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Boosted optimal weighted least-squares

Cécile Haberstich*! Anthony Nouy' Guillaume Perrin*

Abstract

This paper is concerned with the approximation of a function u in a given approxima-
tion space V,,, of dimension m from evaluations of the function at n suitably chosen points.
The aim is to construct an approximation of u in V;,, which yields an error close to the best
approximation error in V;,, and using as few evaluations as possible. Classical least-squares
regression, which defines a projection in V,, from n random points, usually requires a large
n to guarantee a stable approximation and an error close to the best approximation error.
This is a major drawback for applications where w is expensive to evaluate. One remedy
is to use a weighted least-squares projection using n samples drawn from a properly se-
lected distribution. In this paper, we introduce a boosted weighted least-squares method
which allows to ensure almost surely the stability of the weighted least-squares projec-
tion with a sample size close to the interpolation regime n = m. It consists in sampling
according to a measure associated with the optimization of a stability criterion over a
collection of independent n-samples, and resampling according to this measure until a
stability condition is satisfied. A greedy method is then proposed to remove points from
the obtained sample. Quasi-optimality properties in expectation are obtained for the
weighted least-squares projection, with or without the greedy procedure. The proposed
method is validated on numerical examples and compared to state-of-the-art interpolation
and weighted least-squares methods.

Keywords— approximation, weighted least-squares, optimal sampling, error analysis,
greedy algorithm, interpolation

1 Introduction

The continuous improvement of computational resources makes the role of the numerical
simulation always more important for modelling complex systems. However most of these
numerical simulations remain very costly from a computational point of view. Furthermore, for
many problems such as optimization, estimation or uncertainty quantification, the model is a
function of possibly numerous parameters (design variables, uncertain parameters...) and has
to be evaluated for many instances of the parameters. One remedy is to build an approximation
of this function of the parameters which is further used as a surrogate model, or as a companion
model used as a low-fidelity model.

This paper is concerned with the approximation of a function u using evaluations of the
function at suitably chosen points. We consider functions from LZ(X ), the space of square-
integrable functions defined on a set X equipped with a probability measure p. Given an
approximation space V,, of dimension m in LZ(X ), the aim is to construct an approximation
of w in V,, which yields an error close to the best approximation error in V,, and using as
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few evaluations as possible. A classical approach is least-squares regression, which defines the
approximation by solving
1 i i)\ 2
min ZI(U(CE ) —v(a))?,
1=
where the ¢ are i.i.d. samples drawn from the measure pu. However, to guarantee a stable
approximation and an error close to the best approximation error, least-squares regression may
require a sample size n much higher than m (see [3]). This issue can be overcome by weighted
least-squares projection, which is obtained by solving
1 n
- i RN
i - Dl (e — vl
1=
where the 2 are points not necessarily drawn from p and the w(z?) are corresponding weights.
A suitable choice of weights and points may allow to decrease the sample size to reach the same
approximation error, see e.g. [3,[7]. In [2], the authors introduce an optimal sampling measure
p with a density w(z)~! with respect to the reference measure p which depends on the approx-
imation space. Choosing i.i.d. samples 2 from this optimal measure, one obtains with high
probability 1 — n a stable approximation and an error of the order of the best approximation
error using a sample size n in O(mlog(mn~')). Nevertheless, the necessary condition for having
stability requires a sample size n much higher than m, especially when a small probability n is
desired.

Here we introduce a boosted least-squares method which enables us to ensure almost surely
the stability of the weighted least-squares projection in expectation with a sample size close
to the interpolation regime n = m. It consists in sampling according to a measure associated
with the optimization of a stability criterion over a collection of independent n-samples, and
resampling according to this measure until a stability condition is satisfied. A greedy method
is then proposed to remove points from the obtained sample. Quasi-optimality properties in
expectation are obtained for the weighted least-squares projection, with or without the greedy
procedure.

If the observations are polluted by a noise, here modeled by a random variable e, then the
weighted least-squares projection is defined as the solution of

n

: 1 7 \)2
min — % (y' —v())*,

=1

where y* = u(z") + €’, with {e'}"; i.i.d realizations of the random variable e. Quasi-optimality
property is lost in the case of noisy observations, because of an additional error term due to
the noise. This latter error term can however be reduced by increasing n.

