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Abstract

One characteristic of epilepsy is the variety of mechanisms leading to the epileptic state, which are still
largely unknown. Refractory status epilepticus (RSE) and depolarization block (DB) are other pathological
brain activities linked to epilepsy, whose patterns are different and whose mechanisms remain poorly under-
stood. In epileptogenic network modeling, the Epileptor is a generic phenomenological model that has been
recently developed to describe the dynamics of seizures. Here, we performed a detailed qualitative analysis
of the Epileptor model based on dynamical systems theory and bifurcation analysis, and investigate the
dynamic evolution of “normal” activity toward seizures and to the pathological RSE and DB states. The
mechanisms of the transition between states are called bifurcations. Our detailed analysis demonstrates
that the generic model undergoes different bifurcation types at seizure offset, when varying some selected
parameters. We show that the pathological and normal activities can coexist within the same model under
some conditions, and demonstrate that there are many pathways leading to and away from these activ-
ities. We here archive systematically all behaviors and dynamic regimes of the Epileptor model to serve as
a resource in the development of patient-specific brain network models, and more generally in epilepsy
research.

Key words: bifurcation analysis; depolarization block; dynamical systems theory; epilepsy; neural mass model;
refractory status epilepticus

Significance Statement

Epilepsy is characterized by patient-specific electrophysiological discharges. The range of mechanisms
and pathways leading to the same type of seizure, however, is large. The Epileptor model has found many
applications in epilepsy research and clinical applications, because it allows the classification and dynamic
modeling of seizure types independent of the knowledge of its underlying biophysical mechanisms. It is
based purely on the dynamic features of the seizure. We provide here a complete functional atlas of all pos-
sible behaviors of the Epileptor model, which serves as a useful resource in modeling brain networks in epi-
lepsy. More, we explore the contribution of the Epileptor model to better understand the dynamics of the
refractory status epilepticus and depolarization block phenomena, which are linked to epilepsy.
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Introduction
Epilepsy is a condition of the nervous system in which

neuronal populations manifest as repeated epileptic seiz-
ures lasting a few minutes. These seizures are spontaneous
and commonly accompanied by fast abnormal discharges
(10 ms timescale), after which the brain activity slowly re-
turns to normal. Epileptic seizures may present in different
forms, as well as transitions from and to these pathological
states. Some seizures are controlled by medication, particu-
larly antiepileptic drugs (AEDs). However, there are seizures
that last .1 h without returning to baseline, and do not re-
spond to AEDs (31-43%), resulting then in so-called refrac-
tory status epilepticus (RSE) (Mayer et al., 2002; Holtkamp
et al., 2005; Rossetti et al., 2005). Patients with RSE are at
an increased risk of death. Indeed, the short-term mortality
rates of RSE are estimated to be between 16% and 39%
(Mayer et al., 2002; Holtkamp et al., 2005; Rossetti et al.,
2005; Novy et al., 2010).
Other neuroelectric phenomena are linked to epilepsy,

among which spreading depression (SD) is the most
prominent. SD is characterized by a slowly propagating
depolarization wave [or depolarization block (DB)] in neu-
ronal networks, followed by a shutdown of brain activity
(Pietrobon and Moskowitz, 2014). DB is a state in which
the neuronal membrane is depolarized, but neurons stop
firing. Spreading depression may occur during migraine
and some seizures (Rogawski, 2008; Pietrobon and
Moskowitz, 2014), and was first described by Leo (1944),
who observed a depression of electroencephalographic
(EEG) activity that moved across the cortex.
The mechanisms underlying the genesis of epilepsy,

DB, and RSE are still largely unknown. In this article, we
take an integrative approach toward the understanding of
these neuroelectric phenomena. Our thinking is inspired
by the wish to understand the underlying dynamic under-
pinnings rather than the biophysiological basis.
In this context, a large number of experimental and

computational models have been proposed to clarify the
basic mechanisms of seizures and DB. Most computa-
tional models rely on biophysically realistic parameters,
trying to reproduce experimental data (Kager et al., 2000;
Traub et al., 2001; Destexhe, 2008; Cressman et al., 2009;
Ullah et al., 2009). Although these models provide impor-
tant advances in seizures and DB research, they rarely
produce general rules. Furthermore, there has been no at-
tempt at evaluating whether or not seizures, RSE, DB, and

normal brain activities can coexist, and, if so, under what
conditions.
The previously mentioned models are rooted in physi-

ological mechanisms generating a fairly limited range of
behaviors. The physiological foundation is critical when
the intended therapeutic intervention shall make use of
the physiology. Examples include the identification of sig-
naling pathways leading to the control of neurotransmitters
linked to excitability such as lamotrigine or topiramate act-
ing on calcium channels. Another type of intervention acts
on the brain as a network and harnesses the capacity to
modulate networks, such as stimulation, resection, or dis-
connection. In this case, physiological realism of a mecha-
nism is to be replaced by dynamic realism as the network
communication depends more on the type of signal rather
than how it is generated. These types of models are phe-
nomenological. A neural mass model of partial seizures
called Epileptor was previously developed, which has
found many applications in brain network modeling of epi-
lepsy patients and is the network node model used in the
European clinical trial EPINOV (www.epinov.com; Jirsa et
al., 2014). Given the wide application of this model and its
relevance for clinical research, we here archive in detail its
dynamic repertoire. The Epileptor comprises one susbsys-
tem (called subsystem 1) with two state variables responsi-
ble for generating fast discharges, another subsystem
(called subsystem 2) with two state variables generating
sharp-wave events (SWEs). The subsystem 1 (fast) and
subsystem 2 (slow) are linked to a state variable, z, evolving
on a very slow timescale called the permittivity variable
(Jirsa et al., 2014). Interestingly, the transition from and to
the pathologic states can occur autonomously, under the
slow z evolution. Fast discharges and sharp-wave events
are pathological features commonly associated with seiz-
ures despite their different forms. The goal of this article is,
first, to perform a systematic mathematical analysis of the
Epileptor; and, second, to determine the range of behav-
iors present in the Epileptor, with the further reaching goal
to ask whether “normal” brain activities, seizures, RSE, and
DB can coexist within the same model. To this aim, we
present a qualitative analysis of the Epileptor model based
on dynamical systems theory and bifurcation analysis.

Materials and Methods
We provide here a detailed bifurcation analysis of the

Epileptor model, which is a neural mass model of partial
seizures, to analyze seizure dynamics (Jirsa et al., 2014).
The Epileptor model consists of a system of coupled non-
linear differential equations with five state variables. It
comprises two 2D subsystems and one slow variable z.
Subsystems 1 and 2 are responsible for fast discharges
and SWEs, respectively (Jirsa et al., 2014). Analysis of the
separated subsystems 1 and 2 was performed to provide
more in-depth information on the Epileptor dynamics.

Analysis of the Epileptor
Epileptor equations
The Epileptor equations generate seizure-like events

(SLEs) written in the following form:

This research received financial support from the following agencies:
Fondation pour la Recherche Médicale (Grant DIC20161236442 to Viktor K.
Jirsa), European Commission’s Human Brain Project (Grant H2020-720270),
and the SATT Sud-Est (TVB-Epilepsy). The work has been carried out within
the FHU (Fédération Hospitalo-Universitaire) EPINEXT (Epilepsy and Disorders
of Neuronal Excitability) with the support of the ApMIDEX project (ANR-11-
IDEX-0001-02) funded by the “Investissements d’Avenir” French Governement
programmanaged by the French National Research Agency (ANR).
Correspondence should be addressed to Viktor K. Jirsa at

viktor.jirsa@univ-amu.fr.
https://doi.org/10.1523/ENEURO.0485-18.2019

Copyright © 2020 El Houssaini et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 54

March/April 2020, 7(2) ENEURO.0485-18.2019 eNeuro.org

http://www.epinov.com
mailto:viktor.jirsa@univ-amu.fr
https://doi.org/10.1523/ENEURO.0485-18.2019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


_x1 ¼ y1 � f1ðx1; x2Þ � z1 Iext1 (1)

_y1 ¼ c1 � d1x21 � y1 (2)

_z ¼ rðsðx1 � x0Þ � z� 0:1z7Þ if z, 0
rðsðx1 � x0Þ � zÞ if z � 0

�
(3)

_x2 ¼ �y2 1 x2 � x32 1 Iext2 1 0:002g� 0:3ðz� 3:5Þ (4)

_y2 ¼ ð�y2 1 f2ðx2ÞÞ=t 2 (5)

where

f1ðx1; x2Þ ¼ ax31 � bx21 if x1 , 0
�ðm� x2 1 0:6ðz� 4Þ2Þx1 if x1 � 0

(
(6)

f2ðx2Þ ¼ 0 if x2 ,� 0:25
a2ðx2 1 0:25Þ if x2 ��0:25

�
(7)

gðx1Þ ¼
ðt

t0

e�gðt�tÞx1ðtÞdt (8)

In what follows, unless otherwise stated, the values of
the parameters are as follows:
Subsystem 1: a =1; b=3; c= 1; d=5; Iext1 ¼ 3:1;m= 0
Subsystem 2: a2 ¼ 6; t2 ¼ 10; Iext2 ¼ 0:45; g = 0.01
Slow z dynamics: r = 0.00,035; s = 4; x0 = −1.6.
Equations 1 and 2 describe the subsystem 1 dynamics

and equations; Equations 4 and 5 describe subsystem 2.
The state variables x1 and y1 comprise the subsystem 1
responsible for fast discharges, and x2 and y2 the subsys-
tem 2 involved in spike-wave events (Jirsa et al., 2014).
The third differential equation represents a slow adapta-
tion variable. The Epileptor model evolves under a slow
timescale, r (small). Equations 1–3 represent a fast-slow
subsystem.

Numerical integration
All stochastic simulations are performed with linear ad-

ditive Gaussian white noise with a zero mean and a var-
iance of 0.0025 using the Euler–Maruyama method.
Deterministic simulations are performed using the Runge-
Kutta method with a maximal time step of 0.01.

Finding equilibrium points and their stability
In order to understand the Epileptor dynamics, we iden-

tify the equilibrium points and investigate their stability.
This analysis is performed on the deterministic Epileptor
model. We find the equilibrium points Eðxp1; yp1; zp; xp2; yp2Þ
by solving _x1 ¼ _y1 ¼ _z ¼ _x2 ¼ _y2 ¼ 0. We obtain a sys-
tem of algebraic equations that we solve using the Matlab
“solve”\ symbolic solver. The variables to solve for are
the state variables of the Epileptor model, which are
x1; y1; z; x2; y2. The inputs of the solve function are the pa-
rameter values of the Epileptor model. Here, we analyze
the existence of the equilibrium points when varying them
and x0 parameters. The solutions are the vector equilib-
rium points. We first determine the equilibrium points of
the whole system when the parameter x0 varies, for two

values of the parameter m (m = 0 and m = 0.5). We de-
termine the stability of the equilibrium points E by evaluat-
ing the eigenvalues of the Jacobian matrix J at the
equilibrium point E, which is stable if all the real parts of
the eigenvalues of J are negative (Izhikevich, 2007).

Parameter space of equilibrium points
We explore the stability of the coexisting equilibrium

points for a range of m and x0 values. For each values
combination, we determine the equilibrium points using
the solve function and their stability using the Jacobian
matrix. The complete results are drawn within a (m, x0) pa-
rameter space for equilibrium points, which consists of
various areas, each of which is characterized by coexist-
ing equilibrium points with different stability. Moreover,
when the parameter Iext2 is varied, the Epileptor behavior
changes. We therefore explore two parameter spaces of
equilibrium points, for Iext2 ¼ 0:45 (default Epileptor value)
and Iext2 ¼ 0.

Bifurcation diagram
One important step in the analysis of a mathematical

model is the geometrical analysis of bifurcations, which
here was performed on the deterministic Epileptor
model. First, we draw a (z, x1) bifurcation diagram of the
Epileptor for constant m, here m = 0.5. The (z, x1) bifur-
cation diagram comprises the equilibrium points of the
Epileptor, where x1 is the first coordinate of the vector of
equilibrium points that we determined with respect to z.
All equilibrium point solutions were obtained using theMatlab
solve symbolic solver, where only the (_x1; _y1; _x2; _y2) equa-
tions were considered for constant z. We discretized the
space for 801 points in the z-dimension and performed
numerical continuation computing the linear stability
using the Jacobian matrix. The (z, x1) curve is divided
into different branches, of which each is numerically con-
tinued separately representing a different stability type of
the equilibrium points solutions. Bifurcations were identi-
fied at stability changes for given z-values and are indi-
cated by dots in the corresponding visualizations. As the
main parameters m and Iext2 control the dynamics of the
Epileptor, we typically present bifurcation diagrams for
varying values of m and Iext2 . All bifurcation diagrams
were verified using XPPAUT and explicit numerical simu-
lations of the model system (typically 2000–4000 units of
time, of which the initial transients are removed (Figs. 1,
2), for which representative trajectories were plotted in
the corresponding diagrams.

Finding a fast-slow limit cycle
We found a large attractor in the (y1, c , z) phase space

below the SLE attractor shown in Figure 1 The z equation
of the Epileptor model (Jirsa et al., 2014) was introduced
as follows:

_z ¼ rðsðx1 � x0Þ � zÞ;8z: (9)

When using this z equation, the system evolves to-
ward the attractor and then diverges with time, which
we show in a (z, x1) bifurcation diagram. Thus, we mod-
ify the z equation to stabilize the final state. We interpret
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graphically the divergence of the Epileptor by introduc-
ing the averaging method, which is used to locate the
periodic orbits in the phase space. The periodic orbits
are intersections of the z-nullcline and the ,x1.-curve.
The z-nullcline is given by _z ¼ 0, and the ,x1.-curve is
the average value of x1 for each z constant written in the
following form:

,x1ðzÞ. ¼ 1
TðzÞ

ðTðzÞ

0
f ðt; zÞdt; (10)

where

x1 ¼ f ðt; zÞ: (11)

We also determine the periodic orbits by using the
Pontryagin’s averaging technique (Shilnikov and Kolomiets,
2008). To illustrate this technique, we introduce a slow aver-
aged nullcline written as follows:

, _z. ¼ rðsð,x1.� x0Þ � z� 0:1z7Þ if z , 0
rðsð,x1.� x0Þ � zÞ if z � 0

¼ 0
�

(12)

where periodic orbits are the zeros of the , _z.. We de-
termine the stability of periodic orbits using the following
derivative:

d, _z.
dz

����
z¼zp

; (13)

which represents the dynamics of the averaged equation.
A periodic orbit is stable when Equation 13 is negative,
and graphically if the graph of , _z. decreases at the
given zero. First, we find the periodic orbits as the param-
eter x0 varies in a (x0, z) bifurcation diagram of periodic or-
bits. We determine the bifurcation that results in the
appearance or disappearance of the periodic orbits.
Second, we explore two parameter spaces of periodic or-
bits for Iext2 ¼ 0:45 and Iext2 ¼ 0.

Stabilizing equilibrium points in the Epileptor model
The parameter x0 can change the stability of equilibrium

points and then can control the Epileptor behavior. Using
the fact that a trajectory moves around the equilibrium
point when it is stable, we use the bifurcation analysis to
find the values of x0 for which an equilibrium point is sta-
ble. There is a qualitative distinction between the stable
equilibrium points, which we discuss in more detail later.

Coexisting attractors in the Epileptor model
The Epileptor behavior depends on the stability of its

equilibrium points. More, there is a pre-existing limit cycle
(LC) attractor, which is a stable periodic orbit. In this case,
the trajectory can have a behavior that is controlled by the
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Figure 1. On the seizures dynamics. A, Time series of the Epileptor model (its enlarged view is shown on the right), the first (middle),
and second (bottom) subsystem are plotted showing the principal components of a seizure-like event, that is an interictal period
with no spikes, emergence of preictal spikes, ictal onset, seizure evolution, and emergence of sharp-wave events toward ictal offset.
c , c 1, and c 2 correspond to �x1 1 x2, x1, and x2 respectively. B, The trajectory of the whole system is sketched in the (y1, c , z)
phase space. Seizure offset and ictal onset emerge through the z evolution. Here all stochastic simulations were performed with
Gaussian white noise using the Euler–Mayurama method. Main parameters values: m = 0, x0 = −1.6, and r = 0.00035. Initial condi-
tions are [0 −5 3 0 0 0.01].
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stability of the equilibrium points or can jump to the limit
cycle attractor. Thus, there is a coexistence of two attrac-
tors. We identify all coexisting attractors according to the
values of the parametersm and x0.

Analysis of subsystem 1
We provide a detailed analysis of the subsystem 1 dy-

namics without coupling (i.e., subsystem 1 is not coupled
to subsystem 2).

Subsystem 1 equations
The equations of subsystem 1 are given by:

_x1 ¼ y1 � f1ðx1; x2Þ � z1 Iext1 (14)

_y1 ¼ c1 � d1x21 � y1 (15)

where

f1ðx1; x2Þ ¼ ax31 � bx21 if x1 , 0
�ðm1 0:6ðz� 4Þ2Þx1 if x1 � 0

(
(16)

z is constant (r ! 0).

Subsystem 1 equilibrium points and stability
We analytically find the equilibrium points (x1, y1) by

solving the following equations:

_x1 ¼ y1 � f1ðx1; x2Þ � z1 Iext1 ¼ 0
_y1 ¼ c1 � d1x21 � y1 ¼ 0:

�
(17)

We determine the stability of the equilibrium points by
evaluating the eigenvalues of the Jacobian matrix J. An
equilibrium point is stable if all the real parts of the eigen-
values of J are negative (Izhikevich, 2007).
We graphically find the equilibrium points by intersect-

ing the x1- and y1-nullclines. We determine the nullclines
of subsystem 1 and show how to find the equilibrium
points and their stability in a phase plane.

Subsystem 1 bifurcation diagram
When finding the equilibrium points of the subsystem 1,

we observe a qualitative change of the phase plane,
which is interpreted as a bifurcation. We identify the differ-
ent types of bifurcations that exist according to z, which is
considered as a parameter control, and the parameterm.
Using the bifurcation diagrams, we analyze these bifur-

cations and the qualitative behavior of the susbsystem 1
with respect to z. The bifurcation analysis is performed on
the deterministic subsystem 1. First, we plot the whole bi-
furcation diagram of the subsystem 1 for m = 0, which
consists of two curves. The curves consist of the subsys-
tem 1 equilibrium points for each value of z. When the pa-
rameter m changes, the shape of one of the curves
changes on an interval of z. As a result, we then plot only
this curve in bifurcation diagrams for m = 0 and m = 2,
and describe the trajectories behavior for each value ofm.
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Figure 2. A, B, Equilibrium points of the Epileptor model with respect to x0 for m = 0.5 (A) and m = 0 (B). z is the third coordinate
of the vector equilibrium points. Stable nodes and saddles are labeled as blue plus sign markers and black dots, respectively.
Stable and unstable foci are labeled as red squares-dotted and green squares, respectively. C–E, Time series (stochastic) of the
Epileptor model exhibit a normal activity (C), a nonoscillatory state (D), and a periodic solution (E). The parameters m and x0 are:
m=0 and x0 = −2.5 (C), m = 0 and x0 = −0.9 (D), and m=0.5 and x0 = −0.9 (E).
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Below, we summarize the types of bifurcations that exist
with respect tom.

Fast-slow subsystem equations
The equilibrium points of subsystem 1 depend on z.

Whenm = 0 and z = 3.1, three equilibrium points coexist:
a saddle, a stable node and a stable focus (see m = 0;
see Fig. 39A). Whenm = 1.5 and z = 3.1, then equilibrium
points coexist: a saddle, a stable node, and an unstable
focus (see m = 1.5; see Fig. 39A). A stable node and a
stable focus are equilibrium points of a resting state and a
nonoscillatory state, respectively. When the resting and
nonoscillatory states coexist, the trajectories converge to
one of them, depending on the initial conditions (see m =
0 andm = 1; see Fig. 39A).
To ensure that trajectories switch between two stable

states, we introduce the following equation:

, _z. ¼ rðsðx1 � x0Þ � z� 0:1z7Þ if z, 0
rðsðx1 � x0Þ � zÞ if z �0

¼ 0
�

(18)

to the subsystem 1

_x1 ¼ y1 � f1ðx1; x2Þ � z1 Iext1 (19)

_y1 ¼ c1 � d1x21 � y1: (20)

r and s are positive constant parameters (r ,,1).z
changes the input Iext1 of the subsystem 1 to �z1 Iext1 .
Indeed, when z decreases, then �z1 Iext1 is increased,
and only a stable focus exists (see Fig. 39B). If m in-
creases, the stable focus becomes unstable, surrounded
by a stable limit cycle. Hence, only a stable limit cycle ex-
ists (see Fig. 39B). When z increases, then �z1 Iext1 is re-
duced, and the stable limit cycle coexists with a stable
node (see Fig. 39A). The saddle acts as a separatrix (S)
between them. When z further increases, the stable limit
cycle disappears through a homoclinic bifurcation, HB
(see Fig. 39C), and hence only a stable node exists. Thus,
zmimics a slow adaptation of the subsystem 1 to produce
resting and oscillatory states, and ways to switch be-
tween them. The dynamics of subsystem 1 is fast and z is
a slow variable, hence Equations 18–20 represent a fast-
slow subsystem.

Finding equilibrium points of the fast-slow subsystem
We analytically find the equilibrium points by solving

Equations 19 and 20, where z is a solution of _z ¼ 0 (Eq.
18). We determine the stability of the equilibrium points by
analyzing the Jacobian matrix J. The equilibrium point is
stable if all the real parts of the eigenvalues of J are nega-
tive (Izhikevich, 2007). We graphically find the equilibrium
points of the fast-slow subsystem by using the (z, x1) bi-
furcation diagram and the z-nullcline, which is related to
the parameter x0. We show how the z-nullcline moves in
the bifurcation diagram when varying x0, and use the bi-
furcation diagram to find the equilibrium points of the
fast-slow subsystem for each value of x0.

Finding periodic orbits of the fast-slow subsystem
As follows from the Epileptor analysis, we determine

the periodic orbits of the fast-slow subsystem as well as

their stability by using the averaging method and the
Pontryagin’s averaging technique. The slow averaged
nullcline is given by the following:

, _z. ¼ r
TðzÞ

ðTðzÞ

0
Rðz; f ðt; zÞÞdt ¼ 0; (21)

where

Rðz; x1Þ ¼ sðx1 � x0Þ � z� 0:1z7 if z, 0
sðx1 � x0Þ � z if z � 0:

�
(22)

x1 ¼ f ðt; zÞÞ is a solution of the subsystem 1 with z
constant.
Here, we plot the graph of , _z. to explain how we find

the periodic orbits and their stability. The periodic orbits
are the zeros of the graph of , _z.. It is stable if the graph
of , _z. decreases at the given zero. More, we find the
periodic orbits as x0 varies and determine the bifurcation
leading to their appearance or disappearance.

Stabilizing equilibrium points in the fast-slow subsystem
Our approach to stabilizing the equilibrium points of the

fast-slow subsystem is the same as that of the Epileptor
model: analyze bifurcation diagrams of the fast-slow sub-
system and then find the values of x0 for which an equilib-
rium point is stable. We show how stable equilibrium
points can correspond to different states.

Coexisting attractors in the fast-slow subsystem
The fast-slow subsystem exhibits a bistability of two

attractors as the Epileptor model. The first attractor is
the fast-slow limit cycle. The behavior of the second at-
tractor depends on the parameters m and x0, which
control the stability of the equilibrium point. We discuss
the coexisting attractors when m and x0 have different
values.

Analysis of subsystem 2
In this section, we analyze the dynamics of subsystem

2 (without coupling), which generates SWEs. We explore
the equilibrium points, evaluating their stability and deter-
mining the bifurcation types.

Subsystem 2 equations
The subsystem 2 equations are given by the following:

_x2 ¼ �y2 1 x2 � x32 1 Iext2 (23)

_y2 ¼ ð�y2 1 f2ðx2ÞÞ=t 2 (24)

where

f2ðx2Þ ¼ 0 if x2 , �0:25
a2ðx2 1 0:25Þ if x2 � �0:25

:

�
(25)

Subsystem 2 equilibrium points and stability
We analytically find the equilibrium points (x2, y2) by

solving the following equations:
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_x2 ¼ �y2 1 x2 � x32 1 Iext2 ¼ 0 (26)

_y2 ¼ ð�y2 1 f2ðx2ÞÞ=t 2 ¼ 0 (27)

We determine the stability of the equilibrium points by
evaluating the eigenvalues of the Jacobian matrix J2. J2 is
defined at the equilibrium point x2, which is stable if all the
real parts of the eigenvalues of J2 are negative (Izhikevich,
2007).
The equilibrium points lie graphically at the intersection

of the x2- and y2-nullclines. We determine the nullclines of
the subsystem 2 and show how the equilibrium points
and their stability changes as the parameter Iext2 varies.

Subsystem 2 bifurcation diagram
As the phase plane changes qualitatively when varying

the parameter Iext2 , we discuss this change in a bifurcation
diagram where Iext2 is the parameter control. The analysis
is performed on the deterministic subsystem 2.

Results
To get a better understanding of the dynamics of the

generation and termination of epileptic seizures, we
adopted a computational model that reproduces epileptic
activity and perform a detailed analysis using a mathe-
matical approach.

