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Abstract: Nowadays, the user can have several profiles found in different
adaptive systems relative to various fields. In particular, adaptive e-learning
systems respond to a strong need to adapt to each learner their proposed activities
based on the data stored in his/her profile (learning-style, interest, etc.). However,
each system can have incomplete data as far as the learner is concerned.
Hence, the exchange of the learner’s profile data is extremely important in
order to enhance his/her learning experience. The exchange requires a matching
process so as to resolve the large number of a learner’s profiles differences
whether in syntax, structure or semantics. In this context, we propose a matching
process to automatically detect the similarity between the profile elements. The
originality of this process resides in the fact that it rests on a new semi-supervised
Tri-Training algorithm which significantly improves the state of the art
approaches.
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1 Introduction

The learner’s profile is a key element in the adaptive educative systems

(Brusilovsky and Millan, 2007). It contains several data, such as the learned courses and

activities, preferences, interests, etc. These data are represented by different standards,

such as Public And Private Information for learner1 (PAPI), Information Message Service

Learner Information Package2 (IMS LIP) and Information Message Service Reusable

Definition of Competency or Educational Objective2 (IMS RDCEO).

A learner’s profile can be either empty or contain very little information with

incomplete or partial data. Therefore, no learner adaptation can be fulfilled. As a

consequence, there is a strong need to exchange, among the different systems, the profile

data of the same learner to enhance and enrich his/her profiles. The learner’s profile data

exchange from one system to another (standard to standard) requires an implementation

of a learner’s profiles interoperability system. This system aims at adapting the learners’

access to the proposed activities grounded on their learning experience (Walsh et al.,

2013; Martínez-Villaseñor et al., 2014). It provides mainly a common structure, semantics

and syntax for learner’s profiles by applying a mapping rule set which is generated by a

matching process.



Each mapping rule expresses the similarity between a learner’s profile element and

another element of a further learner’s profile (word pair composed of two element names).

Several studies in different domains have been set forward to solve the problems related

to the matching process (Martínez-Villaseñor and González-Mendoza, 2017; Zghal et al.,

2015; Martínez-Villaseñor et al., 2014; Shasha et al., 2015; Cate et al., 2013). These

studies are essentially based on techniques and methods to detect the similarity between

the profile elements. In this paper, the central focus is more on methods that are based on

semantic similarity measures. In literature, there are methods based on simple or compound

similarity measures (Zghal et al., 2015; Martínez-Villaseñor et al., 2014) some of which

use the very costly supervised learning techniques (Shasha et al., 2015; Cate et al., 2013).

Hence, we propose a matching process resting on a classification process to (i)

automatically detect the similarity between the profile elements and (ii) generate the

mapping rules. We used the semi-supervised technique which is based on the unlabelled

data in the classification process to improve the result accuracy (Zghal et al., 2013; Fazakis

et al., 2016). Besides, this technique offers a predictive model adapted to the data to

be classified with reduced labelled data. In addition to taking into account the semantic

heterogeneity of the learner’s profiles, our matching process aims, equally, at resolving the

structural and the syntactic heterogeneity.

The rest of this paper is organized as follows. In Section 2, a state of the art about the

learners’ profiles interoperability system is introduced. Then, in Section 3, an overview

about our contribution to the matter is presented. The proposed semi-supervised algorithm

used to the matching process is identified in Section 4. The matching process is developed

in Section 5. In Section 6, the evaluation results are displayed. Section 7 stands for the

concluding part of the paper that sets forward an overview of the ongoing research that we

are trying to accomplish.

2 State of the art

In this section, we present a brief overview of the users’ profiles interoperability

approaches. We also depict the matching process steps and techniques used by the majority

of these systems. In addition, we describe the similarity measurement types and the

methods used in the matching process followed by a synthesis.

2.1 The learner’s profiles interoperability approaches

In order to implement a learner’s profiles interoperability system, three main keys should

be considered: the interoperability architecture, the data exchange representation and the

data integration (Ghorbel et al., 2015). In this paper, we are interested in the second key

which centers around how the exchanged data are represented.

Generally, the exchanged data representation is governed by the definition of standard

ontology or unified profiles that can be used by multiple systems (Brusilovsky and

Millan, 2007; Musa and Oliveira, 2005; Wagnera et al., 2014; Ouf et al., 2017). This

representation is an incomplete solution because of the variability of the stored learner’s

profile data (interests, preferences, historic navigation, evaluation ...) and the large number

of differences in syntax, structure and semantics of the learner’s profiles. In fact, the



emergence of a new system requires the reconstruction of a new anthology or a new unified

profile. For this reason, a second representation seems to be a possible solution to these

problems.

The solution lies in the use of matching techniques to generate mapping rules (Conde

et al., 2014; Wu et al., 2015). Therefore, to exchange data, each system must do the

mapping with the profile of the other systems. The merit of this solution is that each

system may adopt its own representation of the learners’ profiles in terms of language and

structure. Yet, each pair of systems needs to create mapping in both directions. Therefore,

multiple mapping rules should be implemented for different learner’s profile models. In

addition, during the introduction of a new learner’s profile model representation, new

mapping rules need to be developed.

