
DREAM Architecture: a Developmental Approach to
Open-Ended Learning in Robotics
Stephane Doncieux1*, Nicolas Bredeche1, Leni K. Le Goff1, Benoı̂t Girard1, Alexandre Coninx1,
Olivier Sigaud1, Mehdi Khamassi1, Natalia Dı́az-Rodrı́guez2, David Filliat2, Timothy
Hospedales3, A.E. Eiben4, Richard Duro5

Abstract
Robots are still limited to controlled conditions, that the robot designer knows with enough details to endow
the robot with the appropriate models or behaviors. Learning algorithms add some flexibility with the ability to
discover the appropriate behavior given either some demonstrations or a reward to guide its exploration with a
reinforcement learning algorithm. Reinforcement learning algorithms rely on the definition of state and action
spaces that define reachable behaviors. Their adaptation capability critically depends on the representations of
these spaces: small and discrete spaces result in fast learning while large and continuous spaces are challenging
and either require a long training period or prevent the robot from converging to an appropriate behavior. Beside
the operational cycle of policy execution and the learning cycle, which works at a slower time scale to acquire
new policies, we introduce the redescription cycle, a third cycle working at an even slower time scale to generate
or adapt the required representations to the robot, its environment and the task. We introduce the challenges
raised by this cycle and we present DREAM (Deferred Restructuring of Experience in Autonomous Machines),
a developmental cognitive architecture to bootstrap this redescription process stage by stage, build new state
representations with appropriate motivations, and transfer the acquired knowledge across domains or tasks or
even across robots. We describe results obtained so far with this approach and end up with a discussion of the
questions it raises in Neuroscience.

Keywords
Open-ended learning – developmental robotics – representational redescription – intrinsic motivations – transfer
learning – state representation learning – motor skill acquisition

1 Sorbonne Université, CNRS, ISIR, Paris, France
2 U2IS, INRIA Flowers, ENSTA, Institut Polytechnique Paris
3 University of Edinburgh
4 Vrije Universiteit Amsterdam
5 GII, CITIC, Universidade da Coruña
*Corresponding author: stephane.doncieux@sorbonne-universite.fr

1. Introduction
What do we miss to build a versatile robot, able to solve tasks
that are not pre-programmed, but that could be given on-the-
fly and in an unprepared environment? Robots with these
capabilities would pave the way to many applications, from
service robotics to space exploration. It would also reduce the
need for deep analyses of a robot’s future environments while
designing it.

Floor cleaning robots are the only autonomous robots that
have been able to solve real-world problems out of the lab and
have proved their efficiency on the market where they have
been sold by millions. The variability of our everyday envi-
ronments, that are unknown to the robot designers, is handled
by a carefully tuned behavior-based architecture dedicated to
this single, well-defined task [1]. But even in this case, and
after years of improvement involving tests and upgrades by
skillful engineers, a significant number of users finally stop

using them because their behavior is not adapted to their home
[2]. Dealing with variable environments is thus a challenge,
even in this context, and users call for more adaptivity [2].

The adaptivity we will focus on here is the ability to solve
a task when the appropriate behavior is not known beforehand.
The goal-driven exploration strategy to learn a policy will be
modeled as a reinforcement learning process. Reinforcement
learning relies on a Markov Decision Process (MDP) that
includes a state space, an action space, a transition function
and a reward function [3]. Although widely used in machine
learning, reinforcement learning is notoriously hard to apply
in robotics as the definition of the relevant MDP critically
impacts the learning performance and needs to be adapted to
the task [4]. This raises an issue: if the task is not known
by the robot designer, it will not be possible to define an
appropriate MDP at robot design time. A possibility is to rely
on end-to-end learning [5], but even in this case, some careful
preparation is required. Besides, it would be interesting to

1

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 2/29

avoid starting from scratch for each new task and to transfer
the previously acquired knowledge to a new context [6, 7, 8,
9, 10].

Reusing past experience is particularly important in robotics
where the sampling cost is high: testing a policy may damage
the robot if it does not respect safety constraints [11] and even
if it is safe, it will increase the wear and tear of the robot.
Many different approaches have been proposed to reuse the al-
ready acquired experience [12, 13, 14, 15]. Transfer learning
is also particularly interesting to learn in simulation before
transferring to reality, as it drastically reduces the number
of required samples on the real robot [16, 17, 18, 19, 20].
Specific knowledge representations can clearly facilitate the
transfer of acquired knowledge [21], thus the choice of an
appropriate representation is also important for this question.

Human beings do not use a single representation to solve
the problems they are facing. Their ability to build new repre-
sentations even seems to be a critical factor of their versatility
[22, 23, 24, 25]. The features of an MDP representation
constrains the kind of learning algorithms that can be used:
a small and discrete set of actions and states facilitates an
exhaustive exploration to discover the most relevant policy
[3], while a large dimension and continuous state and action
spaces raise exploration issues that can be solved, for instance,
by restraining exploration to the neighborhood of an expert
demonstration, if available [26, 27], by endowing the agent
with intrinsic motivation mechanisms [28, 29] or by combin-
ing fast and slow learning [30, 31, 32, 10].

What if a robot could switch between different represen-
tations and build new ones on-the-fly? An adapted repre-
sentation would allow the robot to (1) understand a task, by
identifying the target and associating it with a state space that
it can control or learn to control and (2) search for a solution.
When the robot knows little about the environment and the
task, it could use end-to-end strategies and switch to faster de-
cision or learning processes based on adapted representations.
Following the framework introduced in [33], it is assumed
here that a single state and action space cannot cover all the
tasks the robot may be confronted with. Therefore we go
beyond a single task resolution and consider the acquisition
of an appropriate representation as a challenge to be explic-
itly addressed. Besides, we consider the acquisition of new
knowledge representations as a challenge per se, that may re-
quire specific processes that are not necessarily task-oriented.
As human infants, the proposed approach needs to face the
challenges of understanding the robot’s environment and its
own capabilities [34, 35, 36, 37].

In this context, the robot behavior can be described by
three loops: (1) Operational, (2) Learning and (3) Redescrip-
tion (Figure 1). The operational loop corresponds to the ex-
ecution of a known policy. The learning loop is in charge of
acquiring new and appropriate policies from a known repre-
sentation of states and actions. The redescription loop cor-
responds to the acquisition of a (more) adapted knowledge
representation. This loop is called redescription to empha-

1. Operational

2. Learning

3. Redescription

Task nTask n-1 Task n+1

time

Figure 1. The three required loops for a robot to be endowed
with the ability to adapt to new environments: 1. Operational:
the robot applies a known policy, i.e. a mapping from states
to actions, 2. Learning: the robot acquires a new policy, 3.
Redescription: the robot discovers new states and action
spaces.

"Innate" knowledge Task 1

Bootstrapping
the redescription
process

MDP1:

Action space A1

State space S1

Reward function:
 S1 ->ℝ

Knowledge to acquire

?
Policy π1:
 S 1 ->A1

? ?
Figure 2. The bootstrap problem: how to generate a first
Markov Decision Process when little is known about the task
and the domain?

Task n-2

Task n-1

Task n

MDPn:

Action space An

State space Sn

Reward function:
 Sn ->ℝ

Policy πn:
 S n ->An

Task n+1

Select
Reuse
Abstract
Combine
Adapt

Transferring
knowledgeKnowledge acquired MDPn+1:

Action space An+1

State space Sn+1

Reward function:
 Sn +1->ℝ

Knowledge to acquire

Policy πn+1:
 S n+1 ->An+1

Figure 3. The transfer learning problem: how to build a new
MDP from a set of known MDPs?

size the iterative nature of the process [36]: the knowledge
representation acquisition process necessarily starts with a

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 3/29

representation1 and aims at building a new one. It is thus a
transformation more than a creation.

The focus of this work is on the outer redescription loop
whose goal can be described as follows: How to acquire the
knowledge required to learn the underlying (state, action)
representation of policies able to solve the tasks the robot is
facing, when those tasks are not known to the robot designer?
This question raises three different challenges: how to boot-
strap the process and build the first state and action spaces
when little is known about the task and the domain (Figure 2)?
How to consolidate the acquired knowledge to make gener-
ated policies more robust? and then how to transfer acquired
representations to a new task (Figure 3)?

The article begins with a discussion of the challenges
raised by the adaptive capability we are looking for and that
we call ”open-ended learning”, and the representational re-
description it implies. The following section presents an
overview of DREAM architecture (Deferred Restructuring
of Experience in Autonomous Machines), the proposed ap-
proach to deal with these challenges developed during the
DREAM European project2. The next sections introduce in
more details how we have dealt with four of the challenges
raised by representational redescription: bootstrapping of the
process, state representation acquisition, consolidation of ac-
quired knowledge and knowledge transfer. Next, a related
work section follows before a discussion mainly oriented to-
wards the link of this work with Neuroscience.

2. Open-ended learning

2.1 A definition of open-ended learning
In this work, open-ended learning is an adaptation ability with
two major features:

1. the system can learn a task when both the task and the
domain are unknown to the system designer,

2. the system acquires experience along time and can trans-
fer knowledge from a learning session to another.

The proposed definition is related to two concepts: life-
long learning and open-ended evolution.

Lifelong learning [38, 39], also called never ending learn-
ing [40] or continual learning [41] consists in going beyond
a single learning session and considers that the robot may be
faced with different tasks in different environments. The goal
is to avoid to start from scratch for each task and exploit ac-
quired knowledge when considering a new task [7, 42] while
avoiding catastrophic forgetting. In Thrun and Mitchell’s
original definition, the state and actions spaces are common
between the different tasks and known beforehand. Open-
ended learning proposes to go beyond this view, considering
that using a single action space and a single state space is a
strong limitation to the adaptive ability of the system.

1The lowest possible level is the raw sensori-motor flow, which is already
a representation.

2http://dream.isir.upmc.fr/

Open-ended evolution is a major feature of life [43]. It
is described as the ability of nature to continuously gener-
ate novel [44, 45] and adapted [43] lifeforms. Open-ended
evolution considers large timescales and how new lifeforms
can emerge as a result of the dynamics of an evolutionary
process. It does not consider a single individual, but a species
or even a whole ecosystem. We propose to define open-ended
learning similarly, but with a focus on a single individual. It
could thus be defined as the ability to continuously generate
novel and adapted behaviors. Novel suggests the ability to
explore and find new behaviors while adapted suggests that
these behaviors fulfill a goal. This association between nov-
elty and adaptation can also be called creativity [46]. Another
definition of open-ended learning could thus be the ability to
continuously generate creative behaviors.

2.2 Goals and challenges
A robot with an open-ended learning ability is expected to
solve all the tasks it is facing without the need for its designer
to provide it with appropriate state and action spaces [33]. It
implies that the system is not built to solve a single task, but
needs to solve multiple tasks in a life-long learning scenario.
We will thus make the following assumptions: (1) the robot
will be confronted to n different tasks, with n > 1 and (2) the
robot may be confronted several times to the same task. In this
context, the representational redescription process aims either
at making the robot able to solve a task that was previously
unsolvable (or at least unsolved) or at making its resolution
more efficient when it encounters it again. The goals of the
redescription processes can thus be described as follows:

• Bootstrapping task resolution: solving a previously
unsolved task without task-specific state and action
spaces;

• Improving over experience: increasing efficiency, speed
and accuracy of solving a particular task;

• Generalizing through the transfer of knowledge. Using
already acquired representations to get more robustness
and abstraction;

• Changing the learning or decision process: building
the representations required by a different, and more
efficient learning and decision process in order to move
towards zero-shot learning to increase robustness and
abstraction.

In this description, robustness is defined as the ability to
address the same task, but in a different domain, and abstrac-
tion as the ability to rely on the knowledge acquired while
solving a task to address another one.

These goals raise different challenges for representational
redescription processes. Some are shared with learning algo-
rithms challenges. Dealing with sparse rewards is an example:
from a learning perspective, the challenge is to find a learning
algorithm with an appropriate exploration strategy and from

http://dream.isir.upmc.fr/

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 4/29

the representational redescription perspective, the challenge
is to find state and action spaces that increase the probabil-
ity to succeed by discarding irrelevant state dimensions, for
instance, or by restraining the actions to those leading to suc-
cess. The corresponding challenge can thus be faced either
by adapting the learning process or by finding an appropriate
representation.

Some other challenges are specific to representational re-
description. In a reinforcement learning scenario, the state and
action spaces are supposed to be well chosen by the system
designer. Finding them for a robotics setup is notoriously hard
[4] and if they are not well designed, it is expected that the
system will not be able to learn an efficient policy and the
fault will be on the system designer. In an open-ended learn-
ing setup, it cannot be assumed that relevant state and action
spaces are initially available and what makes them relevant
needs to be defined. A state space is useless if it does not pro-
vide the system with the information it needs to decide what
action is to be performed. It is also required to interpret an
observed reward. In an MDP, the reward function associates a
value to a state3. It means that the system designer determines
what reward value results from the system action, but also
to what state this value is associated. In a representational
redescription loop, understanding an observed reward value,
i.e. finding the state space that best explains the observation,
is a challenge per se.

Finally, [33] have identified eight challenges for represen-
tational redescription. They can be split into two groups: those
related to solving a single task and those related to solving
multiple tasks:

• Single task challenges:

1. Interpreting observed reward: building (or select-
ing) a state space that makes observed reward
predictable and reachable (with an appropriate
policy);

2. Skill acquisition: building the actions to control
the state space;

3. Simultaneous acquisition of state and action spaces
as well as policies;

4. Dealing with sparse rewards, in particular when
bootstrapping the redescription process;

• Multi-task challenges:

1. Detecting task change;

2. Ordering knowledge acquisition and task resolu-
tion;

3. Identifying the available knowledge to build a new
MDP;

4. Transferring acquired knowledge.
3The reward function can also be defined on different spaces, for instance

on a (state, action) tuple.

3. Overview of the proposed approach
We now present the DREAM approach to deal with some
of the challenges identified in the previous section. The ap-
proach is focused on the acquisition of knowledge through
interactions of the robot with its environment and follows
a stage-by-stage developmental process, where some stages
rely on an evolutionary approach. It is thus an Evolutionary
Developmental Intelligence approach to Artificial General In-
telligence [47]. This section describes its main features and
the following sections describe the implementation done so
far and the results we have obtained.