The Epileptor
Epileptor dynamics

Epileptor model behavior. The Epileptor equations
generate SLEs, which are characterized by an onset and
offset (Jirsa et al., 2014). We plot time series of the
Epileptor system c , subsystem 1 c 1, and subsystem 2
c 2 in Figure 1A. We find the major elements of an SLE:
onset, timescale, offset of SLEs, and their recurrence.
Figure 1A shows that during the ictal phase, fast dis-
charges decrease in frequency with time. Ictal states are
separated by a period of normal brain activity (non-ictal
state). State variables x1 and y1 are responsible for gener-
ating fast discharges in the ictal state with a fast timescale
(Fig. 1A; see c 1). State variables x2 and y2 are responsible
for generating the SWEs with an intermediate timescale
(Fig. 1A; see c 2). We plot the Epileptor trajectory in a (y1,
c , z) phase space (Fig. 1B). Ictal and normal states (NSs)
coexist and their coexistence necessitates a separation in
the state space so-called “separatrix.” The ictal onset oc-
curs when the trajectory collides with the separatrix after
a transient normal state. The seizure offset occurs when
the trajectory collides with the separatrix after a transient
ictal state. The separatrix acts as a barrier between ictal
and normal states. The slow state variable z is responsible
for the alternation of both states under a slow timescale
(r ,, 1).
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Figure 3. Parameter space for equilibrium points. A, B, There are 9 regions in Iext2 = 0.45 (A) and 7 regions in Iext2 = 0 (B). The de-
scription of both parameter spaces is found in the Results section (Epileptor dynamics, Parameter space of equilibrium points).
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Equilibrium points. Using the Matlab solve symbolic
solver, we localize the equilibrium points E as x0 varies in
a (x0, zp) diagram for m = 0.5 (Fig. 2A) and m = 0 (Fig.
2B). zp is the third component of the equilibrium points E.
For m = 0.5 and m = 0, a unique equilibrium point exists
when x0 = −1.6, while three equilibrium points coexist
when x0 = −0.9 (Fig. 2A,B). The Jacobian matrix J of the
Epileptor at the equilibrium point E is given by the
following:

J ¼

���� A 1 Z1 B 0
�10x1 �1 0 0 0
rs 0 Z2 0 0
0 0 �0:3 1� 3x22 �1
0 0 0 C �1=t

����
where

A ¼ �3x21 1 6x1 if x1 , 0
m� x2 1 0:6ðz� 4Þ2 if x1 � 0

(
(28)

B ¼ 0 if x1 , 0
�x1 if x1 � 0

�
(29)

C ¼ 0 if x2 , �0:25
a2=t if x2 � �0:25

�
(30)

Z1 ¼ �1 if x1 , 0
1:2ðz� 4Þx1 � 1 if x1 � 0

�
(31)

Z2 ¼ rð�1� 0:7z6Þ if z, 0
�r if z � 0

:

�
(32)

The stability of the Epileptor equilibrium points depends
on x0 (Fig. 2A,B). For x0 = −1.6 and m = 0 or m = 0.5, the
equilibrium point is a saddle. The stable manifold of the
saddle equilibrium point corresponds to a separatrix be-
tween ictal and normal states (Fig. 1B). The trajectory be-
havior in Figure 1A corresponds to a recurrent alternation
between ictal and normal states, which characterizes
SLEs.

• When x0 = −2.5 and m = 0 or m = 0.5, the equilibrium
point is a stable node. The trajectory behavior corre-
sponds to a normal activity (Fig. 2C).

• When x0 = −0.9 and m = 0, the equilibrium points are:
an unstable focus, a saddle, and a stable focus (Fig.
2B). The Epileptor remains in a nonoscillatory state
(Fig. 2D).

• When x0 = −0.9 and m = 0.5, three equilibrium points
coexist. The equilibrium points are as follows: one
saddle and two unstable foci (Fig. 2A). The trajectory
behavior corresponds to a periodic solution (Fig. 2E).
Parameter space of equilibrium points. The stability

of equilibrium points changes when we varym and x0 (Fig.
2A,B). Trajectories can exhibit: (1) a normal activity when
an equilibrium point is a stable node, (2) a nonoscillatory
state when an equilibrium point is a stable focus, (3) SLEs
when a unique saddle equilibrium point exists, and (4) a

periodic solution when equilibrium points are unstable. To
explore the various coexisting equilibrium points, we plot
a (m, x0) parameter space of equilibrium points in Figure
3A.
The parameter space comprises nine areas. The equi-

librium point is an unstable focus in area 1, a stable node
in area 5, and a saddle in area 4. The Epileptor model has
three equilibrium points in areas 2, 3, 6, 7, 8, and 9. In
area 2, a stable node, a saddle and an unstable focus co-
exist. In area 3, a stable focus, a saddle, and an unstable
focus coexist. In area 6, three saddles coexist. In area 7,
two saddles and one unstable focus coexist. In area 9,
two unstable foci and one saddle coexist. In area 8, an un-
stable focus, an unstable node, and a saddle coexist.
We plot a (m, x0) parameter space of equilibrium points

for Iext2 ¼ 0 in Figure 3B. The parameter space comprises
seven areas. The equilibrium point is an unstable focus in
area 1, a stable node in area 5, a stable focus in area 6,
and a saddle in area 7. The Epileptor model has three
equilibrium points in areas 2, 3, and 4. In area 2, a stable
node, a saddle, and an unstable focus coexist. In area 3, a
stable focus, a saddle, and an unstable focus coexist. In
area 4, two unstable foci and one saddle coexist.

Main parameters of the Epileptor model. m and x0
play roles of particular importance on the Epileptor dy-
namics. We showed above that the equilibrium points of
the Epileptor change as x0 varies, thereby allowing the
obtaining of different behaviors of the system, including
normal activity, nonoscillatory state (Fig. 2), and the alter-
nation between the normal and ictal states (Fig. 1).
m can be considered as a parameter that controls the

Epileptor dynamic during the ictal period. The equilibrium
points of the Epileptor model are graphically defined by
the intersection of the nullclines. The x1-nullcline ( _x1 ¼ 0)
is a straight line for x1 �0. The sign of the slope of the
straight line varies the direction of movement of the state
variable x1 in the phase portrait (8x1 �0). Then, the stabil-
ity of the equilibrium points (8x1 �0) changes when vary-
ing the slope, which depends on m, and hence the
dynamic of the Epileptor can pass from fast discharges to
nonoscillatory state during the ictal period asm varies.
Below, we theoretically demonstrate how the system

can switch between normal and epileptic activities by
varying x0 and using bifurcation diagrams. Moreover, we
explore the significant role of m in controlling the fre-
quency of discharges and in generating a DB.

Bifurcation diagram of the Epileptor for m=0.5. The
Epileptor can alternate between ictal and normal states
(see c ; Fig. 1) when the equilibrium point is a saddle (see
x0 = −1.6; Fig. 2). The alternation is interpreted mathemati-
cally as a bifurcation, which is a qualitative change of the
system behavior (Izhikevich, 2007). We identify two bifur-
cation types in an SLE. The first bifurcation corresponds
to the transition from normal to ictal activity. The second
one corresponds to the transition from ictal to normal ac-
tivity. We identify bifurcation types and find the equilib-
rium points in a bifurcation diagram. Using the Matlab
solve symbolic solver, we plot a (z, x1) bifurcation diagram
of the Epileptor model in Figure 4 for m = 0.5. x1 is the
first component of the equilibrium points E. z acts as a
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control parameter (r = 0). Figure 4 first shows a Z-shaped
curve (Z-curve). Z-lower and Z-upper branches consist of
stable nodes and unstable foci, respectively. The Z-middle
branch separates Z-lower and Z-upper branches and con-
sists of saddles. The Z-middle and Z-upper branches col-
lide as z increases in a saddle-node bifurcation SN3 (Fig. 4,
inset). The Z-middle and Z-lower branches collide as z de-
creases in a saddle-node bifurcation SN1.
Moreover, there are two branches above the Z-shaped

curve (Fig. 4, inset). The lower branch consists of saddles
and terminates as z decreases in a saddle-node bifurca-
tion SN4. The upper branch comprises two sub-branches:
one sub-branch (dashed) consists of unstable foci and
another (dash-dotted) consists of saddles. The two sub-
branches collide as z increases in a saddle-node bifurca-
tion SN2. The equilibrium points E of the Epileptor model
lie at the intersection of the z-nullcline and the curve of
equilibrium points (Fig. 4). The z-nullcline ( _z ¼ 0) is given
by the following:

x1
: ¼ ðz7110z110sx0Þ=10s if z, 0

ðz1 sx0Þ=s if z � 0

�
(33)

and depends on x0. The z-nullcline moves downward (x0
decreases) or upward (x0 increases) in the bifurcation dia-
gram; hence, it intersects the curve of equilibrium points
at different sites. When x0 = −1.6, then the z-nullcline in-
tersects the Z-middle branch, which consists of saddles
(Fig. 4). Consistent with Figure 2A, the equilibrium point is
a saddle. The trajectory behavior corresponds to SLEs,
which is illustrated in Figure 4 (right). When a trajectory is
at the Z-lower branch, the stable node disappears as z
decreases through a saddle-node bifurcation SNs1. Then
the trajectory switches to the Z-upper branch, which con-
sists of unstable foci surrounded by stable periodic orbits.
Hence the trajectory exhibits an oscillatory solution on the
Z-upper branch, which approaches the Z-middle branch
as z increases. The oscillatory solution is homoclinic to
one of the saddles along the Z-middle branch, then it is
destroyed as z is increased. The trajectory terminates in a
homoclinic bifurcation HB and switches to the Z-lower
branch. Z-lower and Z-upper branches correspond to
normal and ictal states, respectively. The Z-middle branch
acts as a separatrix between ictal and normal states. The
transition from normal to ictal states (first bifurcation) oc-
curs through a saddle-node bifurcation, SN1. The transi-
tion from ictal to normal states (second bifurcation)
occurs though a homoclinic bifurcation, HB. The homo-
clinic bifurcation z(HB) corresponds to an offset threshold
and the saddle-node bifurcation zðSN1Þ corresponds to
an onset threshold. Therefore, the transitions between
ictal and normal states occur through a fold/homoclinic
bifurcation. The system is bistable on [SN1, HB].

Bifurcation diagram when m decreases. To explore
the role ofm in the dynamics of the Epileptor, we plot a (z,
x1) bifurcation diagram, when m decreases. Let m = 0
(Fig. 5), the plot first shows a Z-shaped curve. Z-Lower,
Z-middle, and Z-upper branches consist of stable nodes,
saddles, and unstable foci, respectively.
The Z-upper branch is surrounded by stable periodic

orbits (see maxðx1Þ and minðx1Þ curves), which terminate

as z increases in a saddle-node on invariant circle (SNIC)
bifurcation with zðSNICÞ. zðSN1Þ. Above the Z-curve, the
lower branch consists of saddles and the upper branch
comprises two sub-branches (Fig. 5, inset). The first sub-
branch (solid) consists of stable foci and terminates as z
decreases in a SNIC bifurcation. The second sub-branch
(dash-dotted) consists of saddles. The two sub-branches
collide as z increases in a saddle-node bifurcation SN2.
We plot a trajectory in Figure 5 (right), which corresponds
to SLEs. When a trajectory is at the Z-lower branch, the
stable node disappears as z decreases through a saddle-
node bifurcation SN1 and the trajectory switches to the Z-
upper branch exhibiting an oscillatory solution, which
terminates as z increases in a SNIC bifurcation (see inset).
Then the trajectory is at the upper branch above the
Z-curve, which consists of stable foci. The trajectory ex-
hibits a nonoscillatory solution, which terminates as z
increases in a saddle-node bifurcation SN2 and the trajec-
tory switches to the Z-lower branch. The Z-lower branch
corresponds to the normal state. The Z-upper branch and
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Figure 4. The Epileptor model bifurcation diagram with respect
to the slow variable z (m = 0.5, Iext2 = 0.45). The Z-lower (solid),
Z-middle (dash-dotted), and Z-upper (dashed) branches consist
of stable nodes, saddles, and unstable foci, respectively.
Decreasing z, the Z-lower and Z-middle branches collide in an
SN1 bifurcation. Above the Z-curve, lower (dash-dotted) branch
consists of saddles, and upper branch is divided into two sub-
branches: one sub-branch (dashed) consists of unstable foci
and another (dash-dotted) of saddles. Increasing z, the two
sub-branches collide in an SN2 bifurcation. The inset is their en-
larged view. Decreasing z, upper (dashed) and lower branches
above the Z-curve collide in an SN4 bifurcation. Increasing z,
the Z-upper branch and lower branch above collide in an SN3

bifurcation. The ,x1.-curve is the average value of x1 for each
z constant. Let x0 = −1.6, the z-nullcline ( _z ¼ 0) is at the Z-mid-
dle branch. A SLE occurs with a fold/homoclinic bifurcation. A
saddle (S) periodic orbit separates the SLE attractor (right) and
a stable periodic orbit LC (to the left, final orbit not shown).
Deterministic trajectories are plotted on both sides of the sepa-
ratrix S defining two basins of attraction (indicated by arrows).
r = 0.003 for LC and r = 0.0007 for SLEs.
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the upper branch above the Z-curve correspond to the
ictal state (see inset). The transition from normal to ictal
states (first bifurcation) occurs through a saddle-node bi-
furcation, SN1. The transition from ictal to normal states
(second bifurcation) occurs through a saddle-node bifur-
cation, SN2. Fast discharges characterizing the ictal state
correspond to the oscillatory solution, which disappears
through a saddle-node on invariant circle bifurcation
SNIC. Therefore, the transitions between ictal and normal
states are said to be of a fold/circle bifurcation. The sys-
tem is bistable on [SN1, SN2].
We conclude that the bifurcation diagrams of the

Epileptor model is a Z-shaped curve. Above, there are the
following three branches: two branches consisting of sad-
dles, and one branch consisting of stable foci for m� 0
and unstable foci for m.0. The Epileptor model under-
goes a SNIC bifurcation for m� 0 and an HB bifurcation
for m. 0. The transitions between ictal and normal states
occur through a fold/circle bifurcation for m� 0 and

through a fold/homoclinic bifurcation for m . 0. The sys-
tem is bistable on [SN1, SN2] for m � 0 and on [SN1, HB]
form. 0.

Bifurcation diagram for m=0 and Iext2 ¼ 0. We now
analyze the bifurcation diagram when Iext2 decreases. Let
Iext2 ¼ 0, we plot a (z, x1) bifurcation diagram for m = 0 in
Figure 6, which shows a Z-shaped curve. Z-lower, Z-mid-
dle, and Z-upper branches consist of stable nodes, sad-
dles, and unstable foci, respectively. Decreasing z, Z-lower
and Z-middle branches collide in a saddle-node bifurcation,
SN1. Increasing z, Z-upper and Z-middle branches collide
in another saddle-node bifurcation, SN2. The Z-upper
branch terminates as z decreases in a saddle-node bifurca-
tion SN4. Moreover, two branches appear as z decreases.
The lower branch (dashed) consists of unstable foci, and
the upper branch (dash-dotted) consists of saddles.
Increasing z, lower and upper branches collide in a saddle-
node bifurcation SN3. Decreasing z, the upper branch ter-
minates in a saddle-node bifurcation SN4.

15

10

5

0

-5 21.50.5 1 43.52.5 3z

max(x )

min(x )

SNIC

0.8

0.4

0

-0.4

43.9 1.48.37.3 z

Figure 5. The Epileptor model bifurcation diagram with respect to the slow variable z (m = 0, Iext2 ¼ 0:45). The Z-lower (solid), Z-
middle (dash-dotted), and Z-upper (dashed) branches consist of stable nodes, saddles, and unstable foci, respectively. Decreasing
z, the Z-lower and Z-middle branches collide in an SN1 bifurcation. Above the Z-curve, lower (dash-dotted) branch consists of sad-
dles, and the upper branch is divided into two sub-branches: one (solid) consists of stable foci and another (dash-dotted) of sad-
dles. Increasing z, the two sub-branches collide in an SN2 bifurcation. The inset is their enlarged view. Decreasing z, upper (dashed)
and lower branches above the Z-curve collide in a SNIC bifurcation. Increasing z, the Z-upper branch and lower branch above col-
lide in an SN3 bifurcation. The ,x1.-curve is the average value of x1 for each z constant. Let x0 = −1.6, the z-nullcline ( _z ¼ 0) is at
the Z-middle branch. A SLE occurs with a fold/circle bifurcation. A saddle (S) periodic orbit separates the SLE attractor (right) and a
stable periodic orbit LC (to the left, final orbit not shown). Deterministic trajectories are plotted on both sides of the separatrix S de-
fining two basins of attraction (indicated by arrows). For the right trajectory, r = 0.0006, I.C = [0 −5 2.5 0 0 0.01] and Ts = [0 1337].
For the left trajectory, r = 0.001, I.C = [0 −5 1 0 0 0.01], and Ts = [0 1000].
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Let x0 = −1.6, the z-nullcline is at the Z-middle branch,
then the equilibrium point is a saddle. We plot a trajectory
in Figure 6, which shows transitions between Z-lower and
Z-upper branches. When a trajectory is at the Z-lower
branch, the stable node disappears as z decreases
through a saddle-node bifurcation, SN1, and the trajectory
switches to the Z-upper branch, which consists of unsta-
ble foci. An unstable focus is surrounded by a stable peri-
odic orbit (see maxðx1Þ and minðx1Þ curves). Hence, when
the trajectory is at the Z-upper branch, it exhibits an oscil-
latory solution, which terminates as z increases in a ho-
moclinic bifurcation HB. Then the trajectory switches to
the Z-lower branch. Z-Lower (solid) and Z-upper (dashed)
branches correspond to normal and ictal states, respec-
tively. The transition from normal to ictal states occurs
through a saddle-node bifurcation SN1. The transition
from ictal to normal states occurs through an HB. Thus,
the transitions between ictal and normal states occur
through a fold/homoclinic bifurcation. The system is bi-
stable on [SN1, HB].

Bifurcation diagram when m decreases, for
Iext2 ¼ 0. Letm = −0.5, we plot a (z, x1) bifurcation diagram
in Figure 7. The Z-upper branch is divided into two sub-
branches separated by a Hopf (H) bifurcation (Fig. 7). The

first sub-branch (solid) consists of stable foci and termi-
nates as z increases in a saddle-node bifurcation SN2.
The second sub-branch (dashed) consists of unstable foci
and terminates as z decreases in a saddle-node bifurca-
tion SN4. An unstable focus is surrounded by a stable per-
iodic orbit (see maxðx1Þ and minðx1Þ curves), which
terminates as z increases in an H bifurcation. When x0 =
−1.6, then the z-nullcline is at the Z-middle branch, hence
the equilibrium point is a saddle. We plot a trajectory in
Figure 7, which shows transitions between Z-lower and Z-
upper branches. When a trajectory is at the Z-lower
branch, the stable node disappears as z decreases
through a saddle-node bifurcation, SN1, and the trajectory
switches to the Z-upper sub-branch (dashed) exhibiting
an oscillatory solution, which terminates as z increases in
an H bifurcation. Then, the trajectory is at the Z-upper
(solid) sub-branch exhibiting a nonoscillatory solution,
which terminates as z increases in a saddle-node bifurca-
tion SN2. Z-lower (solid) and Z-upper branches corre-
spond to normal and ictal states, respectively. The
oscillatory solution corresponds to fast discharges. The
transition from normal to ictal states occurs through a
saddle-node bifurcation, SN1. The transition from ictal to
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Figure 6. The Epileptor model bifurcation diagram with respect
to the slow variable z (m = 0, Iext2 = 0). The Z-lower (solid), Z-
middle (dash-dotted), and Z-upper (dashed) branches consist
of stable nodes, saddles, and unstable foci, respectively.
Decreasing z, the Z-lower and Z-middle branches collide in an
SN1 bifurcation. Increasing z, the Z-upper and Z-middle
branches collide in an SN2 bifurcation. Below the Z-upper
branch, lower (dashed) and upper (dash-dotted) branches cor-
responding to unstable foci and saddles, respectively, collide in
an SN3 bifurcation. The Z-upper branch and the upper (dash-
dotted) branch below collide as z decreases in an SN4 bifurca-
tion. The ,x1.-curve is the average value of x1 for each z con-
stant. Let x0 ¼ �1:6, the z-nullcline ( _z ¼ 0) is at the Z-middle
branch. A SLE occurs with a fold/homoclinic bifurcation. For the
(deterministic) trajectories, r = 0.0005, I.C = [0 −5 2.5 0 0 0.01]
and Ts = [0:0.001: 1540].
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Figure 7. The Epileptor model bifurcation diagram with respect
to the slow variable z (m = −0.5, Iext2 = 0). The Z-lower (solid)
and Z-middle (dash-dotted) branches consist of stable nodes
and saddles respectively. The Z-upper branch is divided into
sub-branches separated by a Hopf bifurcation, H: one sub-
branch (solid) consists of stable foci and another (dashed) con-
sists of unstable foci. Decreasing z, the Z-lower and Z-middle
branches collide in an SN1 bifurcation. Increasing z, the Z-
upper (solid) and Z-middle branches collide in an SN2 bifurca-
tion. Below the Z-upper branch, lower (dashed) and upper
(dash-dotted) branches corresponding to unstable foci and sad-
dles, respectively, collide in an SN3 bifurcation. The Z-upper
(dashed) branch and the upper (dash-dotted) branch below col-
lide as z decreases in an SN4 bifurcation. Let x0 ¼ �1:6, the z-
nullcline ( _z ¼ 0) is at the Z-middle branch. A SLE occurs with a
fold/Hopf bifurcation. For the (deterministic) trajectories, r =
0.0007, I.C = [0 −5 2.65 0 0 0.01] and Ts = [0:0.001: 1028].
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normal states occurs through a saddle-node bifurcation
SN2. The oscillatory solution (fast discharges) terminates
in an H bifurcation. The transitions between ictal and nor-
mal states are said to be of a fold/Hopf bifurcation. The
system is bistable on [SN1, SN2].
Let m = −1, we plot a (z, x1) bifurcation diagram in

Figure 8, which has a Z-shaped curve. The Hopf bifurca-
tion point H disappears, then the Z-upper branch consists
of stable foci only, which is the equilibrium point of nono-
scillatory state. Increasing z, the Z-upper (solid) branch
terminates in a SNIC bifurcation (Fig. 8). Below the Z-
upper branch, two branches appear as z decreases: the
upper (dash-dotted) branch consists of saddles, and the
lower (dashed) one consists of unstable foci. An unstable
focus is surrounded by a stable periodic orbit (see
maxðx1Þ and minðx1Þ curves), which terminates as z in-
creases in a SNIC bifurcation. Let x0 = −1.6, the z-nullcline
is at the Z-middle branch, then the equilibrium point is a
saddle. We plot a trajectory in Figure 8, which shows tran-
sitions between Z-lower and Z-upper branches. When a
trajectory is at the Z-lower branch, the stable node disap-
pears as z decreases through a saddle-node bifurcation,
SN1, and the trajectory switches to the Z-upper (solid)
branch, which consists of stable foci, thereby exhibiting a

nonoscillatory solution. Then, the stable focus disappears
as z increases through a saddle-node bifurcation, SN2,
and the trajectory switches to the Z-lower branch. The
transition from Z-lower to Z-upper branches occurs
through a saddle-node bifurcation, SN1, and the transition
from Z-upper to Z-lower branches occurs through a sad-
dle-node bifurcation, SN2. The transitions between Z-
lower and Z-upper branches occur through a fold/fold bi-
furcation. The system is bistable on [SN1, SN2]. Here, the
SLE attractor reduces to a periodic switch between a non-
oscillatory state and a NS.
We conclude that when Iext2 ¼ 0, the transitions be-

tween Z-lower and Z-upper branches occur through a
fold/homoclinic bifurcation, 8m �0; a fold/Hopf bifurca-
tion for m = −0.5; and a fold/fold bifurcation, 8m,� 0:5.
The system is bistable on [SN1, SN2] for m, 0 and on
[SN1, HB] for m ≥ 0. Moreover, the transitions between
ictal and normal states occur through a fold/circle bifurca-
tion when Iext2 ¼ 0:45, and do not when Iext2 ¼ 0.

