frequency. Figure 5b) shows the corresponding Cole-

Cole representation. It is clear that the HN model is unable to describe the outputs of virtual 

DMA simulations. The Cole-Cole plot especially brings out this deficiency. On the contrary, 

the JPC model captures the heterodynamics approach much more precisely. Parameters 

identified for the JPC model (line (3) of Table 2) can be seen to be very close or at least in the 

same order of magnitude as those considered for the simulation of a generic amorphous polymer 

in Cavaillé et al. (1989). This finally confirms that the ingredients used to simulate virtual DMA 

on a glassy system model are in phase with the ideas of physicists on the underlying 

mechanisms and demonstrate from our point of view all the benefits that can be drawn from 

spectral solver in virtual DMA mode. 



 

 

Figure 5: Virtual DMA outputs on the heterogeneous dynamics system: a) Storage and 

dissipative moduli – b) Corresponding Cole-Cole plot  

  

(a) 

(b) 



Virtual DMA 

data 

Input data ( )
g

G GPa ( )
r

G GPa max( )s s width of the normal distribution of 

times i


(1) 1 310− 1 2

HN model 

Parameters 

considered as 

known 

( )
g

G GPa ( )
r

G GPa

1 310−

Identified 

Parameters 
max

2 max( ) 

 

(2) 0.244 0.532 0.678 

JPC model 

Parameters 

considered as 

known 

( )
g

G GPa ( )
r

G GPa ( )
g

T K   

1 310− 355 

Identified 

parameters 
max( )s   1A −



1( )GPa−

1A −



1( )GPa−

U
( / )kJ mol

U
( / )kJ mol

(3) 0 156. 0 37.  0 75.  0 29.  0 21. 55 25

(4) 
8 0 3. 0 95. 0 3. 0 1. 60 5

Values considered in Cavaillé et al.,1989 for a generic amorphous polymer 

Table 2: Input parameters for the virtual DMA heterodynamics approach and the parameter 

estimated for the HN and JPC models. 



 

3.2: Virtual versus experimental DMA on polystyrene/glass beads composites. 

This second example concerns now a material which is a particulate composite made of glass 

beads (GB) considered to be elastic and embedded in a viscoelastic matrix of Polystyrene (PS). 

Experimental DMA results have been obtained with a temperature sweep at a given frequency. 

Changing the temperature directly affects the relaxation time spectrum of the matrix and the 

overall composite behavior. Around the glass transition range, this change is very spectacular 

and as a result DMA is very sensitive to any differences in microstructural configurations. All 

experimental data collected for this part were published in a series of 3 papers by Alberola and 

collaborators (Agbossou et al. 1993, Alberola and Bergeret 1994, Alberola and Mele 1996) and 

reported in terms of storage modulus and loss tangent variables. As a consequence, this example 

will first show how the virtual DMA code can work with a tabulated complex pairs informing 

about the material behavior at each temperature. Secondly it will again illustrate the efficiency 

of a spectral code to produce either 2D or 3D DMA simulations for any type of composites 

from the knowledge of the individual constitutive materials. Finally, it will show that virtual 

DMA, as a computational tool applying on composite microstructures which mimic in the best 

way the topological reality, can either lead to refute previous theories or effective models or to 

cast doubt on the experimental data (which can advantageously lead to reconsider the metrology 

associated to its apparatus or the possible source of bias). 

3.2.1. Data brought by experimental DMA. 

The DMA experiments on PS/GB particulate composites were conducted on a Metravib 

equipment. The aim was to check the modeling abilities of homogenization approaches. These 

later were based on available approaches in the elastic framework and extended to viscoelastic 

behavior through the correspondence principle. 

In figures 1 and 7 of the 1993 paper, DMA data are given for neat PS in terms of storage 

modulus, tan  and complex Poisson coefficient respectively. These data have been digitized 

to provide 𝐸∗, 𝜈∗ or after conversion 𝐾∗, 𝜇∗ for implementation in Craft solver under table 

format. Of course, errors have certainly been introduced in this process. The main outputs of 

virtual DMA reported here will show that they have no impact by themselves on the results, 

those latter being rather fully determined by the extrapolation made by the authors to produce 

experimental Poisson coefficient values. 