The outline of the paper is as follows. In Section [2] we introduce the theoretical framework,
and present some useful results on weighted least-squares projections. We recall the optimal
sampling measure from [2], and outline its limitations. In Section , we present the boosted
least-squares approach and analyze it in the noise-free case. The theoretical results are extended
to the noisy case in Section [l In Section [5] we present numerical examples.

2 Least-squares method

Let X be a subset of R? equipped with a probability measure y, with d > 1. We consider a
function u from Li(X ), the Hilbert space of square-integrable real-valued functions defined on
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X. Welet || - |12 be the natural norm in L2 (X) defined by

ol = [ vle)dnco) 1)

When there is no ambiguity, L7 (&) will be simply denoted L7, and the norm |v||7. and
m
associated inner product (-,-)rz will be denoted || - || and (-,-) respectively. Let V;, be a m-

dimensional subspace of Li, with m > 1, and {¢;}72; be an orthonormal basis of V,,. The best
approximation of u in V,, is given by its orthogonal projection defined by

Py, u = arg 52‘1}1 |lu—v]|. (2)

2.1 Weighted least-squares projection

Letting 2" := {2}, be a set of n points in X, we consider the weighted least-squares projection

defined by

Q= g min [lu vl 3)
where || - [|z» is a discrete semi-norm defined for v in L2 by
1 n
[0z = = > wla)v(a’)?, (4)
i=1

where w is a given non negative function defined on X. We denote by

p=(01,--ypm): X > R™"

the m-dimensional vector-valued function such that ¢(z) = (p1(2),...,om(z))?, and by Gn
the empirical Gram matrix defined by

G i= 3wl © (o). (5)

The stability of the weighted least-squares projection can be characterized by
an = HGwn — I”2,

which measures a distance between the empirical Gram matrix and the identity matrix I, with
|| - [|2 the matrix spectral norm. For any v in V,,, we have

(1= Zan)[[0l* < [Jvllzn < (1 + Zen) [0l (6)
We have the following properties that will be useful in subsequent analyses.

Lemma 2.1. Let ™ be a set of n points in X such that Zzn = ||Ggn — I|2 < & for some
5 €[0,1). Then
(L= )[vl* < [lvllgn < (1 +d)]vl? (7)

and the weighted least-squares projection QT/ZU associated with ™ satisfies

lu = Q. ull® < llu— Py, ull® + (1= 8)" u = Py, ullz.. (8)



Proof. The property directly follows from @ and Zz» < 0. Using the property of the
orthogonal projection Py, u and , we have that

lu — Q% ull* = llu — Py, ull* + | Py, u — QF, ull?
< llu = Py, ull* + (1 =87 | Py u — QF, ullz

Using the fact that QF is an orthogonal projection on V;,, with respect to the semi-norm || -{|zn,

we have that for any v, Q7 v[|gn < [[v]|zn. We deduce that
1Py, u = QF, uller = QF,, (Pr,u = w)]len < [[Pr,u = tllgn,
from which we deduce (§). [

We now provide a result which bounds the L? error by a best approximation error with
respect to a weighted supremum norm.

Theorem 2.2. Let " be a set of n points in X such that Zyn = ||Ggn — I||2 < & for some
d €[0,1). Then,
lw = QT ull < (B+(1=08)7"%) inf [ju—0v]scuw (9)

where B? = [, w(z) 'du(z) and ||v]|ocw = sup,er w(z)?|v(z)].

Proof. Using Lemma we note that for any v € V,,,

lu — Q% ull < [lu— vl + (1 = 8)"|lv — QF, ullan,
and [[v = QF uller = |QF, (v = u)llar < [lu— vllon.
We then conclude by using the inequalities ||[u—v|[zn < [|u—v]|s0w and [Ju—v|| < ([, w(:zc)*ldﬂ(x))l/2 SUD .
v(x)l. O

In the case where w™! is the density of a probability measure with respect to p, (which will
be the case in the rest of the paper), the constant B from Theorem is equal to 1.

