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A B S T R A C T

Many analysis methods exist to extract graphs of functional connectivity from neuronal networks. Confidence in the results is limited because, (i) different methods
give different results, (ii) parameter setting directly influences the final result, and (iii) systematic evaluation of the results is not always performed. Here, we introduce
MULAN (MULtiple method ANalysis), which assumes an ensemble based approach combining multiple analysis methods and fuzzy logic to extract graphs with the
most probable structure. In order to reduce the dependency on parameter settings, we determine the best set of parameters using a genetic algorithm on simulated
datasets, whose temporal structure is similar to the experimental one. After a validation step, the selected set of parameters is used to analyze experimental data. The
final step cross-validates experimental subsets of data and provides a direct estimate of the most likely graph and our confidence in the proposed connectivity. A
systematic evaluation validates our strategy against empirical stereotactic electroencephalography (SEEG) and functional magnetic resonance imaging (fMRI) data.
Introduction

Recordings from a large number of network nodes (e.g. from high
density multisite electrodes, whole brain fMRI, or calcium imaging) are
nowadays used routinely to study network properties and its information
processing capacities. Functional networks are usually represented in the
form of a graph, and various analysis methods are available to assess
functional connectivity between two network nodes. Choosing a partic-
ular method represents a real challenge for the following reasons. Each
method is based upon a hypothesis on how network nodes influence each
other. This choice is critical, since different methods may produce
different graphs. Some methods perform better as a function of the in-
ternal structure of the data (e.g. linear versus non-linear coupling) (Wang
et al., 2014). The final graph is thresholded empirically to accept/reject
links, the threshold value having a strong influence on the number of
false positives and false negatives. When analyzing empirical data, it is
impossible to know a priori, which methods and threshold values to use.
Since the final graph cannot be validated (the ground truth structure is
not known), it is important to provide a measure of confidence in the
final graph. Ensemble based systems provide a way to solve the problem
of decision making (Polikar, 2006). Applied to functional connectivity, it
means combining several methods to decrease the dependency of the
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results on the choice of only one method and on the choice of parameters,
in order to increase confidence in the result. Ensemble approaches and
statistical inference have been successfully applied to the extraction of
structural connectomes from diffusion-weighted imaging (Pestilli et al.,
2014; Takemura et al., 2016).

The conceptual contribution offered in this paper is the application of
ensemble learning to pressing issues in systems neuroscience; namely,
structural and functional connectomes. The key idea behind ensemble
learning is to use the plurality or diversity of classification models to
ensure that all data features (or their characterizations) can contribute to
the best model of connectivity that underlies observed data. The key
aspect of our approach rests upon using a diversity of models that are
brought to bear upon the problem. In brief, we exploit the many char-
acterizations of connectivity that have been proposed in the literature to
assemble a repertoire or ensemble of models that can be fitted to time
series (or possibly structural) data. Using cross validation accuracy as a
proxy for model evidence or marginal likelihood, one then scores the
evidence for each model in the ensemble to perform model averaging.
This approach rests upon the convergence of three recent developments
in this field. First the availability of diverse methods for characterizing
connectivity, second the machine learning procedures for assessing
model evidence in terms of cross validation accuracy and, finally, ways of
C. Bernard).
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integrating different models using fuzzy logic. In contrast to current ap-
proaches to functional (and effective) connectivity in the brain, we do not
search for the best model. Rather, we maximize the diversity of models
that are applied to the same data and score their relative evidence. This
approach is guaranteed to be better than using any single model (pro-
vided the single model is contained within the ensemble). In short, our
ensemble learning for network analysis rests upon one single imperative;
namely, to include as many models for data features as possible.

In what follows, we will assume that the forward or generative model
offers a ground truth for the data it generates. However, it is useful to
appreciate that there is no real ground ‘truth’. In other words, the evi-
dence for any model of data is just a statement of its ability to explain
those data in a parsimonious way. One will never know what the true
model is – one can only identify the best sort of model. This is particularly
prescient in the current context because both directed functional con-
nectivity, i.e. afforded by measures like Granger causality (Barrett and
Barnett, 2013) and effective connectivity, i.e. based on concepts like
DCM (Friston et al., 2003) can involve a multiplicity of synaptic mech-
anisms and indeed polysynaptic influences among many routes. In this
sense, there is no ‘true’ connectivity – just different ‘best’ characteriza-
tions of connectivity (e.g., structural, functional or effective). The un-
derlying motivation behind MULAN is to use ensemble procedures to
Fig. 1. Flowing chart for MULAN strategy. In order to obtain the optimal parameters (step 1) an
which are split into 2 groups (one for training and one for validation) with the same generative
frequency. Step 1: We generate a set of BMs and optimal parameter values using training simula
the evaluation dataset. Step 3: Once validated we used the chosen BMs and optimal parameter
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provide the best model or description that elude the idiosyncrasies of any
particular characterization. In this instance, the characterization of ar-
chitectures of directed functional connectivity that best explain the data
under a known generative process.

In this study, we introduce MULAN (MULtiple method ANalysis), a
method, which uses an ensemble approach to extract functional con-
nectivity and a statistical evaluation to directly estimate confidence in
the final graph. The MULAN ensemble approach combines several
methods to calculate functional connectivity between nodes. A genetic
algorithm is used to set parameter and threshold values using simulated
datasets. A statistical evaluation compares the calculated ensemble
connectivity with a large number of simulated datasets to estimate con-
fidence in the final graph. Finally, we show how partitioning the data can
be used to cross-validate the final graph.

General strategy

When building a functional connectivity graph from experimental
time series, it is not possible to verify the validity of the results, since, by
definition; the ground truth structure is not available. We propose the
general strategy to start with simulated datasets with known ground
structures for an a priori selection of existing basic methods (BMs) and
d estimate the confidence in this choice (step 2), we use more than 80 simulated datasets,
parameters as for the experimental data to analyze, such as number of nodes and sampling
ted datasets with different ground truth structures. Step 2: We validate these choices with
s to analyze experimental data. Step 4: We cross-validate the results using sub-datasets.
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parameters (step 1, Fig. 1). After validation (step 2), the methods and
parameters thus selected are used to analyze the experimental dataset
(step 3), followed by a cross-validation phase (step 4). Each step uses
MULAN ensemble algorithm, which takes the time series as inputs, and
which outputs a directed graph. MULAN is an open platform, i.e. it can
accommodate any user-designed procedures (e.g., cross-validation and
genetic algorithms) to optimize not only the choice of methods and pa-
rameters, but also the strategies used in the MULAN algorithm itself.
Since MULAN ensemble algorithm is used at each of the previously
described steps (Fig. 1), we start describing the algorithm. Then, we show
how to choose the BMs and parameter values (step 1), and how to vali-
date these choices (step 2). Finally, we apply these to experimental
electrophysiological datasets (step 3) and show how to cross-validate the
results (step 4). We also show how to analyze graphs with a large number
of nodes using the human brain as a prototypical large network, the
sensitivity of the analysis to artefacts and the computational cost. Finally,
we apply MULAN to human fMRI data.