The third representation seems to overcome the drawbacks of the first two ones. For

this reason, we are rather interested in this representation which is essentially based on a

common learner’s profile and a matching process (Walsh et al., 2013; Martínez-Villaseñor

et al., 2014; Santos and Boticario, 2015; Martínez-Villaseñor and González-Mendoza,

2017).

The profile matching is a schema manipulating process which takes as input two

heterogeneous schemas and returns the mapping rules (Sutanta et al., 2016). Each mapping

rule identifies the semantic relation between two schema elements. This identification relies

on matching techniques and similarity measures.

The matching process takes place in three steps (Sutanta et al., 2016). The first one

is for schema information extraction (element, name, hierarchical relations, structural and

semantic relations). The second step consists in calculating the similarity between two

schema elements using similarity functions. In the third step, the mapping rules are detected

and validated on the basis of the calculated similarities. Roughly speaking, the validation

is manually (Walsh et al., 2013; Sah and Wade, 2016) or semi-automatically performed

(Jaiswal et al., 2013) which leads to a waste of time. For this reason, several systems, with

an automatic validation, are suggested (Martínez-Villaseñor et al., 2014; Zghal et al., 2015;

Martínez-Villaseñor and González-Mendoza, 2017).

These systems are based on linguistic and structural validation techniques. The

linguistic technique is based on a syntactic or semantic similarity comparison. This

technique takes into account just the meaning of the element name (word). However,

the relations between the elements, such as neighbours, parents and descendants, are not

taken into account. For this reason, the structural technique has emerged. It considers that

the similarity between two elements e1 and e2 belonging respectively to schema S1 and

S2 depends on the relationship between elements having a relation with e1 and e2. For

example, the authors in Martínez-Villaseñor et al. (2014) and Martínez-Villaseñor and

González-Mendoza (2017) state that two elements are similar only if their neighbours are

similar. However, the authors in Zghal et al. (2015) think that two elements are similar only

if their parents or descendants are similar.

2.2 The similarity comparison

In order to compare the similarity of two words, sentences or documents, several types and

methods are distinguished. In literature, the following similarity types are recorded: the

string and the semantic similarity (Gomaa and Fahmy, 2013). In the string-based similarity

type, we identify the character and the term measure. In the semantic-based similarity type,

we identify the knowledge and the corpus similarity types.



The authors in Gomaa and Fahmy (2013) assume that knowledge-based similarity

measures: (i) give an efficient semantic result compared to the string-based ones and (ii)

provide a gain of time by giving the measure result compared to the corpus-based ones.

Hence, we are interested in this type that can be divided into two groups of measures

to identify the similarity degree between words: semantic similarity and relatedness.

In the first group, there are three measures: Hirst and StOnge (hso), Lesk (lesk) and

vector (vector). In the second group, we identify two sub-groups which are based on the

information content and the path length measures. There are three measures of information

content: Resnik (res), Lin (lin), Jiang and Conrath (jcn) and three path length measures:

Leacock & Chodorow (lch), Wu and Palmer (wup) and Path Length (path).

Based on the identified types, several methods of similarity measurement have

emerged. We classify them into three main methods.

The first one consists in using one of the measures relative to each type. Several

researchers, such as Zghal et al. (2015), Mezghani et al. (2014), adopted this method. These

researchers have used a similarity measure based on WorldNet in order to respectively

identify the similarity between the document elements (Zghal et al., 2015) and the users’

closed friend tags and their own tags (Mezghani et al., 2014).

The second method relies on a combination of two or more measures (Martínez-

Villaseñor et al., 2014; Wang et al., 2014; Martínez-Villaseñor and González-Mendoza,

2017). The authors in Martínez-Villaseñor et al. (2014) and Martínez-Villaseñor and

González-Mendoza (2017) used a combination of three similarity measures: the two first

are character-based and the third is knowledge-based similarity measures. The authors in

Wang et al. (2014) proposed a new similarity function called ‘fuzzy-token-matching-based-

similarity’ which extends the string similarity functions (jaccard, cosine, etc.) by allowing

fuzzy matching between two tokens. Then, they joined the new function in order to find

the similar string pair.

The third method rests on the machine learning algorithm. Most of the studies using

this method are based on the supervised learning techniques (Buscald et al., 2013; Severyn

et al., 2013; Shasha et al., 2015) so as to classify text pairs. The researchers in Buscald et al.

(2013) and Severyn et al. (2013) used the Support Vector Regression algorithm SVR and

took several simple similarity measures as features for the learning process. Shasha et al.

(2015) applied the multinomial naïve Bayes tree algorithm on a large number of widely

used text classification benchmark datasets.