2.2 Random sampling

We consider the measure p on X with density w=! with respect to u, i.e. dp = wldu.
If the z!,... 2™ are i.i.d. random variables drawn from the measure p, or equivalently if
x" = (2%, ...,2") is drawn from the product measure p®" := p" on X™, then for any function
v in L? (not only those in V},), we have

E(l[vlzn) = llvl* (10)

The condition (10 restricted to all functions v € V,, implies that the empirical Gram matrix
G~ satisfies

ZE o) @ @(z')) = I. (11)

The random variable Zyn = ||Ggn — I ||2 quantifies how much the random matrix G~ deviates
from its expectation. For any § € [0, 1), if

P(Zgn > 0) <1, (12)

then for all v € V,,, Eq. . ) holds with probability higher than 1 — n. We directly conclude
from Theorem . that the weighted least-squares projection Qv satisfies @D with probability
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higher than 1 — 7 (and B = 1).

Now, we present results in expectation which relate the L2-error with the best approximation
in Li. We have the following result from [2] for a conditional weighted least-squares projection,
here stated in a slightly different form.

Theorem 2.3 ([2]). Let «" be drawn from the measure p" and let QF, u be the associated
weighted least-squares projection of w. For any § € [0,1) and n € [0, 1] such that holds,

E(llu = QF, “ull?) < (1+ (1 =6 lu = Py, ull® + nllul?, (13)
where Q@ZCU = “'};u if Zgn <6 and 0 otherwise.
Proof. We have
E([lu - @%, “ull®) = E(lu - Q% ul*12,.<5) + ul*E(12,.55),
with E(1z,,55) = P(Zgn > 6) < 7. Then using Lemma [2.1] and (10)), we have

E(lu — QF, ull*1z,0<5) < E((lu— Py, ull* + (1 = )" lu — Py, ull3n) 12,0 <5)
< llu— Pyul® + (1 = 0)"E(lu — Py, ullz)
=1+ (1 =0) lu— Py,ul?

which concludes the proof. O]

Also, we have the following quasi-optimality property for the weighted least-squares projec-
tion associated with the distribution p™ conditioned to the event {Z» < d}.

Theorem 2.4. Let ™ be drawn from the measure p™ and let Qi’j:;u be the associated weighted
least-squares projection of u. For any § € [0,1) and n € [0,1) such that holds,

E(|lu — QY ull*|Zen <6) < (141 =) (1 —n)"lu— Py, ul*. (14)
Proof. From Lemma (12.1)), we have that

E(lu — Q% ull?| Zon < 6) < |lu = Py ull® + (1 = ) E(||lu — Py, ull30] Zon < 9),

and
E(|lu = Py, ullzn| Zan < 6) < E(|lu— Py, ull30)P(Zan < 8)7,
and we conclude by using P(Zz» < §) > 1 —n and the property . H

2.3 Optimal sampling measure

An inequality of the form (12) can be obtained by concentration inequalities. A suitable
sampling distribution can then be obtained by an optimization of the obtained upper bound.
An optimal choice for w based on matrix Chernoff inequality is derived in [2] and given by

W) = =3 i) = (@)l (15)

Using this distribution, we obtain the following result, for which we provide a sketch of proof
following [2]. The result is here provided in a slightly more general form than in [2].



Theorem 2.5. Let n € [0,1) and § € [0,1). Assume x" is drawn from the product measure
p" = p®", with p having the density with respect to . If the sample size n is such thaﬂ

n > n(8,n,m) := ds 'mlog (2mn"), (16)
with ds :== —0 + (1 + 0) log(1 + ), then Zyn = ||Gan — I||2 satisfies (12)).

Proof. We have Ggn = = 5" | A; where the A; = w(a')p(2') ® (z?) are random matrices
such that E(A;) = I and ||Ai]l2 = w(z%)||¢(z")||3 = m. The matrix Chernoff inequality from
[8, Theorem 5.1] gives that the minimal and maximal eigenvalues of Ggn — I satisfy

P(Amin(Gan — I) < =0) VP(Apaz(Ggn — I) > §) < mexp(—nds/m).
Under the condition ([16]), we have that mexp(—nds/m) < n/2 and using a union bound, we

deduce (12). m

Remark 2.6. Note that d; < 6. Then a sufficient condition for satisfying the condition
isn > 6 2mlog (2mn~1).