3.1 Asymptotically end-to-end
One of the main limitations of robotics that has motivated
this work is the lack of flexibility of a system limited by a
single predefined representation. On a single task, carefully
designing the state space, the action space and choosing an ap-
propriate policy representation may lead to impressive results
[4], but changing the task or the domain requires a new design
phase and thus reduces the robot adaptivity. To maximize
the robot versatility, it should be able to rely on the lowest
possible level, for both the sensory and motor information:
its learning process should be able to exploit the raw sensori-
motor data. These approaches are named end-to-end [5] to
highlight this capacity to start from the very first data entering
the system and generate the data expected from its motors.
Any intermediate representation may make learning and deci-
sion easier, but it is defined with some a priori in mind that
may fit well to some tasks but not to others.

For the perception part, and with a focus on vision, the a
priori may be on the kind of relevant information: is it static
information (shape, color) or dynamic information (motion)?
Does it involve large areas (walls), or small ones (pens)? Does
it have a homogeneous texture, or is it made up with parts
having different features? Are there ”objects”? And if it is the
case, are they solid or deformable? Many other questions of
this kind can be raised that will influence the perception model.
And the robot won’t be able to deal with a new situation that
requires some perceptions that have not been covered by the
models implemented in the system.

It is the same for the action part: what is important in the
robot motion? Is it a question of position control? Velocity
control? Torque control? Is it open-loop, closed-loop? If
closed loop, what information needs to be taken into account
to adapt robot trajectory? As for the perception part, any
choice made at this point will limit the final adaptivity of the
robot.

End-to-end approaches require to use a learning method
that can deal with high dimensions, both as input and as
output. Deep learning is the only approach so far that has
been able to deal with end-to-end control [5, 19, 48]. Neural
networks can deal with these large spaces but at a condition:
a large enough training database must exist. It raises a critical
bootstrap challenge: how to collect enough meaningful data
to train the system? A set of random motions will likely not

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 5/29

be appropriate. An arm robot randomly moving, for instance,
will only very rarely interact with objects [49]. There is then
little chance that the features extracted by the deep neural
networks describe them with enough accuracy, thus impeding
the convergence of any learning or decision process on an
object interaction task.

Several approaches have been used to generate the re-
quired data. Some rely on a simulation [19], but require the
3D structure of the environment. Others rely on demonstra-
tions [48], but providing such demonstrations is not straight-
forward in an open-ended learning scenario. Other approaches
reduce the number of required samples by carefully defining
the cost function and adapting it to the task with a fitting phase
that require human intervention [50]. All these approaches
show that end-to-end learning is possible, but also highlight
the challenge of acquiring relevant data in an open-ended
learning scenario.

The necessary information, may it be demonstrations, the
3D structure of the environment or dedicated cost functions,
could actually be acquired in a preliminary stage. We propose
to add some processes that rely on predefined representations
in order to bootstrap the system and acquire these data. The
difference with other approaches like options [51], is that these
representations are not a basis on which the whole system
is built, as new and independent representations relying on
the raw sensori-motor flow can be acquired. After a while,
predefined representations may not be required anymore. This
is why we have called this feature asymptotically end-to-end:
the system starts with predefined representations and once it
has acquired enough experience, it can start building, from
the raw sensori-motor flow, new representations that future
learning and decision processes can rely on.

3.2 Focus on representational redescription
The end-to-end approaches evoked so far rely on a single
neural network architecture that goes directly from the raw
sensors to the raw effectors without any intermediate step.
This is an advantage as it reduces the engineering effort re-
lated to the definition of the corresponding architecture and it
reduces the biases due to the designer choices.

We have made a different choice and we put the focus on
the internal representations that are built by the system. In-
stead of considering them as an internal and somewhat hidden
information, that is a by-product of the end-to-end learning
process, we explicitly look for those representations, in the
form of MDPs. The goal is to build algorithms that create
such representations with the features required by the available
learning or decision algorithms (is the representation contin-
uous or discrete, in large or small dimensions, etc.). Aside
from enabling the use of existing approaches [52, 53], the
goal is also to make the system more transparent: an analysis
of these representations directly tells what the robot perceives
and what it can or cannot do. Another advantage is that it
allows us to decompose the problem and define processes
focused on state space acquisition and others on action space

acquisition. It also separates the open-ended learning process
into two different phases (Figure 4): knowledge acquisition
(building new representations, but also acquiring the experi-
ence required by this process) and knowledge exploitation
(task resolution exploiting the representations found so far).

3.3 Stage by stage modular approach
As long as a single process cannot fulfill all the requirements
of open-ended learning, it is interesting to decompose the
process and clearly identify the inputs and outputs of each
part in order to develop them in parallel. This basic software
engineering consideration has lead us to decompose the core
of our approach, i.e. representational redescription, as a set
of modules, each having a clear input and a clear output. The
inputs are the required knowledge for the module to be used
and the output is the knowledge it builds. Each module can
thus be connected to other modules, through a knowledge
producer and customer link, resulting in a graph of depen-
dencies. Under this view, an open-ended learning process
can be described as a graph of interconnected modules with
the first modules that require limited knowledge about the
task and the environment, and the last modules that result in
task-specific representations (e.g. an MDP) that a learning
or decision process can exploit to solve the current task. A
cognitive architecture can then select the modules to activate
at a given instant in time given their constraints and what
the system currently aims at. The implementation described
later is a first proof-of-concept that does not include this latter
module selection part.

This approach has another consequence: it makes it possi-
ble to rely on any kind of learning algorithm, as long as it is
possible to build a module or a chain of modules that builds
the required knowledge.

Figure 4 illustrates this modular approach. Figure 5 shows
a single module to highlight its features. To be end-to-end,
the chain building the MDP requires to have at least one
module directly connected to the raw sensor flow and at least
one module (that may be the same) directly connected to the
motor flow. These modules need to be in charge of building
resp. the perception part (state space) and the motor part
(action space) for learning and decision processes.

3.4 Alternation between awake and dreaming pro-
cesses

Most animals alternate between awake and sleeping phases.
While the awake phases are clearly important for the animal to
survive, the role of the sleeping phases has been revealed only
recently, at least concerning its impact on cognition. These
phases are notably related to memory reprocessing [54]. They
may involve the replay of past events to consolidate learning
[55, 56] or the exploration of new problem solving strategies
[57, 58, 59]. We think that this distinction is also important in
robotics and, as shown in Figure 5, we propose to highlight
this module category. These two kinds of modules will not
impose the same constraints. Awake modules require interac-
tions with the real world. They need to control the robot and

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 6/29

Knowledge acquisition
module mi

...

MDPk

Knowledge acquisition

Knowledge acquisition
module mj

Knowledge exploitation

Decision/Learning
module d0

Decision/Learning
module d2

Decision/Learning
module d1

Decision/Learning
module dn

...

Figure 4. Example of knowledge acquisition chain going
from no knowledge about a task k (/0) to the design of a
dedicated MDP (MDPk). This MDP is compatible with the
decision or learning process d1, that can exploit it to solve the
task.

may produce damages or at least increase the robot’s wear and
tear. Each interaction has then a high cost. ”Dreaming” pro-
cesses do not create such constraints. They may correspond to
data analysis or exploration through the means of a model of
the world and their sampling cost is then significantly lower.
They should then be preferred.

3.5 Development
The knowledge acquisition chain can be split up into different
stages, each stage resulting in an MDP that can, to some extent,
solve a task. By reference to biology and child development,
we propose to call this approach development, as we aim to
reproduce some of the functions of human development. It
highlights that the proposed open-ended learning process does
not homogeneously drive the robot from its naive performance
at startup to its acquired expertise after enough learning and
practice. As in Piaget’s models of development [60], the
proposed open-ended learning follows a succession of stages
that have their own features and associated modules. Each
stage corresponds to one or several knowledge acquisition
modules and can be described by a particular goal, stage n
being necessary to execute stage n+1 (Figure 6). As in the
overlapping wave theory [61], stage n is not supposed to be
strictly stopped before stage n+1 is activated. Stage n can be
reactivated after stage n+1 has been started. Anyways, this
point goes beyond the scope of this article.

It should be noted that we do not aim at building a model
of child development, but that our goal is similar for robots
to what psychologists and neuroscientists attribute to child
development. Put differently, Psychology and Neuroscience

may be a source of inspiration, but not a constraint and el-
ements of the current implementation do not systematically
have a Neuroscience counterpart. Building such a system
can anyway lead to new insights in the neuroscientific study
of related processes. This point is further discussed in the
Section 9.

The following sections describe the current implementa-
tion of the proposed approach. Figure 6 puts each section in
the perspective of the whole proposed developmental scheme.

4. Building state representations
State Representation Learning (SRL) is the process of learn-
ing, without explicit supervision, a representation extracted
from the observations that is adapted to support policy learn-
ing for a robot on a particular task or set of tasks. States are
the basis of MDPs. They contain the required information to
make a decision. Making the right decision to reach a goal
implies some exploration of this state space that consequently
needs to be low-dimensional for the planning or learning to
be efficient. At the same time, the acquisition of a new state
space requires to generate observations that cover what the
robot may experience while solving a task. The design of
a state space is then a chicken-and-egg problem as a policy
is required to generate observations to be used later on to
generate a new and relevant state space that can be used to
learn policies. This problem has been tackled here with ran-
dom policies on a simple button pushing task and the next
section shows how more complex policies could be generated
to bootstrap the generation of state spaces for more complex
tasks.

Our state-of-the-art survey [53] analyzes existing SRL
strategies in robotics control that exploit 4 main learning ob-
jectives: reconstructing the observations, learning a forward
model, learning an inverse model, or exploiting high-level
prior knowledge. Methods were also proposed to exploit
several of these objectives simultaneously. Furthermore, we
developed and open sourced4 the S-RL Toolbox [62] con-
taining baseline algorithms, data generating environments,
metrics and visualization tools for assessing SRL methods.

We propose a new approach to SRL for goal-based robotics
tasks that consists in learning a state representation that is split
into several parts where each part optimizes a fraction of the
objectives. In order to encode both target and robot positions,
auto-encoders, reward and inverse model losses are used:

• Inverse model: One important aspect to encode for re-
inforcement learning is the state of the controlled agent.
In the context of goal-based robotics tasks, it could cor-
respond to the position of different parts of the robot,
or to the position of the tip of a tool hold by the robot.
A simple method consists in using an inverse dynamics
objective: given the current st and next state st+1, the
task is to predict the taken action at . The type of dynam-
ics learned is constrained by the network architecture.

4https://github.com/araffin/robotics-rl-srl

https://github.com/araffin/robotics-rl-srl

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 7/29

Required data

Generated data

Perceptions ActionsInterface Interface
Knowledge acquisition

module

Interfaces

Direct

Adapter Indirect

Process types

"Awake process": the robot interacts
with the real world

"Dreaming process": the robot has no
interaction with the real world

Figure 5. Zoom in on a developmental module. A developmental module has required data and generates data. It can directly
use the raw sensorimotor flow or it may require an adapter (a perception model or a motor primitive, for instance). The
connections between the module and the perceptions and actions are in both directions as some modules read perception values
and generate actions, but others may generate new perceptions (data augmentation methods) or read raw actions (action
restructuring modules). Finally, a module may require the robot to perform new interaction with the environment (”awake
process”) or not (”dreaming process”). This distinction is important as ”awake modules” create specific constraints (they need
access to the robot, they may damage the robot or the environment, and they have a significant cost in terms of time and
mechanical wear and tear). Dreaming processes can be executed in parallel. They typically rely on previously acquired
sensori-motor data, may it be directly, or through models learned or tuned out of these data.

For instance, using a linear model imposes linear dy-
namics. The learned state representation encodes only
controllable elements of the environment. Here, the
robot is part of them. However, the features extracted
by an inverse model are not always sufficient: in our
case, they do not encode the position of the target since
the agent cannot act on it.

• Auto-encoder: The second important aspect is the goal
position. Based on their reconstruction objective, auto-
encoders compress all information in their latent space,
but they tend to encode only aspects of the environment
that are salient in the input [63]. This means they are
not task-specific: relevant elements for a task can be
ignored and distractors (unnecessary information) can
be encoded into the state representation. In our case
however, among other information, they will encode the
goal position. Therefore, they usually need more dimen-

sions than apparently required to encode a scene (e.g.
in our experiments, it requires more than 10 dimensions
to encode properly a 2D goal position).

• Reward prediction: The objective of a reward prediction
module leads to state representations that are special-
ized in a task, thus improving the representation of the
goal position in our case. Note that without the comple-
mentary learning objectives, predicting reward would
only produce a classifier detecting when the robot is at
the goal, thus not providing any particular structure or
disentanglement to the state space.

Combining these objectives into a single loss function on
the latent space can lead to features that are sufficient to solve
the task. However, these objectives are partially contradic-
tory and stacking partial state representations will therefore
favor disentanglement and prevent opposed objectives from
cancelling out, thus allowing a more stable optimization and

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 8/29

S0

A0

Stage 1
From raw

sensori-motor flow
to MDP

Si

Ai

Stage 2
Increasing robustness

and generalization

Stage 3
Consolidation
and transfer

Task set T1
Robot R1

Task set T2, T3, ...,
Robot R2, R3, ...

Task set T1
Robot R1

Sj

Aj

Sk

Ak

Initialisation

Time

Building state
representations

Bootstrapping
the developmental
process Building

new action
representations

Transferring
knowledge
 From one task to another
 From STM to LTM
 From one agent to another

Principle

Implementation

Figure 6. Overview of the DREAM approach. Starting from raw sensorimotor values, stage 1 processes bootstraps the process
and builds a first set of representations. Stage 2 processes consolidates these representations on the same set of tasks. Stage 3
processes further restructure representations and acquire the knowledge required to facilitate transfer between tasks, allow
knowledge reuse and sharing between robots. Sn is the n-th state space and An the n-th action space. The lower part of the
figure indicates what has been implemented so far and gives the name of the corresponding sections.

better final performance. Fig. 8 shows our split model where
each loss is only applied to part of the state representation
(see [64] for a more detailed presentation).

We applied this approach to the environments visualized
in Fig. 9, where a simulated arm and a real Baxter robot are
in front of a table and image sequences taken from the robot’s
head camera contain a front view of what the robot is able
to see. We consider a ”reaching” (pushing button) task with
a randomly placed button on the table. In this environment
RGB images are 224x224 pixels; three rewards are recorded:
0 when the gripper is not touching the button, 1 when touching

it, and -1 when the robot gripper is out of the field of view of
the frame. The goal of this task is to learn a representation
consistent with the actual robot’s hand position and button
position. Actions are defined by elementary movements of the
hand along the X, Y, Z axes in the operational space between
timesteps t and t +1.