Finding LC: a stable limit cycle
LC in the Epileptor model.We found a large geometri-

cal object in the (y1, c , z) phase space below the SLE at-
tractor shown in Figure 1. When using the z equation (Eq.
34), the Epileptor diverges with time (Fig. 9C). The initial
conditions i2 are on the left of the separatrix (S), which
means that i2 are below the separatrix (S) and the SLE at-
tractor in the phase space. To explain this divergence, we
plot the z-nullcline and the ,x1.-curve in a (z, x1) bifurca-
tion diagram for m = 0.5 (Fig. 9A). The z-nullcline corre-
sponds to

z ¼ sðx1 � x0Þ: (34)

When x0 = −1.6, then the z-nullcline intersects the
,x1.-curve at one periodic orbit labeled as S (Fig. 9A).
We consider two different initial conditions i1 and i2 such
as zði2Þ, zðSÞ, zði1Þ. Only the trajectory i1 is plotted in
the bifurcation diagram, which exhibits transitions be-
tween Z-lower and Z-upper branches through a fold/ho-
moclinic bifurcation. We plot a time series for the initial
condition i2 in Figure 9C, which shows that the trajectory
diverges with time.
To stabilize the final state that the Epileptor evolves to-

ward, we modified the z-equation by introducing the fol-
lowing equation:

_z ¼ rðsðx1 � x0Þ � z� 0:1z7Þ if z, 0
rðsðx1 � x0Þ � zÞ if z � 0

�
(35)

We plot the corresponding z-nullcline ( _z ¼ 0; Eq. 35) in
a (z; x1) bifurcation diagram for m = 0.5 (Fig. 9B). When
x0 = −1.6, then the z-nullcline intersects the ,x1.-curve
at two periodic orbits: S and LC (Fig. 9B). We consider the
initial conditions i1 and i2 such as zði2Þ, zðSÞ, zði1Þ. The
trajectory i1 exhibits transitions between Z-lower and Z-
upper branches, which occur through a fold/homoclinic
bifurcation. We plot time series for the initial condition i2 in
Figure 9D, which shows a stable LC. We plot the trajec-
tory as its transients toward LC in Figure 4 and the corre-
sponding time series in Figure 9D. LC is characterized by
a large amplitude and a fast-slow invariant cycle (Fig. 9D).
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Figure 8. The Epileptor model bifurcation diagram with respect
to the slow variable z (m = − 1, Iext2 = 0). The Z-lower (solid), Z-
middle (dash-dotted), and Z-upper (solid) branches consist of
stable nodes, saddles, and stable foci, respectively. Decreasing
z, the Z-lower and Z-middle branches collide in an SN1 bifurca-
tion. Increasing z, the Z-upper and Z-middle branches collide in
an SN2 bifurcation. Below the Z-upper branch, lower (dashed)
and upper (dash-dotted) branches corresponding to unstable
foci and saddles respectively, collide in an SN3 bifurcation. The
Z-upper (solid) branch and the upper (dash-dotted) branch
below collide as z decreases in a SNIC bifurcation. Let x0 =
−1.6, the z-nullcline ( _z ¼ 0) is at the Z-middle branch. A SLE re-
duces to a periodic switch between a nonoscillatory state and a
NS, which occurs through a fold/fold bifurcation. For the (deter-
ministic) trajectories, r = 0.0008, I.C = [0.5 −5 2 0 0 0.01] and
Ts = [0:0.001: 1400].
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We consider Equation 35 and plot the z-nullcline when
x0 ¼ �0:9 in a (z; x1) bifurcation diagram (Fig. 10). The z-
nullcline intersects three branches of the (z; x1) curve, as
follows: lower (dash-dotted) and upper (dashed) branches
above the Z-curve, and the Z-upper (dashed) branch. Then
three equilibrium points coexist: two unstable foci and one
saddle. The z-nullcline intersects the ,x1.-curve at two
periodic orbits, which are LC and S. Then the trajectory
only exhibits an oscillatory solution, which stabilizes at the
point LC.

Evolution of periodic orbits.We plot themaxðx1Þ- and
minðx1Þ-curves to limit the oscillatory solutions (Figs. 5–8).
Decreasing z, trajectories converge to LC and the ampli-
tude of periodic orbits increases, leading to LC with a
large amplitude. The intersection of the z-nullcline and the
,x1.-curve gives rise to S and LC, which are saddle and
stable periodic orbits, respectively.
Let x0 = −1.6, two periodic orbits exist for m = 0.5 (Fig.

4) and m = 0 (Fig. 5). We show only one periodic orbit in
Figures 4 and 5, which corresponds to S. The second per-
iodic orbit is shown in Figure 9B, which corresponds to
LC. LC and S are stable and saddle periodic orbits, re-
spectively. Trajectories plotted in Figures 4 and 5 exhibit
SLEs (right) or converge to LC (left), depending on the ini-
tial conditions. SLEs and LC are considered as two attrac-
tors. The saddle periodic orbit (S) acts as a separatrix
between the basin of attraction of SLEs and the basin of
attraction of LC.
The z-nullcline moves downward (x0 decreases) or up-

ward (x0 increases) in the bifurcation diagram, hence the
existence of periodic orbits depends on x0. We find S and
LC in a (x0, z

p) bifurcation diagram of periodic orbits (Fig.
11A). x0 acts as a control parameter. Finding S helps us to
limit the basin of attraction of SLEs and the basin of at-
traction of LC. Finding LC helps us to determine the z-
value at which LC stabilizes. Red (1) markers and black
dots correspond to LC and S, respectively. Only LC exists
for large x0. Decreasing x0, LC and S coexist, and collide

as x0 is further decreased in a saddle-node of periodic or-
bits bifurcation (SNPO), then fades.
Figure 11B (m = −16) shows that for some x0, a third

periodic orbit appears, which is labeled as blue top (1)
markers. This periodic orbit is stable, and is localized
above LC and S (Fig. 11B). Since the amplitude of periodic
orbits decreases as z increases, the third periodic orbit is a
stable limit cycle with a small amplitude, which we denoted
as small limit cycle (SLC). SLC and LC are two stable limit
cycles that coexist for some x0, and are separated by
S. SLC exists after a SNPO bifurcation occurs when m =
−16 and disappears when x0 is further decreased.

Parameter space of periodic orbits. We explore two
(m, x0) parameter spaces of periodic orbits: for Iext2 ¼ 0:45
in Figure 12A and for Iext2 ¼ 0 in Figure 12B. There are five
areas separated by a bold line (SNPO bifurcation). LC ex-
ists above, but not below. LC exists in area I and coexists
with S in area II. LC and S coexist with SLC in area III.
Only SLC exists in area IV, which is localized below a
SNPO bifurcation (bold line). Periodic orbits disappear in
area V.

SLC dynamics
We used the averaging method to find periodic orbits,

which lie at the intersection of the z-nullcline and the
,x1.-curve. When Iext2 ¼ 0, area III shows the coexis-
tence of LC, SLC, and S (Fig. 12B).
The stability of the equilibrium points depends on m

and x0 in area III. We analyze the coexistence of LC and
SLC for each stability type of equilibrium points. We plot a
(z, x1) bifurcation diagram for m=1 in Figure 13A. When
x0 ¼ �1:8, then the z-nullcline is at the middle branch and
the equilibrium point is a saddle. The z-nullcline intersects
the ,x1.-curve at three periodic orbits: LC (left), S (mid-
dle), and SLC (right). LC and SLC are two stable limit
cycles with large and small amplitudes, respectively. S
acts as a separatrix between LC and SLC. When a trajec-
tory is at the Z-lower branch, the stable node disappears
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Figure 11. A, B, Finding periodic orbits of the Epileptor for m = 0.5 (A) and m = −16 (B). Stable periodic orbits LC and SLC are la-
beled as red plus sign markers (bottom) and blue plus sign markers (top), respectively. Saddle periodic orbits S are labeled as black
dots. A, B, Decreasing x0, periodic orbits LC and S disappear through a saddle-node of periodic orbits bifurcation. B, Decreasing
further x0 (below −0.8), SLC disappears.
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as z decreases through a saddle-node bifurcation SN1
and the trajectory switches to the Z-upper branch, which
consists of unstable foci. Then the trajectory exhibits an
oscillatory solution on the Z-upper branch and continues
to SLC at which z stabilizes (Fig. 13A, inset). The transition
to the Z-lower branch does not occur even if the equilib-
rium point is a saddle. In fact, z stabilizes at SLC before
the homoclinic bifurcation HB. The trajectory behavior
corresponds to a periodic solution.
We plot a (z, x1) bifurcation diagram for m = −2 in Figure

13B. Let x0 = 0, the equilibrium point is an unstable focus.
The z-nullcline intersects the ,x1.-curve at three peri-
odic orbits (Fig. 13B): LC (left), S (middle), and SLC (right).
S acts as a separatrix between LC and SLC. When a tra-
jectory is at the Z-lower branch, the stable node disap-
pears as z decreases through a saddle-node bifurcation
SN1, and the trajectory switches to the Z-upper (solid)
branch, which consists of stable foci. Increasing z, the tra-
jectory exhibits a nonoscillatory solution on the Z-upper
branch (solid), which terminates in a SNIC bifurcation (Fig.
13B, inset). Then, the trajectory is at the dashed branch
exhibiting an oscillatory solution and continues to SLC at
which z stabilizes. The transition to the Z-lower branch
does not occur and the trajectory behavior corresponds
to a periodic solution.
We conclude that when Iext2 ¼ 0, then LC and SLC co-

exist in area III and S acts as a separatrix between them.
The equilibrium point of the Epileptor model is either a
saddle or an unstable focus. Time series of the Epileptor
system c , subsystem 1 c 1, and subsystem 2 c 2 are plot-
ted in Figure 13C when the equilibrium point is a saddle,
and in Figure 13D when it is an unstable focus. The SLC

patterns depend on the stability of the equilibrium point.
The subsystem 2 generates a resting state when the equi-
librium point is a saddle (see c 2; Fig. 13C) and a spiking
state when it is an unstable focus (see c 2; Fig. 13D).

Transition from epileptiform fast discharges to a DB
The Epileptor exhibits epileptiform fast discharges in

the ictal state, which corresponds to an oscillatory solu-
tion at the Z-upper branch of the (z, x1) curve. Let Iext2 ¼ 0,
the Z-upper branch consists of unstable foci when m = 0
(Fig. 6), and consists of stable foci when m = −1 (Fig. 8).
Recall that the SLE reduces to a periodic switch between
a nonoscillatory state and NS whenm = −1.
Further decreasing m, the imaginary part of the com-

plex–conjugate eigenvalues goes to zero, and then the Z-
upper branch only consists of stable nodes. We plot a (z,
x1) bifurcation diagram for m = −8 (Iext2 ¼ 0) in Figure 14A,
which shows a Z-shaped curve. Z-lower (solid), Z-middle
(dash-dotted), and Z-upper (solid) branches consist of sta-
ble nodes, saddles, and stable nodes, respectively. The Z-
upper branch terminates as z decreases in a SNIC bifurca-
tion (Fig. 14A, inset). Below the Z-upper branch (Fig. 14A,
inset), lower (dashed) and upper (dash-dotted) branches
appear, which approach as m decreases to the Z-upper
(solid) branch. The lower branch consists of unstable foci,
and the upper branch consists of saddles. Increasing z, the
lower and upper branches collide in a saddle-node bifurca-
tion, SN3. Note that zðSNICÞ, zðSN3Þ, zðSN1Þ. Let x0 =
−1.6, the equilibrium point is a saddle. When a trajectory is
at the Z-lower branch, the stable node disappears as z de-
creases through a saddle-node bifurcation, SN1, and the
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trajectory switches to the Z-upper branch, which consists
of stable nodes. The trajectory exhibits a silent activity on
the Z-upper branch, which terminates as z increases in a
saddle-node bifurcation SN2. Then, the trajectory switches
to the Z-lower branch. The transition between Z-lower and
Z-upper branches occur through a fold/fold bifurcation.
The system is bistable on [SN1, SN2]. Time series of the
Epileptor model c , subsystem 1 c 1, and subsystem 2 c 2

are plotted in Figure 14B. The fast discharges during the
ictal period disappear with decreasingm underlying a slow
wave. This scenario corresponds to a depolarization block
(or excitation block; Izhikevich, 2007), which is indicated by
segment number 1 (see c ; Fig. 14B). The NS is indicated
by segment number 2. Therefore, the transitions between
ictal states and NSs reduce to a periodic transition be-
tween DB and NS, which are both slow manifolds.
The DB occurs when Iext2 ¼ 0 but not when Iext2 ¼ 0:45.

To see this, we plot a (z, x1) bifurcation diagram form = −8
(Iext2 ¼ 0:45) in Figure 15A, which is with a Z-shaped
curve. Z-lower (solid), Z-middle (dash-dotted), and Z-
upper (dashed) branches consist of stable nodes, sad-
dles, and unstable foci, respectively. Above the Z-curve,

lower branch consists of saddles and upper branch con-
sists of stable nodes (Fig. 15A, inset II). Decreasing z,
lower and upper branches collide in a SNIC bifurcation.
Let x0 = −1.6, the equilibrium point is a saddle. When a
trajectory is at the Z-lower branch, the stable node disap-
pears as z decreases through a saddle-node bifurcation
SN1 and the trajectory switches to the Z-upper branch ex-
hibiting an oscillatory solution (Fig. 15A, inset I), which ter-
minates as z increases in a SNIC bifurcation (Fig. 15A,
inset II). Then, the trajectory exhibits a nonoscillatory solu-
tion (Fig. 15A, inset II), which terminates as z increases
in a saddle-node bifurcation, SN2 (Fig. 15A), and the
Epileptor switches to the Z-lower branch. The transitions
between Z-lower and Z-upper branches occur through a
fold/circle bifurcation. The system is bistable on [SN1,
SN2]. Time series of the Epileptor model c , subsystem 1
c 1, and subsystem 2 c 2 are plotted in Figure 15B. The
Epileptor exhibits fast discharges in the ictal state (see c ),
and hence does not enter into a DB.
To understand why a DB occurs for Iext2 ¼ 0 and not for

Iext2 ¼ 0:45, we analyze the [SN1, SN2] interval, on which
the Epileptor model is bistable. We determine the
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branches of the (z, x1) curve existing on this interval
(8x1 �0) for Iext2 ¼ 0:45 and Iext2 ¼ 0. Distinct branches
coexist on [SN1, SN2] depending onm:

• When m = 0, then three branches coexist on [SN1,
SN2], consisting of stable nodes, saddles, and unsta-
ble foci for Iext2 ¼ 0:45 (Fig. 5), and they consist of sad-
dles and unstable foci for Iext2 ¼ 0 (Fig. 6).

• When m = −1, then three branches coexist on [SN1,
SN2], which consist of stable foci, saddles, and unsta-
ble foci for Iext2 ¼ 0:45 (figure not shown) and Iext2 ¼ 0
(Fig. 8).

• When m = −8, then three branches coexist for
Iext2 ¼ 0:45, which consist of stable nodes, saddles,
and unstable foci (Fig. 15A). For Iext2 ¼ 0, one branch
exists which consists of stable nodes (Fig. 14A).

Therefore, a DB occurs when m = −8 and Iext2 ¼ 0 be-
cause one branch exists on [SN1, SN2] (8x �0), which
consists of stable nodes. The SLE attractor is character-
ized by transitions between Z-lower and Z-upper

branches. The Z-lower branch consists of stable nodes,
which are the equilibrium points of the NS. When m = −8
and Iext2 ¼ 0, the Z-upper branch consists of stable
nodes, which are the equilibrium points of the DB. Hence,
the SLE attractor reduces asm further decreases to a per-
iodic switch between DB and NS.

Stabilizing equilibrium points in the Epileptor model
The transitions between ictal and normal states of the

SLE attractor occur when the equilibrium point is a saddle
(x0 = −1.6). When x0 increases, the Epileptor stabilizes in
the ictal (nonoscillatory) state, and when x0 decreases,
the Epileptor model stabilizes in the normal state.

Stabilizing the equilibrium point of the nonoscillatory
state. During the ictal state, epileptiform fast discharges
(oscillatory state) disappear through three bifurcation
types depending on m and Iext2 : a homoclinic bifurcation
(Figs. 4, 6), a SNIC bifurcation (Fig. 5), or a Hopf bifurca-
tion (Fig. 7). When the equilibrium point is a saddle (x0 =
−1.6), the Epileptor switches differently to the normal
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Figure 14. Transition from epileptiform fast discharges to depolarization block. A, Bifurcation diagram (z, x1) of the Epileptor model.
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state according to the bifurcation type: homoclinic, SNIC,
or Hopf. The Epileptor switches to the normal state just
after a homoclinic bifurcation, and remains in the nono-
scillatory state after SNIC and Hopf bifurcations, thereby
exhibiting a nonoscillatory solution. The latter disappears
as z increases through a saddle-node bifurcation, SN2, and
then the Epileptor switches to the normal state. When in-
creasing x0, the stability of the equilibrium point changes,
and the Epileptor remains in the nonoscillatory state. We il-
lustrate this scenario in Figure 16A–C.
Let m = 0 and x0 = −0.9 (Fig. 16A), the z-nullcline inter-

sects three branches of the (z, x1) curve: lower and upper
(solid) branches above the Z-curve, and the Z-upper
(dashed) branch. The z-nullcline intersects the upper branch
above Z at C. Then three equilibrium points coexist: an un-
stable focus, a saddle, and a stable focus (C). When a tra-
jectory is at the Z-lower branch, the stable node disappears
as z decreases through a saddle-node bifurcation, SN1, and
the trajectory switches to the Z-upper branch exhibiting an
oscillatory solution (fast discharges), which terminates as z
increases in a SNIC bifurcation. Then, the trajectory exhibits
a nonoscillatory solution at the upper (solid) branch above
the Z-curve, and continues to C at which z stabilizes.
Therefore, the transition to the Z-lower branch does not
occur and the Epileptor remains in the nonoscillatory state.
We plot this scenario in a (Y, X, z) phase space (see Fig.

28A, top trajectory). Corresponding time series are plotted
in Figure 28B. We add numbers to identify trajectory seg-
ments. We indicate the normal state by (1), fast discharges
by (2), and the final state by (3), which corresponds to the
equilibrium point of the nonoscillatory state. Here, the NS
exists but not the equilibrium point. Hence, after a transient
normal state, the Epileptor exhibits fast discharges which
disappear in a SNIC bifurcation, and then remains in the
nonoscillatory state.
Let m = −0.5 and x0 = −0.8 (Fig. 16B), the z-nullcline in-

tersects the Z-upper (solid) sub-branch at C which is a
stable focus. When a trajectory is at the Z-lower branch,
the stable node disappears as z decreases through a sad-
dle-node bifurcation SN1 and the trajectory switches to
the Z-upper (dashed) sub-branch exhibiting an oscillatory
solution (fast discharges), which terminates as z increases
in a Hopf bifurcation, H. Then, the trajectory exhibits a
nonoscillatory solution at the Z-upper (solid) sub-branch,
which consists of stable foci, and continues to C at which
z stabilizes. The transition to the Z-lower branch does not
occur, and the Epileptor remains in the nonoscillatory
state. We plot this scenario in a (Y, X, z) phase space (see
Fig. 29A, top trajectory). Corresponding time series are
plotted in Figure 29B. We indicate the normal state by (1),
fast discharges by (2), and the final state by (3), which cor-
responds to the equilibrium point of the nonoscillatory
state. After a transient normal state, the Epileptor exhibits
fast discharges which disappear in a Hopf bifurcation,
and then remains in the nonoscillatory state.
Let m = −1, the SLE attractor reduces to transitions be-

tween nonoscillatory and normal states when x0 = −1.6,
which occur through a fold/fold bifurcation (Fig. 8). When
increasing x0, the Epileptor model stabilizes its stable
focus, which corresponds to the equilibrium point of the
nonoscillatory state. We illustrate this case in Figure 16C.
Let x0 = −0.8, the z-nullcline intersects the Z-upper branch
at C, which is a stable focus. When a trajectory is at the Z-
lower branch, the stable node disappears as z decreases
through a saddle-node bifurcation, SN1, and the trajectory
switches to the Z-upper branch exhibiting a nonoscillatory
solution. Then, the trajectory continues to C at which z
stabilizes. The transition to the Z-lower branch does not
occur and the Epileptor remains in the nonoscillatory
state. We plot this scenario in a (Y, X, z) phase space (see
Fig. 30A, top trajectory). Corresponding time series are
plotted in Figure 30B. We indicate the normal state by (1)
and the final state by (3), which corresponds to the equi-
librium point of the nonoscillatory state. The imaginary
part of the eigenvalues of C is responsible for the oscilla-
tions (2) around the stable focus. After a transient normal
state, the Epileptor spirals into the equilibrium point of the
nonoscillatory state exhibiting damped oscillations, and
does not re-enter the normal state.

Stabilizing the equilibrium point of the DB. Figure 14
shows that the SLE attractor reduces to a periodic switch
between DB and NS when further decreasingm (Iext2 ¼ 0).
The equilibrium point is a saddle (x0 = −1.6). When in-
creasing x0, the Epileptor model stabilizes its stable node,
which corresponds to the equilibrium point of DB. To see
this, we plot a (z, x1) bifurcation diagram when x0 = −0.8 in
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Figure 15. A, Top, Bifurcation diagram (z, x1) of the Epileptor
model. Parts I and II are zoomed on the bottom. The transitions
between the Z-upper and Z-lower branches occur through a
fold/circle bifurcation. B, Deterministic time series of the
Epileptor system c , subsystem 1 c 1, and subsystem 2 c 2.
Parameters are: m = −8, x0 = −1.6, Iext2 = 0.45, r = 0.0005,
I.C = [0 −5 2.7 0 0 0.01], and Ts = [0:0.001: 1600].
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Figure 16D. The z-nullcline intersects the Z-upper (solid)
branch at C, which is a stable node. When a trajectory is
at the Z-lower branch, the stable node disappears as z
decreases through a saddle-node bifurcation SN1 and the
trajectory switches to the Z-upper branch and enters into
a DB. The trajectory continues as z increases to C at
which z stabilizes. Thus, the transition to the Z-lower
branch does not occur and the Epileptor remains in DB.
We plot this scenario in a (Y, X, z) phase space (see Fig.
27A, top trajectory). Corresponding time series are plot-
ted in Figure 27B. We indicate the normal state by (2) and
the final state by (4), which corresponds to the equilibrium
point of DB. Then, after a transient NS, the Epileptor en-
ters into DB and then remains in it.

Stabilizing the equilibrium point of the NS.When the
equilibrium point is a saddle (x0 = −1.6), the normal state of
the SLE attractor disappears through a saddle-node bifur-
cation SN1. When decreasing x0, the Epileptor stabilizes its
stable node, which is the equilibrium point of the normal
state. To see this, we plot a (z, x1) bifurcation diagram when
x0 = −2.5 in Figure 17. The z-nullcline intersects the Z-lower
branch at C, which corresponds to the equilibrium point of
the normal state. The ictal state (Z-upper branch) exists but
not the equilibrium point, hence the Epileptor remains in
the normal state, atCwhich is a stable node.
When Iext2 ¼ 0:45, the transition from ictal to normal

states occurs according to two scenarios, depending
onm.

• m = 0.5 (Fig. 17A): When a trajectory is at the Z-upper
branch (dashed), the oscillatory solution terminates as

z increases in an HB bifurcation and the trajectory
switches to the Z-lower branch.

• m = 0 (Fig. 17B): When a trajectory is at the Z-upper
branch (dashed), the oscillatory solution terminates as
z increases in a SNIC bifurcation, then the trajectory
exhibits a nonoscillatory solution on the upper branch
above the Z-curve, which terminates as z increases in
a saddle-node bifurcation SN2. Then the trajectory
switches to the Z-lower branch.

When Iext2 ¼ 0, the transition from ictal to normal states
occurs according to four scenarios, depending onm.

• For m ≥ 0 (Fig. 17C): The trajectory exhibits an oscilla-
tory solution on the Z-upper (dashed) branch, which
terminates as z increases in a homoclinic bifurcation
HB, and then it switches to the Z-lower branch.

• For m = −0.5 (Fig. 17D): The trajectory exhibits an
oscillatory solution on the Z-upper sub-(dashed)
branch, which terminates as z increases in a Hopf bi-
furcation H. Then the trajectory exhibits a nonoscilla-
tory solution on the Z-upper (solid) sub-branch,
which terminates as z increases in a saddle-node bi-
furcation SN2, and the trajectory switches to the Z-
lower branch.

• For m � −1, when a trajectory starts at i with
zðSNICÞ, zðiÞ (third scenario), then it exhibits a nono-
scillatory solution on the Z-upper branch, which termi-
nates as z increases in a saddle-node bifurcation,
SN2. Then the trajectory switches to the Z-lower
branch (Fig. 17E). When a trajectory starts at i with
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Figure 16. Stabilizing the equilibrium point of the nonoscillatory state and DB. The Epileptor model remains in the ictal nonoscilla-
tory state after a fast discharges period. We plot a (z, x1) bifurcation diagram for different values of m, x0 and Iext2. A–C, Iext2 = 0.45,
m = 0 and x0 = −0.9 (A), Iext2 = 0, m = −0.5, and x0 = −0.8 (B), and Iext2 = 0, m = −1, and x0 = −0.8 (C). The equilibrium point C is a
stable focus for A–C. The Epileptor stabilizes its equilibrium point C after transient seizure-like fast discharges, which disappear
through a SNIC bifurcation (A) and a through Hopf bifurcation (B). The branches description for A–C is provided in Figures 5, 7, and
8, respectively. D, We plot a (z, x1) bifurcation diagram with respect to z for m = −8 and Iext2 = 0. The Z-upper (dashed), Z-middle
(dash-dotted), and Z-lower (solid) branches consist of stable nodes, saddles, and stable nodes, respectively. Let x0 = −0.6, the z-
nullcline ( _z ¼ 0) intersects the Z-upper branch at C, which is a stable node. The Epileptor model remains in DB after a transient NS.
For all deterministic simulations: I.C = [−1 −5 4 0 0 0.01]. r = 0.00095 and Ts = [0:0.001:2000] for A; r = 0.002 and Ts =
[0:0.001:2000] for B; r = 0.001 and Ts = [0:0.001:2000] for C; and r = 0.00005 and Ts = [0:0.001:3000] for D.
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zðiÞ,zðSNICÞ (fourth scenario), then it exhibits an os-
cillatory solution, which terminates as z increases in a
SNIC bifurcation. Then, the trajectory is at the Z-upper
branch exhibiting a nonoscillatory solution, which ter-
minates as z increases in a saddle-node bifurcation
SN2. Then, the trajectory switches to the Z-lower
branch (Fig. 17F).

