
HAL Id: hal-02562117
https://hal.science/hal-02562117v1

Submitted on 4 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NO-REFERENCE QUALITY EVALUATION OF
LIGHT FIELD CONTENT BASED ON

STRUCTURAL REPRESENTATION OF THE
EPIPOLAR PLANE IMAGE

Ali Ak, Suiyi Ling, Patrick Le Callet

To cite this version:
Ali Ak, Suiyi Ling, Patrick Le Callet. NO-REFERENCE QUALITY EVALUATION OF LIGHT
FIELD CONTENT BASED ON STRUCTURAL REPRESENTATION OF THE EPIPOLAR PLANE
IMAGE. The 1st ICME Workshop on Hyper-Realistic Multimedia for Enhanced Quality of Experience,
Jul 2020, London, United Kingdom. �10.1109/ICMEW46912.2020.9105975�. �hal-02562117�

https://hal.science/hal-02562117v1
https://hal.archives-ouvertes.fr


NO-REFERENCE QUALITY EVALUATION OF LIGHT FIELD CONTENT BASED ON
STRUCTURAL REPRESENTATION OF THE EPIPOLAR PLANE IMAGE

Ali Ak, Suiyi Ling, Patrick Le Callet

Rue Christian Pauc, 44306, Nantes, France, firstname.lastname@univ-nantes.fr

ABSTRACT

As an emerging technology, Light Field (LF) has gained ever-
increasing importance in the domain. In order to provide
guidance for the development of perceptually accurate Light
Field (LF) processing tools and supervise the entire stream-
ing system, robust perceptual quality assessment metrics are
required. Especially, No-Reference (NR) metrics are prefer-
able to compare LF with different angular resolutions. Some
metrics have been developed by extending commonly used
2D image quality metrics to the 4D LF domain with angu-
lar consistency terms. Nonetheless, although these models
consistently show slightly improved performance, most of
them are limited in evaluating the quality of LF using the
sub-aperture views with additional terms on the angular do-
main. There is an evident lack of reliable quality metrics
that are tailored to LF content. To remedy this lack, we pro-
pose a NR quality metric for LF contents based on represent-
ing EPI with structural descriptors, including the Histogram
of Gradients and the Convolutional Sparse Coding based de-
scriptors. The primary motivation resides in our observa-
tions that (1) LF related distortions on the angular domain
are highly noticeable on the Epipolar Plane Image represen-
tations (EPI); (2) most of the distortions in EPI are structure-
related. Extensive experiments on the MPI-LFA [1] LF image
quality dataset demonstrate that our method provides compet-
itive performance with the state-of-the-art NR image quality
metrics.

Index Terms— Light field, Image quality assessment,
No-reference, Histogram of oriented gradients, Convolutional
sparse coding, Structural representation of EPI

1. INTRODUCTION

The search for ultra-realistic viewing experience has brought
much focus to Light Field (LF) imaging in the last decades.
As one of the very first studies, Michael Faraday et al.used
7D plenoptic function to define a complete light field [2].
It represents the radiance received on a point from each di-
rection in 3D space at any given time for every wavelength.
Lately, it has been simplified to a four-dimensional function.
4D function defines the emitted light from every point of the
first plane to every point on the second plane in a two-plane

Fig. 1. Different representations of the same Light Field Im-
ages. LF image is from WIN5-LID dataset [3].

representation on the 3D space.
Sub-aperture view, EPI, micro-lens array are different

types of representations for LF images. In Fig. 1, examples of
each representation over the same image are presented. While
sub-aperture views are better at displaying spatial domain in-
formation, EPI representations reveal the angular domain in-
formation. It is expected to have continuous pixel values
along the lines and gradients on each EPI.