These data are available in the 25-185°C temperature range, 5-100Hz frequency range, for 

composites with 𝑓𝑣 = 6%, 15%, 21%, 35%, 50% volume fraction of glass beads, available in 

two different size distributions : 𝑑1 = 1 − 45𝜇𝑚 and 𝑑2 = 70 − 110𝜇𝑚. Unfortunately, no 

precise information is known regarding the real topology of the microstructures obtained from 

these distributions. At large volume fractions, aggregates or clusters of particles can have been 

formed, with unknown packing arrangement, in possible anisotropic configurations… 

(Alberola and Mele 1996). The authors also mentioned an existing porosity of about 8 vol % in 



the specimen. This of course precludes perfectly realistic simulations, yet easily achieved with 

spectral solvers. Virtual DMA simulations will then be performed assuming a given topology 

and as a result some discrepancies can be expected. Regarding the constituent mechanical 

properties, ultrasonic measurements have provided elastic constants of the polymer matrix with 

assumed high accuracy (𝐸 = 3.69𝐺𝑃𝑎, 𝐺 = 1.38𝐺𝑃𝑎, 𝜈 = 0.33) and at room temperature the 

DMA results are in accordance with them. Note that DMA technique provides only indirectly 

the intrinsic moduli through overall rigidity measurements, which depend on the type of 

mechanical configuration (tension, flexion) and on length dimensions. In the absence of any 

details about that point, we observe that the authors report a god consistency between DMA 

data and US measurements. The glass transition temperature of PS is about 90-95°C. Regarding 

GB, elastic constants are given as 𝐸 = 73𝐺𝑃𝑎 , 𝜈 = 0.2.  

Virtual DMA isochronal scans simulations are performed directly from the knowledge of the 

complex pair 𝐸′, 𝑡𝑎𝑛𝛿 versus temperature at 5Hz for the PS matrix (as measured with DMA by 

Agbossou et al. 1993, Fig. 1-a, Fig.1-b), and the knowledge of a given distribution size (𝑑1 or 

𝑑2) and given volume fraction of glass beads 𝑓𝑣. Note that the 𝑙𝑜𝑔(𝐸′′) curve was not made 

available by the authors for pure PS but available for all types of composites. As a result, and 

because 𝑡𝑎𝑛𝛿 tends asymptotically to 0 at low temperatures (At 5Hz and far from the transition 

region, it is expected to have a pure elastic behavior), the data collected from the figures are 

obviously affected by artefacts which will impact the calculated imaginary moduli of the 

composites. 

 

3.2.2. Conclusions drawn from Alberola and collaborators. 

In the above-mentioned papers, experimental data deliver the following observations: 

As the volume fraction of particles increases (from 0 to 50 % in their study): 

 the magnitude of mechanical relaxation characterized by the maximum value of the 𝑡𝑎𝑛𝛿 

peak decreases; 

 a shift of the 𝑡𝑎𝑛𝛿 peak towards higher temperatures is reported. This effect is not obvious 

from the data (Fig.3-c, Agbossou et al. 1993) and could result from a small experimental bias 

(with regard to the temperature sweep and the thermalization of the specimen for example).  

 both glassy and relaxed moduli at low and high temperatures respectively show an increase. 

 

At constant volume fraction, 

 the increase in average size of the particles (𝑑1 → 𝑑2) results in an increase in the 𝑡𝑎𝑛𝛿 peak 

maximum (dissipation), or the reinforcement effect increases with decreasing the size of the 

particles. We have (𝐸𝜈𝑇)𝑑1
> (𝐸𝜈𝑇)𝑑2

 and (𝑡𝑎𝑛𝛿)𝑑1 < (𝑡𝑎𝑛𝛿)𝑑2. Size effects depend 

obviously on the nature of the matrix/fillers couple and the review paper of Fu et al (2008) 

reports for example that the modulus of a composite with high volume fraction of GB in an 

epoxy resin is nearly insensitive to size effects.  