For all m, when the trajectory is at the Z-lower branch,
which consists of stable nodes, it continues as z de-
creases to C, at which z stabilizes. Therefore, the transi-
tion to the Z-upper branch does not occur and the
Epileptor remains in the NS.

Coexistence in the Epileptor model
Figure 11, A and B, shows the evolution of periodic or-

bits as x0 varies. The periodic orbits LC and S disappear
as x0 decreases through a SNPO bifurcation. The dynam-
ics of SLC when it exists, depends on the equilibrium
points stability. Figure 4 shows that the z-nullcline and
the ,x1.-curve intersect at two points: LC and S.
Depending on initial conditions, trajectories either con-
verge to LC or exhibit SLEs. We identify seven types of
coexisting attractors in the Epileptor model.

Coexistence of LC and seizures (SLEs). Depending
onm and Iext2 , transitions between ictal and normal states,
which characterize the SLE attractor, occur through a
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Figure 17. Stabilizing the equilibrium point of the NS. We plot a (z, x1) bifurcation diagram with respect to z, as m and Iext2 vary (x0 =
−2.5). A–F, m = 0.5 and Iext2 = 0.45 (A), m = 0 and Iext2 = 0.45 (B), m = 0 and Iext2 = 0 (C), m = −0.5 and Iext2 = 0 (D), and m = −1
and Iext2 = 0 (E, F). Branches of the (z, x1) curve in A are the same as in Figure 4. Branches of the (z, x1) curve in B are the same as
in Figure 5. Branches of the (z, x1) curve in C are the same as in Figure 6. Branches of the (z, x1) curve in D are the same as in Figure
7. Branches of the (z, x1) curve in E and F are the same as in Figure 8. A–F, The z-nullcline ( _z ¼ 0) intersects the Z-lower branch at
C, which is a stable node. The Epileptor model remains in NS after a transient ictal state. For all (deterministic) simulations Ts =
[0:0.001:4500]. I.C = [0.5 −5 2.9 0 0 0.01] and r = 0.00053 for A; I.C = [0.5 −5 2.9 0 0 0.01] and r = 0.00035 for B; I.C = [0 −5 2.8 0
0 0.01] and r = 0.0007 for C; I.C = [0.5 −5 2.7 0 0 0.01] and r = 0.00035 for D; I.C = [0.5 −5 2.7 0 0 0.01] and r = 0.0005 for E; and
I.C = [0.5 −5 2.45 0 0 0.01] and r = 0.0004 for F.
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fold/homoclinic bifurcation, a fold/circle bifurcation, or a
fold/Hopf bifurcation. We describe for each bifurcation
type the coexistence of LC and the SLE attractor:
A fold/homoclinic bifurcation: We plot two trajectories

in a (z, x1) bifurcation diagram for m = 0.5 (Fig. 4). The
equilibrium point is a saddle (x0 = −1.6). The behavior of
the first trajectory (right) corresponds to SLEs, which
occur through a fold/homoclinic bifurcation. The Z-middle
branch acts as a separatrix between ictal and normal
states. The second trajectory (left) converges to LC. The
saddle periodic orbit (S) separates LC and the SLE attrac-
tor. We plot LC, SLEs, and S in a (Y, X, z) phase space
(Fig. 18A). SLEs and LC coexist and the separatrix be-
tween them corresponds to the saddle periodic orbit (S).
SLEs lock in LC when z declines to below baseline shift
(Fig. 18A). Time series are plotted in Figure 18B for SLEs
and in Figure 18C for LC.
Figure 6 shows that SLEs occur through a fold/homo-

clinic bifurcation when Iext2 ¼ 0. Parameter settings in
Figure 6 correspond to area II in Figure 12B. Hence, SLEs
and LC coexist and are separated by S. Only the SLE at-
tractor is plotted in Figure 6. We plot LC, SLEs, and S in a
(Y, X, z) phase space (Fig. 19A). SLEs and LC coexist and
are separated by a separatrix, which corresponds to the
saddle periodic orbit (S). Time series are plotted in Figure
19B for SLEs and in Figure 19C for LC.
A fold/circle bifurcation: We plot two trajectories in a (z,

x1) bifurcation diagram (Fig. 5). The first trajectory (right)

exhibits SLEs, and the second one (left) converges to LC.
The equilibrium point is a saddle (x0 = −1.6). The transi-
tions between ictal and normal states occur through a
fold/circle bifurcation. Then SLEs and LC coexist and are
separated by a saddle periodic orbit (S). We plot LC,
SLEs, and S in a (Y, X, z) phase space (Fig. 20A). SLEs
and LC coexist and are separated by a saddle periodic
orbit (S), which is the separatrix. Time series are plotted in
Figure 20B for SLEs and in Figure 20C for LC.
A fold/Hopf bifurcation: Figure 7 shows that SLEs occur

through a fold/Hopf bifurcation when m ¼ �0:5 (Iext2 ¼ 0).
The equilibrium point is a saddle (x0 = −1.6). Parameter
settings in Figure 7 correspond to area II in Figure 12B.
Then SLEs and LC coexist and are separated by S. Figure
7 only shows the SLE attractor. We plot LC, SLEs, and S
in a (Y, X, z) phase space (Fig. 21A). SLEs and LC coexist
and the separatrix between them corresponds to a saddle
periodic orbit (S). Time series are plotted in Figure 21B for
SLEs and in Figure 21C for LC.

Coexistence of LC and a periodic switch between
nonoscillatory state and NS. Figure 8 shows that the
SLE attractor reduces to a periodic switch between nono-
scillatory state and NS, which occurs through a fold/fold
bifurcation when m = −1 (Iext2 ¼ 0). The equilibrium point
is a saddle (x0 = −1.6). Parameter settings in Figure 8 cor-
respond to area II in Figure 12B. Then LC and the periodic
switch between nonoscillatory state and NS coexist, and
are separated by S. Only the periodic switch between
nonoscillatory state and NS is plotted in Figure 8. We plot
LC, this periodic switch, and S in a (Y, X, z) phase space
(Fig. 22A). LC and the periodic switch between nonoscil-
latory state and NS coexist and the separatrix between
them corresponds to a saddle periodic orbit (S). Time se-
ries are plotted in Figure 22B for this periodic switch and
in Figure 22C for LC.

Coexistence of two periodic orbits: LC and SLC.
SLC is a stable periodic orbit with a small amplitude.
When Iext2 ¼ 0, then SLC, S, and LC coexist in area III (Fig.
12B). Figure 13 shows that the z-nullcline intersects the
,x1.-curve at three points: LC, S, and SLC. Here, we
plot the SLC behavior only, which depends on the stability
of the equilibrium point. SLC and LC coexist in both
cases: when the equilibrium point is a saddle (Fig. 13A)
and when it is an unstable focus (Fig. 13B). We plot SLC,
LC, and S in a (Y, X, Z) phase space (Figs. 23, 24). LC and
SLC coexist and are separated by a saddle periodic orbit
(S), which corresponds to the separatrix. When the equi-
librium point is a saddle, the coexistence of LC and SLC is
illustrated in Figure 23A. Time series are plotted in Figure
23B for SLC and in Figure 23C for LC. When the equilib-
rium point is an unstable focus, the coexistence of LC and
SLC is illustrated in Figure 24A. Time series are plotted in
Figure 24B for SLC and in Figure 24C for LC.

Coexistence of LC and a periodic switch between
DB and NS. A (z, x1) bifurcation diagram is plotted in
Figure 14A for m = −8 (Iext2 ¼ 0). The trajectory character-
izes the periodic switch between DB and NS. Parameter
settings in Figure 14 correspond to area II in Figure 12B.
Thus, LC and the periodic switch between DB and NS co-
exist, and are separated by a saddle periodic orbit (S). We
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Figure 18. A, Coexistence of SLEs and RSE. The simulations
are performed without noise. SLEs and a stable LC coexist for
m = 0.5 and x0 = −1.6 (Iext2 ¼ 0:45). SLEs occur through a fold/
homoclinic bifurcation. The arrows indicate the direction of tra-
jectories. For easier visualization, we plot generalized coordi-
nates (X, Y) corresponding to (�35x1 1 x2; 15y1) for seizures (top)
and to (�0:5x1 1 x 2; 0:1y1) for LC (bottom). LC is characteristic
of RSE. B, C, Time series of SLEs (B) and LC (C). Parameter set-
tings correspond to region VIII in Figure 31 and to region 13 in
Figure 32. A, Top, I.C = [0 −5 3 0 0 0.01] and r = 0.035. A,
Bottom, I.C = [0 −5 −1 0 0 0.01] and r = 0.035. The coexistence of
LC and separatrix (S) can be found in area II [Fig. 12A].
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Figure 19. A, Coexistence of SLEs and RSE. The simulations are performed without noise. SLEs and a stable LC coexist for m = 0
and x0 = −1.6 (Iext2 ¼ 0). SLEs occur through a fold/homoclinic bifurcation. The arrows indicate the direction of trajectories. For eas-
ier visualization, we plot generalized coordinates (X, Y) corresponding to (�10x1 1 x2; 5y1) for seizures (top) and to
(�0:3x1 1 x 2; 0:06y1) for LC (bottom). LC is characteristic of RSE. B, C, Time series of SLEs (B) and LC (C). Parameter settings cor-
respond to region X in Figure 34 and to region 15 in Figure 35. A, Top, I.C = [0 −5 3 0 0 0.01], Ts = [0 220], and r = 0.01. A, Bottom,
I.C = [4 −1 −0.5 0 0 0.01], Ts = [0 120], and r = 0.01. The coexistence of LC and S can be found in area II (Fig. 12B).
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Figure 20. A, Coexistence of SLEs and RSE. The simulations are performed without noise. SLEs and a stable LC coexist for m = 0
and x0 = −1.6 (Iext2 ¼ 0:45). SLEs occur through a fold/circle bifurcation. The arrows indicate the direction of trajectories. For easier vis-
ualization, we plot generalized coordinates (X, Y) corresponding to (�35x1 1 x2; 15y1) for seizures (top) and to (�0:5x1 1 x 2; 0:1y1) for
LC (bottom). LC is characteristic of RSE. B, C, Time series of SLEs (B) and LC (C). Parameter settings correspond to region VII in
Figure 31 and to region 12 in Figure 32. A, Top, I.C = [0 −5 3 0 0 0.01], Ts = [0 220], and r = 0.01. A, Bottom, I.C = [4 −1 −0.5 0 0
0.01], Ts = [0 120], and r = 0.01. The coexistence of LC and S can be found in area II (Fig. 12A).
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Figure 21. A, Coexistence of SLEs and RSE. The simulations are performed without noise. SLEs and a stable LC coexist for m =
−0.5 and x0 = −1.6 (Iext2 ¼ 0). SLEs occur through a fold/Hopf bifurcation. The arrows indicate the direction of trajectories. For easier
visualization, we plot generalized coordinates (X, Y) corresponding to (�10x1 1 x2; 5y1) for seizures (top) and to
(�0:3x1 1 x 2; 0:06y1) for LC (bottom). LC is characteristic of RSE. B, C, Time series of SLEs (B) and LC (C). Parameter settings cor-
respond to region IX in Figure 34 and to region 14 in Figure 35. A, Top, I.C = [0 −5 3 0 0 0.01], Ts = [0 220], and r = 0.01. A, Bottom,
I.C = [4 −1 −0.5 0 0 0.01], Ts = [0 120], and r = 0.01. The coexistence of LC and S can be found in area II [Fig. 12B].
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Figure 22. A, Coexistence of RSE and the periodic switch between nonoscillatory state and NS. The simulations are performed
without noise. Here, the SLE attractor reduces to the periodic switch between nonoscillatory state and NS, which coexists with a
stable LC for m = −1 and x0 ¼ �1:6 (Iext2 ¼ 0). This periodic switch occurs through a fold/fold bifurcation. The arrows indicate the di-
rection of trajectories. For easier visualization, we plot generalized coordinates (X, Y) corresponding to (�10x1 1 x2; 5y1) for the peri-
odic switch between nonoscillatory state and NS (top) and to (�0:3x1 1 x 2; 0:06y1) for LC (bottom). LC is characteristic of RSE. B,
C, Time series of this periodic switch (B) and LC (C). Parameter settings correspond to region VIII in Figure 34 and to region 13 in
Figure 35. A, Top, I.C = [0 −5 3 0 0 0.01], Ts = [0 220], and r = 0.01. A, Bottom, I.C = [4 −1 0.5 0 0 0.01], Ts = [0 120], and r = 0.01.
The coexistence of LC and S can be found in area II (Fig. 12B).
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Figure 23. A, Coexistence of SLC and RSE. The simulations are performed without noise. SLC and a stable LC coexist for m = 1
and x0 ¼ �1:8 (Iext2 ¼ 0). The equilibrium point is a saddle. The arrows indicate the direction of trajectories. For easier visualization,
we plot generalized coordinates (X, Y) corresponding to (�35x1 1 x2; 15y1) for SLC (top) and to (�0:5x1 1 x 2; 0:1y1) for LC (bottom).
LC is characteristic of RSE. B, C, Time series of SLC (B) and LC (C). Parameter settings correspond to region II in Figure 34 and to
region 17 in Figure 35. A, Top, I.C = [−1.15 −5 3.4 0 0 0.01], Ts = [0 500], and r = 0.0035. A, Bottom, I.C = [10 −5 −1 0 0 0.01], Ts =
[0 500], and r = 0.0035.The coexistence of LC, S, and SLC can be found in area III [Fig. 12B].
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Figure 24. A, Coexistence of SLC and RSE. The simulations are performed without noise. SLC and a stable LC coexist for m = −2
and x0 ¼ 0 (Iext2 ¼ 0). The equilibrium point is an unstable focus. The arrows indicate the direction of trajectories. For easier visual-
ization, we plot generalized coordinates (X, Y, Z) corresponding to (�60x1 1 x2; 60y1; z� 0:5) for SLC (top) and to
(�0:5x1 1 x 2; 0:1y1; z1 1:7) for LC (bottom). LC is characteristic of RSE. B, C, Time series of SLC (B) and LC (C). Parameter set-
tings correspond to region II in Figure 34 and to region 2 in Figure 35. A, Top, I.C = [−1.15 −5 2.9 0 0 0.01], Ts ¼ ½0 : 0:01 : 250�, and
r = 0.007. A, Bottom, I.C = [10 −5 −1 0 0 0.01], Ts = [0 500], and r = 0.002. The coexistence of LC, S, and SLC can be found in
area III [Fig. 12B].
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plot LC, S, and the periodic switch between DB and NS in
a (Y, X, z) phase space (Fig. 25A). We observe that DB oc-
curs when the fast manifold of the SLE collapses to a
point that traces out a line under the slow z-evolution. The
ictal state thus reduces to a silent activity. LC and the per-
iodic switch between DB and NS coexist in the phase
space and the separatrix acts as a barrier between them.
Time series are plotted in Figure 25B for the periodic
switch between DB and NS, and in Figure 25C for LC. DB
and NS are indicated by segment numbers 1 and 3,
respectively.

Coexistence of LC and a NS. Figure 17 shows that
when decreasing x0, the z-nullcline is at the Z-lower
branch, which consists of equilibrium points of the normal
state (stable nodes). Let m = 0, the equilibrium point is a
stable node when x0 is below −2.1 (Fig. 3, area 5). LC and
S coexist when x0 = −2.1 (Fig. 12A, area II). We plot LC,
NS, and S in a (Y, X, z) phase space (Fig. 26A). LC and NS
coexist in the phase space, and the separatrix acts as a
barrier between them. Fast discharges and NS are indi-
cated by segment numbers 1 and 4, respectively. After
the transient seizure-like fast discharges, the Epileptor re-
mains in the NS. Time series are plotted in Figure 26B for
NS and in Figure 26C for LC.

Coexistence of LC and a DB. Figure 16D shows that
when increasing x0, the z-nullcline is at the Z-upper
branch, which consists of equilibrium points of DB (stable
nodes). Parameter settings in Figure 16D correspond to

area II in Figure 12B, where LC and S coexist. We plot LC,
DB, and S in a (Y, X, z) phase space (Fig. 27A). The tran-
sient NS and DB are indicated by segment numbers 2 and
4, respectively. After the transient normal state, the
Epileptor model remains in the depolarization block. Time
series are plotted in Figure 27B for DB and in Figure 27C
for LC.

Coexistence of LC and a nonoscillatory state. Figure
16A–C shows that when increasing x0, the equilibrium
point C is at the Z-upper branch when Iext2 ¼ 0 and at the
upper branch above the Z-curve when Iext2 ¼ 0:45. C (sta-
ble focus) is the equilibrium point of the nonoscillatory
state. Figure 16, A and B, shows that after the transient
normal state, and the transient seizure-like fast dis-
charges, the Epileptor remains in the nonoscillatory state.
Figure 16C shows that after the transient normal state,
the Epileptor spirals into the equilibrium point of the nono-
scillatory state exhibiting damped oscillations and then
stabilizes at C. Parameter settings in Figure 16A corre-
spond to area II in Figure 12A, and parameter settings in
Figure 16, B and C, correspond to area II in Figure 12B,
and then LC and S coexist. Only the nonoscillatory state
is plotted in Figure 16A–C. We plot LC, the nonoscillatory
state, and S in a (Y, X, z) phase space (Figs. 28A, 29A,
30A). LC (below) and the nonoscillatory state (above) co-
exist. The nonoscillatory state shown in Figures 28A, 29A,
and 30A is the same as that shown in Figure 16A–C, re-
spectively. NS and the nonoscillatory state are indicated
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Figure 25. A, Coexistence of RSE and a periodic switch between DB and NS. The simulations are performed without noise. Here,
the SLE attractor reduces to the periodic switch between DB and NS, which coexists with a stable LC for m = −8 and x0 = −1.4
(Iext2 ¼ 0). Trajectory segments are numbered in A and B. DB corresponds to the segment 1, and the NS to the segment 3. The ar-
rows indicate the direction of trajectories. For easier visualization, we plot generalized coordinates (X, Y) corresponding to
(�10x1 1 x2; 5y1) for the periodic switch between DB and NS (top) and to (�x1 1 x 2; 0:3y1) for LC (bottom). LC is characteristic of
RSE. B, C, Time series of the periodic switch between DB and NS (B) and LC (C). Parameter settings correspond to region VII in
Figure 34 and to region 12 in Figure 35. A, Top, I.C = [0 −5 3 0 0 0.01], Ts = [0 450], and r = 0.01. For easier visualization, we plot
the trajectory over Ts = [96 244]. A, Bottom, I.C = [9 −5 −1 0 0 0.01], Ts = [0 200], and r = 0.01. The coexistence of LC and S can be
found in area II (Fig. 12B).
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by segment numbers 1 and 3, respectively. Time series
for each case are plotted in Figures 28B, 29B, and 30B for
the nonoscillatory states, and in Figures 28C, 29C, and
30C for LC.

Parameter space of equilibrium points and periodic orbits
We identified seven types of coexisting attractors: a co-

existence of SLE and LC (Figs. 18–21), a coexistence of
LC and periodic switch between nonoscillatory state and
NS (Fig. 22), a coexistence of SLC and LC (Figs. 23, 24), a
coexistence of LC and periodic switch between DB and NS
(Fig. 25), a coexistence of NS and LC (Fig. 26), a coexis-
tence of DB and LC (Fig. 27), and a coexistence of nonoscil-
latory state and LC (Figs. 28–30). SLEs are characterized by
transitions between ictal and normal states. Depending on
m, x0 and Iext2 , these transitions occur through a fold/homo-
clinic bifurcation (Figs. 18, 19), a fold/circle bifurcation (Fig.
20), or a fold/Hopf bifurcation (Fig. 21).
To characterize the different types of the coexisting

attractors, we explore a (m, x0) parameter space of
periodic orbits and equilibrium points in Figures 31
and 32 for Iext2 ¼ 0:45.

Parameter space of the Epileptor model for
Iext2 ¼ 0:45. The parameter space is divided into two
parts which are separated by a bold line (SNPO bifurca-
tion; Fig. 31). Above the bold line, LC exists but does not
exist below it. Twelve areas exist. LC exists in area I and
coexists with SLC in area II. Only SLC exists in area III.
The nonoscillatory state exists in area IV and coexists
with LC in area V. Only SLE exists in area VI and coexists

with LC in areas VII and VIII. An SLE occurs through a
fold/circle bifurcation in areas VI and VII. An SLE occurs
through a fold/homoclinic bifurcation in area VIII. NS ex-
ists in area IX and coexists with LC in area X. LC coexists
with a chaotic state in areas XI and XII.
For each area, the Epileptor model has different equilib-

rium points, depending on m and x0. To explore this fur-
ther, we determine the equilibrium points and the periodic
orbits of each area (I-XII) by using 32, which shows 18 (1–
18) areas:
(I) LC: Area I in Figure 31 is composed of areas 1, 7, 8,

9, 10, and 14 in Figure 32. The z-nullcline intersects the
,x1.-curve at one periodic orbit, which corresponds to
LC. The z-nullcline intersects the (z, x1) curve at different
equilibrium points. The equilibrium point is an unstable
focus in area 1 and a saddle in area 14. The equilibrium
points are one saddle and two unstable foci in area 7. The
equilibrium points are one unstable focus and two sad-
dles in area 9. The equilibrium points are three saddles in
area 10. The equilibrium points are a saddle, an unstable
focus, and an unstable node in area 8. Trajectories exhibit
only a fast-slow cyclic behavior (LC), which is plotted in
Figures 9D and 10.
(II) LC and SLC: Area II in Figure 31 corresponds to area

2 in Figure 32. The z-nullcline intersects the ,x1.-curve
at three periodic orbits in area 2, which correspond to LC,
S, and SLC, respectively. The z-nullcline intersects the (z,
x1) curve at one equilibrium point, which is an unstable
focus. LC and SLC coexist. The stable manifold of the
saddle periodic orbit (S) separates the basin of attraction
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Figure 26. A, Coexistence of normal state and RSE. The simulations are performed without noise. The equilibrium point of NS and a
stable LC coexist for m = 0 and x0 ¼ �2:1. Trajectory segments are numbered in A and B. The transient seizure-like fast discharges
correspond to the segment 1, and the NS to the segment 4. The equilibrium point of NS exists. After the transient seizure-like fast
discharges, the Epileptor remains in NS. The arrows indicate the direction of trajectories. For easier visualization, we plot general-
ized coordinates (X, Y) corresponding to (�35x1 1 x2; 15y1) for DB (top) and to (�0:5x1 1 x 2; 0:1y1) for LC (bottom). LC is character-
istic of RSE. B, C, Time series of NS (B) and LC (C). Parameter settings correspond to region X in Figure 31 and to region 18 in
Figure 32. The coexistence of LC and S can be found in area II (Fig. 12A).
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of LC and the basin of attraction of SLC. Trajectories ex-
hibit two periodic solutions depending on initial condi-
tions. The first solution corresponds to a fast-slow cyclic
behavior (LC). The second solution corresponds to a peri-
odic solution with a small amplitude (SLC).
(III) SLC: Area III in Figure 31 corresponds to area 3 in

Figure 32. The z-nullcline intersects the ,x1.-curve at
one periodic orbit in area 3, which corresponds to SLC.
Area three is below the SNPO bifurcation (bold line),
which means that SLC exists after a SNPO bifurcation.
The z-nullcline intersects the (z, x1) curve at one equilib-
rium point, which is an unstable focus. The trajectories ex-
hibit only a periodic solution with a small amplitude (SLC).
(IV) Nonoscillatory state: Area IV in Figure 31 corre-

sponds to area 4 in Figure 32. Here, the z-nullcline and
the ,x1.-curve do not intersect, hence periodic orbits
LC, S, and SLC do not exist. The z-nullcline intersects the
(z, x1) curve at different equilibrium points. The equilibrium
points are a stable node, an unstable focus, and a saddle
in area 4. Trajectories remain in the nonoscillatory state.
(V) LC and a nonoscillatory state: Area V in Figure 31 is

composed of areas 5 and 6 in Figure 32. The z-nullcline in-
tersects the ,x1.-curve at two periodic orbits in areas 5
and 6, which correspond to LC and S. The z-nullcline in-
tersects the (z, x1) curve at different equilibrium points.
The equilibrium points are a stable node, an unstable
focus, and a saddle in area 5. The equilibrium points are a
stable focus, an unstable focus, and a saddle in area 6.