Remark 2.7. The quantile function of Zyn is defined for t € [0,1] by F, (t) = inf{d :
Fy .(6) > t}, where Fyz_, is the cumulative density function of the random variable Zgn.

For given n and n, Fz_mn(l — ) is the minimal § such that 15 satisfied. Denoting by
de(n,n) = min{d : n > n(d,n,m)}, we clearly have F;  (1—n) < 6.(n,n). The closer d. is from
Fy . (1 —mn), the sharper the condition on the sample size n is for satisfying .

Theorem states that using the optimal sampling density , a stable projection of u
is obtained with a sample size in O(mlog(mn~')) with high probability. Note that a small
probability 7, and therefore a large sample size n, may be required for controlling the term
n||u||? in the error bound for the conditional projection, or for obtaining a quasi-optimality
property in conditional expectation with a quasi-optimality constant close to 1 + (1 —
§)~L. This will be improved in the next section by proposing a new distribution (obtained by
resampling, conditioning and subsampling) allowing to obtain stability of the empirical Gram
matrix with very high probability and a moderate sample size.

3 Boosted optimal weighted least-squares method

We here propose an improved weighted least-squares method by proposing distributions over
X™ having better properties than p™ = p®". The function w defining the weighted least-squares
projections will always be taken such that w™! is the density of the optimal sampling measure
p with respect to the reference measure pu.

3.1 Resampling and conditioning

The first improvement consists in drawing M independent samples {z™}M, with ™' =

(x4 ... 2™"), from the distribution p", and then in selecting a sample &™* which satisfies
|Gan — Il = i |Gans — I i

where G, denotes the empirical Gram matrix associated with a sample  in A™. If several
samples ™ are solutions of the minimization problem, &™* is selected at random among the
minimizers. We denote by p™* the probability measure of x™*. The probability that the
stability condition Zgn« = ||Ggn+ — I||a < § is verified can be made arbitrarily high, playing
on M, as it is shown in the following lemma (whose proof is trivial).

Note that the constant in the condition differs from the one given in the reference [2] for 6 = 1/2,
which was incorrect.



Lemma 3.1. For any é§ € [0,1) and n € (0,1), if n satisfies , then
P(Zgnr <6)>1—nM. (18)

Therefore, we can choose a probability n arbitrary close to 1, so that the condition does
not require a large sample size n, and still obtain the stability condition with a probability at
least 1 —n™ which can be made arbitrarily close to 1 by choosing a sufficiently large M. Even if
p" has a product structure, for M > 1, the distribution p™* does not have a product structure,
i.e. the components of x™* = (x'* ... z™*) are not independent, and does not satisfy the
assumptions of Theorems [2.3] and In particular E(Ggn.-) may not be equal to I and in
general, E(||v]|2..) # ||v]|? for an arbitrary function v when M > 1. Therefore, a new analysis
of the resulting weighted least-squares projection is required.

Remark 3.2. Note that since the function  — |G, — I||2 defined on X™ is invariant through
permutations of the components of x, we have that the components of x™* have the same
marginal distribution.

In order to ensure that the stability property is verified almost surely we consider a sample
x" from the distribution p" of £™* conditioned on the event

A§ - {HG:B"’* - IH2 S (5}, (19)

which is such that for any function f, E(f(x")) = E(f(x™*)|As). A sample " from the
distribution p™ is obtained by a simple rejection method, which consists in drawing samples
x™* from the distribution p™* until As is satisfied. It follows that P(Zz < §) = 1.

Remark 3.3. Let J be the number of trials necessary to get a sample x™* verifying the stability
condition As. This random wvariable J follows a geometric distribution with a probability of
success P(As). Therefore J is almost surely finite and

P(J > k) = (1 - P(45))", (20)

i.e. the probability to have J greater than k decreases exponentially with k. An other property of

the geometric distribution is that E(J) = ﬁ, such that the average number of trials increases

when n tends to 1, in particular we have E(J) = 2 forn = 0.5 and E(J) = 100 for n = 0.99.