Table 1 shows that our approach outperforms several base-
lines in terms of correlation of learned states with the Ground
Truth Correlation (GTC, see [62]) on the simulated robot, and
that using this representation for reinforcement learning using
the Proximal Policy Optimization (PPO) algorithm [65] per-

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 9/29

Perceptions ActionsState representation
learning

Policies, reward

Task-specific state space

No actions,
focus on

perception

Figure 7. State representation learning module. Starting from
a reward that defines a task and policies to observe at least
some rewards, it generates a task-specific state space. The
approach relies on raw perceptions. Actions are performed by
the provided policies and during the validation step, once the
state space has been generated. No action is proposed by the
state representation module.

Figure 8. SRL Splits model: combines the losses of
reconstruction of an image I (auto-encoder) and of reward (r)
prediction on one split of the state representation s, and the
loss of an inverse dynamics model on the second split of s.
Arrows represent model learning and inference, dashed
frames represent losses computation, rectangles are state
representations, circles are real observed data, and squares
are model predictions [64].

forms very close to using the ground truth. Table 2 shows that
similar results are obtained for SRL models (GTC) on real
robot data.

GTC xrob yrob zrob xtarg ytarg Mean Reward
Ground Truth 1 1 1 1 1 1 4.92 ± 0.10
Supervised 0.57 0.74 1 0.79 0.69 0.76 4.89 ± 0.11
Raw Pixels NA NA NA NA NA NA 4.78 ± 0.15
Rand. Features 0.36 0.54 0.49 0.73 0.83 0.59 2.17 ± 0.44
Auto-Encoder 0.43 0.73 0.67 0.57 0.50 0.58 4.84 ± 0.14
Robotic Priors 0.18 0.03 0.18 0.75 0.42 0.31 2.22 ± 0.43
SRL Splits 0.83 0.87 0.72 0.53 0.63 0.72 4.90 ± 0.14

Table 1. Ground truth correlation and mean reward
performance in RL (using PPO) per episode after 3 millions
steps, with standard error (SE) for each SRL method in 3D
simulated robotic arm with a random target environment.

Figure 9. Top Left: Simulated 3D robotic arm in a random
target environment. Top Right: Ground truth gripper
positions and associated reward (-1: arm out of sight; 1:
gripper touching button; 0: otherwise). Bottom Left and
Right: similarly for Baxter real robot environment with a
fixed target.

GTC xrob yrob zrob Mean
Ground Truth 1 1 1 1
Supervised 0.99 0.99 0.99 0.99
Random Features 0.49 0.51 0.54 0.51
Auto-Encoder 0.63 0.77 0.67 0.69
Priors 0.37 0.25 0.79 0.47
SRL Splits 0.89 0.88 0.69 0.82

Table 2. Ground truth correlation (GTC) for each SRL
method in real Baxter robotic arm with a fixed target
environment.

Figure 10. Performance (mean and standard error for 3 runs)
for PPO algorithm for different state representations learned
in the 3D simulated robotic arm with random target
environment.

Learning curves in Figure 10 show that with our pro-
posed approach, RL can use this learned representation to
converge faster towards the optimal performance than with
unsupervised alternatives, and at a speed close to the one of

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 10/29

the ground truth and the supervised learning cases. The newly
defined MDP, based on the learned states, is therefore better
adapted to solve this task than the original MDP based on
raw images. This new MDP could then be exploited for other
tasks that require the same information.

This experiment shows that a task-specific state space can
be learned from raw observations. It requires to define a pol-
icy or several policies that will generate the data necessary
to learn the perception-to-state mapping. This is an impor-
tant issue as the generated representation critically depends
on the observed data. In the experiments reported here, a
random policy has been used. Scaling this approach to more
complex tasks requires to be able to generate more advanced
policies. The next section introduces the proposed approach
to bootstrap this knowledge acquisition system. It allows the
robot to learn the structure of the environment, i.e. the objects
it can interact with and open-loop policies that can be used
later on to learn new states with the current representation.
This knowledge paves the way to the acquisition of new state
representations in which rewards are self-built on the basis of
expected effects on identified objects and the policies to gen-
erate the required data are the open-loop policies generated
by the proposed learning approach.

5. Bootstrapping the developmental
process

The bootstrap phase is critical to collect enough data for the
later representation redescription modules. It has been split
into three modules (Figure 11) that result in a repertoire of
actions that can either be used directly to solve simple tasks
or as a training set for learning new state spaces (Section 4)
or action spaces (Section 6). These modules deal with the
following challenges:

• Skill acquisition: building the actions to control state
spaces identified so far and pave the way to the acquisi-
tion of new and more relevant state spaces;

• Dealing with sparse rewards, in particular when boot-
strapping the redescription process;

The bootstrap phase implies learning states and actions.
But it relies on predefined representations of these spaces
to bootstrap the system and acquire the data required by the
redescription processes presented in the other sections.

5.1 Babbling to identify objects
To identify objects, a two-step approach is proposed. In a
first step, a segmentation separating the background from the
parts with which the robot can interact is learned. Then, from
this segmentation, 3D object models are learned. Both steps
are based on the interactive perception paradigm [67]. The
robot explores an environment by interacting with it in order
to collect data and train models on them. This interaction
relies on predefined motor primitives. Once the structure of
the environment has been identified, new motor primitives

are learned that can replace the ones provided at startup, thus
implementing the asymptotic end-to-end principle.

This two-step approach relies on minimal environment-
specific assumptions. Indeed, the first step builds a simple
representation of the environment which does not need a lot
of prior knowledge. Then, in the second step, the prior knowl-
edge needed to build object models, like the number of objects
or their approximate position, can be easily inferred from the
first segmentation.

Relevance Map: A First Segmentation of the Environment.
In the first step, the robot builds a perceptual map called rel-
evance map by training a classifier with the data collected
while the robot interacts with the environment. The relevance
map indicates the parts of the visual scene that are relevant for
the robot with respect to an action. ”Relevant parts” means
parts of the environment that have a high probability to pro-
duce an expected effect after having applied a given action, for
instance moving this part of the environment when touching
it through a push primitive.

The exploration is sequential and follows 5 main steps:

• The visual scene is over-segmented using Voxel Cloud
Connectivity Segmentation [68]. This method segments
a 3D pointcloud into small regions of same size. Then,
visual features are extracted from each segment.

• The relevance map attributes to each segment a rel-
evance weight computed using the prediction of the
classifier trained online.

• Based again on the classifier, a choice distribution map
is computed which represents the probability of each
segment to be chosen as the next interaction target.

• An action primitive is applied with the center of the
chosen segment as target.

• Finally, an effect detector is applied to label the visual
features of the selected segment. Detected effects are
labelled to 1, otherwise a label equal to 0 is attributed.

By following these 5 steps, the robotic system builds a
dataset of labeled samples on which a classifier is trained
online.

The proposed approach was tested on both a Baxter [69]
and a PR2 [66] robots. The experiments were conducted
on two set-ups with a push primitive. To detect if an effect
occurred, a change detector compares the pointclouds before
and after the interaction. If a targeted segment is part of the
difference pointcloud, it means that something has moved.
In this context, the relevance map represents the areas of the
environment that the robot can move. Examples of obtained
results are shown in Figures 12 and 13.

Figure 12 shows a sequence of relevance maps at different
moments of the exploration. After the first interaction (i.e.
only one sample in the dataset), the map is uniform. From the

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 11/29

BabblingPerceptions Supervoxels Actions
Motor

primitives

Object oriented babblingPerceptions Supervoxels Actions
Motor

primitives

Perceptions Actions
3rd order

polynomialAction repertoire acquisitionOpen-loop
controller

Segmented visual scene

3D model of the scene

Action repertoire

Figure 11. The three modules of the bootstrap phase. The result is a repertoire of actions which can be used either to solve
simple problems if the state space is known, or as a training set, or else to collect sensori-motor data.

(a) Relevance map after 1
interaction

(b) Relevance map after 10
interactions

(c) Relevance map after 50
interactions

(d) Relevance map after 100
interactions

(e) Relevance map after 400
interactions

(g) Pointcloud used to
generate above image

(h) Pointcloud used to
generate above image

(i) Pointcloud used to generate
above image

(j) Pointcloud used to generate
above image

(k) Pointcloud used to generate
above image

Figure 12. Sequence of pointclouds representing a relevance map at different points during exploration. These images have
been generated after exploration. Adapted from [66].

50th interaction, the map begins to show a meaningful repre-
sentation. An important feature of the classifier is its ability to
give meaningful predictions with few samples. Therefore, the

exploration is efficiently directed after a few collected sam-
ples. The exploration process is focused on complex areas, i.e.
areas which carry a lot of information, as shown on left part

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 12/29

(a) Simplest set-up used for the experiment. A toy workbench with 3
movable cars.

(b) A more complicated set-up. A toy workbench with an object fixed
on the horizontal panel and 3 movable cars.

Figure 13. Two examples of relevance map learned during an
exploration with a push primitive. From left to right: a
colored 3D pointcloud, a relevance map on the left point
cloud and the accumulated choice distribution maps during
the whole exploration. Adapted from [66].

of Figure 13.
Several relevance maps relative to different action prim-

itives can be learned. This approach was tested with a push
primitive, a push-button primitive and a lift primitive [70].
Each of these relevance maps is a representation of the envi-
ronment depending on the action and on the possible effect
considered during exploration. In other words, a relevance
map implements an affordance [71]. These relevance maps are
finally merged into a new perceptual map, called affordance
map. An affordance map gives to the robot a rich perception
of which action could be applied and where they could be
applied.

An example of affordance map is shown in Figure 14. The
push-buttons identified in green by our system do not overlap
with the pushable and liftable objects identified in red and
purple. Thus, the classifier is able to learn different concepts.
Also, only small objects are identified as liftable and pushable,
and the biggest objects are identified as only pushable.

Object oriented babbling The second step consists in build-
ing object models on the basis of the segmented maps acquired
during the babbling phases. The description of this module is
out of the scope of this article. The module can, for instance,
rely on the method proposed by [72]. It aims at providing a
3D model of the environment for learning processes described
in the next section.

5.2 Learning to manipulate objects
With the previously described bootstrapping modules, the
system can acquire a model of its environment, the various
objects it contains and their properties. In order to solve tasks
involving those objects, the robotic system must now learn
motor skills to manipulate them. This raises the challenge
of exploring and mapping the action space of the robot to
build motor skills able to engage them. In an open-ended
learning context, the objects and environment can vary, and

Figure 14. Affordance map of liftable objects (in purple),
activable push-buttons (in green) and pushable objects
affordances (in red). Only areas classified with a probability
of afforded action above 0.5 are represented in the figure. The
bottom picture represents the environment from which the
affordance map has been extracted. Adapted from [70].

Online

Offline

Repertoire

Random mutation
Evaluation in

simulation

Generalization
Evaluation on

real robot

Individual management

(add/modify/update)

Sample most novel

Sample close to desired

Mutated actions

Behavior

Fitness

Behavior

Fitness

Reality gap

Candidate action

Figure 15. Overview of the object-oriented skills learning
module. A quality-diversity algorithm (in blue) is run offline
(using a simulation) to build a repertoire of motor skills able
to produce diverse behaviors. When the robot must perform a
given behavior (in red), it then samples the archive for the
skills producing the closest behaviors, and uses them to build
a candidate skill expected to reach the target point in the
outcome space. If this skill fails due to the reality gap, the
error is evaluated and used to adapt the candidate skill, and to
update neighboring skills. Adapted from [73].

it is therefore of great importance that the same methods can
handle different setups and use no prior knowledge other than

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 13/29

that provided by the bootstrap module. Furthermore, instead
of reaching a specific goal for which finding a single policy
would be enough, as is typical in a reinforcment learning
paradigm, we want the system to be able to tackle different
tasks requiring various skills.

A way to address this issue is to define not a goal but a
space representing the controllable state of the environment,
often called behavior space [44], goal space [74] or outcome
space [75], and to learn a wide repertoire of motor skills able
to reach many points in this space. As those exploration algo-
rithms tend to be sample-inefficient, they are usually used in
simulation, which is possible in the present context consider-
ing the knowledge acquired from the bootstrap phase, but in-
troduces a further challenge in the form of the reality gap [76],
where policies learnt in simulation must be transferred to
the real robot. Our approach [73] uses a Quality-Diversity
(QD) algorithm [77, 78] to build such a skill repertoire, and
a generalization approach based on a local linear model of
the mapping from the action parameter space to the outcome
space to adapt those skills to real robot control. This process
is summarized in Figure 15 and detailed below. We evaluate
this approach for two different problems (throwing a ball at
various targets and manipulating a joystick) and show that in
both cases, it is able to learn repertoires of diverse skills, to
address the reality gap issue, and to generalize to new policies,
resulting in efficient control of the outcome space.

5.2.1 Offline learning of skill repertoires
For both problems, the system was tested on a Baxter robot
controlled by simple parameterized motion primitives based
on a third order polynomial, whose parameters constituted the
action space (see [73] for details). For the ball throwing prob-
lem, a ball was initially placed in the robot’s gripper and the
studied outcome space was the 2D position of the ball when it
reached the ground plane (Figure 16a). For the joystick manip-
ulation problem, a joystick was placed on a table in front of the
robot and the outcome space was its final pitch and roll (Fig-
ure 17a). The quality metric used for ball throwing was torque
minimization, and skill robustness to small perturbations for
joystick manipulation. Skills were added to the repertoire if
they had no close neighbor, or replaced their closest neighbor
if they had a higher quality score. Evaluation was done using
the DART simulator. Results show that the quality diversity
algorithm is able to learn a skill repertoire that densely covers
the reachable outcome space for ball throwing (Figure 16c),
and another skill repertoire to reach a large and diverse set of
final positions for joystick manipulation (Fig. 17c) whereas
a random baseline (Figure 16b, 17b) results in much more
limited exploration of the outcome space5.

5Only one run of the method out of 26 for ball throwing and 12 for
joystick manipulation is shown in Figs. 16 and 17; see [73] for full results
and analysis.