From acquisition to display, LF content needs to go
through several processing steps. Each processing step might
introduce various types of distortion. The effect of distortions
on the perceived quality of the produced LF image needs to
be measured in order to develop perceptually satisfying pro-
cessing tools. Although subjective experiments are the most
accurate way of assessing the quality of an image, it is time-
consuming and expensive. Thus, objective image quality met-
rics are required to predict the perceived quality of the images.
Objective image quality metrics can be further categorized as
full-reference and no-reference metrics. While full-reference
metrics have access to non-distorted images to predict the
quality of an image, no-reference metrics predict the quality
of the image by only distorted images.

In LF imaging, artifacts generally appear on the angular
domain. For this reason, many of the published LF image
quality datasets such as MPI-LFA [1] or WIN5-LID [3] focus
on distortions which result in angular domain inconsistencies.
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Fig. 2. Diagram of the proposed algorithm

Distortions in the angular domain are highly visible on EPI
representations [4]. They are presented as broken lines and
gradient structures, e.g., structure-related distortions, within
EPI slices.

Based on the discussions above, in this work, we propose
a no-reference LF image quality metric based on quantify-
ing the structure-related distortions within EPI. On the one
hand, Histogram of Oriented Gradient (HOG) descriptors [5]
is extracted, and a HOG based bag-of-words codebook is
trained to represent the overall structural statistics of EPI. On
the other hand, to further measure the amount of non-natural
structures in EPI, a Convolutional Sparse Coding (CSC) code-
book is trained on a set of EPI patches that contain significant
LF related distortions. After extracting the features using the
learned codebook, the amount of non-natural structural dis-
tortions within EPI is then measured. With the higher-level
structural representations, the quality scores are predicted uti-
lizing Support Vector Regression (SVR). The proposed model
has been evaluated on the MPI-LFA dataset [1] and provides
competitive results with state of the art. The rest of the paper
is organized as follows. In Sec. 2 related LF image quality
works are presented. In Sec. 3 our proposed metric is ex-
plained in details. Experimental setup and results are given
in Sec. 4. Finally, we discuss our findings and conclude in
Sec. 5.

2. RELATED WORK

Image quality assessment has been studied extensively in the
previous decades [6]. Thus, there are numerous 2D objective
image quality metrics. Some of these metrics have been ex-
tended to LF domain [1]. Even though some of the extended
metric predictions have a high correlation with the subjective
scores, there is still room to improve.

Moreover, there have been several attempts to develop
specific LF objective quality metrics for LF images. Tam-
boli et al. [7] proposed a full-reference image quality eval-
uation algorithm where both spatial and angular quality were

Fig. 3. Reference and Distorted EPI slices are presented with
their corresponding HOG Feature Maps. High variance and
low magnitude of HOG features on distorted EPI can be ob-
served.

measured and combined to predict the final quality score. Au-
thors have used Wavelet decomposition to predict the spatial
quality component. Optical flow has been used to predict the
angular quality component.

Shan et al. [8] proposed a no-reference LF image quality
metric. The proposed model is composed of a color compo-
nent, texture component, and a depth component. These three
components are used to fit a support vector regression model
to predict the final quality score.

Lately, BELIF [9] has been proposed based on quanti-
fying distortions on Cyclopean images. In their framework,
spatial features are extracted with the Tucket decomposition,
while angular features are extracted from the structural simi-
larity between the cyclopean image pairs. Finally, these fea-
tures are used to fit a regression model to predict the final
quality score. One disadvantage of this approach is that the
model only considers horizontally adjacent pairs of views to
evaluate the angular consistency.

3. PROPOSED MODEL

The proposed model utilizes CSC and histogram of oriented
gradients to represent the structures in the EPI slices of LF
contents. Extracted features are fed to a regression model
where the final score is predicted. The general diagram of
the proposed model is shown in Fig. 2. 360 EPI slice patches
with obvious LF distortions are extracted from the MPI-LFA
dataset [1] and fast convolutional sparse coding implementa-
tion [10] has been used to learn a dictionary that is composed
of non-natural structure elements. Then, the learned dictio-
nary is used to extract representative features from distorted
EPI slices. More information is given in Sec. 3.2. Addition-
ally, HOG features have been extracted from EPI slices. Af-
terward, the structural statistics of EPI are represented utiliz-
ing a Bag of Words (BoG) model constructed with the HOG
features. Detailed explanations regarding the procedure of
HOG feature extraction, descriptions are given in Sec. 3.1. In
the final stage, extracted HOG and CSC features are concate-
nated and inputted to a regression model, which are explained
in detail in Sec. 3.3. The regression model is trained with a
1000-fold cross-validation. Details are given in Sec. 4.2.
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Fig. 4. Patches from Reference and Distorted LF EPI slices
are presented in the first row. Corresponding HOG directions
and magnitudes are plotted on the circular histogram.