Now we provide a result on the distribution of ™ which will be later used for the analysis
of the corresponding least-squares projection.

Lemma 3.4. Let ™ be a sample following the distribution p™, which is the distribution p™*
conditioned on the event As defined by (19). Assume that n > n(6,n,m) for some n € (0,1)
and 0 € (0,1). Then for any function v in Li and any 0 <e <1,

E([[v]3.) < C(e, M)(1 = n™)'E(||v][2)7, (21)
with a .
— & —€
M)=M < M.
0(87 ) (M _ 8)1_8
In particular, fore =1,
E(|[v[|3:) < M1 —n™)"Hol* (22)

Also, if [0]lsoun = SUpyex w(a)/2[o(a)] < oo,
E(|lol%.) < Cle, MY(L =)~ o]2% o], (23)
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Proof. See appendix. O

Corollary 3.5. Let ™ be a sample following the distribution p" and assume that n > n(d,n,m)
for some n € (0,1) and 6 € (0,1). For any v € Li, the weighted least-squares projection Q{‘ﬁ:lv
associated with the sample " satisfies

E(|QF, ol*) < (1 =8)" M1 —n")"Hv]?. (24)
Proof. Since Q%ZU € V,,, we have that
1%, vlI* < (1= 6) Q¥ vl3. < (1=8)""jv[l3., (25)

where we have used the fact that Q“{Z is an orthogonal projection with respect to the semi-norm
| - ||z». Taking the expectation and using 22 we obtain

E(|QF, vl*) < (1 —8)~"M(1 —n™)""v]*. (26)
O

Theorem 3.6. Let " be a sample following the distribution p™ and assume that n > n(d,n, m)
for some n € (0,1) and § € (0,1). The weighted least-squares projection Q‘“}:Lu associated with
the sample ™ satisfies the quasi-optimality property

B(llu — QFul?) < (1+ (1= )7 (1 — ™) M) Ju — Pyl 27)
Also, assuming ||uloow < L, we have
E(u — QF, ull®) < (lu = Py ull® + (1 = 8)7 (1 = n™) ' D(M, Lym, [lu — Py, ul?)  (28)
where for all « >0, D(M, L,m,a) = info.< E(M, L,m,a, ), with
D(M, L,m,a,¢) := C(e, M)(L(1 + ) 0"

Here, C(e, M) is the constant defined in Lemma 3.4 and ¢, the supremum of || Py, v||scw over
functions v such that ||v]|ecw < 1.

Proof. From Lemma 2.1 we have that
lu = Q% ull® < llu— Py, ull® + (1= 8) " |lu — Py, ul3
holds almost surely, and from Lemma |3.4) we have that

E(||u — Py, ull3n) < Cle, M)(1 —n™) T E(|[u — Py,,ull2)°

xr"

for all ¢ € (0,1]. Combining the above inequalities and then taking the infimum over e, we
obtain

B(Ju— Q¥ ull?) < lu—Py,ul*+(1-8)"'(1=n")" inf C(e, M)E (|lu— Py, ull) . (29)
<e<

The particular case € = 1 yields . The second property is simply deduced from by
using the property of Lemma [3.4]and by noting that ||u— Py, t|ecw < (14 ¢m)||tflsow- O
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Figure 1: Improvement of the bound for different values of m and M.

Remark 3.7. The constant c,, in Theorem is such that ¢, < m. Indeed, Py, v(z) =
S aipi(x) with

@ = (v, ) = / v(@)gi(@)du(z) = / v(@) i@ )w(z)dp(z),
so that
03] < [0lloom / ou(@)|w(@)dp(x) < [olloesnl / i) w(@)dp(x))? = V] oo

where we have used Cauchy-Schwarz inequality. Therefore,

m

Pl < ol sup )2 3 i)
r i=1

< 0lloow sup w()*m' > (Y~ @i(a)*)? = ml|v]so -
reX i—1

Remark 3.8. About the constant D(L,M,m,«).
The value of € that minimizes D(M, L, m,a, ) can be shown to be

*

1= MW(exp(—1 — 2log(L(1 + ¢,)) + 2log(a))
1 —W(exp(—1—2log(L(1 + cp,)) + 2log(a))

where © — W(x) is the Lambert function which represents the solution y of the equation
yexp(y) = x.