2.3 Synthesis

Departing from this state of the art, we have attempted to perform a comparative study

of the learner’s profile interoperability approaches (Table 1). The comparison rests on the

mode of representation of the exchanged data, the matching techniques and the similarity

types and methods used in the matching process. We noticed that most of the proposed

approaches used the structural and/or the linguistic (Conde et al., 2014; Santos and

Boticario, 2015; Martínez-Villaseñor et al., 2014) matching techniques in order to improve

the result of the mapping rules. Moreover, it can be noticed that different types and methods

of similarity comparison are used in the matching process. However, to the best of our

knowledge, the majority of the approaches did not use the machine learning algorithm

despite its importance in similarity comparison such as in textual similarity (Shasha et al.,

2015; Cate et al., 2013). The majority of these approaches used the supervised machine

learning algorithms which are costly in time (consuming), storage capacity (large quantity

of labelled data), etc.



Table 1 Learner’s profile interoperability approach comparative study
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As a matter of fact, further efforts need to be made in order to improve the matching process

and the mapping rules.

For this reason, we propose a mechanism for mapping generation based on a process

for the learner’s profiles matching using the semi-supervised machine learning technique.

By using this technique, our mechanism is adapted to all provided heterogeneous learner’s

profiles.

3 Overview of the proposed mechanism for mapping generation

In order to allow the exchange of the heterogeneous learner’s profile data between

e-learning systems, we set forward an architecture for the learner’s profiles interoperability.

This architecture is illustrated in Figure 1. It is made up of four layers inspired from

Ghorbel et al. (2015): client, adaptation, interoperability and sources.

Figure 1 The extended interoperability layer of our architecture (see online version for colours)

In our context, the client layer allows the interaction between the learner and e-learning

systems. Thus, the learner can send a request by clicking on the provided links through

different types of devices (PC, mobile, ...).

In the source layer, each system has its own local databases of Learning Objects (LOs) and

Learners’ Profiles (LPs). LOs can be web pages, images, videos, tests or any other elements

involved in the learning process. They can be represented by different standards such as

Learning Object Metadata3 (LOM) , Information Message Service Simple Sequencing4

(IMS SS) and IMS Learning Design.5

Similarly, LPs can be represented by different standards such as PAPI, IMS LIP and

IMS RDCEO. The learner can have a Local Profile (LP) in each educational system.

In order to return the adapted results (LOs) to the learner based on the adaptation layer

(Ghorbel et al., 2015), we need to exchange the data between his/her Local Profiles. Thus,

we need to interoperate the heterogeneous learner’s profile standards in the interoperability

layer. In this layer, we are based on the third mode of representation of the exchanged

data (Section 2.1) : each LP refers to a common profile called Global Profile (GP) with a

mechanism for mapping generation. GP helps the learner when navigating in LOs (lesson,

activity ...) by taking into account several parameters. These parameters are detailed in



Section 5.1. The mechanism for mapping generation generates the mapping rules which

serve to merge the exchanged data from LP to GP and vice versa based on a mechanism of

data fusion (Ghorbel et al., 2016). This mechanism allows mainly the resolution of conflicts

which may occur in the exchanged data .

In this paper, the extent of the interoperability layer is detailed using the mechanism for

mapping generation. This mechanism, as shown in Figure 1, takes as input the schema of

the Global Profile (GP) and the Local Profiles (LPs). Each LP is represented by a standard

(e.g. PAPI, IMS LIP, etc.). It is governed by two processes in order to generate the mapping

rules as an output. These processes are called matching of LP and GP and classification of

word pairs.

The matching process uses the structural and the linguistic validation techniques

(Section 2.1). For the structural technique, we take into account the hierarchical information.

Therefore, two nodes are considered to be similar only if their parents are similar (Zghal

et al., 2015). However, with the linguistic techniques, the matching process can detect the

semantic similarity between two node names, which we have called word pair. The first

word in the pair represents an LP node name and the second word represents GP node

name. Each word pair is classified into similar or non-similar according to the classification

of word pair process. This process is based on the semi-supervised learning technique.

In literature, several algorithms for semi-supervised learning are proposed (Fazakis

et al., 2016), such as Self-Training, Co-Training, Tri-Training, semi-supervised Support

Vector Machine (S3VM) and Transductive Support Vector Machine (T-SVM). Some authors

(Xiaojin, 2008; Fazakis et al., 2016) assert that Tri-Training: (i) is simpler than the last

two mentioned algorithms and (ii) improves the classification result against all algorithms.

The classic Tri-Training algorithm (Xiaojin, 2008) trains three classifiers on the same

labelled learning database based on its all features. The elements of the labelled learning

database are selected randomly for training. Then, the elements of a nonlabelled database

are classified. If two classifiers agree on the label of an element ‘x’ from the nonlabelled

database,‘x’ should be added to the learning database as a confident element to train the

third classifier. This process is iterated until the three classifiers match the labelling of each

element of the nonlabelled database.