Methods

MULAN ensemble algorithm

In a previous study, we have performed a systematic evaluation of 40
directed and undirected basic methods (BMs) designed to analyze func-
tional connectivity (Wang et al., 2014). We use this library (Supple-
mentary Fig. 1A) for our ensemble approach. We take two directed and
two undirected BMs from this library as examples. MULAN ensemble
algorithm (Fig. 2) uses fuzzy inference to combine the information from
the four BMs to obtain the directed graph. MULAN can provide direction
information, if one of BMs has direction information. Each BM returns a
connectivity matrix quantifying the functional connectivity between any
two nodes with a normalized strength between 0 and 1 (Appendix A and
Supplementary Fig. 1B). Then, we assess each individual link li,j using
MULAN fuzzy inference scheme to evaluate the plausibility of existence
of the link (Appendix A and Supplementary Fig. 2). Each link is
Fig. 2. (A) Flowchart of MULAN ensemble algorithm. A dataset is analyzed with four basic met
each BM, we average the N connection matrices to obtain 4 averaged matrices. After bootstrappin
values (between 0 and 1); one value for each BM. We assess each link using MULAN inference sys
θi and rr are two important sets of parameters for MIS (Methods). A link is considered if Pi;j is lar
with lI,j, as input for the next iteration. If the new graph thus generated differs from the pre
conditions, until convergence is achieved (i.e. the graph of the (nþ1)th iteration is the same as t
and j, OR if there is an indirect path from i to j through k; and C2ij ¼ 1 if there is a link in the re
�1 means an unnecessary condition and 1 a necessary one.
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characterized by four values, one for each BM. Each value is then
assigned two fuzzy values (between 0 and 1): L (for low probability of
existence) and H (for high probability) (Supplementary Fig. 1C). The
algorithm is then an iterative process, generating graphs until conver-
gence is achieved. Let us consider the nth iteration. For each link li,j
between two nodes (i,j), we apply five rules based on five different L/H
combinations for the four BMs and two conditions (Appendix A and
Fig. 2C). The first condition C1 tests whether a third node contacts the
two nodes, or if there is an indirect path between them via a third node,
based on the structure of the graph obtained at the (n-1)th iteration
(Fig. 2B). The second condition C2 tests the directionality of the link if
the two directed methods output that the link has a low probability of
existence while the two undirected methods output that the link has a
high probability of existence, based on the structure of the (n-1)th graph
(Fig. 2B). Each of the five rules returns a value (between 0 and 1), and
their weighted average gives the probability Pi,j that the link exists
(Supplementary Fig. 2, Fig. 2A). After performing the same procedure for
all links, we apply a threshold θm to all Pi,j to obtain a directed graph that
is binary (link/no link). If the structure of the nth graph is not the same as
the previous graph, we perform a further iteration until convergence.
After convergence, we use two final thresholds θf1, θf2 to distinguish
between strong (green) and weak (pink) links, respectively (Appendix A).
Note that for the first iteration, there is no prior graph, and C1 and C2
values are set to �1.
Choice of basic methods

Since the ground truth structure is usually not known when analyzing
empirical datasets, it is not possible to validate a posteriori the choice of
BMs and parameter values. Rather than using a heuristic approach,
MULAN strategy is a priori strategy. We simulate the empirical data using
the samemechanics, number of nodes, duration, and sampling frequency,
but with different ground truth graph architecture to generate multiple
datasets for training (Step 1 in Fig. 1).

MULAN allows modeling any type of activity (EEG, MEG, functional
hods (BM1-BM4), using N sliding windows, thus generating 4�N connection matrices. For
g and normalization (Methods), each link lI,j between nodes i and j is characterized by four
tem (MIS) (Supplementary Figs. 2A–B) to obtain Pi;j the probability of existence of the link.
ger than a threshold θm . After obtaining the first graph, we apply conditions Ci;j, combined
vious graph, we perform another iteration, using the new Pi;j values to change the rule
he nth). (B) Condition Cij considers two cases: C1ij ¼ 1 if there is a common source k for i
verse direction i.e. j→i. (C) We define five If-Then MULAN rules. For each considered rule,
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MRI etc.) in any type of network architecture, which can be user-defined.
As a prototypical example, let us consider the analysis of a dataset of field
EEGs obtained from 30 recording sites. We use a convolution-based
neural mass model (NMM) for EEG (David et al., 2006; Moran et al.,
2013) to generate field recordings at the millisecond timescale (Appendix
C and Supplementary Fig. 3). Brain networks typically reveal a small-
world topology, which is characterized by dense local clustering, while
keeping a short path length between any pair of nodes (Bassett and
Bullmore, 2006; Bullmore and Sporns, 2009, 2012; He et al., 2007). We
consider 50 network architectures composed of subnetworks with local
connectivity of variable density (each sub-network has 5 nodes and 5, 10
Fig. 3. Choosing optimal values for MULAN parameters for graphs comprising links with connec
training dataset to obtain the distribution of optimal parameter values. The ground truth networ
graph showing green (strong) and pink (weak) links. (B) The combined results for all 50 dataset
and weak – pink) MULAN always identifies the links with ground truth CS�0.5, and all strong li
MULAN never produces false positives when a link does not exist (CS ¼ 0). (C) Distribution of o
used for evaluation. Right, corresponding MULAN graph by choosing the optimal parameter valu
Distribution of MULAN values as a function of ground truth CS values for 30 validation datasets
The rate of false negatives (percentage of blue in each slice for CS > 0) increases as CS decrea
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or 15 links), where links between subnetworks mediate short cuts in the
graph (Supplementary Fig. 4A). In each graph, the connection strengths
(CSs) of the links are normalized and can vary between 0 and 1. We
obtain 50 different datasets.

We first perform a systematic evaluation of 40 BMs (Wang et al.,
2014) on the 50 datasets (Supplementary Fig. 4). For the sake of
simplicity, we consider here two cases in which all CSs have the same
value: 0.8 or 1. We use the AUC value, i.e. the area under the receiver
operating characteristic (ROC) curve, to evaluate the performance of
each BM (Methods and Supplementary Fig. 5). Then, we select 18
different quadruplets of BMs (Supplementary Fig. 4d) from the
tion strengths varying from 0.1 to 1, and evaluation results. (A) Left, one example out of 50
k consists of links of varying strengths (color-coded from 0.1 to 1). Right: resulting MULAN
s demonstrate the parameter optimization objectives: using two thresholds (strong – green
nks (green) with ground truth CS� 0:8 We ignore the cases for ground truth CS2 ½0:1; 0:4�.
ptimal parameter values from 50 training datasets. (D) Left, example of one of 30 networks
es. All links with high CS values are identified, but many low CS links are not identified. (E)
, in which all the strong links (CS � 0:9) are identified. There is no false positive (CS ¼ 0).
ses. There is also a negligible false positives rate of 0.6% for pink links.
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correlation (Lopes da Silva et al., 1989), h2 (Ansari-Asl et al., 2006; Lopes
da Silva et al., 1989; Wendling et al., 2001), transfer entropy (Barnett
et al., 2009; Chicharro, 2011; Schreiber, 2000), Granger (Barnett and
Seth, 2014; Granger, 1969; Seth, 2010) and A H family (Baccal�a, 2007;
Kaminski and Blinowska, 1991; Wang et al., 2014) (Supplementary
Figs. 4B–C). We consider 12 quadruplets with 4 good performing BMs
and 6 quadruplets with one badly performing BM (to test robustness).
Half of the best performing BMs already generate a significant number of
false positives (AUC<0.99) for strong connection strengths (CS ¼ 1). All
methods start to fail for CS ¼ 0.8 (Supplementary Fig. 4C). In contrast,
MULAN ensemble algorithm outperforms individual BMs, in particular
for CS ¼ 0.8 (Supplementary Fig. 4D). MULAN is robust even if a poorly
performing BM is included (G13 to G18). MULAN is agnostic regarding
BMs and their number. Users can include any non-listed method in the
algorithm, and change the number of BMs. In our experience, using 4
BMs already provides good results. In the worked example of experi-
mental data described later (Supplementary Fig. 12G), we compare the
results obtained using 6 BMs instead of 4 BMs. Using 6 BMs slightly
decreases the number of false negatives for links with CSs<0.9, but
slightly increases the false positive rate of weak link for CS ¼ 0 from
0.0011 to 0.0012. This is the reason why, we are using 4 BMs.
Selection of the optimal parameters

We have previously analyzed the performance of individual BMs and
defined the optimal set of parameters for each BM, which depends on the
structure of the data (Wang et al., 2014). We use these parameter values
(Appendix E). In addition to these parameters, MULAN ensemble algo-
rithm requires setting 12 specific parameters. Four parameters θi; i ¼
1; 2;3;4 determine the values of L and H for the 4 BMs (Fig. 2 and
Supplementary Figs. 1–2). Five parameters rr ; r ¼ 1; 2;3;4;5; the output
from rule r, characterize the confidence that a link exists. Three param-
eters θm, θf1 and θf2 set the threshold for accepting a link within the
MULAN inference loop, and the thresholds to distinguish between strong
and weak links, respectively. We apply a genetic algorithm (Mitchell,
1998) to determine the optimal values for MULAN parameters. For each
simulated dataset, the genetic algorithm (Appendix E and Supplementary
Fig. 6) returns an optimal set of 12 values. For each of the 50 training
datasets, we consider that a set of parameters is optimal if, in the MULAN
graph (right panel of Fig. 3A): (i) there are no false positives for CS ¼ 0,
(ii) all strong links (CS�0.8) are identified as such (green), and (iii) if all
CSs between 0.5 and 0.8 are correctly identified as existing, although
they can be labeled as strong (green) or weak (pink). The evaluation pie
chart for 50 datasets (Fig. 3B) indicates that all links are correctly iden-
tified for CS�0.5. Following this training period, we obtain a distribu-
tion, S s, of 50 values for each parameter (Fig. 3C).