3.1. Histogram of Oriented Gradients based Bag Of
Words Model

HOG has been used as a feature descriptor for numerous com-
puter vision tasks such as human detection [5]. It reveals the
underlying structural information on the image and could be
employed to quantify non-natural structure-related distortions
in the task of image quality assessment [11]. An example is
depicted in Fig. 3, where one distorted EPI slice and its cor-
responding reference are presented. By comparing visualized
HOG maps, it can be observed that the structure-related dis-
tortions lead to higher variance in HOG feature blocks. To
have a closer comparison, we further show the circular his-
togram of directional gradients of a pair of EPI 24 × 24px
sized patches in Fig. 4. As observed, the gradients of the dis-
torted patch are spread out in diverse directions with lower
magnitudes, while the ones of the reference patch are gath-
ered in fewer directions ending out in higher magnitudes of
each bin (gradient direction).

Based on the discussion above, HOG is exploited in this
work to represent and quantify distorted EPI patches. Given
an EPI slice, it is first divided into a set of 10 × 10 local
blocks. Then HOG descriptors are calculated block-wise.
More specifically, directional gradients of each pixel are cal-
culated with a simple kernel [−1, 0, 1], and a signed histogram
with 16 orientations that covers (0, 360) degrees is further
employed to represent each local block.

After getting the local HOG features, a Bag Of World
(BOW) dictionary is trained using the extracted HOG features
to obtain a global HOG based representation for the entire
EPI slice. Formally, a set of extracted HOG feature vectors

Fig. 5. Examples of patches selected for the CSC training.
In total 360 patches have been used to represent 6 type of LF
related distortions from the MPI-LFA dataset [1].

fHOG is clustered into K clusters {c1, . . . , cK} using the K-
means algorithms. With the obtained BOW, each EPI slice
image could be then encoded as a higher-level structural rep-
resentation fHOG−BOD = {θ1, . . . , θk, . . . , θK}, where θk
is defined as

θk =

∑np

i 1(pi) ∈ ck
np

, (1)

1(b) is an indicator function that equals to 1 if the speci-
fied binary clause b is true, np is the number of patches within
the EPI slice, and pi is the ith patch of the set.

3.2. Convolutional Sparse Coding

CSC optimizes a sparse representation for an image using a
set of convolutional filters, i.e., the convolutional sparse dic-
tionary. It is proven in [12] that the image quality assessment
procedure within the human visual system also adheres to the
strategy of ‘sparse coding’ [13]. Based on this fact, CSC was
exploited to quantify structure-related artifacts in several im-
mersive applications [14, 15, 16]. We collected a set of dis-
torted patches from EPI slices and trained a CSC codebook,
where each element within the codebook represent a certain
type of non-natural structure that could be observed in EPI
slices. Details are provided below.

To learn a CSC dictionary that is representative for the
non-natural structure-related distortions within the EPI slices,
we manually collected more than 1k EPI patches (100 ×
100 px ) from a validation set of the MPI-LFA dataset. These
patches cover six types of LF-related distortions and five lev-
els of distortions for each type (details of the dataset are pro-
vided in Sec. 3.3). Among these, we further selected 360
patches that contain visible structural distortions. More ex-
plicitly, only patches that were agreed by two experts have
remained. Instances of patches contain different types of arti-
facts are presented in Fig. 5.