Trajectories either exhibit a fast-slow cyclic behavior (LC)
or remain in the nonoscillatory state. The coexistence of
LC and the nonoscillatory state is plotted in Figure 28A.
The equilibrium points belong to area 6 in Figure 32. Time
series are plotted in Figures 28B for the nonoscillatory
state and in Figure 28C for LC.
(VI) SLE with a fold/circle bifurcation: Area VI in Figure

31 corresponds to area 11 in Figure 32. Here, the z-null-
cline and the ,x1.-curve do not intersect, hence peri-
odic orbits LC, S, and SLC do not exist. The z-nullcline
intersects the Z-middle branch, which consists of sad-
dles. Thus, a unique saddle equilibrium point exists. Since
m� 0, an SLE occurs through a fold/circle bifurcation.
(VII) LC and SLE with a fold/circle bifurcation: Area VII in

Figure 31 corresponds to area 12 in Figure 32. Here, the
equilibrium point is a saddle, and an SLE occurs through
a fold/circle bifurcation. The z-nullcline intersects the
,x1.-curve at two periodic orbits, which correspond to
LC and S. Then LC and an SLE with a fold/circle bifurca-
tion coexist and are separated by a saddle periodic orbit
(S). This coexistence is plotted in Figure 20A. Time series
are plotted in Figure 20B for SLE and in Figure 20C for LC.
(VIII) LC and SLE with a fold/homoclinic bifurcation:

Area VIII in Figure 31 corresponds to area 13 in Figure 32.
Here, the equilibrium point is a saddle, and an SLE occurs
through a fold/homoclinic bifurcation. The z-nullcline in-
tersects the ,x1.-curve at two periodic orbits, which
correspond to LC and S. Then LC and SLE with a fold/

Time
60 1801200

Time
300 400100 2000

0

4

-4

-16

-12

2

6

-8

14

10

-2

X

X

-1

0

1

2

3

4

0 -10
5

-60-15

10 -20
0 20

-40

z

X Y
-5

15

1

2

3

4

Separatrix

1

3

4

2

BA

C

Figure 27. A, Coexistence of DB and RSE. The simulations are performed without noise. The equilibrium point of DB and a stable
LC coexist for m = −8 and x0 = −0.6. Trajectory segments are numbered in A and B. DB corresponds to the segment 4, and the NS
to the segment 2. The equilibrium point of DB exists. The equilibrium point of NS does not. After a transient NS, the Epileptor stabil-
izes on DB. The arrows indicate the direction of trajectories. For easier visualization, we plot generalized coordinates (X, Y) corre-
sponding to (�10x1 1 x2; 5y1) for DB (top) and to (�0:6x1 1 x 2; 0:2y1) for LC (bottom). LC is characteristic of RSE. B, C, Time series
of DB (B) and LC (C). Parameter settings correspond to region V in Figure 34 and to region 9 of 5 in Figure 35. A, Top, I.C = [−0.1
−6 3.8 0 0 0.01], Ts = [0 400], and r = 0.01. A, Bottom, I.C = [9 −5 −1 0 0 0.01], Ts = [0 200], and r = 0.009. The coexistence of LC
and S can be found in area II (Fig. 12B).

Research Article: New Research 27 of 54

March/April 2020, 7(2) ENEURO.0485-18.2019 eNeuro.org



homoclinic bifurcation coexist and are separated by a
saddle periodic orbit (S). This coexistence is plotted in
Figure 18A. Time series are plotted in Figure 18B for SLE
and in Figure 18C for LC.
(IX) NS: Area IX in Figure 31 corresponds to area 17 in

Figure 32. The z-nullcline and the ,x1.-curve do not in-
tersect, hence periodic orbits LC, S, and SLC do not
exist. The z-nullcline intersects the (z, x1) curve at the Z-
lower branch, and then the equilibrium point is a stable
node in area 17. The Epileptor remains in NS after a tran-
sient period, which is shown in Figure 17
(X) LC and NS: Area X in Figure 31 corresponds to area

18 in Figure 32. The z-nullcline intersects the ,x1.-curve
at two periodic orbits, which correspond to LC and S. The
z-nullcline intersects the (z, x1) curve at the Z-lower
branch, which is a stable node in area 18. Then LC and
NS coexist and are separated by a saddle periodic orbit
(S). This coexistence is plotted in Figure 26A. Time series
are plotted in Figure 26B for NS and in Figure 26C for LC.
(XI, XII) LC and a chaotic state: Areas XI and XII in Figure

31 correspond to areas 15 and 16 in Figure 32. The z-null-
cline intersects the ,x1.-curve at three periodic orbits in
area 15. Then LC, S, and SLC coexist. S acts as a separa-
trix between the basin of attraction of LC and the basin of
attraction of SLC. Then trajectories exhibit either LC or
SLC in area 15. The z-nullcline intersects the ,x1.-curve
at two periodic orbits in area 16, which correspond to LC

and S. The z-nullcline intersects the Z-middle branch
which consists of saddles. An SLE occurs through a fold/
homoclinic bifurcation in area 16. Then LC and SLE coex-
ist in area 16. S acts as a separatrix between the basin of
attraction of LC and the basin of attraction of SLE in area
16.
We calculate the times between two successive spikes,

which are referred to as the interspike intervals (ISIs) with
respect to x0 in Figure 33A form = 1 and in Figure 33B for
m = 1.5. The system is chaotic when the ISI is irregular.
Therefore, LC and the chaotic state coexist in areas 15
and 16 and are separated by a saddle periodic orbit (S).
The parameter space of the Epileptor model includes

attractors as LC, SLE, and normal state, but neither DB
nor SLE with a fold/Hopf bifurcation. In fact, using bifurca-
tion analysis, we demonstrated that DB and Hopf bifurca-
tion appeared when decreasing Iext2 . To characterize
these attractors, we explore a (m, x0) parameter space
of periodic orbits and equilibrium points in Figures 34 and
35 for Iext2 ¼ 0.

Parameter space of the Epileptor model for
Iext2 ¼ 0. The parameter space is divided into two parts,
which are separated by a bold line (SNPO bifurcation)
(Fig. 34). Above the line, LC exists and does not exist
below it. Thirteen areas exist. LC exists in area I and coex-
ists with SLC in area II. Only SLC exists in area III. A DB
exists in area IV and coexists with LC in area V. A periodic
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Figure 28. A, Coexistence of nonoscillatory state and RSE. Here, transient seizure-like fast discharges disappears through a SNIC
bifurcation, and then the nonoscillatory state occurs. The simulations are performed without noise. The equilibrium point of the non-
oscillatory state and a stable LC coexist for m = 0 and x0 = −0.9 (Iext2 ¼ 0:45). Trajectory segments are numbered in A and B. The
transient seizure-like fast discharges correspond to the segment 2, the transient NS to the segment 1, and the nonoscillatory state
to the segment 4. The equilibrium point of nonoscillatory state exists. After the transients NS and then seizure-like fast discharges,
the Epileptor remains in the nonoscillatory state. The arrows indicate the direction of trajectories. For easier visualization, we plot
generalized coordinates (X, Y) corresponding to (�35x1 1 x2; 15y1) for the nonoscillatory state (top) and to (�0:5x1 1 x 2; 0:1y1) for
LC (bottom). LC is characteristic of RSE. B, C, Time series of the nonoscillatory state (B) and LC (C). Parameter settings correspond
to region V in Figure 31 and to region 6 in Figure 32. A, Top, I.C = [−1.5 −2.5 3.5 0 0 0.01], Ts = [0 500], and r = 0.007. A, Bottom, I.
C = [10 −5 −1 0 0 0.01], Ts = [0 500], and r = 0.004. The coexistence of LC and S can be found in area II (Fig. 12A).
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switch between a DB and a NS exists in area VII and coex-
ists with LC in area VIII. A nonoscillatory state coexists
with LC in area VI, and a periodic switch between a nono-
scillatory state and a NS coexists with LC in area IX. LC
and SLE coexist in areas X and XI. an SLE occurs through
a fold/Hopf bifurcation in area X and through a fold/homo-
clinic bifurcation in area XI. A normal state exists in area
XII and coexists with LC in area XIII.
For each area, the Epileptor model has different equilib-

rium points depending on m and x0. To analyze this fur-
ther, we determine the equilibrium points and the periodic
orbits of each area (I-XIII) by using 35, which shows 20 (1–
20) areas:
(I) LC: Area (I) in Figure 34 is composed of areas 1, 7,

and 17 in Figure 35. The z-nullcline intersects the
,x1.-curve at one periodic orbit, which is LC. The z-null-
cline intersects the (z, x1) curve at different equilibrium
points. The equilibrium point is an unstable focus in area 1
and a saddle in area 17. The equilibrium points are one
saddle and two unstable foci in area 7. Trajectories exhibit
only a fast-slow cyclic behavior (LC).
(II) LC and SLC: Area (II) in Figure 34 is composed of

areas 2 and 18 in Figure 35. The z-nullcline intersects the
,x1.-curve at three periodic orbits in areas 2 and 18,
which correspond to LC, S, and SLC, respectively. Then
LC and SLC coexist in areas 2 and 18. The stable

manifold of a saddle periodic orbit (S) separates the basin
of attraction of LC and the basin of attraction of SLC. The
z-nullcline intersects the (z, x1) curve at one equilibrium
point, which is an unstable focus in area 2 and a saddle in
area 18. The trajectories exhibit two periodic solutions de-
pending on the initial conditions. The first solution corre-
sponds to a fast-slow cyclic behavior (LC). The second
solution corresponds to a periodic solution with a small
amplitude (SLC). Moreover, the SLC behavior depends on
the stability of the equilibrium point. The SLC behavior is
plotted in Figure 13A for area 18 and in Figure 13B for
area 2. The coexistence of LC and SLC is plotted in a
phase space, in Figure 23A for area 18, and in Figure 24A
for area 2. Time series are plotted in Figure 23B for SLC
and in Figure 23C for LC, for area 18. Time series are plot-
ted in Figure 24B for SLC and in Figure 24C for LC, for
area 2.
(III) SLC: Area III in Figure 34 corresponds to area 3 in

Figure 35. The z-nullcline intersects the ,x1.-curve at
one periodic orbit in area 3, which corresponds to SLC.
Area 3 is below the SNPO bifurcation (bold line), which
means that SLC exists after an SNPO bifurcation occurs.
The z-nullcline intersects the (z, x1) curve at one equilib-
rium point, which is an unstable focus. Trajectories exhibit
only a periodic solution with a small amplitude (SLC). The
SLC behavior is plotted in Figures 13B and 24B.
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Figure 29. A, Coexistence of nonoscillatory state and RSE. Here a transient seizure-like fast discharges disappear through a Hopf
bifurcation, and then the nonoscillatory state occurs. The simulations are performed without noise. The equilibrium point of the non-
oscillatory state and a stable LC coexist for m = −0.5 and x0 = −0.8 (Iext2 ¼ 0). Trajectory segments are numbered in A and B. The
transient seizure-like fast discharges correspond to the segment 2, the transient NS to the segment 1, and the nonoscillatory state
to the segment 4. The equilibrium point of the nonoscillatory state exists. After the transients NS and then seizure-like fast dis-
charges, the Epileptor remains in the nonoscillatory state. The arrows indicate the direction of trajectories. For easier visualization,
we plot generalized coordinates (X, Y) corresponding to (�35x1 1 x2; 15y1) for the nonoscillatory state (top) and to
(�0:5x1 1 x 2; 0:1y1) for LC (bottom). LC is characteristic of RSE. B, C, Time series of the nonoscillatory state (B) and LC (C).
Parameter settings correspond to region V in Figure 34 and to region 6 in Figure 32. A, Top, I.C = [−1 −5.5 3.8 0 0 0.01], Ts = [0
200], and r = 0.02. A, Bottom, I.C = [10 −5 −1 0 0 0.01], Ts = [0 250], and r = 0.004. The coexistence of LC and S can be found in
area II (Fig. 12B).
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(IV) DB: Area IV in Figure 34 is composed of areas 4 and
8 in Figure 35. Here, the z-nullcline and the ,x1.-curve
do not intersect, hence periodic orbits LC, S, and SLC do
not exist. The z-nullcline intersects the (z, x1) curve at dif-
ferent equilibrium points. The equilibrium point is a stable
node in area 8. The equilibrium points are a stable node,
an unstable focus, and a saddle in area 4. The Epileptor
remains in DB after a transient period, which is plotted in
Figures 16D and 27B.
(V) LC and a DB: Area V in Figure 34 is composed of

areas 5 and 9 in Figure 35. The z-nullcline intersects the
,x1.-curve at two periodic orbits, which correspond to
LC and S. The z-nullcline intersects the (z, x1) curve at dif-
ferent equilibrium points. The equilibrium points are a sta-
ble node, an unstable focus, and a saddle in area 5. The
equilibrium point is a stable node in area 9. Trajectories ei-
ther exhibit a fast-slow cyclic behavior (LC) or enter into a
DB. The coexistence of LC and DB is plotted in Figure
27A. Time series are plotted in Figure 27B for DB and in
Figure 27C for LC.
(VI) LC and a nonoscillatory state: Area VI in Figure 34 is

composed of areas 6, 10, and 11 in Figure 35. The z-null-
cline intersects the ,x1.-curve at two periodic orbits,
which correspond to LC and S. The z-nullcline intersects
the (z, x1) curve at different equilibrium points. The equilib-
rium points are a stable focus, an unstable focus, and a

saddle in area 6. The equilibrium point is a stable focus in
area 10 and a stable node in area 11. Trajectories either
exhibit a fast-slow cyclic behavior (LC) or remain in a non-
oscillatory state. The coexistence of LC and the nonoscil-
latory state is plotted in Figures 29A and 30A, which
corresponds to area 10 in Figure 35. Time series are plot-
ted in Figures 29B and 30B for the nonoscillatory state,
and in Figures 29C and 30C for LC.
(VII) Periodic switch between DB and NS: Area VII in

Figure 34 corresponds to area 12 in Figure 35. Here, the
z-nullcline and the ,x1.-curve do not intersect, hence
LC, S, and SLC do not exist. The z-nullcline intersects the
Z-middle branch which consists of saddles. Then only a
saddle equilibrium point exists in area 12. The ictal state
of SLE reduces to DB with decreasing m. Periodic switch
between DB and NS occurs through a fold/fold bifurca-
tion, and is plotted in Figures 14 and 25B.
(VIII) LC and a periodic switch between DB and NS:

Area VIII in Figure 34 corresponds to area 13 in Figure 35.
The z-nullcline intersects the ,x1. curve at two periodic
orbits, which correspond to LC and S. The equilibrium
point is a saddle, and the ictal state of an SLE is reduced
to DB, with decreasing m. Periodic switch between DB
and NS occurs through a fold/fold bifurcation, and coex-
ists with LC. Both are separated by a saddle periodic orbit
(S). The coexistence of LC and periodic switch between
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Figure 30. A, Coexistence of nonoscillatory state and RSE. Here after a transient NS, the Epileptor enters into the nonoscillatory
state. The simulations are performed without noise. The equilibrium point of the nonoscillatory state and a stable LC coexist for m =
−1 and x0 = −0.8 (Iext2 ¼ 0). Trajectory segments are numbered in A and B. The transient NS is indicated by (1) and the nonoscilla-
tory state (final state) by (3). The equilibrium point of nonoscillatory state exists, which is a stable focus. After a transient NS, the
Epileptor spirals into the equilibrium point (stable focus) and remains in the nonoscillatory state. The arrows indicate the direction of
trajectories. For easier visualization, we plot generalized coordinates (X, Y) corresponding to (�35x1 1 x2; 15y1) for the nonoscillatory
state (top) and to (�0:5x1 1 x 2; 0:1y1) for LC (bottom). LC is characteristic of RSE. B, C, Time series of the nonoscillatory state (B)
and LC (C). Parameter settings correspond to region V in Figure 34 and to region 6 in Figure 32. A, Top, I.C = [−1 −5.5 3.5 0 0 0.01],
Ts = [0 200], and r = 0.01. A, Bottom, I.C = [10 −5 −1 0 0 0.01], Ts = [0 250], and r = 0.004. The coexistence of LC and S can be
found in area II (Fig. 12B).
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DB and NS is plotted in Figure 25A. Time series are plot-
ted in Figure 25B for periodic switch between DB and NS,
and in Figure 25C for LC.
(IX) LC and a periodic switch between nonoscillatory

state and NS: Area IX in Figure 34 corresponds to areas
14 in Figure 35. The z-nullcline intersects the ,x1. curve
at two periodic orbits, which correspond to LC and S.
Here, there is a unique saddle equilibrium point. The SLE
attractor reduces to a periodic switch between nonoscilla-
tory state and normal state, which occurs through a fold/
fold bifurcation in area 14, and coexists with LC. Both are
separated by a saddle periodic orbit (S). This coexistence
is plotted in Figure 22A. Time series are plotted in Figure
22B for the periodic switch between nonoscillatory state
and NS, and in Figure 22C for LC.
(X) LC and SLE with a fold/Hopf bifurcation: Area X in

Figure 34 corresponds to area 15 in Figure 35. The z-null-
cline intersects the ,x1.-curve at two periodic orbits,
which correspond to LC and S. There is a unique saddle
equilibrium point, and an SLE occurs through a fold/Hopf
bifurcation (Fig. 7). Then LC and SLE with a fold/Hopf

bifurcation coexist and are separated by a saddle periodic
orbit (S). This coexistence is plotted in Figure 22A. Time
series are plotted in Figure 21B for SLE and in Figure 21C
for LC.
(XI) LC and SLE with a fold/homoclinic bifurcation: Area

XI in Figure 34 corresponds to area 16 in Figure 35. The
z-nullcline intersects the ,x1.-curve at two periodic or-
bits, which correspond to LC and S. A unique saddle
equilibrium point exists, and an SLE occurs through a
fold/homoclinic bifurcation in area 16 (Fig. 6). Then LC
and SLE coexist and are separated by a saddle periodic
orbit (S). This coexistence is plotted in Figure 19A. Time
series are plotted in Figure 19B for SLE and in Figure
19C for LC.
(XII) A NS: Area XII in Figure 34 corresponds to area 19

in Figure 35. Here, the z-nullcline and the ,x1.-curve do
not intersect, hence periodic orbits LC, S, and SLC do not
exist. The z-nullcline intersects the (z, x1) curve at the Z-
lower branch, and then the equilibrium point is a stable
node in area 19. The Epileptor remains in NS after a tran-
sient period, which is shown in Figure 17.
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Figure 31. Parameter space of the Epileptor model with respect to the parameters m and x0 (Iext2 ¼ 0:45). There are 12 regions sep-
arated by a SNPO bifurcation (bold line). LC exists above and it does not exist below. LC exists in area I. Area II shows bistability of
LC and SLC. In area III, only SLC exists. Only a nonoscillatory state with damped oscillation exists in area IV, and coexists with LC
in area V. Only SLE exists in area VI, and coexists with LC in areas VII and VIII. SLE occurs through a fold/circle bifurcation in areas
VI and VII, and through a fold/homoclinic bifurcation in area VIII. NS exists in area IX and coexists with LC in area X. In areas XI and
XII, LC coexists with a chaotic state which is periodic in area XI, and it does not in area XII.
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(XIII) LC and a NS: Area XIII in Figure 34 corresponds to
area 20 in Figure 35. The z-nullcline intersects the
,x1.-curve at two periodic orbits, which correspond to
LC and S. The z-nullcline intersects the (z, x1) curve at the
Z-lower branch, and hence the equilibrium point is a sta-
ble node in area 20. Then LC and NS coexist and are sep-
arated by a saddle periodic orbit (S). This coexistence is
plotted in Figure 26A. Time series are plotted in Figure
26B for NS and in Figure 26C for LC.

Epileptor behaviors as a function ofm and x0
Different areas exist in the parameter space of the

Epileptor model as m and x0 vary (Figs. 31, 34). We show
the behavior of the SLE attractor in Figure 36A, a, b, b1,
and c1; the periodic switch between DB and NS in Figure
36 A, a1; the periodic switch between nonoscillatory state
and NS in Figure 36 A, c; the nonoscillatory state in Figure
36B, a; the normal state in Figure 36B, b; s and the cha-
otic state in Figure 37.
SLE: it occurs through:

1. A fold/circle bifurcation in Figure 36A, a and b, and cor-
responds to areas VI and VII, respectively, in Figure 31.

2. A fold/homoclinic bifurcation in Figure 36A, b1, and cor-
responds to area XI in Figure 34.

3. A fold/Hopf bifurcation in Figure 36 A, c1, and corre-
sponds to area X in Figure 34.
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Figure 32. The Epileptor parameter space of equilibrium points and periodic orbits with respect to the parameters m and x0
(Iext2 ¼ 0:45). There are 18 areas separated by a SNPO bifurcation (bold line). LC exists above and it does not exist below. The z-
nullcline intersects the (z, x1) curve at different equilibrium points. The equilibrium point is an unstable focus for areas 1 through 3.
The equilibrium points are a stable node, an unstable focus and a saddle in areas 4 and 5. The equilibrium points are a stable focus,
an unstable focus, and a saddle in area 6. The equilibrium points are one saddle and two unstable foci in area 7. The equilibrium
points are a saddle, an unstable focus, and an unstable node in area 8. The equilibrium points are one unstable focus and two sad-
dles in area 9. The equilibrium points are three saddles in area 10. The equilibrium point is a saddle for areas 11 through 16. The
equilibrium point is a stable node in areas 17 and 18. In areas 1, 7, 8, 9, 10, and 14, only LC exists. Area 2 presents bistability of LC
and SLC. In area 3, only SLC exists. In area 4, only a nonoscillatory state exists. In areas 5 and 6, LC and a nonoscillatory state co-
exist. Only SLE exists in area 11, and coexists with LC in areas 12 and 13. SLE occurs through a fold/circle bifurcation in areas 11
and 12, and through a fold/homoclinic bifurcation in area 13. NS exists in area 17 and coexists with LC in area 18. In areas 15 and
16, LC coexists with a chaotic state which is periodic in area 15, and it does not in area 16.
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Figure 33. Interspike intervals Dt (Iext2 ¼ 0:45). A, B, m = 1 (A)
and m = 1.5 (B).
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Periodic switch between DB and NS: The switch occurs
through a fold/fold bifurcation in Figure 36A, a1, and cor-
responds to area VII in Figure 34, which shows a periodic
switch between DB and NS.
Periodic switch between a nonoscillatory state and NS: The

switch occurs through a fold/fold bifurcation in Figure 36A, c,
and corresponds to area IX in Figure 34, which shows a peri-
odic switch between nonoscillatory state and NS.
Nonoscillatory state: The Epileptor remains in the nono-

scillatory state after a transient seizure-like fast dis-
charges (Fig. 36A). Parameter settings correspond to area
V in Figure 31 and to area 6 in Figure 32.
Depolarization block: The Epileptor remains in the DB

after a transient NS (Fig. 27A). Parameter settings corre-
spond to area V in Figure 34 and to area 5 in Figure 32.
Normal state: The Epileptor remains in the NS after a

transient seizure-like fast discharges (Fig. 36B, b).
Parameter settings correspond to area IX in Figure 31 and
to area 17 in Figure 32.
Chaotic state: The chaotic state exists in areas XI and XII

(Iext2 ¼ 0:45; Fig. 31). Time series of the Epileptor model c ,
subsystem 1 c 1, and subsystem 2 c 2 are plotted in Figure

37. Figure 37A correspond to area XI in Figure 31, and
Figure 37B correspond to area XII in Figure 31.

Subsystem 1
Here, we present results on the analysis of the subsystem

1 dynamics without coupling. We analytically determine the
equilibrium points and use tables to classify them, according
to the trace and the determinant of the Jacobian matrix. We
present the different tables as a function of the parameterm.

Analysis of subsystem 1
Subsystem 1 equilibrium points and stability.We an-

alytically find the equilibrium points (x1, y1) by solving the
following equations:
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Figure 34. Parameter space of the Epileptor model with respect
to the parameters m and x0 (Iext2 ¼ 0). There are 13 regions sepa-
rated by a SNPO bifurcation (bold line). LC exists above, and it
does not exist below. LC exists in area I. Area II presents a bist-
ability of LC and SLC. Only SLC exists in area III. DB exists for
areas IV, V, VII, and VIII. In area IV, only DB exists. In area V, DB
and LC coexist. In area VII, only a periodic switch between DB
and NS exists. In area VIII, a periodic switch between DB and NS
coexists with LC. Increasing m, DB locks into nonoscillatory state
with damped oscillation coexisting with LC in area VI. A periodic
switch between a nonoscillatory state and a NS coexists with LC
in area IX. SLE coexists with LC in areas X and XI. SLE occurs
through a fold/Hopf bifurcation in area X and through a fold/homo-
clinic bifurcation in area XI. NS exists in area XII and coexists with
LC in area XIII.
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Figure 35. The Epileptor parameter space of equilibrium points
and periodic orbits with respect to the parameters m and x0
(Iext2 ¼ 0). There are 20 regions separated by a SNPO bifurcation
(bold line). LC exists above and it does not exist below. The z-null-
cline intersects the (z, x1) curve at different equilibrium points. The
equilibrium point is an unstable focus for areas 1 through 3. The
equilibrium points are a stable node, an unstable focus, and a
saddle in areas 4 and 5. The equilibrium points are a stable focus,
an unstable focus, and a saddle in area 6. The equilibrium points
are one saddle and two unstable foci in area 7. The equilibrium
point is a stable node in areas 8, 9, 11, 19, and 20. The equilibrium
point is a stable focus in area 10. The equilibrium point is a saddle
for areas 12 through 18. In areas 1, 7, and 17, only LC exists.
Areas 2 and 18 present bistability of LC and SLC. In area 3, only
SLC exists. In areas 4 and 8, only DB exists. In areas 5 and 9, LC
and DB coexist. In areas 6, 10, and 11, LC and nonoscillatory
state coexist. Only a periodic switch between DB and NS exists in
area 12, and coexists with LC in area 13. A periodic switch be-
tween a nonoscillatory state and NS coexists with LC in area 14.
LC and SLE coexist in areas 15 and 16. SLE occurs through a
fold/Hopf bifurcation in area 15 and through a fold/homoclinic bi-
furcation in area 16. NS exists in area 19 and coexists with LC in
area 20.
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c� dx21 � f1ðx1;0Þ � z1 Iext1 ¼ 0
y1 ¼ c� dx21

�
(36)

where x1 is a solution of:

c1 ðb� dÞx21 � ax31 � z1 Iext1 ¼ 0 if x1 , 0 (37)

c� dx21 1 ðm1 0:6ðz� 4Þ2Þx1 � z1 Iext1 ¼ 0 if x1 � 0: (38)

Let d � be the discriminant of Equation 37 and d 1 be
the discriminant of Equation 38.