Results

Evaluation

The training session is designed to obtain the best match between the
ground truth structure and the computed graph. To validate the choice of
BMs and parameter values, we generate 30 new datasets (step 2 in Fig. 1).
For each dataset, we randomly pick 20 groups of 12 parameters from S s

(Appendix F,G and Supplementary Figs. 7 and 8). We thus obtain 20
different graphs for each dataset. We then calculate the median value for
each link. In order to assess the validity of the final averaged graph, we
need to include two new thresholds (used only for validation purposes,
i.e. they are not part of the general algorithm, hence they do not need to
be optimized). A strong (green) link is assigned if the median value of the
link is larger than θS and a weak (pink) link for values larger than θW but
smaller than θS (Appendix H, Fig. 3D). The evaluation from all 30 data-
sets (Fig. 3E) demonstrates the absence of false positives and negatives
for CS ¼ 0 and CS�0.9 respectively. MULAN correctly identifies strong
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links for CS larger than 0.8, but below this value false negatives start to
appear. The rate of false negatives is 10% for CS ¼ 0.6, which is
acceptable. The number of missed links increases as the connection
strength decreases. Importantly, a weak (pink) link is reliably identified
as an existing link (with a 0.0006 false positive rate: 9 links among
12995 links).

For comparison, the same evaluation procedure performed on two
well performing directed basic methods, PDC and BCorrD, led to much
less robust results (Supplementary Fig. 9).

We conclude that the training procedure allowed finding optimal sets
of BMs and parameter values, enabling MULAN to identify the graphs of
test datasets.
Cross-validation

In order to validate the graph, we have designed a cross-validation
technique consisting in partitioning the original network to analyze
into complementary sub-networks. Each sub-network will thus receive
information from many hidden nodes (from those removed from the
original network). We first determine the influence of the presence of
hidden nodes on the graph structure. Indeed, a hidden node may act as a
common source for two nodes, generating functional connectivity in the
absence of effective connectivity between these two nodes. We used
graphs with 30 nodes and randomly removed from 1 to 20 nodes (making
them hidden nodes). We consider two cases: hidden nodes with high or
low numbers of links (Appendix I and Fig. 4). We find that MULAN can
infer the underlying connectivity graph, irrespective of the number of
hidden nodes (Fig. 4B–C and Supplementary Fig. 10). Importantly, the
presence of a hidden common sources or the presence of indirect paths
through hidden nodes does not influence the final graph (no false link).
The implicit robustness to hidden nodes allows us to use a cross-
validation for empirical data (Fig. 5A) and calculate graphs containing
a large number of nodes (Fig. 5B), as described in the next sections.
Analysis of experimental SEEG datasets

As a practical illustration of MULAN strategy, we analyzed intracra-
nial stereo-electroencephalography (SEEG) recordings (20 s) from 30
channels obtained from a patient with drug-resistant epilepsy during an
idle awake state (Fig. 6A–C and Supplementary Fig. 11A). When using
BMs, we find that the functional connectivity matrices they return are
very different from one another (Supplementary Fig. 11B), supporting
the necessity of an ensemble approach. We follow the strategy described
in Fig. 1. In step 1. Instead of using custom-designed small world archi-
tectures (designed to evaluate MULAN in the previous section), we now
use realistic networks based on human connectomes made of 84 nodes
(Appendix K). Although tractography-based connectomes have limita-
tions, they provide the closest estimate of human structural connectivity,
which is sufficient for our evaluation (i.e. it does not affect the generality
of our conclusions). We randomly choose 30 nodes out of 84 to avoid
overfitting. We use a neuronal mass model generating local field poten-
tials, and we select sampling and dimensionality to match experimental
conditions. We down-sample the signals to 250 Hz to reduce computa-
tional cost and to avoid having too high autoregressive model orders, and
we choose 6 s sliding windows with a 3 s overlap. We select the 4 best
performing BMs: BCorrU, COH1, BCorrD and PDC based on their AUC
values (Supplementary Fig. 12A). Applying the genetic algorithm we
obtain the distribution of parameter values S 30

e (Supplementary
Fig. 12D. For validation (step 2), we use 50 other connectomes from the
database (Appendix K) and the parameter set
S 30

e determined previously: The evaluation results (Fig. 6D) for all 50
datasets show that for green strong links output of MULAN there are no
false positives for CS ¼ 0 and no false negative for CS> 0:9. In step 3, we
use the same group of BMs and parameter values, we analyze SEEG
signals and obtain the connectivity graph (Fig. 6E).



Fig. 4. Sensitivity to hidden nodes (A) An example of a designed ground-truth structure is shown in the top middle panel. We remove nodes from the graph (filled blue circle), considering
low (<3) and high ( � 3) degrees in the right and left panels, respectively. S1 is the new ground truth structure to be recovered after removing the hidden node and its incident edges. S2
corresponds to S1, with the addition of false positive links (indicated in blue), which may have a common source from hidden nodes (left panel) and an indirect path through hidden nodes
(right panel). (B) and (C) show the results obtained for hidden nodes with low and high degrees, respectively. Left, we show the AUC values for 25 BMs if either S1 or S2 is considered as
the ground truth structure. We varied the number of hidden nodes (1, 2, 5, 10, 15 and 20), with Nx indicating that we analyze a network comprised of x nodes (i.e. we removed 30-x nodes,
which become hidden nodes). Right, AUC values (top) and COS values (bottom) when using MULAN. Green and blue boxes test the hypothesis that S1 and S2 are the ground truth
structures, respectively. Note that MULAN always finds S1, demonstrating that the algorithm is robust to hidden nodes. We used two sets of quadruplet: BCorrU, PCorrU, BCorrD, Hmvar,
and BTEU, PTEU, BCorrD, ffDTF and θ1 2 ½0:5; 0:6� and θ2 2 ½0:6; 0:7� with Nbt ¼ 20.
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In step 4, in order to cross-validate our results, we use the sub-dataset
strategy described above (Fig. 5A). We start with simulated datasets from
the first 50 connectomes. From each 30-node dataset, we extract three
sub-datasets comprising 20 nodes, each link of the 30 nodes being
considered at least once in the 3 sub-datasets. We thus obtain 3� 50
training datasets, which allow us to calculate the distribution of optimal
parameter values S 20h

e (Supplementary Fig. 13A). We then use these
optimal parameters to analyze the remaining 50 simulated datasets for
validation. For each of these 50 datasets, we extract three 20-node sub-
datasets and obtain 4 MULAN matrices: one for the 30 node time-series
and three for the 20 node sub-datasets (Supplementary Figs. 13C–D).
We average each link value to obtain the final MULAN matrix. After
averaging, the CSs are distributed between 0 and 1, which allows us to
consider several categories of CSs, from weak to strong. We consider five
thresholds [0.1, 0.3, 0.4, 0.5, 0.7] coded with five colors to obtain the
final MULAN graph (Supplementary Fig. 13B). With the procedure using
sub-datasets (i.e. introducing hidden nodes), some of these weaker links
are better classified as such (Fig. 6F). Also this procedure decreases the
number of false negatives for links with CSs<0.9. Therefore, the sub-
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dataset method can be used to obtain a more precise graph in terms of
quantitative connection strengths. The same strategy is applied to the
real SEEG dataset (Supplementary Fig. 13D) to obtain a new graph
(Fig. 6G). The difference with the first analysis, (Fig. 6E) is the addition of
one link and a finer grain distribution of CSs.

The previous results validate our ensemble strategy. We now discuss
the computational cost of the algorithm, how to handle datasets with a
large number of nodes, and how the presence of experimental artefacts
may affect the results.

