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Abstract. Event prediction in sequence databases is an important and challenging data
mining task. We focus on the specific case of prediction of distant events. Our aim is to
mine sequential association rules with consequents that are temporally distant from their
antecedents. We therefore propose two new algorithms: D-SR-postMining and D-SR-in-
Mining (D-SR stands for Distant Sequential Rules). The originality of these algorithms is
that they integrate a minimal gap constraint between the antecedent and the consequent
of existing rules, which, as we prove, has an anti-monotonicity property. This approach
allows to predict events with enough time in advance (at least as much as the gap). Both
algorithms are designed to coexist with legacy rule mining algorithms: D-SR-postMining
can be used as a post-processing step of traditional mining algorithms, and D-SR-inMin-
ing can be integrated into the mining process of such algorithms. Experiments on three
data sets show that both algorithms are efficient for mining distant rules and scalable on
large data sets. Even better, D-SR-inMining reduces execution time significantly (up to
9 times). Furthermore, an in-depth analysis of the rules mined from a real-world bank
data set, demonstrates the efficiency of such rules for real-world applications such as
churn analysis.

Keywords: Data mining, sequence mining, association rule mining, distant predic-
tion, anti-monotonicity

1. Introduction. Sequential patterns and sequential rules in sequence databases have
been introduced in [5] and are still an important and active research field in data mining
(see for example the surveys [20, 27]). Sequences can be represented as chronologically or
positionally ordered lists (in the latter case we keep only the order of events and not their
timestamps) of events [39]. An event is usually represented by an event type (among a
finite set of types) and a list of timestamps of its occurrences in the sequence database.
Mining sequence databases generally comes down to mining sub-sequences, called sequen-
tial patterns, that are common to multiple sequences. Besides sequential pattern mining,
it is also possible to mine sequential association rules (also called sequential rules), de-
noted as R : P → Q where P is the antecedent of R and Q its consequent. The existence
of such a rule implies that if some events (P ) occur in a specific order, some other event(s)
(Q) is/are likely to follow with a given probability. Note that Q is often a singleton event.
Therefore, sequential rules are generally used to predict the occurrence of events which
happen to be their consequents [1, 43, 50]. Predicting future events in sequence databases
is an important issue with wide applications such as stock market analysis, consumer
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product recommendation, weather forecasting, e-learning, text analysis and web link rec-
ommendation [16, 40, 47, 57, 67]. For example, the analysis of users’ browsing histories
can be used to learn their behavior patterns in order to predict the next pages that will
be visited.

In the following, we introduce the challenge of mining sequential rules with a distant
consequent, based on the association rules approach. We also illustrate this challenge
through churn analysis in the banking and marketing domain.

The challenge of mining sequential rules with a distant consequent. The sequential rule
mining task is usually [5] decomposed into two sub-tasks: (i) the mining of frequent
sequential patterns that respect a predefined support threshold and, out of these, (ii) the
construction of rules that respect a predefined confidence threshold. Rules are generated
by considering the last event in the sequential pattern as the consequent of the rule, and
the rest of events as its antecedent. The second sub-task is quite straightforward, and
thus most of the research focuses on the first one: mining frequent sequential patterns.

As mentioned above, the sequential rule R : P → Q can be used to predict Q when all
(ordered) events in P have been observed. Notice that no information is given about the
appearance horizon of Q (i.e., the time lapse after which the event will occur) following
the appearance of the last event of P .

However, in some applications, one needs to have time to react before the occurrence of
the predicted event, so it is preferable to know the temporal distance of the predicted event
in advance. In other words, one needs to know not only what will occur, but also when it
will occur. This is a way towards more actionable rules [11, 30, 53]. As an example, let
us consider an online shopping framework. The flow of purchases of each client can be
viewed as a single sequence of events and sequential rules can be mined from the sequence
database and used to predict what will be purchased next. Store managers are interested
in predicting purchases that will occur after, e.g., a month, in order to manage their
supplies. In a different domain, related to banking, it may be useful to predict whether
clients with a specific profile may tend to leave their bank. If this prediction can be made
early enough, the bank may potentially have sufficient time to react in order to prevent
the client from leaving and thus reduce churn.

We therefore focus on the mining of sequential rules R : P → Q that can be used for
predicting temporally distant events. To achieve this, we model the temporal dependency
between an antecedent P and its consequent Q. In relation with the churn application
we mentioned, we are interested in mining rules in which Q will occur with a minimal
temporal distance “gap” from P . We refer to these rules as distant sequential rules.

Several algorithms that deal with temporal constraints have been proposed and some of
them will be described in Section 2. However, to the best of our knowledge, the challenge
of mining distant sequential rules has not yet been carried out in the context of sequence
database.

The idea of mining rules with a distant consequent has been first introduced in the
context of mining episode rules (“minimal” episode rules) in a single long sequence of
events [14]. We here extend this approach to multiple sequences and towards a more
generalizable algorithm which can be integrated into any existing sequential rule mining
algorithm.