• If d �. 0, Equation 37 has one solution.
• If d � ¼ 0, Equation 37 has one solution.

• If d � , 0, Equation 37 has three solutions.

The solutions are equilibrium points if x1 ,0.

• If d 1 �0, Equation 38 has two solutions, x11 and x21 are
written as:

x11 ¼
R� ffiffiffiffiffiffiffiffi

d 1

p
2d

x21 ¼
R1

ffiffiffiffiffiffiffiffi
d 1

p
2d

R ¼ m1 0:6ðz� 4Þ2
d 1 ¼ R2 120ð1� z1 Iext1Þ:

8>>>>>>><
>>>>>>>:

(39)
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Figure 36. A, Deterministic time series of the Epileptor model c varying m and x0. a, a1, m = −12 and x0 = −1.6. Iext2 = 0.45 (a) and
Iext2 = 0 (a1). The transitions between ictal and normal states occur through a fold/circle bifurcation (a), and they reduce to transi-
tions between DB and NS (a1). b, b1, m = 0 and x0 = −1.6. Iext2 = 0.45 (b) and Iext2 = 0 (b1). The transitions between ictal and normal
states occur through a fold/circle bifurcation (b), and they reduce to transitions between nonoscillatory state and NS (b1). c, c1, x0 =
−1.6 and Iext2 = 0. m = −1 (c) and m = −0.5 (c1). The transitions between nonoscillatory state and NS occur through a fold/fold bifur-
cation (c) and a fold/Hopf bifurcation (c1). r = 0.0009 for (a, a1), r = 0.001 for (b, b1), and r = 0.0009 for (c, c1). B, Deterministic
time series of the Epileptor model c , which show the Epileptor remaining in a nonoscillatory state, with m = −2, x0 = −1 and (a) in
NS, with m = −2, x0 = −2.5 (b). r = 0.001 for a and b.
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Let X = z−4, then z 2� �1;minðXÞ1 4� [ ½maxðXÞ1
4; 11½ and X is a solution of

X4 1pX2 1qX1w ¼ 0 (40)

where

p ¼ 10m
3

q ¼ �500=9
w ¼ ð25=9Þðm2 1 20ðIext1 � 3ÞÞ:

8>><
>>: (41)

We find minðXÞ1 4 and maxðXÞ1 4 as m varies in Figure
38. Solutions of Equation 38 are equilibrium points if x11 �0
and x21 �0. Then an equilibrium point x1 (x1 ≥ 0) exists if:

z 2� �1; I1 1� [ ½maxðXÞ1 4; 11½ 8m � 0
z 2� �1;minðXÞ1 4� [ ½maxðXÞ1 4; 11½ 8m. 0

�
(42)

where X is a solution of Equations 40 and 41.
To determine the equilibrium points stability, we analyze

the eigenvalues of the following Jacobian matrix J:
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Figure 37. A, B, Deterministic time series of the Epileptor model c , subsystem 1 c 1 and subsystem 2 c 2 with a chaotic spiking for
m = 1, x0 = −1.6 (A), and a chaotic transition between ictal and normal states for m = 1.5, x0 = −1.9 (B).
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Figure 38. Finding min(X) 1 4 (red solid) and max(X) 1 4 (black
dashed) with respect to m. X is a solution of Equation 41. Blue
(dotted) curve corresponds to Iext1 1 1. The equilibrium points of
the subsystem 1 (x1 �0) exist according to Equation 42.
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Jðx1Þ ¼
����Eðx1; zÞ 1
�2dx1 �1

����
where

Eðx1; zÞ ¼ �3ax21 1 2bx1 if x1 , 0
m1 0:6ðz� 4Þ2 if x1 � 0:

(
(43)

J is defined at the equilibrium point (x1, y1). To find
the eigenvalues of J, we solve the characteristic
equation:

detðJðx1Þ � l IÞ ¼ l 2 � TrðJÞl 1DetðJÞ (44)

where Tr(J) and Det(J) are the trace and the determinant
of the matrix J, respectively.
The trace and the determinant of J are given by:

TrðJÞ ¼ Eðx1; zÞ � 1 (45)

DetðJÞ ¼ 2dx1 � Eðx1; zÞ: (46)

An equilibrium point is stable if all the real parts of the
eigenvalues of J are negative (Izhikevich, 2007). We can
classify the equilibrium points according to the trace and
the determinant of J (Izhikevich, 2007). We determine the

intervals on which the Tr(J) and Det(J) are negative and
positive.
The roots of Tr(J) are as follows:

x1ðTr1Þ ¼ ðb�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 3a

p
Þ=3a

x1ðTr2Þ ¼ ðb1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 3a

p
Þ=3a gif x1 , 0

zðTr1Þ ¼ 4� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5=3Þð1�mÞp
zðTr2Þ ¼ 41

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5=3Þð1�mÞp gif x1 � 0;8m � 1:

8>>><
>>>:

(47)

The roots of Det(J) are as follows:

x1ðDet1Þ ¼ 2ðb� dÞ
3a

g if x1 , 0

zðDet1Þ ¼ 11 Iext1 ifm � 0
minðXÞ1 4 ifm. 0

� �
if x1 � 0

zðDet2Þ ¼ maxðXÞ14;8m

8>>>><
>>>>:

(48)

where X is a solution of Equations 40 and 41.
We conclude that an equilibrium point x1 (x1 ≥ 0) exists

(see Eq. 42) if:

z 2� �1; zðDet1Þ� [ ½zðDet2Þ; 11½: (49)

We find the stability of equilibrium points 8z 2� �1;
zðDet1Þ� and 8z 2 ½zðDet2Þ; 11½ in Tables 2–Tables 5,
depending on m.
We graphically determine the equilibrium points in a

phase plane. The equilibrium points lie at the intersection
of the x1- and y1-nullclines. The x1-nullcline ( _x1 ¼ 0) corre-
sponds to a cubic curve for x1 , 0 and a straight line for
x1 ≥ 0.
The cubic curve is written in the form:

y1 ¼ ax31 � bx21 1 z� Iext1 (50)

and the straight line is written as follows:

y1 ¼ �ðm1 0:6ðz� 4Þ2Þx1 1 z� Iext1 : (51)

The y1-nullcline ( _y1 ¼ 0) corresponds to a parabola
given by:

y1 ¼ c� dx21: (52)

We plot the phase plane of the subsystem 1 in Figure
39A for z = 3.1 and in Figure 39B for z = 0. We

Table 1: List of acronyms

DB Depolarization block
Det Determinant
EEG Electroencephalographic
H Hopf bifurcation
HB Homoclinic bifurcation
J Jacobian matrix
LC Limit cycle attractor in the Epileptor
NS Normal state
RSE Refractory status epilepticus
S Separatrix, Saddle periodic orbit
SD Spreading depression
SLC Small limit cycle in the Epileptor
SLC1 Small limit cycle in the fast-slow subsystem
SLE Seizure-like event
SN Saddle-node bifurcation
SNIC Saddle-node on invariant circle bifurcation
SNPO Saddle-node of periodic orbits bifurcation
SWEs Sharp-wave events
Tr Trace

Table 2: Equilibrium points stability, ;z˛�2‘; zðDet1Þ�; ;m£ 0

x1 �1 2ðb�dÞ
3a 0 a 11

Det 1 − 1 1
Tr − − − 1
Stability Stable focus/node Saddle Stable focus/node Unstable focus/node

Table 3: Equilibrium points stability, ;z˛�2‘; zðDet1Þ�; ; 0 <m£ 1

x1 �1 2ðb�dÞ
3a 0 b a 11

Det 1 − − 1 1
Tr − − − − 1
Stability Stable focus/node Saddle Saddle Stable focus/node Unstable focus/node
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Table 5: Equilibrium points stability, ;z˛½zðDet2Þ; 1‘½;;m
x1 0 g 11

Det − 1
Tr 1 1
Equilibrium point stability Saddle Unstable focus/node

Table 4: Equilibrium points stability, ;z˛�2‘; zðDet1Þ�; ;m> 1

x1 �1 2ðb�dÞ
3a 0 b 11

Det 1 − − 1
Tr − − 1 1
Stability Stable focus/node Saddle Saddle Unstable focus/node

Table 6: Stability of subsystem 2 equilibrium points, ;s2 �1; ;a 2 > 1

x2 �1 x2ðDetÞ x2ðTr1Þ -0.25 x2ðTr2Þ 11
Det 1 − − 1 1
Tr − − 1 1 −
Stability Stable focus Saddle Saddle Unstable focus Stable focus

/node /node /node
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Figure 39. The (x1, y1) phase plane of the subsystem 1. Possible intersections of x1- (black cubic curve 8x1 ,0 and dashed straight
line 8x1 �0) and y1- (green parabola) nullclines depending on z and m. Trajectories are plotted without noise starting from different
initial conditions (black dot). The arrows indicate the direction of trajectories. The equilibrium points where they exist are labeled by
red squares for stable nodes, and black stars for saddles. A, z = 3.1, three equilibrium points coexist: a stable node (bottom), a sad-
dle (middle), and a stable focus for m = 0. The stable focus becomes unstable when m = 1 and m = 1.5, surrounded by a stable
limit cycle. The limit cycle radius increases as m is increased. B, z = 0, one equilibrium point exists which is an unstable focus sur-
rounded by a stable limit cycle for m = 0, and a stable focus for m = −10. C, m = 1.5, one equilibrium point exists for z = 2.7, and
three equilibrium points exist for z = 4: a stable node, a saddle, and an unstable focus. The stable limit cycle does not surround the
unstable focus, and then is broken through a homoclinic bifurcation.
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consider only the negative x1-axis for the cubic curve,
and plot a straight line of the x1-nullcline (8x1�0) for
different m.
When z = 3.1, then z� Iext1 ¼ 0 (Fig. 39A). We plot a

straight line of the x1-nullcline for m = 0, m= 1, and m =
1.5. Then the x1- and y1-nullclines intersect at three points
for each m value. We plot four trajectories with different
initial conditions (i1, i2, i3, and i4). Trajectories i1 and i2 con-
verge to one equilibrium point, which is a stable node.
Trajectories i3 and i4 converge to one equilibrium point,
which is a stable focus when m = 0 (Fig. 39A, m = 0). By
increasing (m = 1 and m = 1.5), the stable focus loses its
stability, and the equilibrium point is an unstable focus.
Trajectories i3 and i4 converge to a stable limit cycle,
which surrounds the unstable focus. The radius of the
limit cycle increases as m increases (Fig. 39A, m = 1 and
m = 1.5).
We conclude that when z = 3.1, three equilibrium

points coexist. The first one is a stable node and the sec-
ond one is a stable or an unstable focus, depending onm.
The third equilibrium point is a saddle. The stable manifold
of the saddle corresponds to a separatrix between the
first and second equilibrium point. The subsystem 1
undergoes a supercritical Andronov–Hopf bifurcation, H,
as m increases at m(H) = 0.514 [i.e., solution of Tr(J) = 0;
Eq. 45].
When z = 0, then z� Iext1 decreases and the x1-nullcline

moves downward in the phase plane (m = −10; Fig. 39B).
We plot a straight line of the x1-nullcline (8x1�0) for m =
0 and m = −10. Then the x1- and y1-nullclines intersect at
one equilibrium point, which is a stable focus for m = −10
and an unstable focus for m = 0 (Fig. 39B). The stable
node and saddle disappear. We plot trajectories in the
phase plane, which converge to a stable focus for m =
−10 and to a stable limit cycle for m = 0. The limit cycle
surrounds the unstable focus. The subsystem 1 under-
goes a supercritical Andronov–Hopf bifurcation, H, at m
(H) = −8.6 [i.e., solution of Tr(J) = 0; Eq. 45].
We now fix m on two values to identify the equilibrium

points as z varies.

• Let m = 0, three equilibrium points coexist when z =
3.1: a stable node, a saddle, and a stable focus
(Fig. 39A). When z = 0, then only an unstable focus
exists (Fig. 39B). Hence, as z decreases, a stable
focus becomes unstable, and the subsystem 1
undergoes a supercritical Andronov–Hopf bifurca-
tion, H. Moreover, the stable node and saddle dis-
appear when z = 0 (Fig. 39B). In fact, the stable
node and saddle approach each other as z de-
creases and coalesce at z � 2.9 (figure not shown),
which corresponds to zðx1ðDet1ÞÞ (see Eq. 48).
Decreasing z further, the stable node and saddle
disappear through a saddle-node bifurcation.

• Let m = 1.5, three equilibrium points coexist when z =
3.1: a stable node, a saddle, and an unstable focus
(Fig. 39A). When z decreases to z� 2.9, then a saddle-
node bifurcation occurs (figure not shown). When z =
2.7, the stable node and saddle disappear (Fig. 39C).
In contrast, when z = 4 (≥ 3.1), three equilibrium points
coexist: a stable node, a saddle, and an unstable

focus (Fig. 39C). A stable limit cycle surrounds the un-
stable focus when z = 3.1 (Fig. 39A), and it does not
when z = 4 (Fig. 39C). In fact, the stable limit cycle ap-
proaches as z increases to the saddle, touches the
saddle, and then terminates. Hence, when z = 4, the
stable limit cycle disappears through a homoclinic bi-
furcation, and the trajectories converge to a stable
node.

We conclude that the stability of equilibrium points de-
pends on z and m. In addition, we find three bifurcation
types: a saddle-node bifurcation, a homoclinic bifurca-
tion, and a supercritical Hopf bifurcation.

Subsystem 1 bifurcation diagram. We find the equi-
librium points as z varies in a (z, x1) bifurcation diagram
plotted in Figure 40 for m = 0. The (z, x1) curve com-
prises two geometrical shapes. The right one com-
prises two branches: the lower (dash-dotted) branch
consists of saddles; and the upper (dashed) branch
consists of unstable foci. When decreasing z, the lower
and upper branches collide in a saddle-node bifurca-
tion, SN. The left geometrical shape corresponds to a
Z-curve known from fast-slow subsystems (Ermentrout
and Terman, 2010). Left and right shapes are separa-
ted by SN2 and SN, such that zðSN2Þ ¼ Iext1 11 and
zðSNÞ ¼ maxðXÞ1 4 (Eq. 42). The discriminant d 1 of
Equation 38 is negative between SN2 and SN. Lower

H
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Figure 40. The (z, x1) subsystem 1 bifurcation diagram with re-
spect to z when m = 0. On the left, the plot shows a Z-shaped
curve 8z,zðSNÞ. Z-lower (solid) and Z-middle (dash-dotted)
branches consist of stable nodes and saddles, respectively. Z-
upper (solid) sub-branch consists of stable foci and Z-upper
(dashed) sub-branch consists of unstable foci. The two sub-
branches are separated by a Hopf bifurcation H. The Z-lower
and Z-middle branches collide as z decreases in a saddle-
node bifurcation SN1. The Z-upper and Z-middle branches
collide as z increases in a saddle-node bifurcation SN2. The Z-
shaped curve comprises two branches 8z �zðSNÞ: one
(dashed) consists of unstable nodes and another (dash-dotted)
consists of saddles. Decreasing z, they collide in a saddle-
node bifurcation, SN.
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and upper branches (right shape) consist of saddles
and unstable nodes, respectively 8m. Hence, in what
follows, we plot only the Z-curve (left shape) in the next
bifurcation diagrams.
We plot a (z, x1) bifurcation diagram for m = 0 in

Figure 41A. The geometrical shape of the bifurcation di-
agram corresponds to a Z-curve, which comprises four
branches. Z-lower (solid) and Z-middle (dash-dotted)
branches consist of stable nodes and saddles, respec-
tively. Decreasing z, Z-lower and Z-middle branches
collide in a saddle-node bifurcation point, SN1. The Z-
middle branch acts as a separatrix between Z-lower
and Z-upper branches.

The Z-upper branch comprises two sub-branches sep-
arated by a Hopf bifurcation, H: one sub-branch (solid)
consists of stable foci and another (dashed) consists of
unstable foci (Fig. 41A). The first sub-branch corresponds
to a nonoscillatory state, and the second sub-branch cor-
responds to an oscillatory state. The subsystem 1 then
switches as z decreases from nonoscillatory to oscillatory
states.
An unstable focus is surrounded by a stable limit cycle,

which is limited by red (maxðx1Þ) and green (minðx1Þ)
curves. The stable limit cycle radius increases as z is de-
creased. The stable limit cycle terminates in a Hopf bifur-
cation, H, written in the form:
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Figure 41. A, B, The (z; x1) subsystem 1 bifurcation diagram with respect to z (z,zðSNÞ), when m = 0 (A) and m = 2 (B). Z-lower
(solid) and Z-middle (dash-dotted) branches consist of stable nodes and saddles, respectively. Z-upper branch consists of unstable
foci (B), and it is divided into two sub-branches separated by a Hopf bifurcation, H (A): one (solid) consists of stable foci and another
(dashed) consists of unstable foci. The Z-lower and Z-middle branches collide as z decreases in a saddle-node bifurcation SN1. The
Z-upper (solid for A and dashed for B) and Z-middle branches collide as z increases in a saddle-node bifurcation SN2. A stable limit
cycle ends at a Hopf bifurcation (A) and at a homoclinic bifurcation (B). The curves maxðx1Þ; minðx1Þ and ,x 1Þ. correspond to the
maximum, minimum, and averaged values along periodic orbits.
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zðHÞ ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5=3Þð1�mÞ

p
(53)

which corresponds to zðTr1Þ (see Eq. 47), 8x1 �0). The
Hopf bifurcation point z(H) exists for m � 1 moving right-
ward (leftward) on the Z-upper curve as m increases (de-
creases), and does not exist form . 1.
We plot a (z, x1) bifurcation diagram for m = 2 in Figure

41B. Z-lower (solid) and Z-middle (dash-dotted) branches
consist of stable nodes and saddles, respectively. Z-upper
(dashed) branch consists only of unstable foci, which are
surrounded by stable limit cycles. The stable limit cycle
amplitude is limited by red (maxðx1Þ) and green (minðx1Þ)
curves. The stable limit cycle terminates as z increases in a
homoclinic bifurcation HB. Decreasing z, Z-lower and Z-
middle branches collide in a saddle-node bifurcation SN1.
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Figure 43. Finding the equilibrium points and periodic orbits of the fast-slow subsystem by using the (z, x1) bifurcation diagram of
the subsystem 1 shown in Figure 41. The z-nullcline ( _z ¼ 0) intersects the Z-shaped curve at equilibrium points, and the ,x1.
curve at periodic orbits. A, B, m = 0 and x0 = −1.6 (A), m = 2 and x0 = −1.6 (top, purple; B) or x0 = −1.9 (bottom, red; B). LC and S
are stable and saddle periodic orbits, respectively.
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Figure 42. Finding bifurcation points with respect to m. SN1 (blue
dashed) and SN2 (red dash-dotted) correspond to saddle-node bi-
furcations, and H (black solid) to a Hopf bifurcation. Iext1 ¼ 3:1.
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Increasing z, Z-upper and Z-middle branches collide in a
saddle-node bifurcation SN2 (Fig. 41B, inset).
SN1 and SN2 correspond to saddle-node bifurcation

points, and HB corresponds to a homoclinic bifurcation
point. SN1 and SN2 points are given by the following:

zðSN1Þ ¼ �0:18521 Iext1 (54)

which corresponds to zðx1ðDet1ÞÞ (see Eq. 48), 8x1 ,0),

zðSN2Þ ¼ 11 Iext1 ifm � 0
minðXÞ14 ifm. 0

�
(55)

where X is a solution of Equations 40 and 41. We find sad-
dle-node bifurcation points SN1 and SN2, and a Hopf bi-
furcation point, H, in Figure 42 as m varies. Figure 42
shows the following three cases:

• For m � 0.29, then zðHÞ,zðSN1Þ, and the subsystem
1 is bistable on [SN1, SN2].

• For 0:29,m,1, then zðHÞ.zðSN1Þ, and the subsys-
tem 1 is bistable on [SN1, SN2].

• Form. 1, then H does not exist, and the subsystem 1
is bistable on [SN1, HB].
Fast-slow subsystem equilibrium points.We analyti-

cally find the equilibrium points by solving the Equations
37 and 38, where z is a solution of _z ¼ 0 (Eq. 18). We de-
termine the stability of the equilibrium points by analyzing
the Jacobian matrix Jwritten as:

Jðx1Þ ¼

����Eðx1; zÞ 1 Kðx1; zÞ
�2dx1 �1 0
rs 0 LðzÞ

����
where

Eðx1; zÞ ¼ �3ax21 1 2bx1 if x1 , 0
m1 0:6ðz� 4Þ2 if x1 � 0

(
(56)

Kðx1; zÞ ¼ �1 if x1 , 0
1:2ðz� 4Þx1 � 1 if x1 � 0

�
(57)

LðzÞ ¼ �rð11 0:7z6Þ if z, 0
�r if z � 0:

�
(58)

J is defined at the equilibrium point (x1, y1, z). We find
the eigenvalues of J by solving the characteristic
equation:

detðJðx1Þ � l IÞ ¼ l 2 � TrðJÞl 1DetðJÞ: (59)

The trace, Tr(J), and the determinant, Det(J), of J are
given by:

TrðJÞ ¼ Eðx1; zÞ � 11 LðzÞ (60)

DetðJÞ ¼ 2dx1LðzÞ � Eðx1; zÞLðzÞ1 rsKðx1; zÞ: (61)

We graphically determine the equilibrium points
using the nullclines. The x1-nullcline corresponds to the
Equations 50 and 51, and the y1-nullcline corresponds
to Equation 52.
The z-nullcline ( _z ¼ 0, Eq. 18) corresponds to a straight

line for z ≥ 0 written in the form:

x1ðzÞ ¼ ðz=sÞ1 x0 (62)

and to a curve for z, 0 written as:

x1ðzÞ ¼ ððz10:1z7Þ=sÞ1 x0: (63)

The equilibrium points lie at the intersection of the z-,
x1-, and y1-nullclines. We graphically find the equilibrium
points using the bifurcation diagram of the subsystem 1
(Fig. 41). We plot the Z-curve using the intersection of the
x1- and y1-nullclines for each z. Therefore, the equilibrium
points of the fast-slow subsystem lie at the intersection of
the z-nullcline and the Z-curve (Fig. 43). A bifurcation dia-
gram of the subsystem 1 is plotted in Figure 43A for m =
0 and in Figure 43B form = 2. When x0 = −1.6, then the z-
nullcline is at the Z-middle branch for m = 0 (Fig. 43A)
andm = 2 (Fig. 43B), and then only a saddle exists. When
x0 = −1.9, then the z-nullcline is at the Z-middle branch for
m = 2, and the equilibrium point is a saddle (Fig. 43B).
The z-nullcline moves downward (x0 decreases) or up-

ward (x0 increases) in the bifurcation diagram, and inter-
sects the (z, x1) curve at different points. To determine
these points as x0 varies, we plot a (x0, x1) diagram in
Figure 44A for m = 0 and in Figure 44B for m = 2. The
curve consists of equilibrium points of the fast-slow sub-
system. Blue (bottom solid), black (plus sign markers), red
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Figure 44. A, B, Finding equilibrium points of the fast-slow sub-
system with respect to x0, for m = 0 (A) and m = 2 (B). Blue
(bottom solid), black (plus sign markers), red (dashed), and
green (top solid) branches consist of stable nodes, saddles, un-
stable foci, and stable foci, respectively. SN1 and SN2 corre-
spond to saddle-node bifurcation points and H to a Hopf
bifurcation point.
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(dashed), and green (top solid) branches consist of stable
nodes, saddles, unstable foci, and stable foci, respectively.
The branch of stable foci exists for m = 0 but does not for
m = 2. SN1 and SN2 correspond to saddle-node bifurca-
tion points, and H to a Hopf bifurcation point (Fig. 44).