Handling networks with a large number of nodes (application to human
connectomes)

Human neuroimaging data typically involve large-scale networks. A
typical parcellation of the human brain includes 84 nodes (Fischl et al.,
2004). As ground-truth structures, we use the published connectomes of
100 unrelated subjects (Appendix K). We divide the dataset into two 50
datasets, one for training, one for validation. When the number of nodes
is large (e.g. 84), the training phase could not converge to achieve 0 false
links for 50 datasets. However, we always achieve convergence to 0 false



Fig. 5. Two flowcharts for MULAN strategy using sub-datasets on (A) cross-verification and (B) datasets with a large number of nodes. (A) For example, if the original dataset contains 30
nodes, we extract 3 sub-networks made of 20 nodes, we calculate the corresponding graphs, and combine these to verify and refine the results (examples in Fig. 6 and Supplementary
Fig. 13). (b) For example, a dataset with 84 nodes (example in Fig. 7) is first divided into fifteen 28-node sub-datasets. We divide them further into 2 sub-groups according to the
localization of the channels. By comparing the calculated MULAN graphs on other 50 subjects, we obtain the two optimal parameter sets for the two sub-groups. For each sub-datasets we
obtain a sub-network, which we combine to obtain the final MULAN network. Confidence is assessed using datasets of 50 other subjects (Fig. 7G).
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links when using 30 nodes networks. For each connectome of the training
dataset, we use 15 28-node sub-datasets, which is the minimal combi-
nation of sub-datasets necessary to account for all links. According to
structural connectivity of any connectome (Fig. 7C), denser links are
intrahemispheric, whilst interhemispheric links are less dense. Based on
this observation, we use 2 subgroups, one for dense sub-networks (all
nodes within one hemisphere, Fig. 7A) and one for sparse sub-networks
(links in both hemispheres, Fig. 7B). During the training phase, we obtain
the distribution of optimal parameters for each subgroup (Top Fig. 7A–B)
and then use these optimal parameters to calculate MULAN graphs
(bottom Fig. 7A–B). Using these parameters, we perform the validation
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step. One example of validation connectome is shown on Fig. 7C. The
calculated MULAN graph is shown on Fig. 7D, showing no false negatives
for CS�0.8; and a 0.0016 false positive rate for CS ¼ 0 (11 false positive
links out of 6487). For comparison, we report the results obtained from
two BMs, PDC (Fig. 7E) and BCorrD (Fig. 7F), which belong to the
quadruplet of BMs used by MULAN for the ensemble approach. Both BMs
fail to recover the structure as compared to MULAN (Top of Fig. 7D–F).
MULAN is robust for a large range of evaluation threshold values, whilst
thresholds need to be set in very narrow ranges for the two BMs
(Fig. 7E–F). These results confirm that the ensemble approach of MULAN
greatly improves the reliability of the results as compared to the best BMs



Fig. 6. Application of MULAN strategy to intracerebral Stereo-Electro-Encephalographic (SEEG) signals recorded from a patient with drug-resistant epilepsy. (A) Location of the 30
recording sites on a Talairach map of the left hemisphere – and list of recorded region. (B) Schematic diagram of the SEEG electrode annular leads: length 2 mm, diameter 0.86 mm and
1.5 mm inter-contact distance. (C) Time-series of original SEEG signals from the 30 recording sites. For the analysis, we use 6 s-long sliding windows with 3 s overlap. (D) Ensemble
connectivity graph generated by MULAN using BCorrU, COH1, BCorrD, PDC as BMs (Supplementary Fig. 11B) and optimal parameter values from 50 training datasets with human
connectome ground truth networks (Supplementary Fig. 12D). (E) Distributions of true/false positive/negative rates from MULAN results as a function of ground truth CS values for 50
validation datasets with human connectome structures. (F) After cross-validation from hidden nodes, the network is refined by introducing 5 CS levels (Supplementary Fig. 13) and is
evaluated on 50 simulated datasets in (G).
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Fig. 7. Application of MULAN to 84-node graphs obtained from a database of 100 human connectomes. After dividing an 84-node graph into fifteen 28 node graphs, themselves divided
into dense (A) and sparse (B) graphs, we obtain the corresponding distribution of optimal parameters and MULAN graphs based on 50 training datasets. The matrices, graphs with green
and pink links using two thresholds and evaluation results according to the graphs from three methods: MULAN, PDC and BCorrD are shown (C to F). Note that MULAN finds the original
connectivity graph, when the best performing methods, PDC and BCorrD, fail. (G) Evaluation results for MULAN on simulated datasets obtained from the remaining 50 evaluation subjects.
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and that MULAN is more robust for parameter setting.
If we now combine the results of the analysis of the 50 connectomes

from the validation dataset, we find no false negatives for CS�0.8; and a
0.002 rate of false positives for CS ¼ 0 (Fig. 7G). Therefore, the sub-
dataset procedure enables handling networks with a large number
of nodes.

Computational cost

MULAN computational cost mainly depends on the numbers of sliding
windows and the number of nodes. We use 20-s-long datasets and 6
sliding windows. The computational cost of BMs increases exponentially
with the number of nodes. However, the computational cost of MULAN
algorithm itself is much lower than BMs (Supplementary Fig. 14A). The
cost of 20 runs as a function of nodes is shown in Supplementary Fig. 14B.
The computational cost of BMs increases linearly with the numbers of
sliding windows, whereas MULAN ensemble algorithm itself is not
influenced by the number of sliding windows. MULAN ensemble algo-
rithm works on the mean values of the sliding windows, so that the
number of sliding windows does not really increase the computational
cost. When using subnetworks for cross-verification, there is a near linear
increase of the computational time with the number of nodes (Supple-
mentary Fig. 14C). This means that the dataset can be divided in sub-
networks without increasing the computational cost and without
affecting the final results, as demonstrated above. This result is particu-
larly important for the analysis of networks containing large number of
nodes, as shown below.

Artefact sensitivity

To assess MULAN sensitivity to artefacts, we use two types of artefacts
common to SEEG signals: muscle artefacts and jump artefacts (Fig. 8
A,C). For each type of artefact (around 1 s long), we systematically add
the artefacts to a 30-channel 20-s SEEG dataset. We generate 270 datasets
with At artefacts every 2 s on each Ac channels, where At ranges from 1 to
9 (from the beginning until ends of signals) and Ac ranges from 1 to 30.
We compare artefact-free and artefact-contaminated results with cosine
similarity (Appendix D, Fig. 8B,D). The algorithm is more robust for
muscle artefacts than for jump artefacts. For both types of artefacts, the
algorithm is more sensitive on the time axis (number of artefacts) than
the space axis (number of channels with artefacts). If we take 0.96 as a
threshold, MULAN starts to fail when half of signals contain muscle ar-
tefacts or 1/6 of jump artefacts. Note that experimentalists would
generally reject such artefact-ridden signals from analysis.

Analysis of fMRI data

Functional connectivity is commonly used to analyze fMRI datasets,
and construct graphs (David et al., 2008). As a worked example, we use a
6-min fMRI recording in a child with autism spectrum disorder (Di
Martino et al., 2017) (Fig. 9H). In step 1, we start with 50 simulated fMRI
datasets (Appendix C) using 50 different human connectomes as ground
truth. We use 180-s sliding windows with a 90-s overlap and select 2 best
performing BMs: BCohF, BCorrD from 10 basic methods based on their
AUC values (Supplementary Fig. 15A). Note that, as reported before
(Smith et al., 2011), none of the BMs is able to extract the ground truth
graph even with an a priori knowledge of the most appropriate parame-
ters. Using the training dataset and 2 BMs instead of 4, we obtain the
distribution of parameter values for both dense and sparse sub-networks
(Fig. 9A and B). Note that fMRI datasets, having very low sampling rates,
do not include enough information for extracting the underlying ground
truth. We obtain less than 21 false links. In step 2, we evaluate the
parameter choice using 50 other connectomes. An example of a con-
nectome from the validation set is shown on Fig. 9C, and the computed
MULAN graph is shown on Fig. 9D). There is a 20% false negative rate for
strong links and a 10% false positive rate for CS ¼ 0. MULAN improves
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the results of individual MBs: BCohF (Fig. 9E) and (Fig. 9F). However, the
evaluation results for all 50 datasets (Fig. 9G) shows that, although
MULAN does better than individual BMs, it is more difficult to extract
ground truth graphs when analyzing fMRI data as compared to electro-
physiological signals. Adding the third best BM (BCorrU) on these 50
datasets (Supplementary Fig. 15B) did not improve the performance. In
step 3, we use 2 BMs in MULAN and the parameter values determined
previously to analyze experimental fMRI data (Fig. 9H) and obtain the
connectivity graph (Fig. 9I).

Discussion

The ensemble approach

Structural connectomes are derived from diffusion-weighted imaging
coupled with tractography to map human white matter fascicles. Func-
tional connectivity is derived from multiple functional neuroimaging
data to map the relationships between different regions. Many methods
have been proposed to extract structural connectomes and functional
connectivity graphs, but the final graph is method-dependent and
parameter-dependent. A solution has been recently proposed to extract
structural connectomes based on statistical evaluation (Pestilli, 2015;
Pestilli et al., 2014) and ensemble inference (Takemura et al., 2016).