 

Mean field theoretical approaches (Kerner’s and Christensen and Lo’s models for the bulk and 

shear moduli respectively) were used in complex form, according to the correspondence 

principle, to explain these data. Only the observed fact  was reproduced by these models, 

based on a constant and only real Poisson ratio (whatever its value between the low temperature 

ν = 0.33 and high temperature 𝜈 → 0.5). Especially expected behaviors  and  escape to the 

models: drop in maximum and shift in temperature of 𝑡𝑎𝑛𝛿 with an increase in volume fraction 

of GB (See Fig 5 and 6 in Agbossou et al. 1993). This led the authors to invoke a complex 

nature of the Poisson coefficient and a strategy to determine it on the considered temperature 

range. This point will deserve a large discussion in the next section. 

 

 

3.2.3: Virtual DMA results and implications regarding a comprehensive analysis of the role 

played by the Poisson ratio of the matrix. 

 

Influence of the volume fraction of the particles 

Because this point was the major fact discussed in Agbossou et al. (1993), we first 

present some results obtained with the virtual DMA solver along with the available 

experimental data. Virtual DMA simulations have been performed for 3 different values of the 

matrix Poisson coefficient ν1 = 0.33, ν2 = 0.49, ν3 = 0.4999 assumed constant (independent 

of temperature). Note that the values 0.49 and 0.4999 are selected to represent the 

incompressible behavior expected in rubbery state (at high temperature) but without any 

possible precise experimental confirmation. Figures 6-a and 6-b compare experimental and 

simulated data for the storage modulus and the loss angle tangent in the case of a size 

distribution 𝑑1 The following observations can be made (same as for distribution𝑑2): 

- For a volume fraction of 6% of particules, virtual DMA solutions are very close to 

the experimental data for the pure PS matrix. The latter data are used as input for the 

matrix properties so that this result is expected. Any mean-field approach would lead 

to the same results, as a matter of fact for small concentrations. Note that 

experimental data (full circles) nevertheless departs substantially from the matrix 

data which may suggest that some bias is present in the experiments. 

- For a volume fraction of 50% of particules, virtual DMA solutions produce a 𝑡𝑎𝑛𝛿 

curve very close to the experimental ones with a strong peak drop at the transition 

temperature (compare to Figs 5 and 6 of the cited paper). The computations show 

also a very high sensitivity to the value of the Poisson ratio: considering 𝜈2 or 𝜈3 

values for the incompressible state has a drastic impact on the solution. These two 

results clearly escape to the mean-field approach used in the cited paper. In virtual 

DMA solutions with a constant real Poisson ratio, experimental data are well 

described by the value 𝜈2 = 0.49 for both the storage modulus and loss angle. It is 



worthwhile to note that this sensitivity logically begins only as the material enters 

into the vitreous transition i.e. above temperatures of 110°C, when the mechanical 

properties of the PS matrix drastically decreases towards the rubber state. Thus, the 

value of 0.49 is very sounded. The temperature dependence of the Poisson ratio is 

taken into account in the next subsection and confirms that point. 

- The increase in volume fraction of glass beads makes both glassy and rubber moduli 

greater at low and high temperature respectively. This fact was the only one 

observed with mean-field approaches. But DMA simulations produce a slightly 

higher reinforcement at low temperature compared to the experiment. The porosity 

of 8% considered by the authors as a result of the composite elaboration process can 

explain this fact. Note that according to theoretical simulations of Remillat (Remillat 

2007, Fig.2), our ratio of elastic moduli particle/matrix is 20 and we whould expect 

at this volume fraction of particles a 2.5 factor gain in stiffness. Virtual DMA gives 

an homogeneized elasticity of about 9.8 GPa at 60°C for a 50% volume fraction 

which falls exactly as 2.5 × 3.7𝐺𝑃𝑎. This again could confirm a pretty good 

prediction of the virtual DMA tool and consequently that a bias may exist on 

experimental data, primarily due to a specimen microstructure mismatch between 

theory and experiment. 