Fast-slow subsystem behavior. The stability of equi-
librium points depends on m and x0. Different behavioral
patterns are discovered as m and x0 vary: a resting state,
a fold/fold bifurcation, a fold/homoclinic bifurcation, a
fold/Hopf bifurcation and a periodic solution (Fig. 45). To
observe this dynamical change, we integrated the fast-
slow subsystem equations for different m and x0. We plot

time series of the fast-slow subsystem in Figure 45, and
trajectories in Figure 46, asm and x0 vary.
NS: We plot a (z, x1) bifurcation diagram for m = 0 in

Figure 46D. Let x0 = −2.6, the z-nullcline is at the Z-lower
branch. The equilibrium point is a stable node. When a
trajectory is at the Z-upper (dashed) sub-branch, then it
exhibits an oscillatory solution, which terminates as z in-
creases in a Hopf bifurcation H. Then, the trajectory ex-
hibits a nonoscillatory solution on the Z-upper (solid) sub-
branch, which terminates as z increases in a saddle-node
bifurcation point, SN2, and the trajectory switches to the
Z-lower branch. Decreasing z, the trajectory continues to
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Figure 45. Time series of the fast-slow subsystem as m and x0 vary. Initial conditions are [0 −5 3] for left column and [0 −5 1] for
right column. r = 0.002. A, A1, m = 0, x0 = −1.6, transitions between upper and lower states occur through a fold/fold bifurcation
for A; LC exists for A1. B, B1, m = 2, x0 = −1.6, only LC exists. C, C1, m ¼ 2; x0 ¼ �1:7, SLC1 exists for C and LC for C1. D, D1,
m = 2, x0 ¼ �1:9, transitions between upper and lower states occur through a fold/homoclinic bifurcation for D; LC exists for D1. E,
E1, m ¼ 0; x0 ¼ �2:6, only a resting state exists. F, F1, m = 0.5, x0 ¼ �1:6, transitions between upper and lower states occur
through a fold/Hopf bifurcation for F; LC exists for F1.
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C at which z stabilizes. Time series are plotted in Figure
45, E and E1.
Ifm = 2, then the trajectory exhibits an oscillatory solution

on the Z-upper branch, which terminates as z increases in a
homoclinic bifurcation and the trajectory switches to the Z-
lower branch. The trajectory continues as z decreases to C,
at which z stabilizes (figure not shown).
Fold/Hopf bifurcation: We plot a (z, x1) bifurcation dia-

gram for m = 0.5 in Figure 46A. When m = 0.5, then
zðHÞ.zðSN1Þ (Fig. 42). Let x0 = −1.6, the z-nullcline is at
the Z-middle branch. The equilibrium point is a saddle.
When a trajectory is at the Z-lower branch, the stable
node disappears as z decreases through a saddle-node

bifurcation, SN1. Then, the trajectory switches to the Z-
upper (dashed) sub-branch exhibiting an oscillatory solu-
tion, which terminates as z increases in a Hopf bifurcation,
H. The trajectory exhibits a nonoscillatory solution on the
Z-upper (solid) sub-branch, which terminates as z in-
creases in a saddle-node bifurcation, SN2, and then
switches to the Z-lower branch. Therefore, the transitions
between Z-lower and Z-upper branches occur through a
fold/Hopf bifurcation. Time series are plotted in Figure 45F.
Fold/fold bifurcation: We plot a (z, x1) bifurcation dia-

gram for m = 0 in Figure 43A. When m = 0, then
zðHÞ, zðSN1Þ (Fig. 42). Let x0 = −1.6, the z-nullcline is at
the Z-middle branch (Fig. 43A). The equilibrium point is a
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Figure 46. The (z; x1) subsystem 1 bifurcation diagram with respect to z as m and x0 vary. A, m = 0.5 and x0 = −1.6, transitions between
upper and lower branches occur through a fold/Hopf bifurcation. B, m = 2 and x0 = −1.9, transitions between upper and lower branches
occur through a fold/homoclinic bifurcation. C, m = 2 and x0 = −1.7, the fast-slow subsystem stabilizes before a homoclinic bifurcation
occurs, giving rise to the stable limit cycle SLC1. D, m = 0 and x0 = −2.6, the fast-slow subsystem stabilizes its stable node, which is the
equilibrium point of the NS. The z-nullcline and ,x1. curve do not intersect, hence NS exists and LC does not. r = 0.0006, I.C = [−0.5
−5 2.831], and Ts = [0:0.01: 1120] for A; r = 0.002, I.C = [0 −5 2], and Ts = [0:0.01: 1300] for B; r = 0.003, I.C = [−1.5 −5 4], and Ts =
[0:0.01: 600] for C; and r = 0.002, I.C = [0 −5 2], and Ts = [0:0.01: 1000] for D.
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saddle. If a trajectory is at the Z-upper (dashed) sub-
branch, then it exhibits an oscillatory solution, which ter-
minates as z increases in a Hopf bifurcation H. The trajec-
tory exhibits a nonoscillatory solution on the Z-upper
(solid) sub-branch, which terminates as z increases in a
saddle-node bifurcation SN2, and then switches to the Z-
lower branch. Decreasing z, the stable node disappears
through a saddle-node bifurcation SN1 and the trajectory
switches to the Z-upper (solid) branch, which consists of
stable foci. Therefore, the transitions between Z-lower
and Z-upper branches occur through a fold/fold bifurca-
tion. Time series are plotted in Figure 45A.
Fold/homoclinic bifurcation: We plot a (z, x1) bifurca-

tion diagram for m = 2 in Figures 43B and 46B. Here, a
Hopf bifurcation points does not exist (Fig. 42). Let x0
= −1.9, the z-nullcline is at the Z-middle branch. The
equilibrium point is a saddle. When a trajectory is at
the Z-upper (dashed) branch, it exhibits an oscillatory
solution, which terminates as z increases in a homo-
clinic bifurcation HB, and then switches to the Z-lower
branch. Decreasing z, the stable node disappears
through a saddle-node bifurcation, SN1, and the tra-
jectory switches to the Z-upper branch. Therefore, the
transitions between Z-lower and Z-upper branches
occur through a fold/homoclinic bifurcation. Time se-
ries are plotted in Figure 45D.
Periodic solution (SLC1):We plot a (z, x1) bifurcation dia-

gram form = 2 in Figure 46C. Let x0 = –1.7, the z-nullcline
is at the Z-middle branch. The equilibrium point is a sad-
dle. When a trajectory is at the Z-lower branch, the stable
node disappears as z decreases through a saddle-node
bifurcation, SN1. Then, the trajectory switches to the Z-
upper (dashed) branch exhibiting as z increases an oscil-
latory solution which stabilizes at C. The z-nullcline inter-
sects the ,x1.-curve at C, hence the system solution is
periodic and corresponds to a stable limit cycle, with a
small amplitude denoted by SLC1. Time series are plotted
in Figure 45C.
Figure 45B shows the existence of a periodic solution

with a large amplitude when m = 2 and x0 = −1.6. Here,
the equilibrium point is a saddle (Fig. 44B). The solution is
a stable limit cycle with a fast-slow cyclic behavior, which
corresponds to LC.

Finding LC
LC and SLC1 are stable limit cycles with large and small

amplitudes, respectively. Here we show when periodic or-
bits exist and how they evolve, determining their stability.

Sensitivity to initial conditions. The Epileptor model
is sensitive to initial conditions. In fact, integrating the
fast-slow subsystem in Equations 18–20 from an initial
condition results in different behaviors as m and x0 are
varied (Fig. 45A–F, left). We considered another initial
condition and used numerical integration techniques to
solve the fast-slow subsystem equations. Figure 45A1–
F1, (right), shows two different solutions as m and x0
vary. The first solution corresponds to a stable LC and
appears in Figure 45, A1–D1, and F1. The second one
corresponds to a normal state, which exists when x0 =
−2.6 (Fig. 45E1).

We now fix m and x0, and compare the solutions of the
fast-slow subsystem as the initial conditions vary:

• When m = 0 and x0 = −1.6, two solutions coexist: a
fold/fold bifurcation (Fig. 45A) and LC (Fig. 45A1).

• When m = 0.5 and x0 = −1.6, two solutions coexist: a
fold/Hopf bifurcation (Fig. 45F) and LC (Fig. 45F1).

• When m = 2 and x0 = −1.9, two solutions coexist: a
fold/homoclinic bifurcation (Fig. 45D) and LC (Fig.
45D1).

• Whenm = 2 and x0 = −1.7, then two periodic solutions
coexist: SLC1 (Fig. 45C) and LC (Fig. 45C1).

Therefore, the fast-slow subsystem is sensitive to initial
conditions and exhibits a bistability of LC and SLC1, a
fold/fold bifurcation, a fold/Hopf bifurcation or a fold/ho-
moclinic bifurcation.

Finding periodic orbits. For x0 = −2.6, the normal state
exists and LC does not (Fig. 45E,E1). However, when m =
2 and x0 = −1.6, only the LC exists (Fig. 45B,B1). We explain
this using the averaging method. We introduce ,x1.,
which is the average value of x1-coordinate associated
with the subsystem 1, given by:

,x1ðzÞ. ¼ 1
TðzÞ

ðTðzÞ

0
f ðt; zÞdt (64)

where x1 ¼ f ðt; zÞ.
We plot ,x1. in a (z, x1) bifurcation diagram (Fig.

43). Periodic orbits lie at the intersection of the z-null-
cline and the ,x1.-curve. A periodic orbit branch is
referred to the Z-upper branch, which is surrounded by
periodic orbits. This branch and the ,x1.-curve termi-
nate as z increases in a Hopf bifurcation for m � 1
(Fig. 43A) and in a homoclinic bifurcation for m . 1
(Fig. 43B).
Let x0 = −1.6, Figure 43 shows that the z-nullcline inter-

sects the ,x1.-curve at two points: LC and S when m =
0, and only at LC whenm = 2. However, LC and S coexist
whenm = 2 and x0 = −1.9 (Fig. 43B).
We graphically determine the periodic orbit by using the

Pontryagin’s averaging technique (Shilnikov and Kolomiets,
2008). We introduce the following slow averaged nullcline:

, _z. ¼ rðsð,x1.� x0Þ � z� 0:1z7Þ if z, 0
rðsð,x1.� x0Þ � zÞ if z � 0

¼ 0
�

(65)

where the periodic orbits correspond to the zeros of the
, _z..
We determine the slow averaged nullcline by substitut-

ing the x1-coordinates by their averaged values in the z
dynamics Equation 18 and setting the right-hand side of
the equation equal to zero (Eq. 65). The slow averaged
nullcline depends on x0 and z. We determine the periodic
orbit stability by using the following derivative:

d, _z.
dz

����
z¼zp

(66)

that represents the dynamics of the averaged equation. A
periodic orbit is stable when Equation 66 is negative and
is unstable when Equation 66 is positive.
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We plot the , _z.-curve in Figure 47A for m = 0 (Figure
47A,a), andm = 2 (Figure 47A,b). z is a control parameter.
The maximal value of z corresponds to a Hopf bifurcation
point H for m � 1 and to a homoclinic bifurcation point
HB for m. 1. The periodic orbits are the zeros of the
, _z.. A periodic orbit is stable when the , _z.-curve
decreases over z at the given zero and is unstable
when the , _z. curve increases. Stable and saddle per-
iodic orbits are labeled as black circles and squares
respectively.

• Let m = 0 (Fig. 47A,a), , _z. has a simple zero when
x0 = 1, which is stable. Decreasing x0 to −0.25, another
periodic orbit is born, which is unstable (saddle). When
x0 = −2.45, stable and saddle periodic orbits coalesce
forming a saddle-node periodic orbit, which then
fades 8x0 ,�2:45. Stable and saddle periodic orbits
disappear through a SNPO bifurcation (Shilnikov and
Kolomiets, 2008).

• Let m = 2 (Fig. 47A,b), , _z. has a simple zero when
x0 = −1.6, which is stable. When x0 ¼ �1:9; , _z. has
two zeros: one stable and another saddle. When
x0 ¼ �1:7; , _z. has three zeros: two stable periodic
orbits separated by a saddle periodic orbit. By de-
creasing x0, SNPO bifurcation occurs.

We conclude that LC and S are stable and saddle peri-
odic orbits, respectively (Fig. 43). When m = 2 and x0 =

−1.7, then two zeros of , _z. are LC and S. The third zero
is a stable periodic orbit, which we denote by SLC1.

Evolution of periodic orbits. LC and S are stable and
saddle periodic orbits, respectively. SLC1 is a stable peri-
odic orbit, which exists for m = 2. We now analyze how
the periodic orbits evolve when x0 varies slowly. We plot a
(x0, z

p) bifurcation diagram of periodic orbits in Figure 47B
for m = 0 (Figure 47B,a), and m = 2 (Figure 47B, b). We
localize the periodic orbits at zp. x0 is a control parameter.

• Let m = 0, only LC exists [red bottom (1) markers] for
large x0. Decreasing x0, S (black dotted squares) ap-
pears. Stable (LC) and saddle (S) periodic orbits ap-
proach each other as x0 decreases, collide in a saddle-
node periodic orbit bifurcation, and then fades. LC and S
disappear through a SNPO bifurcation (Fig. 47B,a).

• Let m = 2, only LC exists for large x0. Decreasing x0, S
and SLC1 [blue top (1) markers] appear. Hence, LC
and SLC1 coexist and are separated by S. Decreasing
x0, SLC1 disappears. Further decreasing x0, LC and S
disappear through an SNPO bifurcation (Fig. 47B,b).

We can now explain the solutions found in Figure 45.
We plot in the (x0, z

p) bifurcation diagram the equilibrium
points, labeled as dots (Fig. 47B). Blue (segment 1), black
(segment 2), green (segment 3), and purple (segment 4)
dots correspond to stable nodes, saddles, stable foci,
and unstable foci, respectively. For instance, when m = 0
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Figure 47. Periodic orbits of subsystem 1. A, Finding periodic orbits with respect to z (constant). We plot the graph of the Equation
65 on its right-hand side for different values of x0 (from bottom to top; x0 = 1, −0.25, −1.6, −2.4, −2.8) for m = 0 (a) and (x0 = −1.6,
−1.7, −1.9, −2.6, −2.8) for m = 2 (b). Stable and saddle periodic orbits are labeled as black circles and squares, respectively, which
disappear as x0 decreases through a SNPO bifurcation. B, The fast-slow subsystem parameter space of periodic orbits and equilib-
rium points with respect to x0. a, m = 0. b, m = 2. Saddle periodic orbits, S, are labeled as black squares (with dot). Stable periodic
orbits LC (bottom, red) and SLC1 (top, blue) are labeled as (1) markers. Equilibrium points are labeled as dots. Blue (segment 1),
black (segment 2), green (segment 3), and purple (segment 4) dots correspond to stable nodes, saddles, stable foci and unstable
foci, respectively.
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and x0 = −2.6, a stable node exists and LC does not exist,
whence trajectories exhibit a normal state in Figure 45, E
and E1. We discuss all solutions found in Figure 45 in the
sections: “Monostability in the fast-slow subsystem” and
“Coexistence in the fast-slow subsystem”.

Periodic switch between a DB and a NS in the fast-slow
subsystem
When m � 1, a Hopf bifurcation H partitions the Z-

upper branch into two sub-branches: one consists of an
unstable focus (8z,zðHÞ) and another consists of a stable
focus (8z.zðHÞ; Fig. 41A). When decreasingm, the imagi-
nary part of the complex-conjugate eigenvalues corre-
sponding to the stable focus goes to zero, and then the
stable focus becomes a stable node. We plot a (z, x1) bi-
furcation diagram when m = −8 in Figure 48A. The Z-
lower branch consists of stable nodes, which are the equi-
librium points of the NS. The Z-upper branch consists of
stable nodes (z.zðSN1Þ.zðHÞ) which are responsible for
the silent activity, similar to a DB. The z-nullcline is at the
Z-middle branch which consists of saddles (x0 = −1.6).
When a trajectory is at the Z-lower branch, the stable
node disappears as z decreases through a saddle-node
bifurcation SN1 and then the trajectory enters into a depo-
larization block, which terminates as z increases in a sad-
dle-node bifurcation, SN2. Thus, the transitions between
the Z-lower and Z-upper branches are reduced to a peri-
odic switch between a NS and a DB. Time series are plot-
ted in Figure 49C.

Stabilizing equilibrium points in the fast-slow subsystem
The transitions between Z-lower and Z-upper branches

occur when the equilibrium point is a saddle (x0 = −1.6).
When x0 is increased, the fast-slow subsystem stabilizes
the equilibrium point of the Z-upper branch, and when x0
is decreased, the fast-slow subsystem stabilizes the equi-
librium point of the Z-lower branch (normal state).

Stabilizing the equilibrium point of the nonoscilla-
tory state. Let x0 = −0.5. We plot a (z, x1) bifurcation dia-
gram when m = 0 in Figure 48C. The z-nullcline is at the
Z-upper branch which consists of a stable focus.
Decreasing z, the stable node disappears through a sad-
dle-node bifurcation SN1 and the fast-slow subsystem
switches to the Z-upper branch (dashed) exhibiting an os-
cillatory solution, which terminates in a Hopf bifurcation,
H. The fast-slow subsystem exhibits a nonoscillatory so-
lution at the Z-upper branch (solid) and continues to C, at
which z stabilizes. The imaginary part of the eigenvalues
of C is responsible for the oscillations around the stable
focus, which is the equilibrium point of the nonoscillatory
state. Time series are plotted in Figure 49A for the nono-
scillatory state.

Stabilizing the equilibrium point of the DB. Let x0 =
−0.5. We plot a (z, x1) bifurcation diagram when m = −8 in
Figure 48D The z-nullcline is at the Z-upper branch which
consists of stable nodes. Decreasing z, the stable node
disappears through a saddle-node bifurcation, SN1, then
the fast-slow subsystem switches to the Z-upper branch
(solid) exhibiting DB and continues to C, at which z

-2

-1

0

43.83.63.43.232.8
z

-2

-1

0

43.83.63.43.232.82.6

1

z

-2

-1.2

0

-0.4

-0.8

-1.6

43.83.63.43.232.8
z

-2

-0.5

-1.5

-0.5

1.5

0.5

2

-1.5

-1

0

43.532.52

1

z

-0.5

-1.5

0.5

H

C

C

C

H

BA

DC

Figure 48. Bifurcation diagram of fast-slow subsystem with respect to z, as m and x0 vary. A, m = –8, x0 = −1.4, the fast-slow subsystem
exhibits a periodic switch between DB and NS. B, m ¼ 0; x0 ¼ �2:4, the fast-slow subsystem stabilizes its stable node which is the equi-
librium point of NS. C, m ¼ 0; x0 ¼ �0:5, the fast-slow subsystem stabilizes its stable focus, which is the equilibrium point of nonoscilla-
tory state. D, m ¼ �8; x0 ¼ �0:6, the fast-slow subsystem stabilizes its stable node, which is the equilibrium point of DB. r = 0.0005, I.C
= [0 −5 2.817], and Ts = [0:0.01: 3000] for A; r = 0.001, I.C = [0 −5 2], and Ts = [0:0.01: 2000] for B; r = 0.001, I.C = [−1.5 −5 4], and
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stabilizes. The imaginary part of the eigenvalues of C
goes to zero, and therefore the oscillations around C dis-
appear. Here, the stable node (C) is the equilibrium point
of DB. Time series are plotted in Figure 49D for the DB.

Stabilizing the equilibrium point of the NS. Let x0 =
−2.4. We plot a (z, x1) bifurcation diagram when m = 0 in
Figure 48B. The z-nullcline is at the Z-lower branch which
consists of stable nodes. When a trajectory is at the Z-upper
branch (dashed), it exhibits an oscillatory solution, which ter-
minates as z increases in a Hopf bifurcation, H, and then a
nonoscillatory solution on the Z-upper branch (solid), which
terminates as z increases in a saddle-node bifurcation SN2.
The fast-slow subsystem continues to C, at which z stabil-
izes. The stable node (C) is the equilibrium point of the NS.
Time series are plotted in Figure 49B for the NS.

Monostability in the fast-slow subsystem
Figure 45 shows that the fast-slow subsystem presents

a monostability in two cases:
Case 1: Only LC exists. , _z. has a simple zero for m =

2 and x0 = −1.6, which is LC (Fig. 47A,b). Then only LC ex-
ists, to which all trajectories converge (Fig. 45,B and B1).
Case 2: Only normal state exists. The z-nullcline and

,x1.-curve do not intersect when m = 0 and x0 = −2.6
(Fig. 46D). Then LC disappears through an SNPO bifurcation
(Fig. 47B,a). As a consequence, only a stable node exists to
which all trajectories converge (Fig. 45,E and E1).

Coexistence in the fast-slow subsystem
Figure 45 shows that LC coexists with SLE or SLC1.

Using bifurcation analysis, we identify all coexisting at-
tractors in the fast-slow subsystem.

Coexistence of LC and SLE. A coexistence occurs
when , _z. has two zeros, which are LC and S. LC coex-
ists with SLE, which occurs through a fold/Hopf bifurca-
tion (Fig. 45,F and F1) or a fold/homoclinic bifurcation
(Fig. 45,D and D1). The equilibrium point is a saddle. A
saddle periodic orbit (S) acts as a separatrix between LC
and SLE (Fig. 47B).

Coexistence of LC and SLC1. , _z. has three zeros,
which are LC, S, and SLC1 (Fig. 47A,b). LC coexists with a
periodic solution (SLC1; Fig. 45C and C1). The equilibrium
point is a saddle. A saddle periodic orbit (S) acts as a sep-
aratrix between LC and SLC1 (Fig. 47B,b).

Coexistence of LC and a NS. Figure 47B shows the
coexistence of LC and a stable node (blue dots), which is
the equilibrium point of the normal state. Therefore, LC and
the normal state coexist and are separated by S. Let m = 0
and x0 = −2.4, time series are plotted in Figure 49D for the
normal state and in Figure 49D1 for LC. The bifurcation dia-
gram is plotted in Figure 48B. Only the normal state is shown.

Coexistence of LC and a nonoscillatory state.
(Figure 47B,a), shows the coexistence of LC and a stable
focus (green dots), which is the equilibrium point of the
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Figure 49. Time series of the fast-slow subsystem as m and x0 vary. Initial conditions are [0 −5 3] for left column and [0 −5 −1] for
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B, B1, m = 0, x0 = −2.4, the fast-slow subsystem remains in the NS (B), which coexists with LC (B1). C, C1, m = −8, x0 = −1.4, the
fast-slow subsystem switches between DB and NS (C), coexisting with LC (C1). D, D1, m = −8, x0 = −0.6, the fast-slow subsystem
remains in DB (D), which coexists with LC (D1). r = 0.001 (A, A1), r = 0.005 (B), r = 0.001 (B1), r = 0.005 (C), r = 0.001 (C1), r =
0.001 for (D), and r = 0.01 (D1).

Research Article: New Research 47 of 54

March/April 2020, 7(2) ENEURO.0485-18.2019 eNeuro.org



nonoscillatory state. Then, LC and the nonoscillatory
state coexist and are separated by S. Time series are plot-
ted in Figure 49A for the nonoscillatory state and in Figure
49A1 for LC. The bifurcation diagram is plotted in Figure
48C. Only the nonoscillatory state is shown.

Coexistence of LC and a periodic switch between
nonoscillatory state and NS. When m is decreased and
the equilibrium point is a saddle, the fast-slow subsystem
switches between the nonoscillatory state and the NS
through a fold/fold bifurcation (Fig. 45A). (Figure 47B,a),
shows the coexistence of LC and a saddle (black dots),
which is the equilibrium point of this periodic switch.
Therefore, LC and the periodic switch between nonoscil-
latory state and NS coexist and are separated by S. Time
series are plotted in Figure 45A for the periodic switch be-
tween nonoscillatory state and NS, and in Figure 45A1 for
LC.

Coexistence of LC and a periodic switch between
DB and NS.Whenm is further decreased and the equilib-
rium point is a saddle, the fast-slow subsystem switches
between DB and NS (Fig. 48A). Time series are plotted in
Figure 49C for the periodic switch between DB and NS,
and in Figure 49C1 for LC. Parameters m and x0 are the
same, only initial conditions change. Then, LC and the
periodic switch between DB and NS coexist.

Coexistence of LC and a DB. When m is decreased,
the fast-slow subsystem enters into DB (Fig. 49C). When
x0 is increased, the fast-slow subsystem remains in DB
(Fig. 48D). Time series are plotted in Figure 49D for DB,
and in Figure 49D1 for LC. Hence, LC and DB coexist.