This algorithm is sensitive to the random element selection and the use of the whole

set of features for training. We regard that the projection of the database feature set into

conditionally independent sub-sets of features (i.e. each sub-set of features is sufficient to

train a classifier) for training as a key to resolve the notion of sensitivity. This concept

of feature projection is inspired from Co-Training algorithm. This algorithm has shown

accurate results (Zghal et al., 2013). In this paper, we propose a new Tri-Training algorithm

version in order to improve the classification result accuracy.

4 Classification of word pairs

This process allows the identification of the similarity between LP and GP node names

(word pair) with a new version of the semi-supervised Tri-Training algorithm.

4.1 Principle of the new Tri-Training algorithm

This algorithm is based on two learning databases taking the form of a matrix.

The first one is called Labeled Database (LabDB). Each line of LabDB contains:

(i) a pair of similar or nonsimilar word pairs selected randomly, (ii) the semantic



knowledge-based similarity measure metrics (Section 2.2) which are used as features in

the classification process and (iii) a label: the label ‘+’ if the pair is similar and the label

‘−’ if it is not.

The second leaning database is called Non-Labeled Database (NonLabDB) having the

same structure of LabDB. However, it is not labelled and in each line, we find : (i) a word

pair relative to LP and GP node names and (ii) the semantic knowledge-based similarity

measure metrics. Each word pair in NonLabDB is classified into similar or non similar

with the new Tri-Training algorithm resting on LabDB.

Our Tri-Training algorithm consists in training three classifiers during nbIteration

on: (i) LabDB or the labelled and adapted learning database (LabAdapDB), (ii)

NonLabDB based on three independent feature sets (< F1, F2, ... >, < F ′1, F ′2, ... >,

< F ′′1, F ′′2, ... >: each classifier takes a feature set (Figure 2) .

Figure 2 Word pair classification process based on the new Tri-Training algorithm (see online
version for colours)

In fact, the features which are related to the knowledge-based similarity measures, can

be divided into three sets (Section 2.2). The first set is related to the information content

measures (res, lin and jcn). The second set is related to the path length measures (lch, wup

and path). The third set is related to the semantic relatedness measures (hso and lesk).

In the first iteration, each classifier is trained on LabDB based on its relative feature

set. Then, three prediction models are generated through which the classifiers assign the

labels and scores to NonLabDB word pairs. Consequently, three results for each word pair

are obtained. These results are combined in order to obtain one label for each word pair.

Then, the most confident word pairs are detected and added to LabAdapDB.

During the following n-1 iterations, the classifiers are trained on LabAdapDB and the

most confident word pairs are added to LabAdapDB. In order to adapt the latter, we propose

an algorithm called Word Pair Score Calculation (WPSC).

4.2 Word pair score calculation

The WPSC algorithm calculates the scores of each pair after each iteration: a score for

having the label ‘+’ and another for having the label ‘−’. Then, it detects the most confident

word pairs (see Algorithm 1) and add them to LabAdapDB.



Algorithm 1 Word Pair Score Calculation: WPSC

Input:

nbIteration, nbClassifier : Integer,
LabDB, LabAdapDB,NonLabDB : Database,
feature : Array of size(nbClassifier),
C : Object of a Supervised classifier type ,
sumScore, score, finalResult : matrices of size(
sizeOf(NonLabDB)X2)

Output: DB_SDGP : Database
1: InitializeMatrix sumScore[0..sizeof(NonLabDB), 0..2] into zeros;
2: for i← 1 tonbIteration do

3: if (i! = 1) then

4: base← LabAdapDB;

5: else

6: base← LabDB;

7: end if

8: for cl← 1 tonbClassifier do

9: score← classify(C, NonLabDB, base, feature[cl]);
10: for k ← 1 to sizeOf(NonLabDB) do

11: add(sumScore[k, 1], score[k, 1]);
12: add(sumScore[k, 2], score[k, 2]);
13: if (cl == nbc) then

14: if (sumScore[k, 1] >= sumScore[k, 2]) then

15: add(finalResult[k, 1], sumScore[k, 1]);
16: add(finalResult[k, 2], ' + ');
17: else

18: add(finalResult[k, 1], sumScore[k, 2]);
19: add(finalResult[k, 2], '− ');
20: end if

21: end if

22: end for

23: end for

24: listMax_Index← research_MaxIndex(finalResult);
25: addConfidentPairs(listMax_Index, NonLabDB, finalResult,

LabAdapDB);
26: end for

27: DB_LPGP ← addLabel(finalResult, NonLabDB);

end

The inputs of this algorithm are the number of iterations (nbIteration), the number of

classifiers (nbClassifier), LabDB and LabAdapDB, the array of the sub-sets of features

(feature), the supervised classifier (C), the matrices which store scores and labels

(sumScore, score and finalResult).

In each iteration (line 1), a number of results relative to nbClassifier (three in our case)

are obtained based on LabDB or LabAdapDB (lines 1–9) and their relative sub-sets of

features.

By using a sub-set of features (feature[cl]), C assigns to each word pair two scores for

each label based on the function classify (line 9). The result of each classifier is stored in



the matrix score. This matrix contains in columns 1 and 2 the scores of each word pair so

as to acquire respectively the label ‘+’ and the label ‘−’.