Gripper trajectory
Initial gripper position

Target basket position

(0.0, -1.5) (1.0, -1.0)Target basket on (1.5, 0.0)

Ball trajectory

(a) Example of diverse throwing trajectories

(b) Random baseline (c) QD search
Figure 16. Skill repertoires built by the random baseline
(16b; 1085±26 points) and the QD search (16c;
14473±1619 points) for the ball throwing problem. Each
blue point is the contact point of the ball with the ground. QD
search was run for 2000 generations. For the random baseline
an equal number of actions were uniformly sampled in the
action space. Adapted from [73].

5.2.2 Online generalization and adaptation by local linear
Jacobian approximation

Using a skill repertoire generated by the QD algorithm to
control the robot in the real world raises two challenges: first,
the skills may have different outcomes in reality than in the
simulated environment (the reality gap problem); second, de-
spite densely covering the outcome space, the repertoire is still
finite, and may not contain the skills to reach some specific
points in that space. Our local linear Jacobian approximation
method, similar to that of [28], tackles both issues. It pro-
ceeds as follows (with A = {(θθθ i,bbbi)}i=1,...,N the repertoire
containing N action parameters θθθ i ∈ G and their outcomes
bbb ∈B):

• For an arbitrary target point bbb∗ ∈B, find the closest
point bbbc in the repertoire and its corresponding θθθ c.

• Find the K nearest neighbors to θθθ c in the repertoire,
and their corresponding outcomes.

• Use those K (θθθ i,bbbi) samples to estimate JJJθθθ ccc the Jaco-
bian matrix6 at θθθ c by the least squares method.

This estimation J̃JJθθθ ccc can be used to define a local linear
model between the action parameter space to the outcome
space – and a matching local inverse model, by pseudo-
inverting the matrix. Although the global mapping of the

6the matrix JJJθθθ such as ∆bbb = JJJθθθ ∆θθθ

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 14/29

(a) Example of diverse joystick manipulation skills. Note that similar
joystick positions can be reached by different movements.

(b) Random baseline (c) QD search
Figure 17. Skill repertoires built by the random baseline
(16b; 34±3 points) and the QD search (16c; 15532±3329
points). Each blue point is a final joystick position QD search
was run for 1000 generations, for the random baseline an
equal number of actions were uniformly sampled in the
action space. Adapted from [73].

action parameter space to the outcome space is highly non-
linear for the considered problem, it is smooth at most points
and the skill repertoire is dense enough to define a good linear
approximation in most regions. The local linear model can
then be used to solve the aforementioned issues:

• Generalization: using the local inverse model, com-
pute a candidate action θ̃θθ

∗
which is expected to reach

bbb∗, and try it on the robot;

• Reality gap crossing: if the candidate action does not
reach bbb∗ accurately enough, record the point b̃bb

∗
reached

and compute the error ∆bbb∗ = b̃bb
∗
− bbb∗. The pseudo-

inverted Jacobian estimation can then be directly used
to compute a correction ∆θθθ

∗ to the action to apply to
θ̃θθ
∗

to reduce the error. This process can be iterated if
needed, until the reality gap has been crossed.

Reality gap crossing was quantitatively evaluated in simu-
lation, with a large simulated reality gap. In both conditions,
most actions initially failed due to the reality gap, but could be
adaptated by the method in at most 4 iterations of the method
in 89% of cases for ball throwing, and 31% of cases for the
more difficult joystick manipulation task. Reality gap cross-
ing was also tested on real robot (Fig. 18): over 50 trials on
random target positions, only 8 required adaptation, and all 8
succeeded after a single iteration of the method [73].

Figure 18. The real robot performing ball throwing towards a
basket (left) and joystick manipulation (right) based on the
action repertoires built in simulation.

6. Building new action representations
We would like the behavioural capabilities of our robot to be
robust to environmental perturbations. Unexpected changes in
the environment may require using different actions to achieve
the same effect, for instance to reach and grasp an object in
changing clutter. A possible approach is to adapt the con-
trol policy through, e.g., obstacle localization and explicit
re-planning [79]. This approach requires to build a dedicated
algorithm in which obstacle representation is given before-
hand. This may raise an issue for open-ended learning. A
more general purpose and open-ended alternative is to exploit
a behavioural repertoire [80] and extract from it an adequate
policy [16].

In the bootstrapping section presented earlier, we de-
scribed learning a repertoire using QD search, exemplified by
the Baxter robot throwing a ball. In this case the repertoire
spans the space of potential throwing targets. After this boot-
strapping phase, one (or a small number of) throwing policies
are stored for each potential target. To increase behaviour ro-
bustness through diversity, we need multiple diverse throwing
movements for each potential target. Thus, if a new obstacle
appears, diverse behaviours can be tried until one succeeds.
A behavior repertoire contains a finite and limited number of
policies that can thus adapt only to a certain extent to new
situations.

To go beyond this limitation, we present an action re-
description process transforming the library-based representa-
tion obtained from the bootstrap phase into a new represen-
tation that is both more compact and more diverse – through
learning a generative adversarial network (GAN) [81] over
policies (Figure 19). GANs are neural networks suitable for
learning generative models over complex high-dimensional
data, typically images. In this case, we train a conditional
GAN that accepts a movement (throwing) target as a condi-
tion, and generates diverse throwing movements that hit this

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 15/29

Perceptions Actions
3rd order

polynomial
Generative Adversarial

Network Training
Open-loop
controller

Action repertoire

Generative network

Figure 19. The proposed action redescription phase that
builds a policy parameter generative network out of an action
repertoire.

target. Now, only the model parameters rather than controller
library needs to be stored, and the available diversity is not
limited to a fixed length controller library. By sampling the
generative model over controllers, an unlimited number of
distinct controllers can be obtained. Given a powerful genera-
tive model, these need not be simple perturbations of known
controllers, but can encode novel solutions to the problem by
drawing on diverse aspects of multiple training policies.

-1 0 1 2 0
0.5

1
1.5

0.5
1

1.5
2

Training Data
Arm trajectories
Object trajectories
Landing points

Random	VectorTarget

G

Real/Fake

D G

Random	
Vector

1.	Initial	Representation
3.	Test	New	Representation

Target

Failure

2.	Train	Re-description

Success

Figure 20. Action redescription for robustness through
diversity. 1. The initial representation is the population of
controllers from QD search. 2. GAN training produces a
generative model over controllers. 3. For robust behaviours,
the generative policy network is sampled until one is found
that avoids the obstacle.

Figure 20 illustrates our framework, with full details avail-
able in [82]. The policy representation here is a 15D vector of
parameters defining a low-level open-loop velocity controller
for throwing. We start with a set of controllers obtained from
QD search. The diversity of this set mainly spans different
throwing targets. We then train a target-conditional generative
model for controllers by playing a min-max game with a gen-
erator and discriminator network. Once the generator network
is trained, it maps a target coordinate on the floor, and a ran-
dom vector to a new controller. Sampling this random vector

for a fixed target vector generates diverse ways of throwing
to the same target. In the case of an obstacle, controllers can
be sampled until one is found where neither the ball nor the
arm collide, and the ball hits the target. This is illustrated in
Figure 20 where two throwing samples are drawn, and the
underhand throw fails while the overhead one succeeds.

0.0 0.1 0.2 0.3 0.4
 τ

0

0.20

0.40

0.60

Su
cc
es
s r

at
e

Pr(≥k / 10 throws landing within τ)
GPN ≥ 1
QD ≥ 1
GPN ≥ 3
QD ≥ 3
GPN ≥ 5
QD ≥ 5

Figure 21. Quantitative evaluation of throwing in the
presence of obstacles. Our redescription improves in terms of
probability of achieving k hits out of 10 for various target
radii τ . Adapted from [82].

For quantitative evaluation, we perform the throwing task
averaging over a large number of target positions, randomly
placed obstacles, and multiple diverse throwing attempts in
each target-obstacle configuration. Our goal is that out of N
throwing attempts in each configuration, at least k of them
should hit the target. The results in Figure 21 show probability
of k hits out of N = 10, as a function of how close to the target
a ball should land to be considered a hit. We can see that, as
expected, the success rate depends on the stringency of the
hit criterion. More interestingly, the proposed redescription
increases this rate (solid vs dashed lines), at several values
of k. Thus, this action redescription succeeds in increasing
robustness via increased diversity, while also compressing the
prior bootstrap representation.

7. Transferring knowledge

7.1 From one task to another
Learning an individual robot control task from scratch usually
requires a large amount of experience and may physically dam-
age the robot. This has motivated a fruitful line of research
into transfer learning, which aims to bootstrap the acquisition
of novel skills with knowledge transferred from previous ac-
quired skills [6]. For open-ended learning, we would like to
transfer knowledge from a lifetime of previous tasks rather
than a single source task. One potential way to realize this is
to model all tasks as laying on a low dimensional manifold
[83]. Based on this assumption, [84] construct a transferrable
knowledge base (the manifold) from linear policies through
matrix decomposition methods, in the case of supervised learn-
ing tasks. [85] extend this approach to non-linear policies,
represented by deep neural networks, by stacking policies
into 3-way tensors modeled by their low-rank factors under
a Tucker decomposition assumption. This manifold-based
transfer approach has been shown successful in learning sim-

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 16/29

Tensor factorization

Policies

Policy representation
with a reusable task-agnostic part
and a learnable task-specific part

Figure 22. Tensor based knowledge transfer relies on a tensor
factorization to perform a policy redescription. It builds, from
a set of policies, a new policy representation that includes a
reusable part and a learnable part. The use of a task-agnostic,
reusable knowledge allows further learning to be faster.

Tensor

Decomposition

policy 1

policy 2
policy 3

policy N

policy 1

policy 2

policy 3

policy N

Extracting knowledge from source task policies

Learning target task with transferred knowledge

Transferred
Knowledge

Target task
weight vector

Tensor

Multiplication

Target Task
Policy

Figure 23. A schematic diagram of tensor based knowledge
transfer. Source task policies are stacked and decomposed
into a task agnostic knowledge base tensor L and one
task-specific weight vector for each task. Given a target task,
the agent learns a target task weight vector and fine-tunes the
knowledge base to reconstruct a target task policy.

ple linear robot control tasks, such as cart-pole [86]. Here
we further look into more complicated tasks and propose a
knowledge transfer approach for learning novel non-linear
control tasks.

We consider learning a policy πn+1 for task n+ 1 given
the policies of the previous n learned tasks (Figure 3) on the
basis of an extracted, task-agnostic and thus reusable part and
a learnable, task-specific part (Figure 22). We use generic
multi-layer perceptron (MLP) networks to model the policy
for each task that maps instantaneous proprioceptive state to
control torques at each joint. For each network layer, we stack
the policies from source tasks into a 3-D tensor. To abstract
the previous knowledge, we then factorise the tensor into a
task-agnostic knowledge base L and task-specific task weight
vectors with Tucker decomposition. For training the novel
n+ 1th task, the agent alternates between learning the task-
specific parameter vector and fine-tuning the task-agnostic
tensor. The transfer procedure is illustrated in Figure 23, with
full details available in [87].

(a) Pusher (b) Thrower (c) Striker
Figure 24. Illustrative figures of three robot manipulation
tasks used to evaluate tensor-based cross-task knowledge
transfer

.

Figure 25. Learning curve for target task (Striker) with
knowledge transferred from the source task policies (Thrower
and Pusher).

We evaluate our method with three simulated robot ma-
nipulation tasks as illustrated in Figure 24: Mujoco’s Pusher,
Thrower and Striker. We take pusher and thrower as source
tasks, and striker as target task. We then evaluate the per-
formance of reinforcement learning of the striker task with
CMA-ES, comparing three alternatives for task-transfer: (i)
learning from scratch without transfer, (2) directly transferring
a randomly sampled source policy (pusher, or thrower) and
fine-tuning for the target-task, (3) Our tensor-based transfer
method. As shown in Figure 25, our method learns faster
compared to both baselines. This is due to the ability to lever-
age the transferred abstract task agnostic knowledge obtained
by re-representing the source policies through tensor factor-
ization, which in this case corresponds to smooth movement
primitives.

7.2 From short term memory to long term memory
In the work presented so far, the focus was on state or action
representation learning, with the modules necessary to boot-
strap it. Once this knowledge has been acquired, the robot
has several different MDPs at its disposal, each, with its own
state space, action space, reward function and policies. A
fundamental question is then to determine which MDP to use
and in which context, i.e. an MDP needs to be associated with
its context of use. This is the goal of the Long Term Memory.

Long Term Memory is a fundamental part of any cognitive
architecture that aims to store and reuse the acquired knowl-
edge. Most traditional cognitive architectures (e.g. ACT-R,

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 17/29

LTM transfer process

Policies, states, rewards

P-nodes, C-nodes

Figure 26. Transfer from short term memory to long term
memory. Starting from policies, state spaces and rewards, the
transfer process applies the policies and observes their
outcome to deduce their context of use in the form of
P-Nodes (perception nodes) and C-Nodes (context nodes).

CLARION, SOAR) are based on symbolic representations
and, thus, implement relatively straightforward LTM struc-
tures where reuse is based on searching for the appropriate
labels. When working with subsymbolic structures, such as
ANN based representations, labeling is not straightforward
and other types of LTM approaches must be used. In this
work, we have developed an experience-based associative
LTM structure. The basic features of this approach are pre-
sented in [88]. The operation of this type of LTM is based on
the relationships the system acquires about knowledge nuggets
as it interacts with the world. The basic knowledge nuggets
that are considered here are the different parts of the MDP, i.e.
states, rewards and policies. The idea is that when instances
of these knowledge nuggets co-occur and when something rel-
evant was experienced by the system (such as a high reward),
they are associated through a new type of knowledge nugget:
a Context node (C-node). The definition and operation of
these structures have been described in [89]. C-nodes imple-
ment conjunctive representations of context and are activated
when their associated nuggets are present (or at least most
of them). In other words, a C-node implies that sets of the
type {Si,Rk,πr} that lead to relevant situations experienced
by the system must be identified and stored. This way, when
a sub-set of {Si,Rk,πr} is active – Si allows to predict what
happens and a Rk is activated –, the system can infer from its
experience that applying policy πr, should lead to producing
the same relevant event. These nodes provide a simple albeit
powerful structure to store context related information that
allows the system to selectively recall appropriate policies (or
other knowledge nuggets) in the presence of known or similar
situations.