In Figures and we illustrate the fact that the property may improve if D(M, L,m, ||u—
Py, ul]?) < M|ju — Py, ul]?, for some conditions on M, L,m. The legend "Initial bound” refers

to the bound presented in[27, and the legend "Improved bound” refers to the bound presented in

[28.

The xz-axis represents the best approximation error, so that for a given L and a given c,,,
the left part of the curve corresponds to functions u which can be well approximated in V,,
whereas on the contrary, the right part of the curve corresponds to functions which are not well
approzimated in V,,,. We observe that the bound from[2§ improves the bound obtained with
when M is high (M > 1000), and when L(1 + ¢,,) is small (L(1 + ¢,,) < 1.1).
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3.2 Subsampling

Although the resampling enables us to choose  and n such that n is smaller than with the
initial strategy from [2], the value of n may still be high compared to an interpolation method.
Therefore, to further decrease the sample size, for each generated sample ™, we propose to
select a subsample which still verifies the stability condition.

We start with a sample " = (Z',...,2") satisfying |Gz — I||s < ¢ and then select a sub-
sample &} = (T¥)rex with K C {1,...,n} such that the empirical Gram matrix Ggn =

#LK > rer W(ITM)p(TF) @ p(T%) still satisfies
|Gz, — Iz < 6.

In practice, the set K is constructed by a greedy procedure. We start with K = {1,...,n}.
Then at each step of the greedy procedure, we select k* in K such that

I|\2—m1n||G — Ils. (30)

HG@?\W} T\ (k)

If HG}\W} —I|2 <0 and #K > np, then k* is removed from K. Otherwise, the algorithm

is stopped. We denote by p% the distribution of the sample &), produced by this greedy
algorithm.

Theorem 3.9. Assumen > n(d,n,m) for somen € (0,1) and é € (0,1), and let % be a sample

produced by the greedy algorithm with #K > n..,. The weighted least-squares projection QV u
associated with the sample TV satisfies the quasi-optimality property

E(u— QvFul?) < (14 ——(1=8)"' (1 —n*) " M) Ju— Py, ull® (31)

min

Also, assuming ||ulcow < L , we have

E(u— Qviul®) < lu— Py,ull* + (1=8)" (L =0™")"'D(M, L,m, ||u — Py, ull®) (32)

min
where D(M, L,m, ||lu — Py, ul|?) is defined in Theorem[3.9,
Proof. Since Zz», < ¢, from Lemma , we have that for any v € V,,, the least-squares
projection associated with & satisfies
lu = QuEull® < llu — Py, ul* + (1 - 5)_1Hu — Py, ullZ

33
< lu— Pl + (1 - 5)! (33)

#K ||U’ - PVmuH.’B"’

where the second inequality simply results from

n

2 ~k ~k 1 ~kY, (k)2
ol = 2 2wy < i 2 WE Y = ry O ES

keK

Therefore, since #K > n,in, we obtain from Lemma [3.4] that

E(lu — Quiull?) < llu— Py,ull* +

(1=8) (1 =9")" inf C(e, M)E (Jlu - Pvmu\én)E.

min 0<e<1

The particular case ¢ = 1 yields the first property. For the second property, the proof follows
the one of the property in Theorem . O



Corollary 3.10. Assume n > n(d,n,m) for somen € (0,1) and § € (0,1), and let T} be a
sample produced by the greedy algorithm with #K > nNy,. The weighted least-squares pmjectzon

QV u associated with the sample T satisfies

E(|QvEol*) < (1 =6)""M (1 — ™)~ ——]v]* (34)
Proof. Since Q?/i(v € V,,, we have that
IQvEvI* < (1 =8) HQvEvllz, < (1—=8) " lvl3, <(1-0)" || 13, (35)

where we have used the fact that QV is an orthogonal projection with respect to the semi-norm
| - |z and the fact that ||v||2 Taking the expectation, using . and assuming
that #K < n,,;,, we obtain

#KHU”w”

E(|QFFv]?) < (1—8) "M (1 — ™)' |lo]*. (36)

min
]

If we set n,,;,, = m, it may happen that the algorithm runs until #K = m, the interpolation
regime. Choosing n > n(d,n, m) then yields a quasi-optimality constant depending on log(m).
It has to be compared with the optimal behaviour of the Lebesgue constant for polynomial
interpolation in one dimension If we choose n,;, = n/f for some fixed § > 1 independent of
m, then we have < f and a quasi-optimality constant independent of m in . but the
algorithm may stog%efore reaching the interpolation regime (n = m).