Then, these scores are added to the matrix sumScore (lines 11–12) in order to compute

the sum of the scores for each word pair so as to acquire the label ‘+’ (sumScore[k,1]) and

the label ‘−’ (sumScore[k,2]). Therefore, sumScore is used in order to identify the final

score and the label for each word pair by comparing the assigned scores (line 14) in the

first and the second column (sumScore[k,1] and sumScore[k,2]). Therefore the final scores

and labels are stored in the matrix finalResult (lines 13–19).

The latter is used in order to adapt LabAdapDB. Afterwards, the algorithm detects the

most confident word pairs in NonLabDB by using the function research_MaxIndex (line

24). This function detects the indexes (listMax_Index) of pairs having the maximum score

in finalResult. Then, based on the detected list, the algorithm adds these confident word

pairs to LabAdapDB with its labels based on the function addConfidentPairs (line 25).

Finally, a database DB_LPGP containing the word pairs of NonLabDB and its final labels

is generated (line 27). DB_LPGP is used after in the matching process.

5 Matching of local and global profiles

The learner’s profiles can respect different syntaxes such as Resource Description

Framework (RDF), Extensible Markup Language (XML) and Web Ontology Language

(OWL).

For this reason, before starting the matching process, we perform a preliminary step,

which is the profile schema information extraction. Then, we propose an algorithm for

matching of the Global Profile (GP) and a Local Profile (LP) .

5.1 Schema information extraction

Some works handle this step in order to resolve the syntactic heterogeneity of schema

document description by the extraction of linguistic and structural information. Similarly,

in our work we attempt to extract: (i) the linguistic information which stands for the name

of elements, attributes and properties. and (ii) the structural information identified by its

hierarchy. Then, based on the extracted information, a tree for each schema is constructed

based on the Document Object Model6 (DOM) standard. In this standard, every element,

attribute/property is respectively an element, attribute/property node with its corresponding

text (name). However, in our work, attributes and properties are represented as element

nodes with their names. All these nodes are contained within the root node of the tree.

Figure 3 represents GP XML schema (Figure 3A) and its corresponding tree

(Figure 3B). GP is proposed in the interoperability layer of our architecture (Section 3). It

helps the learner when navigating in Learning Objects (LOs) by taking into account several

parameters.

Departing from Figure 3A, the learner has two main parameters: the first portrays

his/her identity (LEARNER_IDENTITY) and the second describes his/her learning

experience (LEARNER_PARAM). The learning experience is made up of the visited courses

(COURSE). Each (COURSE) is identified by (COURSE_ID), its name (COURSE_TITLE),

the last visit date (COURSE_VISIT_DATE). For each (COURSE), we specify the learned

lessons and their related activities. A (LESSON) is identified by (LESSON_ID), its

name (LESSON_TITLE), the last visit date (LESSON_VISIT_DATE) and the number of

visits (LESSON_VISIT_NUMBERB). An activity is identified by (ACTIVITY_ID), its name

(ACTIVITY_TITLE), its type (ACTIVITY_TYPE), the time spent (SPENT_TIME), the date



of the visit (DATE), the number of attempts (ATTEMPT_NUMBER) and the attained score

(SCORE).

Figure 3 The Global Profile XML Schema and its corresponding tree (see online version for
colours)

All these elements and attributes are transformed into a tree in Figure 3B. Each element

and its corresponding attributes are represented as a node element. The root node,

named < Global_Profile >, holds two nodes:< LEARNER_IDENTITY > and <

LEARNER_PARAM >. The second node holds the child node < COURSE > which

holds the child nodes < COURSE_V ISIT_DATE >, < LESSON >, etc.

5.2 The matching algorithm

After the information extraction step, we proceed with matching the tree relative to LP and

GP based on the matching of trees algorithm (see Algorithm 2). The result of this algorithm

is a set of mapping rules between LP and GP.



Algorithm 2 Matching of trees

Input: LP, GP : tree, DB_LPGP : Database

Output: mapping : XMLFile

1: list_ndLP = root(LP ).getChildren();
2: list_ndGP = root(GP ).getChildren();
3: for eachnode ndLP of list_ndLP do

4: for eachnode ndGPof list_ndGP do

5: match(ndLP, ndGP );
6: end for

7: end for

8: Procedurematch(ndLP, ndGP )
9: Begin

10: list_ndLP = ndLP.getChilden();
11: list_ndGP = ndGP.getChilden();
12: if (nodeName (ndLP ).equals (nodeName(ndGP ))

||similarity(nodeName(ndLP ) , nodeName(ndGP ), DB_LPGP )) then

13: add(nodeName (ndLP ), nodeName (ndGP ), mapping);
14: if (list_ndLP ! = null& list_ndGP ! = null) then;