With the collected distorted dataset, the CSC dictionary
was learned via the following objective function:
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[32 kernels of size 32 × 32] [8 kernels of size 8 × 8]

[16 kernels of size 16 ×
16]

Fig. 6. Kernels learned using CSC on three different scales.

min
D,Z

1

2
‖y −

E∑
e=1

DeZe‖22 + α

E∑
e=1

‖Ze‖1

s.t. ‖De‖221 ∀e ∈ {1, ..., E},

(2)

where y is an input image, De is the eth element of the
CSC dictionary, Ze is the feature map with respect to the ker-
nel De, α is a parameter that balances the reconstruction loss
and the sparsity,E is the number of elements in the dictionary
and indicates the convolution operation.

To speed up the optimization procedure, one of the out-of-
the-shelf algorithms [10] was applied with an adaptive batch-
like learning strategy equipped with a parallel computation
setting. We divided the collected EPI patches into 30 batches,
where each batch contain one distortion level for one distor-
tion type. After the learning procedure, we obtained 293 ker-
nels in total. By eliminating the noisy kernels based on the
energy [10], we kept only 56 kernels from the candidate set,
including 32 kernels with size of 32×32, 16 kernels with size
of 16 × 16, and 8 kernels with size of 8 × 8. The remained
kernels are displayed in Fig. 6. It could be observed that the
non-natural structural distortions could are well captured by
most of the kernels (see Fig. 5 for comparison).

Using the learned dictionary, for a given m× n EPI slice,
it could then be represented by a m×n×E tensor of feature
maps ZEPI = [Z1; . . . ;Ze; . . . ;ZE ], where each map Ze is
the response of using kernel De. With the feature maps, a
CSC-based feature descriptor fcsc could be then computed
using as done in [14, 15]:

fcsc = (fact(Z1), . . . , fact(ZE)), (3)

where fact is defined as

fact(Ze) =

∑m
i=1

∑n
j=1 1(e(i, j) > ε)

m× n
, (4)

ε is a threshold for selecting activated pixels. Function
fact(·) aggregates the number of pixels which are above the
threshold ε in each sparse feature map Ze corresponding to
each kernel De. Intuitively, this function counts the number
of pixels that are activated by the corresponding kernel. In
other words, since the kernels are trained to capture stitching-
related artifacts, this process can be interpreted as the compu-
tation of certain types of artifacts in the entire image and thus
can be used to indicate perceived quality.

3.3. Quality Prediction

After feature normalization, the extracted HOG, CSC-based
representations were concatenated and fed into a Support Vec-
tor Regression (SVR) model to predict the final quality scores
utilizing a basic radial basis function kernel as done in [9].

4. EXPERIMENTS

4.1. Experimental Setup and Evaluation Criteria

We conduct our evaluations on MPI-LFA dataset [1]. The
MPI-LFA dataset contains 350 LF images evaluated by 40
subjects by pair-wise comparison. Out of 350 LF images
in the dataset, there are 14 reference LF images. 336 dis-
torted LF image has been generated by applying HEVC-3D
encoder [17], linear interpolation, nearest-neighbor interpola-
tion, optical flow estimation, quantized depth maps, and an-
gular domain gaussian blur. Six different severity levels have
been used to generate distorted LF images.

LF images in the MPI-LFA dataset has only horizontal
parallax with 101 sub-aperture views. The spatial resolution
of each sub-aperture view is 960×720 px. Thus, each LF im-
age consists of 720 EPI slice with 101×960 px resolution. In
order to reduce the computational complexity, we considered
only 36 EPI slices to extract features from each LF image.