Most of the knowledge nuggets stored in LTM have not
usually been defined in the whole perception or state space.
For instance, the accuracy of a reward function cannot be
expected to be high far from observed areas of the state space.
All knowledge nuggets in LTM, including C-nodes, are reli-

able only within a particular area of state space. Consequently,
they should only be used or activated in this area. To address
this issue, it is necessary to introduce the concept of percep-
tual classes, which are areas of the perceptual space for which
knowledge nuggets are valid7. Therefore, a perceptual class
is a generalization of perceptions into a higher level, discrete,
representation linked to a given response of the system. Per-
ceptual classes are represented with a LTM component called
perceptual nodes or P-nodes. A P-node is a functional com-
ponent that is activated when a perceptual state belongs to a
given perceptual class.

Different algorithms for the online and offline delimitation
of P-nodes have been proposed, both using point-wise dis-
tance based representations, that is, heuristic episode cluster-
ing approaches [88], and neural network based generalizations.
Redescription procedures to go from a more hippocampal-like
episode-based representation to a more cortex-like generalized
representation in the form of ANNs were studied as reflected
in [90]. This process can be carried out in a quasi-online man-
ner with a reasonable quality level and it can also take place
during an off-line dreaming-like process leading to much bet-
ter results. For instance, Figure 27 displays a representation in
the form of 2D activation maps of some P-nodes (representing
perceptual classes) that were automatically obtained using a
Baxter robot that was trying to learn to put objects placed
anywhere into baskets, also placed anywhere. The bottom
left graph represents one of the P-nodes and maps the angle
at which an object is located with respect to the angle of the
target basket to put the object. It can be interpreted as object
in the wrong side (need to change hands). The bottom central
graph maps distance and angle at which an object is located
with respect to the robot, and its activation can be interpreted
as “the object is reachable” as it provides the reachable area
for the robot arm. Finally, the bottom right graph corresponds
to non-reachable area or “unreachable object”.

Using this type of associative memory, after the system
has acquired some experience interacting with an environment
or a set of environments, whenever it is faced with a perceptual
context, a set of P-nodes becomes active, thus pre-activating
all of the knowledge nuggets that might be relevant in that
situation in terms of perceptual cues. This provides an op-
portunistic way of pre-selecting previously learnt knowledge
nuggets that might be relevant in order to execute them or to
generate new knowledge nuggets for a new environment the
robot might be facing.

7.3 From one agent to another
So far, we have limited our scope to individual robot learning.
However, due to the variety of situations, exploration can be
tedious. As stated in Section 2.2, one multi-task challenge
is to transfer acquired knowledge from one robot to another,
so as to enable improvement over the experience of others.
Indeed, using multiple robots can increase the efficiency with

7Perceptual classes can also be used to represent other properties of
knowledge nuggets but we focus on this one here.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 18/29

Figure 27. Final activation maps for three P-nodes in an experiment where the robot tries to put randomly placed pucks into
randomly placed baskets as shown in the setup on top.

respect to both speed and quality of learning by sharing ex-
perience obtained by multiple exploration processes running
in parallel. Here we consider robot-to-robot learning where
multiple robots share learned skills while completing a task.

Robot-to-robot learning raises its own technical limita-
tions (e.g.: communication bandwidth, network structure) and
challenges (what and how much should be transferred, and
to whom). Also, the problem of sharing information can be
seen as a combination of both an exploration problem and
a consensus problem. As described earlier, the exploration
problem is addressed through individual learning, which is
performed independently from the group. As a consequence,
the consensus problem must comply with skills learned by
different robots, where skills compete to be transferred to the
whole group. Some robots may acquire and share better skills
than other robots, and the question is open as to how to select
the best skills while maintaining a certain level of diversity
resulting in the discovery of even better skills.

We have explored two similar classes of algorithms for
information sharing in multi-robot systems: embodied evo-
lution [91] and social learning [92]. While the former em-
phasizes learning of collective behaviour (i.e. robots inter-
acting with one another), the latter is explicitly concerned
with sharing chunks of information that have been acquired
by individual robots. However, we have shown that with both
families, learning converges towards a homogeneous set of
skills shared by the whole group of robots.

The general architecture is illustrated in Figure 28. Each

individual robot learns individually and transmits all or part
of the description of its skill set to other robots. Information
transfer depends on network connectivity: a given robot may
broadcast to everyone, or to the subset of reachable robots. As
with social learning in nature, selecting which set of skills is
to be transferred and accepted depends on a selection process
running on each robot. The more exclusive the selection,
the faster the convergence, but at the cost of a faster loss of
diversity in the collective. We have shown in [93, 94] that
selection of incoming skills proportionally to their accounted
performances provides an efficient way to maintain diversity
of individual learning processes.

Even more importantly, we have also shown that, as ex-
pected, social learning provides increased learning speed, but
also yields increased performance when compared to individ-
ual learning [95]. This is due to the possibility of running
several instances of individual learning algorithm with differ-
ent meta-parameters values, as best values cannot be guessed
before run-time. In other words, social learning can efficiently
mitigate the negative effect of parameter tuning of the learning
process by enabling multiple searches and selecting the best
performing one at run-time. In addition, the gain in diversity
can actually help to obtain even better results than those that
could be obtained by the best robot learner alone.

8. Related work
The DREAM architecture aims at going beyond a single learn-
ing and decision process and thus moves towards cognitive

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 19/29

Action Repertoire

Robot-to-robot learning

Robot i

Bootstrap learning

Action Repertoire

Robot-to-robot learning

Robot j

Bootstrap learning

Figure 28. Schematic view of robot-to-robot learning. First,
each robot builds its own repertoire of actions by individual
learning from experience (”bootstrap learning”, see Figure 11
for a detailed view). Then elements from the repertoire of
actions can be transferred from one robot to another, and vice
versa. Both processes run in parallel.

architectures that are designed to coordinate such processes.
In particular, it relies on a hierarchical architecture where
higher representational levels are built on top of more ele-
mentary ones, and it targets the open-ended learning context,
which is closely related to continual learning and developmen-
tal processes. In this section we investigate the relationship
between our work and all these areas of research.

8.1 Cognitive architectures
Cognitive architectures have been studied for more than 40
years [96]. One of the main goals of cognitive architecture
research is to model the Human mind and understand it with
a synthetic methodology. It has thus a wider scope than what
is proposed here. These architectures are often classified
according the kind of representations they can manipulate
[97, 96]. They are either:

• Symbolic: cognitive architectures, relying on symbols
and a dedicated instruction set, as GLAIR [98], EPIC
[99] or ICARUS [100]. Knowledge nuggets in this case
are generally represented as IF-THEN rules;

• Emergent: cognitive architectures, relying on connec-
tionnist approaches, as BECCA [101], MDB [102] or
SASE [35]. The knowledge is distributed in neural
networks;

• Hybrid: cognitive architectures, relying on both, as
ACT-R [103] or SOAR [104], that were initially sym-
bolic, but that include non-symbolic representations, at
least in their latest versions [104].

Each architecture has it own processes to acquire new
knowledge, but the knowledge representation is a core feature
that is given beforehand. For practical reasons, it is generally
homogeneous [105] and considered as a design choice that the
system cannot act on. As such, representational redescription
is not addressed in these works. Sometimes, it is even difficult

to figure out what type of representation is used, resulting
in different classifications of cognitive architectures between
different review papers [96].

The DREAM architecture is not a full cognitive archi-
tecture. It is a consistent set of modules aimed at providing
robotic cognitive architectures with a new ability: the ability
to autonomously build new knowledge representations that
are adapted to robot’s tasks and features. It can be seen as
an instance of the design by use case approach proposed by
[106].

8.2 End-to-end and hierarchical approaches
The ability to deal with multiple representations appears in
the machine learning literature under the point of view of hier-
archical approaches able to represent available knowledge at
multiple levels. It relies on the notion of options, that extends
the mathematical framework of Markov Decision Processes by
adding different levels of temporal abstractions. The Markov
Decision Process becomes a semi-Markov Decision Process,
with actions that may have different temporal extensions [51].
In this Hierarchical Reinforcement Learning (HRL) frame-
work, options are defined as a triplet 〈I ,π,β 〉, where I is
the initiation set, i.e. the set of states from which the option
can be activated, π is the policy selecting the action to perform
and β is the termination condition. With this approach, the
combination of different levels of representations is possible.
It can accelerate learning [107] or make learning more robust
[108].

In the standard option framework, all options are built on
top of an initially provided MDP. As a result, the robot con-
trolled by such hierarchical approaches is limited by this initial
MDP. Given the difficulty to define an MDP in a robotics con-
text [4], this is a strong limitation to implement versatile robot
learning capabilities.

Deep reinforcement learning holds the promise of circum-
venting this difficulty by making it possible to learn from raw
inputs to raw outputs [109]. With such end-to-end approaches,
it becomes possible to build policies taking images as inputs
and generating raw motor commands, with applications in
grasping [5] or self-driving cars [110], for instance. However,
these approaches are still limited. For the grasping experi-
ment, full observability is required [5]. The considered tasks
also require to move the robot end effector to positions that
are known and this knowledge is taken into account in the cost
functions used. Current approaches thus need to be completed
with modules in charge of preparing the data they need. This
is one of the goal of the proposed approach. Besides, these
approaches often require very large data sets which makes
them generally impractical. The self-driving car application,
for instance, relies on 72 hours of driving data [110].

This issue is addressed in a variety of ways, such as learn-
ing a lower dimensionality representation [111, 53], or using
learned models of the environment [112]. But to keep with the
hierarchical learning perspective, standard HRL methods have
been extended to the deep learning context with various frame-

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 20/29

works [113, 114, 115, 116, 117]. However, it is still hard to
find application of these frameworks to a real robot, except
when crossing the reality gap is straightforward [118, 119].

Abstract policies can also be extracted from a set of
demonstrations [120] or at least ”informative” policies that
may result from a former training session [121, 122]. These
works assume that such policies are available or that infor-
mative policies can be learned. In an open-ended learning
scenario, the acquisition of a relevant data set should be in-
cluded in the learning process itself to make the system more
autonomous. Our approach aims at building such policies in
realistic setups with sparse reward and is thus complementary
with them. Other approaches avoid this issue by adding in-
trinsic motivations [123, 124, 125]. Again, only few of them
have been applied to a real robot [126], and they have not been
connected to representational redescription concerns yet, even
if some preliminary work comes into this direction [74, 127].

8.3 Continual learning and development
Hierarchical approaches are focused on structuring policy
representations to better exploit what has been learned on a
new task. Tasks are, in general, implicitly related and in a
limited number. When learning over long time periods and
many different tasks, new issues arise: training data cannot be
completely saved and the number of learned policies increases.
The consequence is a risk of catastrophic forgetting or the
difficulty to identify relevant stored policies. Approaches
dealing with these issues have been given different names:
lifelong learning [38, 39], never ending learning [40] or con-
tinual learning [41]. With the transfer between short term
and long term memory, our approach includes an instance
of dual-memory learning systems [39]. However, while the
focus in these works is in building learning processes that can
deal with the continuous flow of data and the different tasks
with a single learning process [41], our approach decomposes
learning into different processes in charge of bootstrapping
the representational redescription process, acquiring skills
and consolidating them to make them more robust and trans-
ferrable between domains, tasks and robots.

The decomposition of the learning process into different
phases is a feature of developmental robotics [34, 35, 37], that
draws inpiration from human and animal development. In
these approaches, the robot is not ready to solve a task when
it is first turned on. It needs to acquire first information about
itself and its environment. During this phase, no task is con-
sidered. The robot is just exploring, with dedicated intrinsic
motivations [128, 129, 130, 131], to identify what is possible
and generate data to learn models of the world (including
itself) and sensorimotor skills. This is a fundamental differ-
ence with continual learning approaches where the robot does
nothing else than solving a task from the very first moment it
is turned on. The approach we have proposed is focused on
the acquisition of adapted representations, it is thus an early
developmental AI system according to the classification of
[132].

Pioneering works on this topic drew inspiration from Pi-
aget’s developmental Psychology work and applied it to sim-
plified environments with predefined representations [133,
134]. Later works focus on the question of building appro-
priate discrete representations from low-level sensorimotor
values [135, 136, 137], some even going towards abstract
symbolic representations [138, 139]. While these works do
consider simulated robots, the authors of [140] propose a
method to build abstract representations that has been tested
on real robots. It starts from a fixed set of known actions and
thus does not address the skill discovery challenge.

To summarize, many different challenges have to be faced
when trying to apply machine learning methods to real robots
(see Section 2). There are some approaches combining deep
HRL and lifelong learning mechanisms [141] but, to the best
of our knowledge, the approach introduced here is the first
one that considers most of them, lists and tests relevant ap-
proaches and describes how to connect and articulate them
while applying it to real robots.

9. Impact on Neuroscience
So far, we have shown the importance of representational
redescription from a robotics perspective, arguing that it is a
critical process for the versatility of robots in realistic open-
ended learning scenarios. But representational redescription
is above all a key process in the cognitive capabilities of living
creatures. In this section, we investigate what Neuroscience
can learn from our work.

9.1 Neuroscience and state representation redescrip-
tion

The hippocampus is well known, even in the machine learn-
ing and robotics communities, for hosting neurons whose
receptive fields appear to represent locations, the so-called
place cells [142]. Many models of the hippocampus have
been implemented on real robots [143, 144, 145, 146, 147,
for example] or have inspired robot navigation algorithms
[148, 31, for example], either to test the efficiency of neural
theories in realistic settings, or as bioinspired tools for robotic
navigation. The resulting compact and efficient representation
of spatial states has then often been used to learn navigation
behaviors by reinforcement [149, 143, 150, 151, 152, 31, for
example]. In particular, this has been done by connecting
models of the hippocampus to a model of the basal ganglia
(a group of subcortical nuclei known to be involved in action
selection) in order to generate goal-directed behaviors. This
fits quite well with the traditional machine learning approach
where one designs a state representation (here, the spatial posi-
tion) adapted to the task one wants to solve (here navigation),
and then use a reinforcement learning algorithm to learn the
optimal policy.

However, recent experimental Neuroscience results shed
a new light on what the hippocampus might in fact be doing:
rather than only representing places, it may in fact encode the
general representation that is the most appropriate to handle

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 21/29

the task at hand, even when the task is not spatial (e.g., cat-
egorization of social agents [153, 154]). This representation
would correspond to 2D localization when reward delivery is
driven by the ability to reach a given location in space, but
it could also be the integration of time and/or distance [155],
or the position in a sequence [156], if these variables are the
essential ones to earn reward. This suggests that some rein-
forcement signals are used in the hippocampus so as to sort
out which of the few dimensions that can be extracted from
the sensory data are relevant for the task at hand: encoding du-
rations, distances or sequence order, only if using them helps
getting rewards/not using them leads to poorer performance.