15: for eachnode nl of list_ndLP do

16: for eachnode ng of list_ndGP do

17: match (nl, ng);
18: end for

19: end for

20: end if

21: else

22: if (list_ndGP ! = null) then

23: for eachnode ng of list_ndGP do

24: match(ndLP, ng);
25: end for

26: end if

27: if (list_ndLP ! = null) then

28: for eachnode nl of list_ndLP do

29: match(nl, ndGP );
30: end for

31: end if

32: end if

33: Endmatch

34: Function similarity(ndLP, ndGP, DB_LPGP )
35: Begin

36: test = false;
37: for each line inDB_LPGP do

38: if (line.contains (nodeName (ndLP ), nodeName (ndGP ), ' + ')) then

39: test = true;
40: end if

41: end for

42: return test;
43: end similarity

end



This algorithm takes as input the tree of LP and GP and a database DB_LPGP. First,

this algorithm performs the matching between the children of the root of LP (line1) and GP

(line 2) with the call of the recursive procedure match (lines 1–7). This procedure performs

the matching of the other nodes.

It takes two parameters: the first and the second are respectively a node of LP (ndLP)

and GP (ndGP). Then, match verifies the similarity between the node names of LP and

GP (line 7) based on exact comparison or function similarity (line 8). This function takes

three parameters: the nodes ndLP and ndGP and the database DB_LPGP. In fact, the

originality of our matching process resides in using this database which is the result

of our new Tri-Training algorithm (Section 4). This database contains all the possible

combinations between the LP and the GP node names (pairs of words). Each line in

DB_LPGP represents a pair of node names and its label: the label ‘+’ for a similar pair of

node names and the label ‘−’ for non-similar one. For this reason, the function similarity

checks if two introduced node names exist in DB_LPGP and are similar or not (lines

34–43).

In case of similarity, the node names are added as new nodes in an XML file called

mapping (line 13). Then, if ndLP and ndGP has children nodes (line 14), the match

procedure restarts by matching their children (lines 15–19).

In case of non-similarity and if ndGP has children, match restarts by matching ndLP

with ndGP children (lines 22–26). In case of non-similarity and if ndLP has children, match

restarts by matching ndLP children and ndGP (lines 27–32). At the end of this algorithm,

a set of mapping rules are identified and stored in the XML file (mapping).

Figure 4, illustrates an extract of the obtained XML mapping file which contains: (i) an

extract of the tree of the PAPI standard (LP = PAPI), IMS RDCEO standard (LP = RDCEO)

and GP, (ii) the existing relationship between them and (iii) the mapping file. For example,

for the node ‘RDCEO:period’, we save its synonym in GP in the node < SimilarTo >
(< SimilarTo name = GP : date >). These two node names are similar because on the

one hand they exist in DB_LPGP with the label ‘+’ and on the other hand, their parent

nodes (RDCEO:activity and GP:ACTIVITY ) are similar.

6 Evaluations

In this section, the datasets and the metrics used for the evaluation are described. Then, the

obtained results are displayed.

6.1 Datasets

In this evaluation, three distributed e-learning systems are selected: (i) two learning

management systems called Moodle7 and Claroline8 and (ii) a learning assessment system

called Position Platform.9 Learners are members of the three systems at the same time. In

Moodle and Claroline, learners can learn courses, carry out activities, receive marks about

these activities, sit for exams, etc. In the Position Platform, learners can sit for exams in

the form of multiple choice questions and get marks.

In this paper, we studied the case of students of the Virtual University of Tunisia who

desire to get a Certificate in Information technologies and Internet (C2I). The courses of



this module belong to 5 domains and each domain includes 4 competencies (sub-domains)

each of which includes several themes. Once a student desires to get the certificate exam,

he/she accesses his/her account on Moodle for revision where he finds several links related

to the whole domains (competencies, activities, etc.). Some of these links are not useful.

Each student needs to be oriented with the best links relative to different learning objects

(LOs) in order to accomplish his/her revision based on data stored in his/her three profiles

(example: links to domains or sub_domains where the student does not have good marks

in the related activities and the related passed exams).

Figure 4 Example of PAPI and GP matching and the generated mapping rules (see online version
for colours)



The data exchange (marks, spent time in activities, number of attempts, etc.) of each student

in such domain (competency) in Claroline and the Position Platform with Moodle deals

with certain difficulties because the learner’s profiles schemas are different.

In fact, the learner’s profile in Moodle, Claroline and the Position Platform are

represented respectively by the IMS LIP, the IMS RDCEO and the PAPI standard

(Section 1).

The IMS LIP standard includes several structured categories: identification; goal;

qcl (qualifications, certifications, licenses); activity; competency; transcript; accessibility;

interest; affiliation; security keys; and relationship. The identification category represents

the demographic and biographic data about a learner. The goal category represents the

learning career and other objectives of a learner. The qcl category is used to identify

the qualifications, certifications, and licenses from recognized authorities. The activity

category involves the learning related activities in any state of completion. The competency

category stands for skills, experience and acquired knowledge. The transcript category

represents the institutional academic achievements. The accessibility category introduces

the general accessibility to the learner information by means of language capabilities,

disabilities, eligibility, and learning preferences. The interest category describes hobbies,

recreational activities, etc. The affiliation category represents information records about

membership in professional organizations. The security key sets the passwords and keys

assigned to a learner. The relationship category establishes the link between core data

elements.