It is clear that virtual DMA directly confirms observations , without any 

requirement of a Poisson coefficient being a complex quantity, the central argument of the paper 

of Agbossou et al. (1993), to correct the model-experiment inconsistency at high volume 

fraction of particles. But still, their model (Christensen and Lo 2-phase approach) clearly 

overestimates the maximum of 𝑡𝑎𝑛𝛿 peak (Fig. 8-c, ibid). Later (Alberola and Mele 1996), 

observation  was met theoretically using a four-phase model (Hervé and Zaoui 1993), 

invoking possible aggregation of particles at high volume fractions (50%) but considering a 

Poisson coefficient as a real quantity. Again, it is clear that virtual DMA strongly questioned 

this assumption as it is not required here in our simulations. The better agreement obtained by 

the authors between experimental data and their model probably just results from an increase 

in the degrees of freedom of the model, going from the two-phase to four-phase self-consistent 

approach. Note also that the complex-valued Poisson coefficient extrapolated by Agbossou et 

al. (1993) for the whole considered temperature range, when converted into bulk and shear 

moduli (for introduction in the behavior’s law of Craft solver), produces a negative real bulk 

modulus which is not physical and probably escape the authors attention. 



Figure 6: Storage modulus (a) and Loss tangent (b) versus temperature – Distribution 1d . 

(b) 

(a)



Regarding observation  (slight phase shift towards higher temperatures with the 

increase in 𝑓𝑣), it is not confirmed by the virtual simulations. This peak is basically determined 

by the 𝑡𝑎𝑛𝛿 peak of the matrix (input data). This is in line with the conclusions of (Brodt and 

Lakes 1995): the loss factor curve of the mixture is ruled by that of the matrix, regardless of the 

volume fraction, if the inclusion is either very stiff or very soft. This favors our hypothesis that 

this effect is not so tangible and therefore, that experimental results might have a bias. 

 

Influence of the size distribution of the particles 

Simulations shown in Fig. 7 were performed for the two size distributions of the 

particles 𝑑1 (open symbols) and 𝑑2 (full symbols). Regarding experimental observation , 

virtual DMA simulations contradict this point. In the case of constant Poisson ratio for the 

matrix equal to 0.49, we observe from the simulations that an increase in average size of the 

particles at the same constant volume fraction (𝑓𝑣 = 50%) increases the reinforcement: 

(𝐸𝜈𝑇)𝑑1
< (𝐸𝜈𝑇)𝑑2

 and (𝑡𝑎𝑛𝛿)𝑑1 > (𝑡𝑎𝑛𝛿)𝑑2. This is the exact contrary of what is reported 

experimentally. Note that this question could not have been adressed by Alberola and 

collaborators within the Self-Consistent models they used (only sensitive to the volume fraction 

to the exclusion of any particle size quantity). Considering equal matrix Poisson ratio behavior 

from the two specimen at 50% volume fraction and distributions 𝑑1 or 𝑑2, the conclusion is 

then that the model can not explain the data. 

 

Figure 7: Storage Modulus (GPa) versus temperature –Distributions 𝑑1 and 𝑑2  for the same 

volume fraction of 50%. 



With some reasons given previously, an experimental bias could be invoked to explain 

this conflict. Because it has been shown previously that the sensitivity to the Poisson ratio is of 

crucial concern, the Poisson ratio of the matrix is now considered to vary with temperature 

(noted 𝜈𝑇 in that case) according to a S-shape function, starting at 𝜈𝑇 = 𝜈1 at room temperature, 

and with an asymptotic value 𝜈𝑇 at high temperature (180°𝐶) that is supposed to tend towards 

½ because the matrix tends to an incompressible behavior. This fact was demonstrated 

experimentally long times ago in the works of Kono (Kono 1960) and Waterman (Waterman 

1963) with 𝜈𝑇 of PolyStyrene considered to vary from 0.35→0.5 or 0.3→0.45 respectively for 

the two authors. If we apply the same procedure as in Agbossou et al. to reconstruct 𝜈𝑇 from 

experimental DMA data, with the constraint 𝜈𝑇 → 𝜈2 = 0.49 and 𝜈𝑇 always considered as a 

real-valued quantity, it can be seen in the plots of Figs 6 and 7 that the extreme sensitivity to 

the Poisson ratio could explain this conflict. For same volume fraction of GB, a Poisson ratio 

considered as varying with temperature and 𝜈𝑇 → 𝜈2 = 0.49 for distribution 𝑑1 and a Poisson 