Remark 3.11. Concerning, the greedy subsampling, a direct approach to remove a point is to
calculate the norm of |\G~K\{k} — I||y for each k € K. However, it involves to calculate this
norm for #K points and this each time a point is removed. In the Algorithm [B we present
a method which enables us to choose k* by performing simple matriz multiplications. Indeed,
knowing the eigenvalues of a symmetric matrix, there exists bounds on the eigenvalues of a
rank-one update of this matriz (see [9] and [12] for more details, as well as the more recent
results from [11)] that we use in practice).

4 The noisy case

We here consider the case where the observations are polluted with a noise, which is modeled
by a random variable e. More precisely the observed data take the form

y'=u(@) + ¢,

where {e'};cx are i.i.d realizations of the random variable e and {7'};cx = Z'% are the points
built with the boosted least-squares method. We assume the noise is independent from x" and
centered E(e) = 0 and with bounded variance 02 = E(|e|?) < oco. More general cases could be
considered as in [3] or [4].

The weighted discrete least-squares projection of u over V,, is defined by

. _ 1 i i\2
Ut argggbg#KZEKW( )y — (@))% (37)
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Theorem 4.1. Assumen > n(d,n,m) for somen € (0,1) and 6 € (0,1), and let T} be a sample
produced by the greedy algorithm with #K > nyin. The weighted least-squares projection u®x
associated with the sample €% and the data affected by the noise e, satisfies

-1 My—1 9 20%mn
(1=8)"" (1=n")"" M)[ju— Py, ul” + —

Nmin min

2n

E(|lu—u®k]?) < (1+ (1=8)" (1 —n™)""M. (38)

Proof. Thanks the Pythagorean equality it holds,
lu — w5 |1? = [lu — Py, ul)? + || Py, u — u® |

&En in P (39)
= |lu— Py, ull® + [|QVF (Py,,u — u) + QyFu — u®k ||?

where Qi:fu is the boosted least-squares projection of the noiseless evaluations of u over V,,.
Then using the triangular inequality,

lu =5 * < Jlu = Po,ull® + 21 QU (P, u — w)|* + 2 Qv u — . (40)

Taking the expectation and using Corollary [3.10} it comes

n

E(llu—u®k|?) < (1 42— (1= 8)"' M1 —0™)"")Ju = Py, ull® + 2E(|QvFu — u ). (41)

Nmin

Then, we note that
~n ~n m
QVSw — ™[> <Y Jbef? (42)
k=1

where b = (by);, is solution to

1 o
Gan b=, B:= (#K Z e’w(xl)gok(x’)> . .

€K

Since HG;}}(H% < (1 —96)~' it holds

Dbl <@ =67 18l
k=1 k=1

and
m

S 18 = Y e 2 X Cw@) @) (@ )o@, (13)
k=1

k=1 ieK jeK

As K is a random variable,

8 (#}(2 > ei’w(fi)wk(5i)ejw(fj)<pk(fj)) =

€K jeK

L5 2 3 Cul@)a@) (@)@ |K)) = (4)
€K jeK

Bl 3 O Bl (@) @)elu@ )o@ K).

i€K jEK

E(E(

By construction K is independent from the noise,
E(e'w(Z)or(T") e/ w(T ) o (#7)| K) = E(e'e))E(w (') or () w(F ) o (3) | K).
Therefore, for ¢ # j ‘ ' o ' ‘
E(e'w(@")er(@")e’w(@ ) er (@) K) = 0
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and for i = j ' ‘ o 4 ' . '
E(e'w(F)r (T') e w(@ )i ()| K) = o’ E(w(Z)pr(T')| K).