The present work builds on these studies to extend the concept to
functional connectivity. The importance is twofold: (1) structural con-
nectomes are related to the underlying neuroimaging data through
diffusion processes captured by the Stejskal-Tanner equation (Pestilli
et al., 2014; Stejskal and Tanner, 1965); to make the equivalent link for
functional connectivity is more difficult, for a large part due to our
insufficient understanding of how local neuro-electric and –chemical
processes organize themselves across multiple scales in space and time.
An ensemble approach, based on statistical validation methods, is
perhaps an alternative for accurate network identification. (2) To date,
we understand that no single connectome mapping method will be
optimal in all situations (Takemura et al., 2016) for this reason, statistical
approaches will become fundamental in identifying connectomes with
high degree of sensitivity and specificity (Zalesky et al., 2016). A growing
literature focuses on the generative models of the human connectome
that yield synthetic networks combining geometric and topological fac-
tors in order to better understand the human connectome (Betzel et al.,
2016), which could be further used for the functional connectivity.

Functional, effective and ensemble connectivity

MULAN infers ensemble connectivity by pooling information from
various functional connectivity measures. Different functional connec-
tivity methods provide complementary information about statistical de-
pendencies in time-series. MULAN essentially tests the hypothesis that
the underlying coupling can be inferred from the information provided
by different aspects of functional connectivity. The systematic evaluation
of MULAN using thousands of datasets supports our hypothesis. Dynamic
causal modeling (DCM) (Friston et al., 2003; Friston et al., 2013) is the
most established approach to estimate effective connectivity (a model of
interaction or coupling). DCM is based on a neuronal model that de-
scribes causal interactions, which are mediated by unobservable
neuronal dynamics – and an observation model that describes the map-
ping from neural activity to observed responses. Thus, an interesting
issue for future work is a validation of our ensemble measures of coupling
in relation to explicit models of effective connectivity. MULAN and DCM
have complementary aims for inferring underlying coupling. Crucially,
MULAN can be directly applied to any given time series to detect the
coupling among empirically sampled nodes, independently of any spe-
cific (or explicit) causal model. Interestingly, MULAN could be used as a
prior in DCM-based approaches.



Fig. 8. Sensitivity to two types of artefacts: (A) muscle artefacts and (C) jump artefacts with an example with 3 artefacts on 3 channels in a 30-channel 20-s SEEG dataset. Cosine similarity
values to compare artefact-free and artefact-containing data as a function of the number of artefacts in time and their distribution across channels (B and D). From left to right, we show the
results when using MULAN and two directed BMs: BCorrD and PDC.
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Fig. 9. Application of MULAN to fMRI datasets with 84 nodes. Step 1: After dividing an 84 node graph into fifteen 28 node graphs, themselves divided into dense (A) and sparse (B) graphs,
we obtain the corresponding distribution of optimal parameters and MULAN graphs based on 50 training datasets. We apply the optimal parameters on the example dataset with ground
truth (C) and obtain the connectivity matrices and evaluation results from three methods: (D) MULAN, (E) BCohF and (F) BCorrD. Note that BCohF can not provide direction information.
(G) Evaluation results for MULAN on 50 evaluation subjects. Step 3: We apply MULAN (H) a fMRI dataset with 84 channel and 6 minuets of a child with autism and obtain (I) the
MULAN matrix.
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Adaptive MULAN

The present version of MULAN uses fuzzy logic and a genetic algo-
rithm for the following reasons. Fuzzy logic is a consensus of multiple
inputs and rules, which fits well with the present question. Fuzzy logic is
more robust by providing degree of the truths rather than classic crisp
logic whose conclusions are either true or false. We used a genetic al-
gorithm because it can handle the high degree of nonlinearity imposed by
our strategy (traditional linear optimization tools cannot be used). Ge-
netic algorithms have demonstrated the ability, efficiency and robustness
in handling complex search spaces (Bancaud et al., 1970; Gürocak, 1999;
Herrera et al., 1995) and achieving the complex objectives we set (the
calculated connectivity graph needs to be similar to the ground-truth).
However, other algorithms could be used and implemented.

In principle, any connectivity method, which outputs weighted
connection matrices, can be incorporated as a basic method into MULAN.
MULAN affords the opportunity to include, evaluate and use any new
method. We suggest using basic methods, which have low computational
cost and which do not require prior knowledge of the underlying
generative model; such as correlation functions, coherence, transfer en-
tropy and AH families. We also suggest using at least two classes of BMs
(that would usually report instantaneous or undirected functional con-
nectivity and directed functional connectivity based on temporal de-
pendencies). In this respect, it is useful to note that our results show that
MULAN is robust to the inclusion of a poorly performing basic method.

MULAN parameters can be adjusted to different types of data.
Importantly, the five fuzzy logic rules used in MULAN depend on the
combination of BMs. Although these five rules are robust and widely
applicable, users still can add or replace rules to optimize results from
their chosen BMs. Because no ground-truth connectivity network is
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available for empirical datasets, we suggest starting the analysis pro-
cedure with a systematic evaluation on simulated data to optimize the
BMs and MULAN parameters. This involves generating multiple simu-
lated datasets, with the same number of nodes, signal length and sam-
pling frequency as the empirical dataset. First we perform a systematic
evaluation (Wang et al., 2014) to select the best performing basic
methods, and their associated parameters. Then we use a genetic method
to obtain MULAN parameters – as illustrated in this paper. The results
thus obtained enable an informed choice of parameters that can then be
used to analyze empirical data. An overview of parameters entailed by
MULAN in provided in Supplementary Table 2.

Basic methods generally require a threshold, which is impossible to
know a priori. Our analyses show that results can be very sensitive to a
slight change in threshold when using a given BM. In contrast, a major
strength of MULAN is that it is relatively insensitive to such small vari-
ations. Finally, the links identified by MULAN can be characterized by
their strength, the classification (e.g. null, weak, strong in the paper) is
mainly for evaluation purpose.
Hidden nodes

The MULAN scheme is robust to the influence of hidden nodes. This
result is important, as some network nodes are not observable or
measurable in many empirical data (e.g., deep sources in MEG/EEG).
Hence, the presence of hidden nodes or indirect pathways between nodes
does not influence the ability of MULAN to detect a link between two
observed nodes. We found this behavior particularly useful when using
hidden nodes to cross-validate MULAN. Importantly, its low sensitivity to
the influence of hidden nodes provides an alternative way to analyze
datasets with a very large number of nodes (>50); namely, by simply
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combining the results obtained from the analysis of sub-networks with a
smaller number of nodes. Such a procedure could obtain the satisfied
connectivity results by using the subnetwork optimal parameters,
because when large networks are characterized optimal parameters are
hardly obtained with 0 false links.

Application and limitations of MULAN

Although an ensemble approach provides a better estimate of con-
nected graphs as compared to single methods, the accuracy depends upon
the individual performance of the BMs. The analysis of fMRI data illus-
trates this. Even the best performing BMs are not able to extract the
correct graph, perhaps because the neuronal responses are convolved
with a hemodynamic response function with a very low sample fre-
quency. As a result, MULAN cannot output the correct graph, even if its
estimation is better than that provided by individual BMs. In contrast to
electrophysiology data for which the convergence criterion can be set to
0 false positive link, in the case of fMRI data, the threshold had to be
empirically set to 21 false links for the algorithm to converge. Better
performing BMs need to be designed to improve the accuracy of fMRI
functional graphs. Our simulated data corresponds to electrophysiolog-
ical (MEG or EEG) time series, with inherent spectral structure and cor-
relations induced by (simulated) neuronal processes. For SEEG datasets,
we can get confident connectivity results based on the given locations
and high time resolutions. Whereas from fMRI time series where the
neuronal responses are convolved with a haemodynamic response
function and with very low sample frequency, it is more difficult to find
the ground-truth graph (because all BMs do not perform well enough).
Future work may include other algorithms such as DCM, and then work
on the connectivity of hidden states (Friston et al., 2003; Friston
et al., 2013).

Finally, it is important to note that we assume that the network is in a
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steady state regime. However, functional links evolve in time, a concept
coined as Functional Connectivity Dynamics (FCD) (Hansen et al., 2015).
FCD has been observed in task and resting conditions of the human brain
(Allen et al., 2014; Hansen et al., 2015). Subsequent work may include
cases when functional connectivity fluctuates over time.