Moreover, the IMS RDCEO standard involves improved elements of existing

categories in the IMS LIP standard and other new categories namely profile, educational

path, metadata, and comment (Oubahssi and Grandbastien, 2006). The profile category

includes a set of information gathered as an output of a learning unit. The metadata category

assembles the data, which makes it possible to describe a learner’s data.The educational

path category displays the educational steps carried out by a learner during his/her training.

The comment category is used for adding information or remarks to complete the category

elements.

The PAPI standard provides a classification of the learner’s information according

to 6 categories. The first category, which is called contact _type, describes personal

information, such as the name, e_mail_contact, postal_adress, etc. The second one

displays the relationship information (relations_info), such as the learner’s relations with

other learners or tutors. The third exhibits the security information (security_info). The

fourth and the fifth portrays the learner’s preferences (preference_info) and performances

(performance_info). The latter includes the learner’s goals, experience and the work in

progress. The last category (portfolio_info) presents the learner’s competencies and a

collection of the performed tasks.

6.2 Evaluation metrics

To address the heterogeneity of the mentioned standards, our architecture was set up

between the three systems. Then, a set of evaluations of our proposed mechanism for

mapping generation is performed. First, the classification of word pair process is evaluated.

For this reason, the classic metrics for classification evaluation (Powers, 2011) which are

Classification Rate (CR) and F-measure (FR) Rate are used.



Second, the matching of Global Profile (GP) and Local Profile (LP) process is

evaluated. At a first stage, the response time of matching is assessed. Then, the generated

mapping rules are evaluated based on Precision, Recall and F-measure.

Precision is the proportion of correct mapping rules among those returned by the

mechanism.

Precision =
|detectedMapping ∩ realMapping|

|detectedMapping|
(1)

Recall is the proportion of correct mapping returned by the mechanism among the correct

ones (including the correct mapping rules that are not detected by the mechanism). This

value indicates the effectiveness of the mechanism and demonstrates the percentage of the

missed mapping rules

Recall =
|detectedMapping ∩ realMapping|

|realMapping|
(2)

F-measure demonstrates the quality of our mechanism by combining the precision and the

recall.

F -measure =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

We carried out these evaluation on a PC having 4G of RAM and 1.85 GHz processor.

6.3 Evaluation of the classification process

In this evaluation, we performed a comparison of the obtained classification results based

on the Co-Training, the classic and the new Tri-Training algorithm and the manual

labelling. For this reason, we have taken into account three NonLabDB and a Labeled

Database (LabDB) (Section 4.1). The first NonLabDB contains 500 nonlabelled pairs of

words from the Global Profile GP and the PAPI standard called NonLabDBPAPI . The

second NonLabDB contains 500 pairs of words from the GP and IMS LIP standard called

NonLabDBIMSLIP . The third NonLabDB contains 900 pairs of words from the GP

and IMS RDCEO standard called NonLabDBRDCEO. These three databases are labelled

manually for evaluation. LabDB contains 50 labelled pairs of words.

After data preparation, we proceeded with the choice of the best classification algorithm

(classifier C) for training. For this reason, we applied the Co-Training, the classic

Tri-Training and the new Tri-Training version using several supervised classification

algorithms, such as RandomTree and Support Vector Machine.

Figure 5 illustrates the new Tri-Training algorithm average evaluation results by

applying the RepTree, RandomTree, Support Vector Machine and Bayesian networks for

the three NonLabDB. We noticed that the RandomTree algorithm is the best classifier with

the highest CR and FR values (0.85 and 0.84).

In order to identify the result of the Co-Training algorithm, we performed three

evaluations based on three projections of the three NonLabDB features. The first projection

is based on the Information Content measures and Path measures. The second rests on the

Information Content and Relatedness measures whereas the third is based on the Path and

Relatedness measures.



Figure 5 The Tri-Training evaluation result using several classification algorithms (see online
version for colours)

Moreover, we evaluated the classic Tri-Training algorithm for the three NonLabDB. The

results highlight that the values of the CR and FR are higher than the ones obtained with

the Co-Training. In addition, these results are further improved with the application of our

proposed Tri-Training algorithm.

Figure 6 presents the results of the comparison between the Co-Training, the classic

Tri-Training and our proposed Tri-Training algorithm.

Figure 6 Comparative results of Co-Training, classic Tri-Training and new Tri-Training version
(see online version for colours)

This figure displays a clear result improvement. In fact, the average of CR and FR for the

three NonLabDB increased from 0.73, 0.74 (with the Co-Training) and 0.70, 0.73 (with

the classic Tri-Training) to 0.85, 0.84 (with the new Tri-Training version). Therefore, the



results obtained in Figure 6 prove the efficiency of our proposed Tri-Training algorithm

and can confirm the correctness and the validity of the majority mapping rules.