These observations fit quite well with the approach ad-
vocated here for learning in robotics: the hippocampus may
indeed be a central player, when it comes to performing rep-
resentational redescription.

Actually, the algorithms proposed here could be used
to derive robotics-informed hypotheses about how the brain
might perform representational redescription. For instance,
in Section 4, we showed that an efficient State Representa-
tion Learning (SRL) algorithm must combine several different
objectives into the loss function: reconstructing observations
(e.g., learning to encode both target and robot positions), learn-
ing forward and inverse models, and predicting reward. In
particular, we found that without these complementary learn-
ing objectives, predicting reward leads only to a classifier
detecting when the robot is at the goal, thus not providing any
particular structure or disentanglement to the rest of the state
space.

In contrast, recent Neuroscience work attempting to model
adaptive state creation during animal reward learning gener-
ally focused on too restricted representations [23, 157]. We
argue that some knowledge of the SRL work presented in this
paper may help them better understand how animals perform
representation learning when facing tasks represented with a
larger number of dimensions.

9.2 Neuroscience and task-sets coordination
The present work may also have implications for another field
of neuroscience research, namely the study of task-set learning
and coordination in the prefrontal cortex [158, 24]. Learning
different task-sets means learning different sets of action val-
ues (e.g., different Q-tables) in parallel and adaptively shifting
to the set which seems the most appropriate for the task at
hand. This process has also been called “ episodic control”. In
these tasks, Human subjects need to perform various cognitive
operations: autonomously detect that the task has changed
though these changes are not signalled, store in memory the
set of action values associated to the previous task, search in
memory whether there already exists a previously learned set
of action values that corresponds to the new task, or instead
learn the new action values, and so on after each abrupt task
change.

Importantly, computational models of task-set learning
typically use the same state/action descriptions. The differ-

ence between task-sets thus relies in the mapping between
states and actions (i.e., a different Q-table per task-set). The
focus of these models is on how the prefrontal cortex detects
task context changes to decide which memorized (previously
learned) task-set is now relevant, or whether the situation is
novel and a new task-set should be created and learned. Now,
the work presented in the present paper proposes to go beyond
this, by adding the possibility of “representational redescrip-
tion”. In other words, different tasks may not only require
different action values for the same state/action representation,
but also sometimes different state or action representations.

One interesting question is then: are prefrontal cortex
mechanisms for state/action representational redescription
completely different from those used to change/coordinate
task-sets? Interestingly, neural representations of different
cognitive tasks can be learned sequentially in a continual
learning setting; and it seems that the compositionality they
give rise to could be used as part of the redescription or recom-
bination strategies [159]. These novel questions open the road
for further research at the crossroads between machine learn-
ing, autonomous robotics and computational Neuroscience.

9.3 Neuroscience and action representation redescrip-
tion

A third important link which can be drawn with neuroscience
research is about action representation redescription. More
precisely, to our knowledge, most cognitive Neuroscience
researches does not address the question of how novel action
representations emerge in the nervous system. Instead, most
assume that action representations are already in place, and
focus on the question of how an agent can learn to select
appropriate actions at a given moment. This action selection
problem has received a lot of attention since several decades,
and appears to involve the basal ganglia, a group of subcor-
tical nuclei involved in the temporal organization of motor
decisions [160, 161, 30].

Nevertheless, interestingly, the basal ganglia has been
found to also contribute to an action chunking mechanism
resulting in the encoding of novel macro-actions constituted
of a sequence of existing unitary actions [162, 163, 164].
The rationale is that actions that are often repeated one after
another within the same sequence (e.g., grasping a bottle,
lifting the bottle, bending the bottle, pouring water into a glass,
putting the bottle back on the table) can become a chunked
routine that can then be triggered as a unitary habitual behavior
when faced with the same context and goal [162, 165, 166,
167]. Mechanistically, it is thought that neural activity related
to each individual action, when sequentially activated within
short periods of time, can be associated through Hebbian
learning within the motor cortex [168, 169], so that after habit
acquisition basal ganglia neurons become only active at the
beginning of the sequence (putatively to initiate it) and at its
end (putatively to indicate that it’s finished) [170, 171].

Importantly, the action representation redescription ex-
perimental results presented here go further simple action

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 22/29

chunking mechanisms for habit learning, and thus have the
potential to raise novel insightful ideas for Neuroscience.

9.4 Neuroscience & sleep-related learning processes
A last piece of results which may have impacts on Neuro-
science, is about sleep-related learning processes. As we pre-
viously mentioned, within the mammal brain, the hippocam-
pus contains neurons which encode specific locations of the
environment, the so-called “place cells” [142]. Strikingly,
hippocampal place cells are reactivated during sleep while an
animal is immobile and may be “dreaming” about the task
that it previously performed [172]. Such a replay not only
occurs during sleep, but also during periods of quite wake-
fulness where the animal seems to be thinking about what
it just did during a task [173, 58]. Neuroscientists wonder
what might be the role of such a replay phenomenon. One
recent hypothesis is that such a replay might be useful to boot-
strap reinforcement learning by using an internal model of
the task structure to update state-action value functions offline
[174, 59], similarly to the Dyna architecture [175].

Nevertheless, applying this type of neuro-inspired replay
models to continuous state space navigation, which constitutes
a step towards implementing them in real robots, revealed that
offline replay of these models is not only useful to bootstrap
the state-action value function, but also to learn a stable model
of the world [176, 56]. More precisely, when solving a given
navigation problem, the states are often encountered one after
another, almost always in the same order. Online learning with
a neural network is disrupted by such temporal correlations
of the samples [177]. Replaying past experiences in a random
order was thus necessary to break these repeating temporal
correlations, so as to learn a stable and coherent model of the
world.

This last example gives us the opportunity to highlight
a more general impact that robotics research may have on
Neuroscience: because robots have to interact with the real
world, testing learning algorithms in robots often leads to
different results than perfectly controlled simulation models
[178]. Some models that work perfectly well in simulations
can lead to disappointing results when tested on a real robot.
Alternatively, some models that appear suboptimal compared
to other models in simulation may turn out more robust when
facing noisy, multidimensional, sometimes unpredictable sit-
uations to which a robot is often confronted. Finally, some
models that give the best performance in simulation may turn
out computationnally too costly to work in real time on a robot.
We thus hope that the open-ended learning robotics results pre-
sented in this paper, and thoroughly discussed above, can help
convince neuroscientists of the interest of paying attention to
robotics research, in addition to dematerialized work done in
artificial intelligence, to better understand the properties of
learning processes that can work in the real-world in a variety
of experimental contexts.

10. Conclusion
The open-ended learning capability corresponds to the ability
to solve tasks without having been prepared for them. A strong
requirement to reach this capability is to give the robot the
ability to build, on its own, the representations adapted to these
tasks, may it be state or action spaces. We have discussed the
challenges it raises and proposed the DREAM architecture,
an asymptotically end-to-end, modular, and developmental
framework to address them, emphasizing ”awake” processes,
that require the robot to interact with its environment and have
thus a high cost, and ”dreaming” processes, that do not. A
partial implementation of this framework has been presented
together with the results it has generated. Future work will
complete this implementation to reach a complete open-ended
learning ability.

11. Acknowledgments

This work has been supported by the FET project DREAM8,
that has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 640891.

References
[1] Joseph L Jones. Robots at the tipping point. IEEE

Robotics and Automation Magazine, 13(1):76, 2006.
[2] F. Vaussard, J. Fink, V. Bauwens, P. Rétornaz, D. Hamel,

P. Dillenbourg, and F. Mondada. Lessons learned from
robotic vacuum cleaners entering the home ecosystem.
Robotics and Autonomous Systems, 62(3):376 – 391,
2014. Advances in Autonomous Robotics — Selected
extended papers of the joint 2012 TAROS Conference
and the FIRA RoboWorld Congress, Bristol, UK.

[3] Richard S Sutton and Andrew G Barto. Introduction to
reinforcement learning, volume 135. MIT press Cam-
bridge, 1998.

[4] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforce-
ment learning in robotics: A survey. The International
Journal of Robotics Research, 32(11):1238–1274, 2013.

[5] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[6] Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(Jul):1633–1685, 2009.

[7] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer
learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2010.

8http://dream.isir.upmc.fr/

http://dream.isir.upmc.fr/

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 23/29

[8] Alessandro Lazaric. Transfer in reinforcement learning:
a framework and a survey. In Reinforcement Learning,
pages 143–173. Springer, 2012.

[9] Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue,
and Guangquan Zhang. Transfer learning using computa-
tional intelligence: a survey. Knowledge-Based Systems,
80:14–23, 2015.

[10] Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. Meta-learning in neural networks: A
survey. arXiv preprint arXiv:2004.05439, 2020.

[11] Javier Garcı́a and Fernando Fernández. A comprehen-
sive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

[12] Fernando Fernández, Javier Garcı́a, and Manuela Veloso.
Probabilistic policy reuse for inter-task transfer learn-
ing. Robotics and Autonomous Systems, 58(7):866–871,
2010.

[13] Enrique Munoz de Cote, Esteban O Garcia, and Ed-
uardo F Morales. Transfer learning by prototype genera-
tion in continuous spaces. Adaptive Behavior, 24(6):464–
478, 2016.

[14] Trung Thanh Nguyen, Tomi Silander, Zhuoru Li, and
Tze-Yun Leong. Scalable transfer learning in heteroge-
neous, dynamic environments. Artificial Intelligence,
247:70–94, 2017.

[15] Mohsen Kaboli, Di Feng, and Gordon Cheng. Ac-
tive tactile transfer learning for object discrimination in
an unstructured environment using multimodal robotic
skin. International Journal of Humanoid Robotics,
15(01):1850001, 2018.

[16] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-
Baptiste Mouret. Robots that can adapt like animals.
Nature, 521(7553):503, 2015.

[17] Ignasi Clavera, David Held, and Pieter Abbeel. Pol-
icy transfer via modularity and reward guiding. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1537–1544. IEEE,
2017.

[18] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter
Abbeel, and Sergey Levine. Learning modular neural
network policies for multi-task and multi-robot trans-
fer. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 2169–2176. IEEE,
2017.

[19] Stephen James, Andrew J Davison, and Edward Johns.
Transferring end-to-end visuomotor control from simu-
lation to real world for a multi-stage task. arXiv preprint
arXiv:1707.02267, 2017.

[20] René Traoré, Hugo Caselles-Dupré, Timothée Lesort,
Te Sun, Guanghang Cai, Natalia Dı́az-Rodrı́guez, and
David Filliat. Discorl: Continual reinforcement learning
via policy distillation, 2019.

[21] André Barreto, Will Dabney, Rémi Munos, Jonathan J
Hunt, Tom Schaul, Hado P van Hasselt, and David Silver.
Successor features for transfer in reinforcement learning.
In Advances in neural information processing systems,
pages 4055–4065, 2017.

[22] Annette Karmiloff-Smith. Beyond modularity: A de-
velopmental approach to cognitive science. MITPress,
Cambridge, 1992.

[23] A David Redish, Steve Jensen, Adam Johnson, and Zeb
Kurth-Nelson. Reconciling reinforcement learning mod-
els with behavioral extinction and renewal: implications
for addiction, relapse, and problem gambling. Psycho-
logical review, 114(3):784, 2007.

[24] Anne Collins and Etienne Koechlin. Reasoning, learning,
and creativity: frontal lobe function and human decision-
making. PLoS biology, 10(3):e1001293, 2012.

[25] D Gowanlock R Tervo, Joshua B Tenenbaum, and
Samuel J Gershman. Toward the neural implementation
of structure learning. Current opinion in neurobiology,
37:99–105, 2016.

[26] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Au-
tonomous helicopter aerobatics through apprenticeship
learning. The International Journal of Robotics Re-
search, 29(13):1608–1639, 2010.

[27] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan
Peters. Learning to select and generalize striking move-
ments in robot table tennis. The International Journal
of Robotics Research, 32(3):263–279, 2013.

[28] Adrien Baranes and Pierre Yves Oudeyer. Active learn-
ing of inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous Sys-
tems, 61(1):49–73, 2013.

[29] Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud,
Pierre Fournier, and Mohamed Chetouani. CURIOUS:
Intrinsically motivated multi-task, multi-goal reinforce-
ment learning. In International Conference on Machine
Learning (ICML), pages 1331–1340, 2019.

[30] Mehdi Khamassi and Mark D Humphries. Integrating
cortico-limbic-basal ganglia architectures for learning
model-based and model-free navigation strategies. Fron-
tiers in behavioral neuroscience, 6:79, 2012.

[31] K. Caluwaerts, M. Staffa, S. N’Guyen, C. Grand,
L. Dollé, A. Favre-Felix, B. Girard, and M. Khamassi. A
biologically inspired meta-control navigation system for
the psikharpax rat robot. Bioinspiration & Biomimetics,
7(2):025009, 2012.

[32] Matthew Botvinick, Sam Ritter, Jane X. Wang, Zeb
Kurth-Nelson, Charles Blundell, and Demis Hassabis.
Reinforcement learning, fast and slow. Trends in Cogni-
tive Sciences, 23(5):408 – 422, 2019.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 24/29

[33] Stephane Doncieux, David Filliat, Natalia Dı́az-
Rodrı́guez, Timothy Hospedales, Richard Duro, Alexan-
dre Coninx, Diederik M. Roijers, Benoı̂t Girard, Nicolas
Perrin, and Olivier Sigaud. Open-ended learning: A con-
ceptual framework based on representational redescrip-
tion. Frontiers in Neurorobotics, 12:59, 2018.

[34] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio
Sandini. Developmental robotics: a survey. Connection
science, 15(4):151–190, 2003.

[35] Juyang Weng. Developmental robotics: Theory and ex-
periments. International Journal of Humanoid Robotics,
1(02):199–236, 2004.

[36] Alexander Stoytchev. Some basic principles of devel-
opmental robotics. IEEE Transactions on Autonomous
Mental Development, 1(2):122–130, 2009.

[37] Angelo Cangelosi and Matthew Schlesinger. Develop-
mental robotics: From babies to robots. MIT press,
2015.