For the MPI-LFA dataset, the authors used the just ob-
jectionable differences(JOD) as the scale. Zero(0) JOD score
means having no quality difference, while negative values in-
dicate an observable quality difference. There are robust eval-
uation methods for image quality metrics, such as the model
proposed by Krasula et al[18]. Global correlation measures
such as PCC, SCC do not consider the uncertainty in the sub-
jective scores, and objective metrics need to be mapped to
the subjective quality experiment range. The proposed ap-
proach by Krasula et al. resolves these problems. However,
in order to use the proposed evaluation methodology, we need
to have access to statistical information about the subjective
test. if MOS scores, and not individual scores, are the only
reported results of subjective experiments, it is not enough to
run such full comprehensive evaluation. Unfortunately, MPI-
LFA dataset does not provide enough statistical information
about the results rather than the JOD scores, we utilized the
cross-validation methodology for the evaluation of the pro-
posed model

Cross-validation is another alternative to reliably evaluate
the generalization performance of a machine-learning-based
quality assessment system [19]. Therefore, the proposed
model was evaluated through 1000-fold cross-validation as
done in [14, 20, 21]. At each fold, the whole dataset was
randomly divided into 80% for training and 20% for test-
ing, without overlap between them for 1000 times. The me-
dian Pearson Linear Correlation Coefficient (PCCm), median
Spearman Rank-Order Correlation Coefficient (SCCm), me-
dian Root Mean Squared Error (RMSEm) between the sub-
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jective and objective scores are reported across the 1000 runs
for performance evaluation.

4.2. Experimental Results

The overall performances are shown in Table 1. The
results are compared to several 2D full-reference metrics
[22] [23] [24] [25] [26], 2D no-reference metrics [27] [28],
multi-view and LF quality metrics [29] [9]. As observed, the
proposed NR model outperforms all the traditional 2D and
3D metrics, and achieves competitive performance compared
to the state-of-the-art LF metric, i.e., BELIF[9].

Metrics SCCm PCCm RMSEm

PSNR 0.8078 0.7830 1.2697
SSIM [22] 0.7027 0.7123 1.4327
VIF [23] 0.7843 0.7861 1.2618
FSIM [24] 0.7776 0.7679 1.3075
MSSIM [25] 0.7675 0.7518 1.3461
IWSSIM [26] 0.8124 0.7966 1.2340
BRISQUE [27] 0.6724 0.7597 1.1317
NFERM [28] 0.6454 0.7451 1.1036
MW-PSNR R. [29] 0.7217 0.6757 1.5048
MW-PSNR F. [29] 0.7232 0.6770 1.5023
BELIF [9] 0.8854 0.9096 0.7877
Proposed 0.8942 0.9005 0.8916

Table 1. Performance results on the MPI-LFA dataset.

4.3. Ablation Study

In order to better understand the contributions of each struc-
ture representation to the proposed framework, an ablation
study has been conducted. Results are summarized in Table 2.
When CSC features are removed, HOG features alone has a
lower correlation compared to removing CSC features being
removed. These observations demonstrate that both feature
descriptors contribute to quantifying the structural distortions
better.

SCCm PCCm RMSEm

HOG 0.7782 0.7845 1.2690
CSC 0.8088 0.8143 1.1740

Table 2. Performances of ablative models uisng only the CSC
or the HOG descriptor.

5. CONCLUSION AND DISCUSSION

HOG features are utilized in other computer vision tasks to
detect shapes and structures on the 2D images [5]. As sug-
gested in [4], structural feature descriptors are useful to re-
veal the distortions on EPI representations. Additionally, we
adopted CSC to learn a representative dictionary for distorted
EPIs. Contrary to the traditional optimization procedure, we

have developed a novel batch-like approach to split the train-
ing set into different parts by the severity-level of each indi-
vidual distortion type. This allows the model to converge to
a representative kernel dictionary for the complete set of dis-
tortions, and the learning procedure could be sped up through
parallel computation.

Evaluation of the proposed approach has been done via
cross-validation on the MPI-LFA dataset. Even though it is
more robust than a direct evaluation, other evaluation methods
such as[18] could have been adopted with sufficient statistical
information about the subjective experiment. Thus, we have
utilized 1000 fold cross validation as suggested in the liter-
ature. Evaluation showed that the proposed metric is capa-
ble of predicting LF quality in correlation with the subjective
opinions and provided a competitive result in comparison to
existing metrics.
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