Parameter space of equilibrium points and periodic orbits
To characterize the coexisting attractors, we explore a

(m, x0) parameter space of the fast-slow subsystem in
Figure 50, using numerical techniques. The parameter
space is divided in two parts separated by a bold line
(SNPO bifurcation), above which LC exists, while it does
exist below it. There are 10 areas. For large values of m
and x0 (area I) only LC exists. The adjacent area II shows
bistability of LC and a stable focus. Both attractors are
separated by a saddle periodic orbit. In the middle, LC co-
exists with the SLE attractor separated by a saddle peri-
odic orbit. SLE occurs via a saddle-node/saddle-node
bifurcation (area VI) and a saddle-node/homoclinic bifur-
cation (area VII). In area VIII, the homoclinic bifurcation HB
is not completed and gives rise to another (coexisting)
stable periodic orbit with a small amplitude, SLC1. In area
V, DB coexists with LC. In area IX, normal brain activity
and LC coexist. In area X, only normal activity exists.
(I) LC: The z-nullcline intersects the ,x1.-curve at one

point which is LC, and intersects the (z, x1) curve at differ-
ent equilibrium points. The equilibrium point can be a sta-
ble focus, an unstable focus, or a saddle. All trajectories
converge to LC. Time series are plotted in Figure 45, b
and b1, for LC.
(II) Coexistence of LC and a stable focus: The z-nullcline

intersects the (z, x1) curve at one equilibrium point, which
is a stable focus, and intersects the ,x1.-curve at two
points: LC and S. The trajectories converge to LC or a
stable focus, depending on the initial conditions. A

saddle periodic orbit (S) limits the basin of attraction of
LC and the basin of attraction of a stable focus. The sta-
ble focus is the equilibrium point of the nonoscillatory
state. Then, LC and nonoscillatory state coexist and are
separated by S.
If a trajectory is in the basin of attraction of the stable

focus, then it exhibits a nonoscillatory solution following
two scenarios. When the trajectory is at the Z-lower
branch, the stable node disappears through a saddle-
node bifurcation SN1 and the trajectory switches to the Z-
upper branch, which comprises a Hopf bifurcation point,
H. If zðHÞ. zðSN1Þ (first scenario), then the trajectory ex-
hibits an oscillatory solution, which terminates as z de-
creases in a Hopf bifurcation, H. Then, the trajectory
continues to the stable focus at which z stabilizes. If
zðHÞ, zðSN1Þ (second scenario), then the trajectory ex-
hibits a nonoscillatory solution, which continues as z de-
creases to the stable focus at which z stabilizes. The
stable focus is the equilibrium point of the nonoscillatory
state. The system is bistable on [SN1, SN2].
Using analytic techniques, we observe that the stable

focus reduces as m decreases to a stable node (i.e., the
imaginary part of the complex-conjugate eigenvalues cor-
responding to the stable focus goes to zero). Here, the
stable node is the equilibrium point of the DB, and then
DB is present in area II. LC and DB coexist as m
decreases.
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Figure 50. Parameter space of the fast-slow subsystem with re-
spect to the parameters m and x0. There are 10 areas separated
by a boundary (bold line), above which LC exists, and below it
does not. For large values of m and x0 (area I) only LC exists.
The adjacent area II shows the bistability of LC and a stable
focus. Both attractors are separated by a saddle periodic orbit.
In the middle, LC coexists with the SLE attractor separated by a
saddle periodic orbit. SLE occurs via a saddle-node/saddle-
node bifurcation (area VI) and a saddle-node/homoclinic bifur-
cation (area VII). In area VIII, the HB is not completed and gives
rise to another (coexisting) stable periodic orbit with a small am-
plitude. In area V, DB coexists with LC. In area IX, normal brain
activity and LC coexist. In area X, only normal activity exists.
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(V) Coexistence of LC and a periodic switch between
DB and NS: The z-nullcline intersects the (z, x1) curve at
one equilibrium point, which is a saddle, and intersects
the ,x1.-curve at two points: LC and S. A Hopf bifurca-
tion point, H, exists for m� 1 (Fig. 42). Using analytic
techniques (Fig. 42), we can deduce that zðHÞ, zðSN1Þ.
The transitions between Z-upper and Z-lower branches
occur through a fold/fold bifurcation. For small m, the Z-
upper branch consists of stable nodes, which is the equi-
librium point of a DB. The system is bistable on [SN1,
SN2]. The transitions between Z-upper and Z-lower
branches reduce to a periodic switch between DB and
NS. The LC and periodic switch between DB and NS co-
exist and are separated by S.
(VI) Coexistence of LC and SLE with a fold/fold bifurca-

tion: Using numerical techniques, there is a saddle-node
bifurcation at both offset and onset seizures. We can de-
duce that SLE occurs with a fold/fold bifurcation in area
VI. The z-nullcline intersects the ,x1.-curve at two
points: LC and S. As a consequence, LC and SLE with a
fold/fold bifurcation coexist and are separated by S. In
contrast to area V, the Z-upper branch consists of a stable
focus, which is the equilibrium point of the nonoscillatory
state. The SLE attractor reduces then to a periodic switch
between nonoscillatory state and NS, which occurs
through a fold/fold bifurcation, coexisting with LC. Time
series are plotted in Figure 45A for a periodic switch be-
tween nonoscillatory state and NS, and in Figure 45A1 for
LC.
Using analytic techniques (Fig. 42), we can deduce that

as m increases, zðHÞ. zðSN1Þ. This means that although
there is a saddle-node bifurcation at both offset and onset
seizures, there is a Hopf bifurcation occurring during the
ictal period before offset seizure. Thus, an SLE occurs as
m increases through a fold/Hopf bifurcation in area VI, co-
existing with LC. Time series are plotted in Figure 45F for
SLE with a fold/Hopf bifurcation, and in Figure 45F1for
LC.
(VII) Coexistence of LC and SLE with a fold/homoclinic

bifurcation: The z-nullcline intersects the (z, x1) curve at
one equilibrium point, which is a saddle, and intersects
the ,x1.-curve at two points: LC and S. Since m.1,
then the transitions between Z-upper and Z-lower
branches occur through a fold/homoclinic bifurcation. For
m = 1, a Hopf bifurcation point, H, exists such that
zðHÞ. zðSN1Þ (Fig. 42). When a trajectory is at the Z-
upper branch, then it exhibits an oscillatory solution,
which touches the Z-middle branch before the Hopf bifur-
cation, H. Then the transitions between Z-upper and Z-
lower branches occur through a fold/homoclinic bifurca-
tion form = 1. LC and a fold/homoclinic bifurcation coex-
ist and are separated by S. Time series are plotted in
Figure 45D for fold/homoclinic bifurcation and in Figure
45D1 for LC.
(VIII) Coexistence of LC and SLC1: The z-nullcline inter-

sects the (z, x1) curve at one equilibrium point, which is a
saddle, and intersects the ,x1.-curve at three points:
LC, SLC1, and S. Then LC and SLC1 coexist and are sep-
arated by S. If a trajectory is in the basin of attraction of
SLC1, then it exhibits a periodic solution with a small am-
plitude. When the trajectory is at the Z-lower branch, the

stable node disappears through a saddle-node bifurcation,
SN1, and the trajectory switches to the Z-upper branch.
Then, the trajectory exhibits, as z increases, an oscillatory
solution, which stabilizes at SLC1. Time series are plotted in
Figure 45C for SLC1 and in Figure 45C1 for LC.
(IX) Coexistence of LC and a NS: The z-nullcline inter-

sects the (z, x1) curve at one equilibrium point which is a
stable node, and intersects the ,x1.-curve at two
points: LC and S. The stable node is the equilibrium point
of the normal state. Then, LC and the normal state coexist
and are separated by S. Time series are plotted in Figure
49B) for the normal state and in Figure 49B1 for LC. The
fast-slow subsystem switches to NS according to three
scenarios, depending on m. We discuss these scenarios
below in area X.
In the following areas, LC and S disappear through a

SNPO bifurcation.
(III) DB: The z-nullcline intersects the (z, x1) curve at one

equilibrium point, which is a stable node (Fig. 43A). The
range ofm indicates that a Hopf bifurcation point H exists,
with zðHÞ,zðSN1Þ (Fig. 42). When a trajectory is at the Z-
lower branch, the stable node disappears through a sad-
dle-node bifurcation, SN1, and the trajectory switches to
the Z-upper branch exhibiting DB and continues to the
equilibrium point, at which z stabilizes. Therefore, the
fast-slow subsystem remains in the depolarization block.
(IV) Periodic switch between DB and NS: This area ex-

hibits a periodic switch between DB and NS, like area V.
In contrast, LC and S disappear through a SNPO
bifurcation.
Therefore, the fast-slow subsystem only switches be-

tween DB and NS.
(X) NS: The z-nullcline intersects the (z, x1) curve at one

equilibrium point, which is a stable node. Time series of
this solution are plotted in Figure 45, E and E1.
Trajectories switch to the normal state according to three
scenarios, depending onm.

• For m , 1 (first scenario), a Hopf bifurcation point, H,
exists. If a trajectory is at the Z-upper sub-branch,
which consists of unstable foci, it exhibits an oscilla-
tory solution that terminates as z increases in a Hopf
bifurcation, H. Then, the trajectory exhibits a nonoscil-
latory solution on the Z-upper sub-branch, which
consists of stable foci. The nonoscillatory solution ter-
minates as z decreases in a saddle-node bifurcation
SN2 and the trajectory switches to the Z-lower branch.

• For m = 1 (second scenario), a Hopf bifurcation point
H exists. If a trajectory is at the Z-upper sub-branch,
which consists of unstable foci, it exhibits an oscilla-
tory solution, which touches the Z-middle branch be-
fore the Hopf bifurcation, H, as z increases. Then the
trajectory switches to the Z-lower branch through an
HB.

• For m . 1 (third scenario), a Hopf bifurcation point, H,
does not exist. If a trajectory is at the Z-upper branch,
which consists of unstable foci, then it exhibits an os-
cillatory solution, which terminates as z increases in a
homoclinic bifurcation, and the trajectory switches to
the Z-lower branch.

Research Article: New Research 49 of 54

March/April 2020, 7(2) ENEURO.0485-18.2019 eNeuro.org



The Z-lower branch consists of stable nodes, which are
the equilibrium points of the normal state. At the Z-lower
branch, the trajectory continues to a stable node, at which
z stabilizes. Therefore, the fast-slow subsystem only re-
mains in the normal state. Time series are plotted in
Figure 45, E and E1, for the normal state.
Note that the SNPO curve (bold line) decreases as m

increases.

Special cases
The fast-slow subsystem has one equilibrium point,

which is a stable focus, an unstable focus, a saddle, or a
stable node, depending on m and x0. When LC coexists
with an attractor and both are separated by S, the trajec-
tories converge to LC or the attractor, depending on initial
conditions. When S does not exist (x0 = −1.6; Fig. 47B,b),
then all trajectories converge to LC (Fig. 45B,B1).
Figure 47B,a, shows that a stable focus and LC coexist,

and S does not for x0 = −0.1 and x0 = −0.05. We plot tra-
jectories in a (z, x1) bifurcation diagram for x0 = −0.1 (Fig.
51A) and x0 = −0.05 (Fig. 51B). Even if S does not exist,
trajectories converge to either LC or a stable focus, de-
pending on the initial conditions.

Subsystem 2
Here we present results of our analysis on the dynamics

of subsystem 2 without coupling. We partition the results
into two main parts: the equilibrium points and their stabil-
ity, and bifurcations.

Subsystem 2 equilibrium points
We analytically determine the equilibrium points (x2, y2)

by solving the following equations:

x2 � x32 � f2ðx2Þ1 Iext2 ¼ 0 (67)

and

y2 ¼ f2ðx2Þ: (68)

We determine the stability of equilibrium points by evaluat-
ing the eigenvalues of the Jacobianmatrix, J2, as follows:

J2 ¼

���� 1� 3x22 �1

G2
�1
t 2

����
where

G2 ¼
0 if x2 ,�0:25
a2

t 2
if x2 ��0:25:

8<
: (69)

The trace TrðJ2Þ and the determinant DetðJ2Þ of J2 are
given by:

TrðJ2Þ ¼ 1� 3x22 �
1
t 2

(70)

DetðJ2Þ ¼ G2 � ð1� 3x22Þ=t 2: (71)

The roots of TrðJ2Þ are 8t2 �1:

x2ðTr1Þ ¼ � 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

t 2

s

x2ðTr2Þ ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

t 2

s
:

8>>>>><
>>>>>:

(72)

The roots of DetðJ2Þ are 8a2.1:

x2ðDetÞ ¼ � 1ffiffiffi
3

p : (73)

We find the stability of equilibrium points in Table 6.
We graphically determine the equilibrium points (x2, y2)

by using the x2- and y2-nullclines, where the x2-nullcline
corresponds to a cubic curve given by:

y2ðx2Þ ¼ x2 � x32 1 Iext2 (74)

and the y2-nullcline corresponds to two straight lines
given by:

y2ðx2Þ ¼ 0 if x2 ,�0:25
a2ðx2 1 0:25Þ if x2 ��0:25:

�
(75)

We plot a phase plane of the subsystem 2 in Figure 52,
for Iext2 ¼ 0 (Figure 52A,a); Iext2 ¼ 0:38 (Figure 52A,b); and
Iext2 ¼ 1 (Figure 52A,c).
Let Iext2 ¼ 0, the x2- and y2-nullclines collide in one

point, which is a stable node (Fig. 52A,a). Increasing Iext2 ,
the x2- and y2-nullclines collide in three points: a stable
node, a saddle, and an unstable focus (Fig. 52A,b). The
stable node and saddle approach each other as Iext2 in-
creases and coalesce at Iext2 � 0:385 forming an invariant
circle (figure not shown). When Iext2 ¼ 1, the stable node
and saddle disappear, and the invariant circle becomes a
limit cycle through a SNIC bifurcation. Then, trajectories
converge to the stable limit cycle (Fig. 52A,c).
We analytically determine the SNIC bifurcation point by

solving the following equation:

Iext2 ¼ f2ðx2Þ1 x2 � x32 (76)

where x2 is a solution of

DetðJ2Þ ¼ 0: (77)

Subsystem 2 bifurcation diagram
The dynamics of subsystem 2 changes as Iext2 varies

(Fig. 52A). We plot a (Iext2 , x2) bifurcation diagram of the
subsystem 2 in Figure 52B. Iext2 is a control parameter.
The (Iext2 , x2) curve is an S-shaped curve, which comprises
four branches. S-lower and S-upper branches consist of
stable nodes and unstable foci, respectively. The S-mid-
dle branch consists of saddles and acts as a separatrix
between the S-lower and S-upper branches. The S-upper
branch is divided into two sub-branches: a stable limit
cycle surrounds one sub-branch (red) but does not
surround the other sub-branch (green). We call the red
sub-branch a limit cycle branch, which is limited by
maxðx2Þ- and minðx2Þ-curves. Increasing Iext2 , S-middle
and S-upper branches collide in a saddle-node bifurcation,
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SN. Increasing further Iext2 , S-middle and S-lower branches
collide in a SNIC bifurcation (Iext2 � 0:385). The limit cycle
branch terminates as Iext2 decreases in a SNIC bifurcation.
We identify three intervals on which the equilibrium

points change:

• ]-1, SN[: only a stable node exists.
• ]SN, SNIC[: a stable node, a saddle, and an unstable

focus coexist. Here, the unstable focus is not sur-
rounded by a stable limit cycle.

• ]SNIC,11[: only an unstable focus exists, which is
surrounded by a stable limit cycle.

The subsystem 2 is stable in the three intervals. Since
the stable limit cycle emerges after a SNIC bifurcation,
then there is no bistability in the subsystem 2.
We now link the dynamics of subsystem 2 to its behav-

ior (see c 2; Fig. 1, main file) in the Epileptor model, which
corresponds to transitions between an oscillatory state
and a resting state. To explain these transitions, we plot
time series c 2 and equilibrium points of the subsystem 2 in
Figure 53. The equilibrium points are labeled as dots. First,
we observe that the bifurcation diagram of the subsystem 2
(Fig. 52B) is repeated over time. Blue, black, and green dots
correspond to stable nodes, saddles, and unstable foci, re-
spectively. Red dots, which are surrounded by stable limit
cycles, correspond to unstable focus. A SNIC bifurcation
occurs at the intersection of blue (stable nodes) and black
(saddles) dots. Second, transitions from and to the limit
cycle occur through a SNIC bifurcation, and under the evo-
lution of Iext2 1 0:002g� 0:3ðz� 3:5Þ. In fact, the coupling
function g(x1) and z change the input Iext2 of the sub-
system 2 to Iext2 1 0:002g� 0:3ðz� 3:5Þ (see Epileptor
equations). We plot time series of z in Figure 53. Let
Iext2 ¼ 0:45, the subsystem 2 is at the limit cycle branch ex-
hibiting an oscillatory solution (Fig. 52B). When z increases,
then Iext2 1 0:002g� 0:3ðz� 3:5Þ is decreased, and the

oscillatory solution terminates in a SNIC bifurcation.
Hence, the subsystem 2 exhibits a resting state. When z
decreases, then Iext2 1 0:002g� 0:3ðz� 3:5Þ is increased,
and the oscillatory solution emerges through a SNIC bifur-
cation. We conclude that the transitions between the oscil-
latory state and the resting state (see c 2; Fig. 1, main file)
occur under the evolution of g(x1) and z.

Discussion
Epileptic seizures take many forms, as well as transi-

tions from and to these pathological states. The mecha-
nisms involved in epileptic dynamics are assumed to be
different according to seizure patterns. We have used a
neural mass model of partial seizures the “Epileptor” to
analyze seizure dynamics. Using a mathematical ap-
proach, we showed that the model can generate different
dynamic behaviors including SLEs, as the value of the pa-
rameters change. Most computational models tried to re-
produce experimental data with biophysical realistic
parameters (Kager et al., 2000; Traub et al., 2001;
Destexhe, 2008; Cressman et al., 2009; Ullah et al., 2009).
In contrast, parameters of the Epileptor model do not di-
rectly relate to biological variables. Their meaning can
only be inferred based on dynamics. The SLE attractor
consists of two states, an oscillatory state (limit cycle) in-
terpreted as ictal activity, and a normal state interpreted
as interictal activity. The ictal and normal states coexist
and occupy two separated regions in the phase space.
The SLE attractor corresponds to a periodic transition be-
tween the ictal and normal states. Transitions from ictal to
normal states, and vice versa, can autonomously occur
under the slow evolution of the variable z and without
changing the parameters. The transitions from ictal to nor-
mal states occur through a bifurcation of the limit cycle,
and the transitions from normal to ictal states occur
through a bifurcation of the equilibrium point. The
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Figure 51. Special cases. A, B, Coexistence of LC and a stable focus even if a saddle periodic orbit does not exist. A, m = 0, x0 =
−0.1. Parameters are as follows: r = 0.002, I.C = [0 −5 2.83] on the right; I.C = [0 −5 1.5] on the left, and Ts = [0:0.01:600]. B, m = 0,
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2.84] and Ts = [0:0.01:900].
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combination of two such bifurcations results in classes of
(point-cycle) bursters as proposed by Izhikevich (2000).
The Epileptor switches from normal to ictal states through
a saddle-node bifurcation (Jirsa et al., 2014). In contrast,
to return to the normal state, the Epileptor may undergo
different bifurcation types, depending on the value of
some selected parameters. There are two main parame-
ters having effects on the Epileptor dynamics. The first,m,
controls the Epileptor dynamics during the ictal period,
and the second, x0, controls the equilibrium points of the
Epileptor. Bifurcations that define how the Epileptor quali-
tatively changes its behavior were identified using the
scaling behavior of frequency and amplitude during sei-
zure onset and offset. A taxonomy of seizures (SLEs) as-
sembles the bifurcations into 16 different classes (Jirsa et
al., 2014). SLE offsets in the Epileptor show the logarith-
mic scaling of homoclinic bifurcations that occurred more

often (83%) in drug-resistant epileptic patients As a con-
sequence, the fold/homoclinic bifurcation was identified
as the predominant class of SLEs (Jirsa et al., 2014).
Through a bifurcation diagram, we showed that the
Epileptor undergoes a homoclinic bifurcation at seizure
offset.
On the other hand, the behavior of SLEs in the 17% of

patients with a non fold/homoclinic bifurcation was poten-
tially consistent with two classes: fold/Hopf and fold/fold
cycle (Jirsa et al., 2014). We evaluated whether other bi-
furcations may occur at seizure offset, when changing
some parameters of the model. Upon change of the first
main parameter, we indeed found that the Epileptor may
undergo two different types of bifurcation at seizure off-
set: Hopf and SNIC bifurcations. Hence, the Epileptor can
generate two classes: fold/Hopf and fold/circle. Our anal-
ysis demonstrated the existence of another burster, de-
fined by Izhikevich (2000) as a point-point type (i.e., both
bifurcations are of equilibrium points), called fold/fold bi-
furcation. This burster does not pertain to the 16 classes
(point-cycle) defined by Izhikevich (2000), and then it does
not describe any behavior of SLEs.
We proposed in this study a modification of the slow z

variable equation (Eq. 34). This modification resolves the
divergences observed in the model behavior for some ini-
tial conditions, in particular when the initial z value is neg-
ative. More, the modification unraveled the existence of a
stable LC whose behavior results from the fast-slow
structure of the Epileptor model. To explore this issue the-
oretically, we explained in this study how the modification
of the z variable equation leads the model to generate a
fast-slow cyclic behavior, in particular for negative initial z
values, using bifurcation analysis and the averaging
method. We demonstrated that LC does not destabilize,
but disappears through a SNPO bifurcation. Interestingly,
LC resembles the RSE and does not exist for certain initial
conditions. As a consequence, if we consider LC as a
prime candidate for RSE, our analysis of the LC dynam-
ics would contribute to the understanding of the mech-
anisms underlying RSE and to the prediction of how to
treat RSE.
In addition to SLEs and RSE, our analysis unraveled an-

other pathological activity, called DB. Using bifurcation
analysis, we explained how the Epileptor enters into DB.
Indeed, we showed that reducing the first main parame-
ter, the frequency of oscillations during the ictal period
decreases until they disappear and DB occurs. In this
case, the SLE attractor reduces to a periodic switch be-
tween DB and NS. The Epileptor model can therefore re-
produce SLEs, RSE, and a periodic switch between DB
and NS. Interestingly, it can remain in DB if we increase
the value of the second main parameter m, and in NS if
we decreasem.
We predicted that epileptic seizures, refractory status

epilepticus, and “normal” brain activity can coexist in
the brain, under some conditions. In fact, we demon-
strated that the normal and ictal states of the SLE at-
tractor coexist in the phase space, and, for certain
conditions, LC also exists below. The transitions be-
tween them require a large change of z. The “fold/
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rium point (stable node) exists, to which trajectory converges.
b, Iext2 ¼ 0:38, three equilibrium points coexist: a stable node,
a saddle, and an unstable focus. Trajectory converges to the
stable node. c, Iext2 ¼ 1, one equilibrium point exists that is an
unstable focus. Trajectory converges to a stable limit cycle. B,
Bifurcation diagram of subsystem 2 with respect to Iext2 . The
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of the S-shaped curve consist of stable nodes, saddles, and un-
stable foci, respectively. A branch of limit cycles (red) originates
at a SNIC bifurcation. The curves above and below correspond
to the maximum and minimum values along periodic orbits,
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homoclinic bifurcation” was proposed as the predomi-
nant class of SLEs (Jirsa et al., 2014). We demonstrated
that the coexistence of LC and SLEs occurs for the pre-
dominant class of the SLE attractor, as well as two
other classes of the SLE attractor: fold/Hopf and fold/
circle bifurcations. More, we demonstrated that only
the SLEs with fold/circle type can exist alone in the
phase space, for certain conditions.
The Epileptor model presents another type of bistability,

which consists in the coexistence of LC and a periodic
switch between DB and NS. Under certain conditions,
this periodic switch between DB and NS can exist in the
phase space without the presence of LC. Therefore, we
could deduce that DB, normal brain activity and RSE co-
exist in the brain. However, epileptic seizures and DB do
not coexist in the brain. In fact, the SLEs and periodic
switch between DB and NS do not coexist in the phase
space. DB was developed during the ictal period when re-
ducing the first parameter valuem.
We explored the parameter space of, first, the fast-

slow subsystem and extend to the whole system
Epileptor. For the Epileptor, we explore two parameter
spaces, as the parameter control of the subsystem 2 is
varied. In one of them, DB appears, when reducing the
parameter value. The parameter space can provide
pathways to switch among SLEs, RSE, DB, and NS. In
fact, there is a region in the parameter space repre-
senting the coexistence of LC and DB in the phase
space, another where only DB exists, and a third where
only LC exists. Based on these parameters, we can
then propose how to switch from SLEs to DB to RSE,
and how to escape the RSE and DB. Interestingly,

there is a region representing the coexistence of LC
and NS in the phase space, and another where only
the NS exists. Therefore, we could propose how to
stay in the NS, and thus how to return to the normal
brain activity.
In addition to the stable limit cycle LC, the Epileptor

model generates another stable periodic orbit, which
we denoted by SLC. This limit cycle has higher fre-
quency and smaller amplitude than LC, and occupies
the same region as the SLE attractor. SLC is different
from LC; both coexist in the phase space. The transi-
tions between them requires a large change of the z
variable. Furthermore, there are two different patterns
of SLC depending on the equilibrium point stability of
the Epileptor, which can be a saddle as for the SLE at-
tractor, or an unstable focus. SLC mimics the dynamics
of epileptic seizures during the ictal period of the SLE
attractor. For the SLE attractor, the Epileptor returns to
the normal state after a transient epileptic seizures,
while for SLC, epileptic seizures do not stop. Hence, we
believe that SLC could characterize the status epilepti-
cus, or might have another possible clinical and physio-
logical explanation.
In conclusion, our study provides a better understand-

ing of the Epileptor dynamics, exploring the different be-
haviors that the model can generate. Three classes can
be generated by the Epileptor model, which are: fold/ho-
moclinic, fold/Hopf and fold/circle bifurcations. We pre-
dict the coexistence of epileptic seizures (SLEs), RSE,
DB, and normal brain activity (NS) in the brain, under a va-
riety of conditions. Furthermore, the model predicts the
existence of different paths between these neuroelectric
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activities which may help to explain the mechanisms
underlying their genesis, making progress in clinical and
brain research.

a ¼ R1
ffiffiffiffi
d

p

2d
R ¼ m1 0:6ðzðTr1Þ � 4Þ2
d ¼ R2 1 20ð1� zðTr1Þ1 Iext1Þ:

8>>><
>>>:

(78)

b ¼ R1
ffiffiffiffi
d

p

2d
R ¼ m1 0:6ðzðDet1Þ � 4Þ2
d ¼ R2 1 20ð1� zðDet1Þ1 Iext1Þ:

8>>><
>>>:

(79)
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d

p

2d

g ¼ R1
ffiffiffiffi
d
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2d
R ¼ m1 0:6ðzðDet2Þ � 4Þ2
d ¼ R2 1 20ð1� zðDet2Þ1 Iext1Þ:
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