[38] Sebastian Thrun. Lifelong learning algorithms. In Learn-
ing to learn, pages 181–209. Springer, 1998.

[39] German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Net-
works, 2019.

[40] Tom Mitchell, William Cohen, Estevam Hruschka,
Partha Talukdar, Bishan Yang, Justin Betteridge, Andrew
Carlson, Bhanava Dalvi, Matt Gardner, Bryan Kisiel,
et al. Never-ending learning. Communications of the
ACM, 61(5):103–115, 2018.

[41] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian,
Davide Maltoni, David Filliat, and Natalia Dı́az-
Rodrı́guez. Continual learning for robotics: Definition,
framework, learning strategies, opportunities and chal-
lenges. Information Fusion, 58:52–68, 2020.

[42] Lisa Torrey and Jude Shavlik. Transfer learning. In
Handbook of research on machine learning applications
and trends: algorithms, methods, and techniques, pages
242–264. IGI Global, 2010.

[43] Mark A. Bedau. The nature of life. In The philiosophy
of artificial life. Oxford University Press, 1996.

[44] Joel Lehman and Kenneth O. Stanley. Abandoning
Objectives: Evolution Through the Search for Nov-
elty Alone. Evolutionary Computation, 19(2):189–223,
2010.

[45] Russell K Standish. Open-ended artificial evolution.
International Journal of Computational Intelligence and
Applications, 3(02):167–175, 2003.

[46] Stéphane Doncieux. Creativity: A driver for research on
robotics in open environments. Intellectica, 65(1):205–
219, 2016.

[47] Kenji Doya and Tadahiro Taniguchi. Toward evolution-
ary and developmental intelligence. Current Opinion in
Behavioral Sciences, 29:91–96, 2019.

[48] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek
Lee, Xinyan Yan, Evangelos Theodorou, and Byron
Boots. Agile autonomous driving using end-to-end deep
imitation learning. Proceedings of Robotics: Science
and Systems. Pittsburgh, Pennsylvania, 2018.

[49] Carlos Maestre, Antoine Cully, Christophe Gonzales,
and Stephane Doncieux. Bootstrapping interactions with
objects from raw sensorimotor data: a novelty search
based approach. In 2015 Joint IEEE International Con-
ference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob), pages 7–12. IEEE, 2015.

[50] Sergey Levine, Nolan Wagener, and Pieter Abbeel.
Learning contact-rich manipulation skills with guided
policy search. In 2015 IEEE international conference on
robotics and automation (ICRA), pages 156–163. IEEE,
2015.

[51] Richard S Sutton, Doina Precup, and Satinder Singh.
Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[52] Rico Jonschkowski and Oliver Brock. Learning state
representations with robotic priors. Autonomous Robots,
39(3):407–428, 2015.

[53] Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Fançois
Goudou, and David Filliat. State Representation Learn-
ing for Control: An Overview. Neural Networks,
108:379–392, December 2018.

[54] Robert Stickgold, J Allen Hobson, Roar Fosse, and Mag-
dalena Fosse. Sleep, learning, and dreams: off-line
memory reprocessing. Science, 294(5544):1052–1057,
2001.

[55] Gaetan De Lavilléon, Marie Masako Lacroix, Laure
Rondi-Reig, and Karim Benchenane. Explicit memory
creation during sleep demonstrates a causal role of place
cells in navigation. Nature neuroscience, 18(4):493,
2015.

[56] Romain Cazé, Mehdi Khamassi, Lise Aubin, and Benoı̂t
Girard. Hippocampal replays under the scrutiny of rein-
forcement learning models. Journal of neurophysiology,
120(6):2877–2896, 2018.

[57] Ullrich Wagner, Steffen Gais, Hilde Haider, Rolf Ver-
leger, and Jan Born. Sleep inspires insight. Nature,
427(6972):352, 2004.

[58] Anoopum S Gupta, Matthijs AA van der Meer, David S
Touretzky, and A David Redish. Hippocampal replay is
not a simple function of experience. Neuron, 65(5):695–
705, 2010.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 25/29

[59] Mehdi Khamassi and Benoı̂t Girard. Modeling awake
hippocampal reactivations with model-based bidirec-
tional search. Biological Cybernetics, pages 1–18, 2020.

[60] Jean Piaget. Part i: Cognitive development in children–
piaget development and learning. Journal of research in
science teaching, 40, 2003.

[61] Robert S Siegler. Emerging minds: The process of
change in children’s thinking. Oxford University Press,
1998.

[62] Antonin Raffin, Ashley Hill, René Traoré, Timothée
Lesort, Natalia Dı́az-Rodrı́guez, and David Filliat. S-
RL Toolbox: Environments, Datasets and Evaluation
Metrics for State Representation Learning. In NIPS
2018 Deep RL workshop, Montreal, Canada, December
2018.

[63] Timothée Lesort, Mathieu Seurin, Xinrui Li, Na-
talia Dı́az Rodrı́guez, and David Filliat. Unsupervised
state representation learning with robotic priors: a ro-
bustness analysis. In International Joint Conference on
Neural Networks, 2019.

[64] Antonin Raffin, Ashley Hill, Kalifou René Traoré, Tim-
othée Lesort, Natalia Dı́az-Rodrı́guez, and David Filliat.
Decoupling feature extraction from policy learning: as-
sessing benefits of state representation learning in goal
based robotics. In Workshop on “Structure and Priors
in Reinforcement Learning” (SPiRL) at ICLR, 2019.

[65] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[66] Léni K Le Le Goff, Ghanim Mukhtar, Alexandre Coninx,
and Stéphane Doncieux. Bootstrapping robotic ecologi-
cal perception from a limited set of hypotheses through
interactive perception. arXiv preprint arXiv:1901.10968,
2019.

[67] Jeannette Bohg, Karol Hausman, Bharath Sankaran,
Oliver Brock, Danica Kragic, Stefan Schaal, and Gau-
rav S Sukhatme. Interactive perception: Leveraging
action in perception and perception in action. IEEE
Transactions on Robotics, 33(6):1273–1291, 2017.

[68] Jeremie Papon, Alexey Abramov, Markus Schoeler, and
Florentin Worgotter. Voxel cloud connectivity segmenta-
tion - Supervoxels for point clouds. Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2027–2034, 2013.

[69] Leni K Le Goff, Ghanim Mukhtar, Pierre-Henri Le Fur,
and Stephane Doncieux. Segmenting objects through an
autonomous agnostic exploration conducted by a robot.
In 2017 First IEEE International Conference on Robotic
Computing (IRC), pages 284–291. IEEE, 2017.

[70] Leni K Le Goff, Oussama Yaakoubi, Alexandre Con-
inx, and Stephane Doncieux. Building an affor-

dances map with interactive perception. arXiv preprint
arXiv:1903.04413, 2019.

[71] James J Gibson. The ecological approach to visual
perception: classic edition. Psychology Press, 2014.

[72] Georg Biegelbauer, Markus Vincze, and Walter
Wohlkinger. Model-based 3d object detection. Machine
Vision and Applications, 21(4):497–516, 2010.

[73] Seungsu Kim, Alexandre Coninx, and Stéphane Don-
cieux. From exploration to control: learning object
manipulation skills through novelty search and local
adaptation. CoRR, abs/1901.00811, 2019.

[74] Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and
Pierre-Yves Oudeyer. Unsupervised Learning of Goal
Spaces for Intrinsically Motivated Goal Exploration. mar
2018.

[75] Olivier Sigaud and Freek Stulp. Policy search in con-
tinuous action domains: an overview. Neural Networks,
113:28–40, 2019.

[76] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise
and the reality gap: The use of simulation in evolutionary
robotics. In Proceedings of ECAL 1995, pages 704–720,
1995.

[77] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley.
Quality diversity: A new frontier for evolutionary com-
putation. Frontiers in Robotics and AI, 3:40, 2016.

[78] Antoine Cully and Yiannis Demiris. Quality and diver-
sity optimization: A unifying modular framework. IEEE
Transactions on Evolutionary Computation, 22(2):245–
259, 2017.

[79] F. Stulp, E. Oztop, P. Pastor, M. Beetz, and S. Schaal.
Compact models of motor primitive variations for pre-
dictable reaching and obstacle avoidance. In IEEE-RAS
International Conference on Humanoid Robots, 2009.

[80] M Duarte, J Gomes, S M Oliveira, and A L Christensen.
Evolution of Repertoire-Based Control for Robots With
Complex Locomotor Systems. IEEE Transactions on
Evolutionary Computation, 22:314–328, 2018.

[81] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[82] Marija Jegorova, Stéphane Doncieux, and Timothy
Hospedales. Generative adversarial policy networks
for behavioural repertoire. In 2019 Joint IEEE Interna-
tional Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob), 2019.

[83] Arvind Agarwal, Samuel Gerber, and Hal Daume. Learn-
ing multiple tasks using manifold regularization. In Ad-
vances in neural information processing systems, pages
46–54, 2010.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 26/29

[84] Abhishek Kumar and Hal Daume III. Learning task
grouping and overlap in multi-task learning. preprint
arXiv:1206.6417, 2012.

[85] Yongxin Yang and Timothy Hospedales. Deep multi-task
representation learning: A tensor factorisation approach.
In ICLR, 2017.

[86] Paul Ruvolo and Eric Eaton. Ella: An efficient life-
long learning algorithm. In International Conference on
Machine Learning, pages 507–515, 2013.

[87] Chenyang Zhao, Timothy M Hospedales, Freek Stulp,
and Olivier Sigaud. Tensor based knowledge transfer
across skill categories for robot control. In IJCAI, pages
3462–3468, 2017.

[88] Richard J Duro, Jose A Becerra, Juan Monroy, and Fran-
cisco Bellas. Perceptual generalization and context in a
network memory inspired long-term memory for artifi-
cial cognition. International Journal of Neural Systems,
pages 1–22, 2018.

[89] Richard J Duro, Jose A Becerra, Juan Monroy, and Luis
Calvo. Context nodes in the operation of a long term
memory structure for an evolutionary cognitive architec-
ture. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 1172–1176.
ACM, 2017.

[90] Jose A Becerra, Richard J Duro, and Juan Monroy. A
redescriptive approach to autonomous perceptual classi-
fication in robotic cognitive architectures. In 2018 Inter-
national Joint Conference on Neural Networks (IJCNN),
pages 522–529. IEEE, 2018.

[91] Nicolas Bredeche, Evert Haasdijk, and Abraham Prieto.
Embodied evolution in collective robotics: A review.
Frontiers in Robotics and AI, 5:12, 2018.

[92] Jacqueline Heinerman, Massimiliano Rango, and Agos-
ton Endre Eiben. Evolution, individual learning, and
social learning in a swarm of real robots. In 2015 IEEE
Symposium Series on Computational Intelligence, pages
1055–1062. IEEE, 2015.

[93] Jean-Marc Montanier, Simon Carrignon, and Nicolas
Bredeche. Behavioral specialization in embodied evolu-
tionary robotics: Why so difficult? Frontiers in Robotics
and AI, 3:38, 2016.

[94] Nicolas Bredeche, Jean-Marc Montanier, and Simon Car-
rignon. Benefits of proportionate selection in embodied
evolution: a case study with behavioural specialization.
In Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, pages 1683–1684. ACM,
2017.

[95] Jacqueline Heinerman, Evert Haasdijk, and A. E. Eiben.
Importance of parameter settings on the benefits of robot-
to-robot learning in evolutionary robotics. Frontiers in
Robotics and AI, 6:10, 2019.

[96] Iuliia Kotseruba and John K Tsotsos. 40 years of cogni-
tive architectures: core cognitive abilities and practical
applications. Artificial Intelligence Review, pages 1–78,
2018.

[97] Peijun Ye, Tao Wang, and Fei-Yue Wang. A survey
of cognitive architectures in the past 20 years. IEEE
transactions on cybernetics, 48(12):3280–3290, 2018.

[98] Stuart C Shapiro and Jonathan P Bona. The glair cog-
nitive architecture. International Journal of Machine
Consciousness, 2(02):307–332, 2010.

[99] David E Kieras. A summary of the epic cognitive archi-
tecture. The Oxford handbook of cognitive science, 1:24,
2016.

[100] Pat Langley and Dongkyu Choi. A unified cognitive ar-
chitecture for physical agents. In Proceedings of the Na-
tional Conference on Artificial Intelligence, volume 21.
Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2006.

[101] Brandon Rohrer. Becca: Reintegrating ai for natural
world interaction. In 2012 AAAI Spring Symposium
Series, 2012.

[102] Francisco Bellas, Richard J Duro, Andrés Faiña, and
Daniel Souto. Multilevel darwinist brain (mdb): Artifi-
cial evolution in a cognitive architecture for real robots.
IEEE Transactions on autonomous mental development,
2(4):340–354, 2010.

[103] John R Anderson, Daniel Bothell, Michael D Byrne,
Scott Douglass, Christian Lebiere, and Yulin Qin. An
integrated theory of the mind. Psychological review,
111(4):1036, 2004.

[104] John E Laird. The Soar cognitive architecture. MIT
press, 2012.

[105] Antonio Lieto. Representational limits in cognitive ar-
chitectures. In EUCognition Meeting (European Society
for Cognitive Systems)” Cognitive Robot Architectures”,
volume 1855, pages 16–20. Ceur-ws, 2017.

[106] David Vernon. Two ways (not) to design a cognitive
architecture. Cognitive Robot Architectures, 42, 2017.

[107] Timothy Mann and Shie Mannor. Scaling up approxi-
mate value iteration with options: Better policies with
fewer iterations. In International conference on machine
learning, pages 127–135, 2014.

[108] Daniel J Mankowitz, Timothy A Mann, Pierre-Luc Ba-
con, Doina Precup, and Shie Mannor. Learning robust
options. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[109] Kai Arulkumaran, Marc Peter Deisenroth, Miles
Brundage, and Anil Anthony Bharath. A brief sur-
vey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866, 2017.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 27/29

[110] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[111] Wendelin Böhmer, Jost Tobias Springenberg, Joschka
Boedecker, Martin Riedmiller, and Klaus Obermayer.
Autonomous learning of state representations for con-
trol: An emerging field aims to autonomously learn state
representations for reinforcement learning agents from
their real-world sensor observations. KI-Künstliche In-
telligenz, 29(4):353–362, 2015.