All MULAN procedures are written in Matlab/Python code and are
available freely with submitted code, which will be pushed on github
once this paper is published.
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APPENDICES.
A. MULAN ensemble algorithm

1 Normalization of the connections strengths generated by the Basic Methods

For MULAN ensemble algorithm, for each basic method (BM), we average the N connection matrices obtained for each analysis window. The value
of each matrix element corresponds to the connection strength between two nodes. However, the range of values depends upon each BM. For example,
the calculated values from BCorrU (Bivariate correlation undirected) range from 0 to 0.4, whereas the values from Hmvar (H_matrix based on MVAR)
range from 0 to 0.003 (Supplementary Fig. 1B). In order to combine the results from all BMs, we normalize the values according to their probability
distribution function. After bootstrapping 500 times, on N connection matrices from N sliding windows with replacement, we obtain 500 averaged
connection matrices. Then, we build the histogram (100 bins) of all connection strengths thus obtained (blue bars in Supplementary Fig. 1B). The
histogram is used to compute the cumulative distribution function (in green in Supplementary Fig. 1B), defined by: Ri ¼ ðPi

j¼1mjÞ=ð
PNbin

j¼1mjÞ, with mj

the histogram value of the jth bin. All connection strengths are normalized to 1. The four normalized values from the four BMs form the vector lij, which is
used as the input to the MULAN fuzzy inference system (MIS).

2 Initial conditions

MULAN algorithm is an iterative scheme. We start with an empty graph, and the first iteration produces a graph with links.

3 MULAN Fuzzy Inference System (MIS)

MULAN fuzzy inference system (MIS) works on each link i; j and uses fuzzy set theory (Tang, 1993; Zadeh, 1965) to map normalized values lij from
the basic methods and current network conditions Cij to a MULAN score Pij (Supplementary Fig. 2). MIS comprises four steps: designing fuzzy rules,
defining membership functions, performing the inference operations on the rules and obtaining MULAN scores by combining the rule strength and
output. The detailed description for each step is as follows. For simplicity, we omit the subscripts ij in this section.

Step 1: Fuzzy if-then rules with conditions

Fuzzy if-then rules are expressions of the form IF A THEN B, where A and B are labels of fuzzy sets characterized by membership functions. MIS uses

https://github.com/MRtrix3/mrtrix3
https://github.com/MRtrix3/mrtrix3
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the fuzzy if-then rules with conditions, i.e. in case of C, IF A THEN B. The definition of MIS rules depends on the chosen BMs. Here we give an example of
5 MIS rules, which we use in this paper (Supplementary Fig. 2D). BM1 and BM2 are two undirected methods, whereas BM3 and BM4 are two directed
methods. H (high) corresponds to high likelihood for existence of a link, whereas L (low) corresponds to low likelihood. The value “-1” represents an
unnecessary condition, and “1” a necessary one. Output rr is 0 if the link unlikely exists and 1 if the link most likely exists.

The five rules:

� Rule 1: IF all the basic methods predict that the link unlikely exists (L), THEN the link unlikely exists (output: r1 2 ½0;0:5�Þ:
� Rule 2: IF undirected methods output L AND directed methods predict it likely exists (H), THEN it unlikely exists (output: r2 2 ½0;0:5�).
� Rule 3: In the case of C2: existence of a link in the opposite direction, IF undirected methods output H AND directed methods output L, THEN the link
unlikely exists (output: r3 2 ½0;0:5�).

� Rule 4: In the case of C1: existence of a common source or an indirect path, IF undirected methods output H AND directed methods output L, THEN
the link unlikely exists (output: r4 2 ½0; 0:5�).

� Rule 5: IF all basic methods output H, THEN it likely exists (output: r5 2 ½0:8;1�).

We use these conservative ranges of rr values (instead of just 0 or 1) to cover all possibilities. When analyzing data, the rr values are determined
during the optimization process, as detailed below. These values can vary each time when a new dataset is analyzed.

Step 2: Membership functions

Membership functions map the normalized input value from each BM into a degree of non-existence/existence of this link; i.e., L or H in our case. We

use generalized bell-shaped membership function μðxÞ ¼ 1=
�
1þ

����x�c
a

����
2b�

, where a ¼ θi for L and 1� θi for H; b ¼ 2k⋅a, c ¼ 0 for L and 1 for H (Sup-

plementary Fig. 1C). Here θi; i ¼ 1;2;3; 4 determines the half width of the bell shape of the membership functions for each of the four BMs. The ex-
amples in Supplementary Fig. 1C show that θi strongly influences the membership functions; in particular, for values close to the steep parts of the
sigmoid functions. The slope of the function is also controlled by k. Here, we used k ¼ 5 as our simulations show no major effect of varying k between 3
and 7.

Step 3: Inference operators

We need to obtain the output value rr of a given rule r. The first step is to verify the conditions
Y2
c¼1

Cr
c; c ¼ 1;2; i.e., condition C1 or C2 for the rth

rule. Cr
c ¼ 1 in two situations: a condition Cc; c ¼ 1;2 is unnecessary for a rule r; Or a condition Cc is necessary AND Cc ¼ 1 (the condition is

satisfied). Otherwise Cr
c ¼ 0, i.e. if a condition is necessary AND Cc ¼ 0. If Cr

c ¼ 0; we do not use this rule. Let us consider the example shown in
Supplementary Fig. 2B: here, during one iteration, there is neither a common source nor an indirect path for two nodes under consideration. Hence,
C1 is not satisfied (False) and Rule 4 is not used. If a rule is used, we multiply the membership values from the 4 BMs to obtain the weight of rule r, i.e.

wr ¼
Y4

b¼1

μrb (wr and rr are shown as dark and light blue bars, respectively, in Supplementary Fig. 2B). For each rule r, the inference outputs a weighted

wr value for a given rr value (Supplementary Figs. 2A–B).

Step 4: MULAN score

For each link, MULAN outputs the value P ¼ 1
Nr

PNr
r¼1wrrr , where Nr ¼ 5� Number of unused rules. The unused rules fail on the condi-

tions,
Y2
c¼1

Cr
c; c ¼ 1;2.

B. Basic methods – functional connectivity measures

In this study, we consider 40 functional connectivity measures from 7 families as candidates of basic methods: correlation, h2, mutual information,
coherence, Granger, transfer entropy and A H (MVAR-frequency domain based techniques, see below for details). The mathematical form of these
measures of functional connectivity can be found in Supplementary Table 1 and note 1. We select these methods because they have low computational
cost and do not require prior knowledge of the underlying generative model.

We have demonstrated the way to select the best sets of parameters for the basic methods according to their AUC values on the simulation datasets
with known ground truth and the number of nodes is 5 (Wang et al., 2014). The important parameters are length of windows, the length of signals for all
basic methods; the frequency ranges for the frequency domain methods and time delay for the time-domain methods. In this paper we extended to the
cases with more number of nodes, detailed the parameters in Supplementary Table 2. The type and property of datasets are important when simulation
datasets considered. In this paper, we use neural mass models and fMRI models. In addition, three mathematical models such as linear and nonlinear
models with linear/nonlinear couples can refer to (Wang et al., 2014). Users are encouraged to find the suitable models for their datasets. Many models
are available from open source software toolkits such as Statistical Parametric Mapping and The Virtual Brain.

C. Simulated data:

1 Neuronal Mass Model (NMM)
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We consider synaptic convolution-based neural mass models (NMM) to test the methods at the millisecond timescale, which is typical for elec-
trophysiological signals. These models (David et al., 2006; Moran et al., 2013) consider cortical columns with three subpopulations: spiny stellate cells
in granular layer IV, pyramidal cells and inhibitory interneurons in extra granular layers (II and III, V and VI) (Supplementary Fig. 3). Thirteen neural
states include currents i0 � i5 and membrane potentials v1 � v7 for these three cell subpopulations. A connection from node j to i corresponds to a link
from the pyramidal subpopulation of node j to the spiny stellate subpopulation of node i. We use Cij to denote the connection strength from node j to
node i. Cij varies between 0 (no effect from j to i) to 1 (the input from pyramidal column i has the same strength as the input from node i itself).

The details of the mathematical definition of the NMM model can be found in Supplementary Figs. 3A–C. For simplicity, time t and node i are
omitted. The sigmoid function is defined as SðxÞ ¼ 1=ð1þ e2�xÞ � 1=ð1þ e2 Þ. The main parameters are: Ke ¼ �4 ms�1; Ki ¼ �16 ms�1; He ¼ 8mV;
Hj ¼ 32mV , γ1;2;3;4;5 ¼ f128; 128; 64;64;4g. The input U comprises signals containing both white and pink noise, with amplitude 0.0865. The original
codes are from http://www.fil.ion.ucl.ac.uk/spm. We use 125, 250 and 1000 Hz sampling frequencies in this study. For visualization and comparison,
we plot the time-series and time frequency plot for simulated signals (Supplementary Fig. 3D) and experimental data from gyrus rectus (Supplementary
Fig. 3E). Note that the similarities in frequency content.