Then
m 1 L 4 1 .
2y 2 ~i\2 ~i\2 _ 2 ~i\2
D E(5f’) = o°F (#K2 > W@y en(@) ) = mo’E (#K2 > (@) )
k=1 ieK k=1 €K
< " 6°R (Zw@i)> (45)
Nin icK
m_ 2 o
< n,2m~n0 E (;w(x )) :
To bound the term, E (37 | w(z")), we use with v = 1,
E (Z U)(fi)> < nE ([112:) < nM (L —")7H1)? = nd (1 —5") 7 (46)
i=1
All in all,
= mn _
Y E(B?) < o’ 5—(1 - )71 (47)
k=1 min

When there is no subsampling the bound from Equation [38] becomes

202m

E(llu—u®|?) < (14 (1= 8) "' (1 = ™) M) Ju — Py, ul® + 1=0)'a-n")"M. (48)
When n = n,,;, (allowing subsampling to reach interpolation regime #K = m), the bound
becomes

&n 2
E(u— w®k[?) < (14 21 =87 (1= ™) M) Ju - Py, ul® +20° = (1-6) 7 (1= ™) 7'M, (49)

in this particular case the influence of the noise may be more important, as for an interpolation
method. Then in the noisy case, using n,,;,, = % for some fixed 5 > 1 allows to better control

B
the noise term.

5 Numerical experiments

5.1 Notations and objectives

In this section, we focus on polynomial approximation spaces V,, = P, with p the polynomial
degree. We use an orthonormal polynomial basis of V,, (Hermite polynomials for a Gaus-
sian measure or Legendre polynomials for a uniform measure). The aim is to compare the
performance of the method we propose with the optimal weighted least-squares method and
interpolation. We are not trying to be exhaustive in this comparison, but to cover a quite large
panel of state-of-the art approximation methods.

First, we consider interpolation performed on deterministic set of points (Gauss-Hermite points
for a Gaussian measure, abbreviated Z-GaussH and Gauss-Legendre points for a uniform
measure, abbreviated Z-GaussL), magic points, abbreviated Z-Magic, see [6], Leja points,
abbreviated Z-Leja, see [13],[14] and [15] for their weighted version dealing with unbounded
domains and Fekete points, abbreviated Z-Fekete, see [16] and [17] for their weighted version
dealing with unbounded domains. The three last sets of points are chosen among a sufficiently
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large and dense discretization of X.

Then, we consider least-squares methods, more precisely standard least-squares methods, abbre-
viated SLS, optimal weighted least-squares projection (introduced in [2]), abbreviated OWLS,
and also the boosted optimal weighted least-squares projections we propose, abbreviated BLS,
c-BLS and s-BLS when we respectively use resampling, conditioning, and subsampling plus
resampling and conditioning.

Algorithm 1 Presentation of the BLS method, c-BLS method and s-BLS method
Inputs: 6, n, M, V,,.
Outputs: x™* for the BLS method, ™ for the c-BLS method, 7, for the s-BLS method.

fort=1,...,M do
Sample ™ ~ p"
end for
™ = minj<i<pr || Geni — I|2.
x™* is the sample produced with the BLS method.

Initialize : &™ is a sample produced with the BLS method.
while |Ggn — I||z > 6 do
Sample " with the BLS method.
end while
" is the sample produced with the c-BLS method.

Initialize K = {1,...,n}, % is a sample produced with the c-BLS method.
while |Gz — I||; <0 do
Select £* such that

|~ Tlp = min |Gay, Tz

I T\ (1o K\

K=K\k
end while
& is the sample produced with the s-BLS method.

Remark 5.1. For a fized approzimation space V,,, it must be noticed that the methods OWLS,
BLS and IT-GaussH, I-GaussL or I-Leja points, do not depend on the choice of the
orthonormal basis associated with V,,, as the quantity Zz~ 1s independent of this choice. This
is however not the case for the two following methods T-Magic [6] or I-Fekete [10], the
particular choice of the basis will be mentioned in each example.

Remark 5.2. The difficulty of the optimal least-squares methods lies in the fact that we sam-
ple from a non-usual probability density function. We