[112] Konstantinos Chatzilygeroudis, Vassilis Vassiliades,
Freek Stulp, Sylvain Calinon, and Jean-Baptiste Mouret.
A survey on policy search algorithms for learning robot
controllers in a handful of trials. IEEE Transactions on
Robotics, 2019.

[113] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The
option-critic architecture. In AAAI, pages 1726–1734,
2017.

[114] Alexander Sasha Vezhnevets, Simon Osindero, Tom
Schaul, Nicolas Heess, Max Jaderberg, David Silver, and
Koray Kavukcuoglu. Feudal networks for hierarchical re-
inforcement learning. arXiv preprint arXiv:1703.01161,
2017.

[115] Andrew Levy, Robert Platt, and Kate Saenko. Hierar-
chical actor-critic. arXiv preprint arXiv:1712.00948,
2017.

[116] Andrew Levy, Robert Platt, and Kate Saenko. Hier-
archical reinforcement learning with hindsight. arXiv
preprint arXiv:1805.08180, 2018.

[117] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and
Sergey Levine. Data-efficient hierarchical reinforcement
learning. In Advances in Neural Information Processing
Systems, pages 3303–3313, 2018.

[118] Zhaoyang Yang, Kathryn Merrick, Lianwen Jin, and
Hussein A Abbass. Hierarchical deep reinforcement
learning for continuous action control. IEEE trans-
actions on neural networks and learning systems,
29(11):5174–5184, 2018.

[119] Yilun Chen, Chiyu Dong, Praveen Palanisamy, Priyan-
tha Mudalige, Katharina Muelling, and John M Dolan.
Attention-based hierarchical deep reinforcement learn-
ing for lane change behaviors in autonomous driving.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 0–0,
2019.

[120] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladis-
lau Bölöni, and Sergey Levine. Vision-based multi-task
manipulation for inexpensive robots using end-to-end

learning from demonstration. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 3758–3765. IEEE, 2018.

[121] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Gold-
berg. Multi-level discovery of deep options. preprint
arXiv:1703.08294, 2017.

[122] Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Gold-
berg. Ddco: Discovery of deep continuous options
for robot learning from demonstrations. arXiv preprint
arXiv:1710.05421, 2017.

[123] Christopher M Vigorito and Andrew G. Barto. Intrinsi-
cally motivated hierarchical skill learning in structured
environments. IEEE Transactions on Autonomous Men-
tal Development, 2(2):132–143, 2010.

[124] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi,
and Josh Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic
motivation. In Advances in neural information process-
ing systems, pages 3675–3683, 2016.

[125] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochas-
tic neural networks for hierarchical reinforcement learn-
ing. arXiv preprint arXiv:1704.03012, 2017.

[126] Sébastien Forestier, Yoan Mollard, and Pierre-Yves
Oudeyer. Intrinsically motivated goal exploration pro-
cesses with automatic curriculum learning. arXiv
preprint arXiv:1708.02190, 2017.

[127] Adrien Laversanne-Finot, Alexandre Péré, and Pierre-
Yves Oudeyer. Curiosity driven exploration of
learned disentangled goal spaces. arXiv preprint
arXiv:1807.01521, 2018.

[128] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V
Hafner. Intrinsic motivation systems for autonomous
mental development. IEEE transactions on evolutionary
computation, 11(2):265–286, 2007.

[129] Pierre-Yves Oudeyer and Frederic Kaplan. What is
intrinsic motivation? a typology of computational ap-
proaches. Frontiers in neurorobotics, 1:6, 2009.

[130] Gianluca Baldassarre and Marco Mirolli. Intrinsically
motivated learning in natural and artificial systems.
Springer, 2013.

[131] Pierre-Yves Oudeyer. Computational theories
of curiosity-driven learning. arXiv preprint
arXiv:1802.10546, 2018.

[132] Frank Guerin. Learning like a baby: a survey of artificial
intelligence approaches. The Knowledge Engineering
Review, 26(2):209–236, 2011.

[133] Gary L Drescher. Made-up minds: a constructivist ap-
proach to artificial intelligence. MIT press, 1991.

[134] Harold Henry Chaput. The constructivist learning ar-
chitecture: A model of cognitive development for robust
autonomous robots. PhD thesis, University of Texas at
Austin, 2004.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 28/29

[135] Jeremy Stober and Benjamin Kuipers. From pixels to
policies: A bootstrapping agent. In 2008 7th IEEE
International Conference on Development and Learning,
pages 103–108. IEEE, 2008.

[136] Jonathan Mugan and Benjamin Kuipers. Autonomous
learning of high-level states and actions in continuous en-
vironments. IEEE Transactions on Autonomous Mental
Development, 4(1):70–86, 2011.

[137] Matthieu Zimmer and Stephane Doncieux. Bootstrap-
ping q-learning for robotics from neuro-evolution results.
IEEE Transactions on Cognitive and Developmental Sys-
tems, 10(1):102–119, 2017.

[138] George Konidaris, Leslie Kaelbling, and Tomas Lozano-
Perez. Constructing symbolic representations for high-
level planning. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2014.

[139] George Konidaris. Constructing abstraction hierarchies
using a skill-symbol loop. In IJCAI: proceedings of
the conference, volume 2016, page 1648. NIH Public
Access, 2016.

[140] Emre Ugur and Justus Piater. Bottom-up learning
of object categories, action effects and logical rules:
From continuous manipulative exploration to symbolic
planning. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 2627–2633.
IEEE, 2015.

[141] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J.
Mankowitz, and Shie Mannor. A deep hierarchical ap-
proach to lifelong learning in minecraft. In AAAI, pages
1553–1561, 2017.

[142] John O’Keefe and Jonathan Dostrovsky. The hippocam-
pus as a spatial map: preliminary evidence from unit
activity in the freely-moving rat. Brain research, 1971.

[143] Angelo Arleo and Wulfram Gerstner. Spatial cognition
and neuro-mimetic navigation: a model of hippocampal
place cell activity. Biological cybernetics, 83(3):287–
299, 2000.

[144] Jeffrey L Krichmar, Anil K Seth, Douglas A Nitz, Ja-
son G Fleischer, and Gerald M Edelman. Spatial naviga-
tion and causal analysis in a brain-based device model-
ing cortical-hippocampal interactions. Neuroinformatics,
3(3):197–221, 2005.

[145] Thomas Strösslin, Denis Sheynikhovich, Ricardo
Chavarriaga, and Wulfram Gerstner. Robust self-
localisation and navigation based on hippocampal place
cells. Neural networks, 18(9):1125–1140, 2005.

[146] C Giovannangeli, Ph Gaussier, and JP Banquet. Robust-
ness of visual place cells in dynamic indoor and outdoor
environment. International Journal of Advanced Robotic
Systems, 3(2):19, 2006.

[147] Alejandra Barrera and Alfredo Weitzenfeld.
Biologically-inspired robot spatial cognition based on

rat neurophysiological studies. Autonomous Robots,
25(1-2):147–169, 2008.

[148] Michael Milford and Gordon Wyeth. Persistent navi-
gation and mapping using a biologically inspired slam
system. The International Journal of Robotics Research,
29(9):1131–1153, 2010.

[149] Alex Guazzelli, Mihail Bota, Fernando J Corbacho, and
Michael A Arbib. Affordances. motivations, and the
world graph theory. Adaptive Behavior, 6(3-4):435–471,
1998.

[150] DJ Foster, RGM Morris, and Peter Dayan. A model of
hippocampally dependent navigation, using the tempo-
ral difference learning rule. Hippocampus, 10(1):1–16,
2000.

[151] Ricardo Chavarriaga, Thomas Strösslin, Denis
Sheynikhovich, and Wulfram Gerstner. A computational
model of parallel navigation systems in rodents.
Neuroinformatics, 3(3):223–241, 2005.

[152] Benoı̂t Girard, David Filliat, Jean-Arcady Meyer, Alain
Berthoz, and Agnès Guillot. Integration of navigation
and action selection functionalities in a computational
model of cortico-basal-ganglia–thalamo-cortical loops.
Adaptive Behavior, 13(2):115–130, 2005.

[153] Rita Morais Tavares, Avi Mendelsohn, Yael Grossman,
Christian Hamilton Williams, Matthew Shapiro, Yaacov
Trope, and Daniela Schiller. A map for social navigation
in the human brain. Neuron, 87(1):231–243, 2015.

[154] Seongmin A Park, Douglas S Miller, Hamed Nili, Cha-
ran Ranganath, and Erie D Boorman. Map making: Con-
structing, combining, and navigating abstract cognitive
maps. BioRxiv, page 810051, 2019.

[155] Benjamin J Kraus, Robert J Robinson II, John A White,
Howard Eichenbaum, and Michael E Hasselmo. Hip-
pocampal “time cells”: time versus path integration.
Neuron, 78(6):1090–1101, 2013.

[156] Henrique O Cabral, Martin Vinck, Celine Fou-
quet, Cyriel MA Pennartz, Laure Rondi-Reig, and
Francesco P Battaglia. Oscillatory dynamics and place
field maps reflect hippocampal ensemble processing of
sequence and place memory under nmda receptor con-
trol. Neuron, 81(2):402–415, 2014.

[157] Samuel J Gershman, David M Blei, and Yael Niv. Con-
text, learning, and extinction. Psychological review,
117(1):197, 2010.

[158] Earl K Miller and Jonathan D Cohen. An integrative
theory of prefrontal cortex function. Annual review of
neuroscience, 24(1):167–202, 2001.

[159] Guangyu Robert Yang, Madhura R Joglekar, H Francis
Song, William T Newsome, and Xiao-Jing Wang. Task
representations in neural networks trained to perform
many cognitive tasks. Nature neuroscience, 22(2):297–
306, 2019.

DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics — 29/29

[160] Peter Redgrave, Tony J Prescott, and Kevin Gurney. The
basal ganglia: a vertebrate solution to the selection prob-
lem? Neuroscience, 89(4):1009–1023, 1999.

[161] Mehdi Khamassi, Loı̈c Lachèze, Benoı̂t Girard, Alain
Berthoz, and Agnès Guillot. Actor–critic models of
reinforcement learning in the basal ganglia: from natural
to artificial rats. Adaptive Behavior, 13(2):131–148,
2005.

[162] Ann M Graybiel. The basal ganglia and chunking of ac-
tion repertoires. Neurobiology of learning and memory,
70(1-2):119–136, 1998.

[163] Terra D Barnes, Yasuo Kubota, Dan Hu, Dezhe Z Jin,
and Ann M Graybiel. Activity of striatal neurons reflects
dynamic encoding and recoding of procedural memories.
Nature, 437(7062):1158–1161, 2005.

[164] Xin Jin, Fatuel Tecuapetla, and Rui M Costa. Basal
ganglia subcircuits distinctively encode the parsing and
concatenation of action sequences. Nature neuroscience,
17(3):423–430, 2014.

[165] Amir Dezfouli and Bernard W Balleine. Habits, ac-
tion sequences and reinforcement learning. European
Journal of Neuroscience, 35(7):1036–1051, 2012.

[166] Kevin J Miller, Amitai Shenhav, and Elliot A Lud-
vig. Habits without values. Psychological Review,
126(2):292, 2019.

[167] Adam Morris and Fiery Cushman. Model-free rl or
action sequences? Frontiers in Psychology, 10, 2019.

[168] F Gregory Ashby, Benjamin O Turner, and Jon C
Horvitz. Cortical and basal ganglia contributions to habit
learning and automaticity. Trends in cognitive sciences,
14(5):208–215, 2010.

[169] Michael J Frank and Eric D Claus. Anatomy of a deci-
sion: striato-orbitofrontal interactions in reinforcement
learning, decision making, and reversal. Psychological
review, 113(2):300, 2006.

[170] Catherine A Thorn, Hisham Atallah, Mark Howe, and
Ann M Graybiel. Differential dynamics of activity
changes in dorsolateral and dorsomedial striatal loops
during learning. Neuron, 66(5):781–795, 2010.

[171] Xin Jin and Rui M Costa. Start/stop signals emerge in
nigrostriatal circuits during sequence learning. Nature,
466(7305):457–462, 2010.

[172] Matthew A Wilson and Bruce L McNaughton. Reacti-
vation of hippocampal ensemble memories during sleep.
Science, 265(5172):676–679, 1994.

[173] David J Foster and Matthew A Wilson. Reverse replay of
behavioural sequences in hippocampal place cells during
the awake state. Nature, 440(7084):680–683, 2006.

[174] Marcelo G Mattar and Nathaniel D Daw. Prioritized
memory access explains planning and hippocampal re-
play. Nature neuroscience, 21(11):1609–1617, 2018.

[175] Richard S Sutton. Dyna, an integrated architecture for
learning, planning, and reacting. ACM Sigart Bulletin,
2(4):160–163, 1991.

[176] Lise Aubin, Mehdi Khamassi, and Benoı̂t Girard. Priori-
tized sweeping neural dynaq with multiple predecessors,
and hippocampal replays. In Conference on Biomimetic
and Biohybrid Systems, pages 16–27. Springer, 2018.

[177] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533,
2015.

[178] Mehdi Khamassi, Stéphane Lallée, Pierre Enel, Em-
manuel Procyk, and Peter F Dominey. Robot cognitive
control with a neurophysiologically inspired reinforce-
ment learning model. Frontiers in neurorobotics, 5:1,
2011.

	1 Introduction
	2 Open-ended learning
	2.1 A definition of open-ended learning
	2.2 Goals and challenges

	3 Overview of the proposed approach
	3.1 Asymptotically end-to-end
	3.2 Focus on representational redescription
	3.3 Stage by stage modular approach
	3.4 Alternation between awake and dreaming processes
	3.5 Development

	4 Building state representations
	5 Bootstrapping the developmental process
	5.1 Babbling to identify objects
	5.2 Learning to manipulate objects
	5.2.1 Offline learning of skill repertoires
	5.2.2 Online generalization and adaptation by local linear Jacobian approximation

	6 Building new action representations
	7 Transferring knowledge
	7.1 From one task to another
	7.2 From short term memory to long term memory
	7.3 From one agent to another

	8 Related work
	8.1 Cognitive architectures
	8.2 End-to-end and hierarchical approaches
	8.3 Continual learning and development

	9 Impact on Neuroscience
	9.1 Neuroscience and state representation redescription
	9.2 Neuroscience and task-sets coordination
	9.3 Neuroscience and action representation redescription
	9.4 Neuroscience & sleep-related learning processes

	10 Conclusion
	11 Acknowledgments
	References