2 fMRI

We used the standard generative model used in DCM to generate simulated BOLD signals. The neuronal signals were generated using linear dif-
ferential equations with one neuronal state per node (K. J. Friston et al., 2003; Stephan et al., 2007). This neural activity is transformed into a BOLD
response using a non-linear haemodynamic model (incorporating the empirically validated balloon model). The associated haemodynamic response
function effectively acts as a non-linear convolution operator to remove high-frequency fluctuations in neuronal signals. This means simulated BOLD
time series have a slower timescale as compared to EEG signals. We used the BOLD signal to analyze the underlying connectivity between the neuronal
states of nodes i and j. We also added system noise to the neuronal state and observation noise to the BOLD signals.

D. Evaluation criteria

1 AUC value

For each simulated dataset, a particular basic method computes a connectivity matrix, which assigns a connection value between 0 and 1 between
any two nodes. The connection strength can be thresholded to produce a network graph. For example, in the connection matrix 2 in Supplementary
Fig. 5A, choosing a connection threshold of 0.4 will produce a graph with many more links (those in orange color) than the ground truth structure.
However, with the threshold of 0.5, the method identifies the ground truth structure. Based on these ground truth structures, we can calculate the
number of false positive and true positive edges as a function of the threshold. This enables us to compute receiver operating characteristic (ROC) curves
(Zweig and Campbell, 1993) and evaluate the area under the curve (AUC) (Supplementary Fig. 5A). Note that, for the undirected methods, the
computed connection matrices are symmetric, thus we take the symmetrical adjacency matrix as a ground truth for calculating their ROC and AUC
(Supplementary Fig. 5B). The closer the AUC is to 1, the closer the computed graph is to the ground truth structure. Note that, if AUC ¼ 1, then there
exists a threshold that can identify the correct structure. But this threshold cannot be empirically determined when analyzing experimental data,
because the ground truth of the graph is not known.

2 COS value

We use the COS value (Singhal, 2001) to measure the similarity between two connectivity graphs. First, we use a binary vector v of NðN � 1Þ
dimension to characterize a graph withN nodes, in which 1 indicates the presence of a link and 0 the absence of a link. Then, to compare two graphs, we

calculate COSðv1; v2Þ ¼ v1 ⋅v2
jjv1 jjkv2k ¼

P
v1;iv2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðv1;iÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðv2;iÞ2
p . The values thus range from 1 (identical graphs) and 0 (totally different graphs).

3 Pie chart

We use a multi-level pie chart to compare the computed graphs with ground-truth (such as Fig. 3B,E, Fig. 6D,F, Fig. 7D-G and Fig. 9D-G). MULAN
outputs a network graph with green and pink lines to indicate strong and weak links, respectively. To characterize the accuracy of the graph, we use a
pie chart. Each slice corresponds to a given ground-truth connection strength from 0 to 1 with 0.1 steps. For a given ground-truth connection strength,
we calculate the number of times MULAN outputs a green, pink link or no link (blue), noted as Ncs

c , where c 2 fgreen; pink; blueg and

cs 2 f0; 0:1; ⋯;0:9; 1g. Then, we calculate the rate Ncs
cP

c2fgreen; pink; bluegN
cs
c
.

E. Genetic algorithm for parameter optimization

The genetic algorithm is a method for solving optimization problems based on natural evolution, such as inheritance, mutation, selection and
crossover. This type of algorithm is well suited for optimization problems in which the objective function is discontinuous, non-differentiable, or highly
nonlinear. We use this algorithm for optimizing 10 MULAN parameters ½θ1; θ2; θ3; θ4; r1; r2; r3; r4; r5; θm� (Supplementary Fig. 6). Using training datasets
of known structure containing the same number of nodes as the empirical data to analyze, we start with 16 sets of MULAN randomly generated pa-
rameters within a given range, θ1;2 2 ½0:2; 0:9�, θ3;4 2 ½0:3; 0:9�, r1;2;3;4 2 ½0; 0:5�, r5 2 ½0:8; 1�, and θm 2 ½0:5; 0:9� (we used a large range that was
empirically determined during preliminary simulations). The first 16 sets are called the first generation. MULAN is used to generate 16 graphs (one per
set). From these, we extract the 2 sets with the lowest number of false positives and negatives. We retain these two sets. Then, we randomly pick two sets
(parents) from the 16, and from these we generate 2 children by crossover. We repeat the operation (randomly picking 2 parents) 6 times, to obtain 12
children. Finally, we randomly choose two sets from the 16, and we apply a mutation to 4 parameters. This procedure gives the next generation of 16
sets of parameters. Note that the probability of selecting one set is proportional to the accuracy of the corresponding graph. This process is repeated until
one of three following termination conditions is reached: the generated connective graph has 0 false link, there are 20 generations with the same false
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links or 40 generations have been performed. Notice that using this termination conditions, the process dose not always converge to 0 false positive link
as SEEG datasets do. For example, in the case of fMRI data, the optimization process terminates around 21 false positive links.

The last parameter group is for generating the MULAN graph. We consider two scenarios. When the MULAN graph has one parameter, θf – for strong
connections here shown in green – or to parameters θf1, θf2 for two-color mapping (green links for the strong connection and pink ones for the week).
These parameters can be determined easily when comparing the MULAN output with ground truth structures (using 50 training datasets).

F. Statistical results

Although MULAN returns connectivity matrices with AUC values close to 1, some links may be incorrectly assigned. To further improve the per-
formance, we use the bootstrapping procedure to define the final connection graph based on combination ofNbt matrices, each from on bootstrapping on
N sliding windows (Supplementary Fig. 7A). We vary the number of nodes (20, 30 and 50) and the density of links (5*, 10* and 15*; a * indicating the
number of links within each sub-network), using 10 datasets for each case. We use the cosine similarity (COS) to compare the final connection graphs
with the ground truth. After testing Nbt from 10 to 300, we find that Nbt ¼ 20 is sufficient to recover the ground truth structure (Supplementary Fig. 7B).

G. MULAN application on strong connection strengths

Here we demonstrate the examples with only strong connection strengths for better understanding MULAN algorithm and evaluation system. We
simulate the data with 30 number of nodes with 50 different small-world ground truth structures (i.e. links with connection strengths varying between
0.8 and 1.0 to simplicity). We then apply a genetic algorithm (Mitchell, 1998) to determine the optimal values for MULAN parameters. For each
simulated dataset, the genetic algorithm (methods and Supplementary Fig. 7) returns an optimal set of 11 values. Supplementary Fig. 8A shows one
example from 50 simulated datasets with the ground truth network in the left and the MULAN graph in the right. The performance based on all 50
simulated datasets (Supplementary Fig. 8B) illustrates that MULAN produces neither false positives nor false negatives when using optimal parameters.
Since 50 simulated datasets generate a set of optimal parameters S s, we obtain a distribution of values for each parameter (Supplementary Fig. 8C).

To evaluate MULAN using this optimal distribution, we generate 30 new datasets with the same generative parameters (numbers of nodes etc.) but
with ground truth structures differing from the 50 training datasets. We randomly pick 20 groups of parameters from the set S s of optimal parameters.
For each dataset, we obtain a matrix as the median value of 20 MULAN matrices (Supplementary Fig. 8D). We thus obtain the final MULAN graph in
which strong and weak links are shown in green and pink, respectively. When we evaluated MULAN on the 30 test datasets, we find that all links were
correctly identified, although some strong CS ¼ 0.8 links in the original graphs are labeled as “weak” (pink) in the final MULAN graph (Supplementary
Figs. 8E–F). In short, MULAN can always identify strong links (CS � 0.8), producing neither false positives nor false negatives.