ratio considered as constant equal to 𝜈2 = 0.49 for distribution 𝑑2 makes it possible to resolve 

this conflict. DMA experimental data have been obtained up to 190°C, a temperature still very 

far from the fusion temperature where a drastic drop in temperature occurs. Hence the rubbery 

state can be more or less established. Additionnaly, DMA experiments conducted under 

temperature sweep condition impose a given temperature rate. Specimen with different size 

distribution for the glass beads can easily produce slightly different thermal conductivity, a 

parameter which can change substantially the thermal regime in sweeping mode and hence 

change the behavior with respect to the incompressibility limit. The presence of voids in the 

highly concentrate case (already discussed) can also affect this parameter. Anyway, although 

the reasons of such possible interpretation are not firmly established, as is the case for a possible 

complex behavior, this issue shows how virtual DMA simulation can contribute to open 

avenues for reflection. In the present case, it suggests strong investigations relative to the 

precise measurement of Poisson ratio of the matrix with temperature, especially when it tends 

to a rubbery state. 

Finally, as was shown for example 1, outputs of virtual DMA in terms of mechanical fields can 

be valuable to get deeper analysis of phase transition. We select in Fig. 8a the volumic strain 

fields of the matrix, calculated for the same parameters as for Fig.7, for the two temperatures 

below and after the transition and for an input (average) stress of 1. These fields are shown here 

normalized with respect to the longitudinal modulus as it changes drastically when crossing the 

transition zone. When compared to the map at 60°C, it can be seen that the volumic strain tends 

to a more homogeneous zero-value everywhere in the matrix, except in the very limited area 

confined between two beads. Note that in this simulation, the Poisson ratio tends ‘only’ to 0.49. 

Figure 8-b shows the overal volumic strain averaged over a selection of 10 different 

configuration along with the volumic strain in both the GB and PS matrix phases. The transition 

regime marks the decrease of both volumic strains. In the GB, it tends to zero within the 

numerical precision when raising the temperature. In the matrix, it decreases strongly of nearly 

one order of magnitude at the transition. It slightly increases beyond probably because the 



matrix sustains the all imposed mechanical excitation and as shonw in the strain maps, strong 

volume expansion may exist locally because the Poisson ratio is not exactly equal to 0.5. 

  

T=60°C T=160°C 

Figure 8 :  

a- Volumic strain maps at T=60°C and 

T=160°C (same input data as for Fig.7). 

b- Volumic strain evolution with 

temperature (overall, in the PS matrix, in 

the GB particles) – Averaged over 10 

configurations. 

 
 

  



 

4. Conclusion 

The study presented here was intentionally based upon data provided in previously published 

papers, either theoretical or purely experimental, to show the potentialities of virtual DMA. As 

a simulation tool based on an FFT solver, it turns out to be a very competitive alternative path 

to classical FEM in terms of computation times. For experimentalists, it offers a direct access 

to the frequency-dependent observables of this widely used technique: storage and dissipative 

moduli, loss tangent. For a given heterogeneous RVE, it provides at the same time the full-field 

strain or stress maps, in either 2D or 3D, which can be valued to push forward our understanding 

of its mechanical behavior. Due to a favorable precision/computation times ratio, it is expected 

that in a near future, such codes will be able to perform inverse parameter identification on the 

collected experimental data. Hence it will help to question the validity of homogenized models 

or the experimental technique itself with regards to the way data are produced. But one of the 

most interesting perspective that virtual DMA offers is maybe the possibility to check the 

consistency of an idealized microstructure with respect to viscoelasticity. Based on MEB, X-

ray tomography, AFM or any other imaging technique of the microstructural organization of 

some material, the complementary observation of the macroscopic behavior of this 

microstructure in a DMA experiment, both real and virtual, will allow fixing this microstructure 

idealization as consistent either in terms of morphological parameters (volume fraction of 

constituents, aspect ratio of the phase…) and mechanical parameters (moduli, Poisson ratio, 

relaxation time spectra…). Considering such a way to firmly test the microstructure model, 

routes will then be open to consider the following variety of expected behavior at a larger 

deformation range (plasticity, hardening, damage…). 
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