6.4 Evaluation of the matching process

This evaluation was conducted in order to prove the efficiency of the Matching of GP and

LP resting on our new Tri-Training algorithm.

First, we assessed the response time of matching based on our new Tri-Training

algorithm and the simple similarity measures. The response time includes: (i) the time

for the information extraction of the schemas of LP and GP and (ii) comparing the

similarity between node names based on the simple similarity measures such as wup and

lin (Section 2.2) or the database DB_LPGP labelled by our new Tri-Training algorithm

(Section 4.2) and (iii) creating the XML mapping file containing the mapping rules

(Section 5.2).

The results are illustrated in Table 2 and show a clear gain in matching response time

for generating the mapping rules for PAPI and GP, IMS LIP and GP in addition to IMS

RDCEO and GP. For example, the generation of the total mapping rules between PAPI and

GP takes a time of 2937 ms based on the simple similarity measure wup, which decreases to

1488 ms, based on our proposed mechanism for mapping generation with our Tri-Training

algorithm. Therefore, we have a gain of 1449 ms. Resting on the obtained results in Table 2,

we recorded a gain between 47 and 60% in the response time.

Table 2 Response time matching results

Response time in ms based on:

Simple Similarity Measure Our proposed

LP/GP (wup, lin, lch...) Tri-Training algorithm

PAPI/GP >2000 and <3000 1488

IMS LIP/GP > 6000 and <7000 2410

IMS RDCEO/GP >6000 and <7000 2500

Second, we assessed the generated mapping rules with the metrics defined in Section 6.2.

With these metrics, we tested the generated mapping rules coming from the PAPI and

GP, IMS LIP and GP in addition to IMS RDCEO and GP. The result values are depicted

in Table 3. These values confirm the medium-high quality of the generated mapping rules

(0.8 for the F-measure average).

Table 3 Evaluation of the generated mapping rules between GP and LP

LP/GP Precision Recall F-measure

PAPI/GP 0.64 1 0.78

IMS LIP/GP 0.70 1 0.82

IMS RDCEO/GP 1 0.68 0.80

Finally, we checked the performance of the matching process by using different simple

similarity measures, such as lin and wup (without the classification of word pairs process)



used by the majority of the state of the art matching approaches. Then, we varied the

threshold so as to determine whether two words are similar or not. We calculated the

F-measure values (for each threshold) of the generated mapping rules (between GP and

PAPI, GP and IMS LIP and GP and IMS RDCEO). Figure 7 reveals the average of results

when using the simple similarity measure lin, wup and path with the matching process.

We notice that the quality of the mapping rules is improved as the threshold increases.

However, the generated mapping rules based on our mechanism remain the best ones with

the highest F-Measure value (0.8).

Figure 7 Mapping rule quality comparative results (see online version for colours)

6.5 Evaluation on other datasets

This final evaluation was performed in order to prove that our mechanism for mapping

generation can be applied for other purposes. For this reason, we took the case of the

interoperability between the learner’s profiles and the learning objects. In fact, during

his/her learning experience, the learner can visit different learning objects (courses, lessons,

activities, etc.). Some meta-data values about these learning objects need to be added to

the Local Profile (LP) in order to enhance the result of adaptation. However, each Learning

Object (LO) can be represented by a standard such as LOM, IMS SS, IMS LD (Section

3). For this reason our mechanism is set up between each LO and LP in order to generate

a set of mapping rules. LP (IMS LIP, IMS RDCEO or PAPI) plays the role of the Global

Profile GP (Figure 1) and LO plays the role of LP. The most popular standards for LO

representation which are LOM and IMS SS are selected.

Table 4 portrays the evaluation results of the generated mapping rules for each LO

and LP. These results confirm also (Figure 7) the medium-high quality of the generated

mapping rules (0.72 for the F-measure average) and that our mechanism for mapping

generation can be used for several purposes.



Table 4 Evaluation of the generated mapping rules between LO and LP

LO/LP F-measure

LOM/IMS LIP 1

LOM/IMS RDCEO 0.8

LOM/PAPI 0.56

IMS SS/IMS LIP 0.61

IMS SS/IMS RDCEO 0.516

IMS SS/PAPI 0.88

7 Conclusion

In this paper, we set forward a mechanism for mapping generation based on the

Tri-Training algorithm in order to match the learner’s profiles represented by different

standards, semantics and structures. This mechanism performs the matching between the

Local Profiles (LPs) and the Global Profile (GP) by using the result of the classification of

word pairs process. The latter is based on a new version of the semi-supervised Tri-Training

algorithm. The efficient evaluation values denote that our mechanism not only improves

the quality of the generated mapping rules but can also be used for several purposes.

In future research, we aspire to evaluate the effectiveness of our mechanism for

mapping generation and our previously proposed mechanism of data fusion on the

adaptation layer of our architecture.
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