1 Selection of optimal parameters

To select a particular value from each distribution (Supplementary Fig. 8C) of optimal parameters obtained from 50 training datasets, we generate
other 30 new datasets with the same generative parameters (the numbers of nodes etc.) but with ground truth structures differing from the 50 training
datasets. We evaluate 4 alternative ways to choose the optimal parameters using bootstrapping (Nbt ¼ 20) (Supplementary Fig. 8D). In the first three, we
use 20 sets of optimal parameters randomly generated from normal distributions having their expectation as ‘mean’, ‘median’ or ‘highest peak’ (hp) of
the optimal parameter set S s, and half standard deviation. The fourth approach is to randomly pick 20 groups of parameters from the set S s of optimal
parameters. In each case, we obtain 20 MULAN matrices. Since MULAN decides whether a link exists (green) or not, we assign the value of 1 to each
green link. Each link is thus characterized by a distribution of 20 binary values. We represent each link by either the mean or the median value of the
distribution, thus generating two matrices. We apply a final threshold θS ¼ 0:9 (to select strong links only) and calculate the distribution of false
negatives/positives (Supplementary Fig. 8D). We find that using the fourth option (randomly selecting from S s) and using the median value of the
distribution produces the smallest number of false positives (Supplementary Fig. 8D). In order to remove false negatives, we introduce another threshold
for weak links θW ; i.e., for links between [0.4, 0.9]. We thus obtain the final MULAN graph in which strong and weak links are shown in green and pink,
respectively. When we evaluate MULAN on the test 30 datasets, we find that all links are correctly identified, although some strong CS¼ 0.8 links in the
original graphs are labeled weak (pink) in the final MULAN graph (Supplementary Fig. 8F). In short, MULAN can always identify strong links (CS� 0.8),
producing neither false positives nor false negatives.

H. Evaluation thresholds

In order to assess the validity of the final averaged graph from 20 sets of parameters, we include two new thresholds (used only for validation
purposes, i.e. they are not part of the general algorithm, hence they do not need to be optimized). A strong (green) link is assigned if the median value of
the link is larger than θS and a weak (pink) link for values larger than θW but smaller than θS: For the example of 30 nodes NMM datasets, MULAN is
robust for a wide range θW 2 ½0:15; 0:45� and θS 2 ½0:65;0:95� to obtain zero false negative for CS� 0:9: Hence, any value can be used within these
intervals. Because for each MULAN graph from one set of parameters, we set 0.5 for weak links and 1 for strong links. We search θW less than 0.5 and
θS 2 ½0:5; 1�: For comparison, the same evaluation procedure performed on two well performing directed basic methods, PDC and BCorrD. For both
BMs, we have to fix θW (0.1 for PDC and 0.16 for BCorrD) and θS (0.14 for PDC and 0.24 for BCorrD) to obtain zero false negative for CS� 0:9:While the
MULAN algorithm leads 9 false positive pink link, PDC has 402 false links and BCorrD, has 364. Thus MULAN provides a better estimate of the con-
nectivity as compared to individual BMs. Importantly, MULAN is more robust regarding threshold values as compared to BMs applied alone.

For the evaluation on datasets based on 100 human connectome with 84 nodes, we apply MULAN algorithm on 50 subjects using the obtained
optimal parameters from other 50 subjects. Then, we use two thresholds θW and θS to identify weak (pink) and strong (green) links (middle of
Fig. 7D–F).) For one example in the text, MULAN is robust for a large range of threshold values (θW ¼ ½0:1;0:49�; θS ¼ ½0:5; 1�Þ to the absence of false
negatives for CS�0.8; the false positive rate for CS ¼ 0 is 0.0016 (11 false positive links out of 6487). Whilst thresholds need to be set in very narrow
ranges for the two BMs (PDC: θW ¼ 0:12 and θS ¼ ½0:14 ,0.15]; BCorrD: θW ¼ 0:26 and θS ¼ 0:28Þ (Fig. 7E–F, bottom). PDC finds no false negatives for
CS�0.8 and the rate of false positive is 0.005 for CS ¼ 0 (33 links out of 6487), performing better than BCorrD (Fig. 7E–F, bottom).
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I. Hidden nodes

Here, we examine how the presence of hidden nodes influences the resulting graph. We use structures with 30 nodes and a link density of 10* (10
links with 5 node-sub-structure middle panel of Fig. 4A). We then randomly remove 1, 2, 5, 10, 15 or 20 nodes (making them hidden nodes) and analyze
the data from the remaining 29, 28, 25, 20, 15 or 10 nodes, respectively. We consider two cases: hidden nodes with high (� 3, right panel of Fig. 4A) or
low (<3, left panel of Fig. 4A) numbers of links. Finally, we consider two structures S1 and S2. S1 corresponds to the ground truth structure without the
hidden nodes. S2 is similar to S1, with the addition of a false positive link between two nodes, if they are jointly influenced by a hidden node (left panel
of Fig. 4A), or if they are connected vicariously via hidden nodes (right panel of Fig. 4A).

We use AUC values to evaluate the sensitivity of 25 BMs to hidden nodes (left panels of Fig. 4B and C). We consider two cases: the method discovers
S1 (true) or S2 (false positive) structures. The AUC values for the BMs show that most methods are more likely to identify S1 than S2, for both low and
high degree hidden nodes, which provides sufficient information for MULAN (Supplementary Fig. 10). Using both AUC and COS values, we find that
MULAN can infer S1 as the underlying connectivity graph, irrespective of the number of hidden nodes (Fig. 4B and C). Crucially, MULAN recovers S1
rather than S2; i.e., the presence of a hidden common sources or the presence of indirect paths through hidden nodes does not influence the final
inference (no false link). The implicit robustness to hidden nodes allows us to calculate connectivity with a large number of nodes (Fig. 5A) and to design
a cross-validation for empirical data (Fig. 5B), as described in the next two sections.

J. Empirical example – stereo-electroencephalography (SEEG)

A male patient with drug resistant epilepsy (28 years old) was recorded with SEEG electrodes during pre-surgical evaluation at the Cleveland Clinic
Epilepsy Center. SEEG recordings were performed using 14 intra-cerebral multiple contact electrodes in the left cerebral hemisphere and according to
the Talairach stereotactic method (Bancaud et al., 1970; Talairach et al., 1992). Each electrode had 10-15 contacts with length of 2 mm, 1.5 mm inter-
space and a diameter of 0.8 mm) (Fig. 6B).

We choose 20-second recordings from 30 contacts of 14 electrodes, located in different brain regions: cingulate gyrus, superior/middle/inferior
frontal gyrus, frontal operculum, inferior precentral sulcus, superior/middle/inferior temporal gyrus, superior parietal lobule, supramarginal gyrus,
hippocampus, parahippocampal gyrus, amygdala, lingual gyrus, fusiform, precuneus, angular gyrus, paracentral lobule, postcentral gyrus, gyrus rectus,
orbitofrontal gyri, parietal operculum (Fig. 6A). A fusion of MRI and CT scans provides the exact location of each electrode contact. We use the original
SEEG recordings (common reference montage) and a sampling frequency of 1000 Hz.

K. Human connectome

We use 100 structural connectomes from the human connectome project (https://db.humanconnectome.org/) based on preprocessed structural and
diffusion MRI from 100 unrelated subjects. We use the software MRtrix3 (Tournier et al., 2012) and FreeSurfer (Desikan et al., 2006). We first convert
the diffusion images into a non-compressed format, embed the diffusion gradient encoding information, make volume data contiguous for each voxel
and convert to floating point representations. Then, we generate a whole brain mask from a DWI image. Diffusion weighted and structural volumes are
used to obtain a mask that includes both brain tissue and Cerebrospinal fluid. Next, we estimate the response function as the kernel during the
deconvolution step. For the white matter, this is the signal expected for a voxel containing a single, coherently oriented fiber bundle. We also estimate
fiber orientation distributions from diffusion data using spherical deconvolution. For structural image processing, we first generate a mask image
appropriate for seeding streamlines on the grey matter-white matter interface.

After processing the structural and diffusion images, we generate the initial tractogram by setting the maximum length to 250 mm. Then, we apply
the spherical-deconvolution informed filtering of tractograms (SIFT) to reduce the overall streamline count and provide more biologically meaningful
estimates of structural connection density. Finally, we map streamlines to the parcellated image based on a FreeSurfer Desikan-Killiany atlas (Fischl
et al., 2004) segmentation to produce a connectome with 84 nodes. Based on the log-normal distribution of values (Buzs�aki and Mizuseki, 2014), we
normalize logðcdij=32Þ to [0, 1] as the ground truth structure, where cd is the connection density for area i to area j from the structural connectome. To
avoid overfitting when we optimize the parameters and evaluate the final results, we randomly assign the direction to i→j or j→i. We chose this
procedure since, in this study, we focus more on connection patterns than on the real human connectome.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2017.10.036.
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