In this paper, we propose two new algorithms: D-SR-postMining and D-SR-inMining
(D-SR stands for Distant Sequential Rules). The originality of our both D-SR algorithms
lies in the identification of the consequent of the rule, which guarantees that the consequent
is temporally distant from the antecedent. This also allows to evaluate the confidence of
rules, to prune the search space, and thus to stop the mining process of the current rule



Distant Event Prediction Based on Sequential Rules 3

1 2 3 4 5 6 7 8 9 10 11 12

A
L

B E C
I

D M A B
J

B M
F

K M
E

t
S1

1 2 3 4 5 6 7 8 9 10 11 12

A E C D A B C F B

t
S2

1 2 3 4 5 6 7 8 9 10 11 12

K
A

E F F K B C E E

t
Ss

..

.

Figure 1. Example of sequence database.

at any time. Furthermore, due to identification of the consequent via the gap constraint,
many candidate occurrences of the rules that do not respect this constraint are filtered
out. Consequently, the running time of the algorithm is significantly reduced. Besides,
we choose to mine rules with a consequent that contains only one event, which is common
in the rule mining task [4]. As we will see, D-SR can be easily extended to mine rules
with a consequent made up of several events. In addition, an additional originality of
our algorithms is that, as they coexist with traditional algorithms, they make any mined
rule more actionable and more intelligible to domain experts. Actually, while monitoring
the event sequence during a prediction task, once the antecedent of a mined distant rule
appears, the prediction of a distant event (the consequent) is triggered and estimated
within at least gap timestamps. This allows domain experts to have potentially enough
time to react depending on the nature of the future event.

The remainder of this paper is organized as follows: Section 2 presents related work
about sequential patterns, sequential rule mining and relevant concepts. Algorithms
D-SR-postMining and D-SR-inMining are introduced in Section 3 and experimental re-
sults are presented in Section 4. We conclude and provide some perspectives in Section 5.

2. Related Work. In this section, we define some concepts and present state-of-the-
art work related to temporal constraints, sequential pattern and sequential rule mining.
Several definitions are inspired from state-of-the-art papers such as [14, 26, 43, 58].

2.1. Definitions. As in [26, 43, 58, 66], an event sequence S is a list of ordered events
and is defined formally as follows:

Definition 2.1. Let I = {i1, i2, . . . , im} be a finite set of timestamped items, and It ⊆ I
the set of items that occur at timestamp t (we call It an event). An event sequence Si

(denoted sometimes as S for simplicity) is an ordered list of timestamped events: Si =
<It1 , It2 , . . . , Itn> with t1 < t2 < · · · < tn. The length of this sequence is |S| = n.

A sequence database, denoted by S , is a set of event sequences: S = {S1, S2, . . . , Ss}.
Figure 1 represents a sequence database example, which we will use to illustrate various
concepts (letters A,B,C, . . . represent event occurrences, when placed vertically they co-
occur). Indeed, in Figure 1, S1 is an event sequence consisting of the following events:
<{A,L}, B,E . . . , {E,M}>. The event {A,L} occurs at timestamp t1 and consists of
two items: A and L (the notation {. . .} expresses the fact that these items occur with the
same timestamp and hence are not ordered).
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Definition 2.2. A contiguous segment W of a sequence S is called a (sliding1) window
of S.

The length w of W , which is in fact a sub-sequence of S, is less than or equal to the
length of S: w ≤ |S|.

Several state-of-the-art algorithms mine rules occurring within such a sliding win-
dow [23]. The temporal constraint induced by the window is important for complexity
issues but also for many real applications as users often only wish to discover patterns
occurring within a maximum time interval [21]. In this paper, the window constraint is
important as we will increase the window size in order to perform farther predictions.

Definition 2.3. A sequential pattern P = <p1, p2, . . . , pk>, is a chronologically or
positionally ordered list of events pi (pi ⊆ I, for i = 1, . . . , k).

A pattern P is a sub-pattern of a pattern Q = <q1, q2, . . . , qs> with s ≥ k if for each i,
{pi} ⊆ {qi} (we allow {pi} to be empty). In this case, Q is called a super-pattern of P .

Notice that events in a pattern do not have unique, specific timestamps. When we
instantiate a pattern by providing timestamps to its events we obtain an occurrence (see
Definition 2.4).

From now on we will focus on sequential patterns and may call them patterns for the
sake of simplicity. Let us take an example in Figure 1: The pattern P = <{I, C}> is a
sub-pattern of Q = <A, {I, C}>; on the other hand, the pattern P ′ = <{L,A}> is not a
sub-pattern of Q.

Definition 2.4. A pattern P can occur in more than one sequences in the sequence data-
base. The occurrence of P in a sequence Si, denoted by occi(P ), is the list of timestamps
of the events of Si that compose the pattern P . In most state-of-the-art papers, the occur-
rence of a pattern is often represented solely by the timestamp of the first event (prefix)
and the timestamp of the last event (suffix) of the pattern. The list of all occurrences of
a pattern P will be referred to as (capitalized) Occ(P ).

For example, the pattern <A,E> in Figure 1 occurs in sequences S1, S2 and Ss, where
occ1(<A,E>) = (1, 3), occ2(<A,E>) = (2, 3), occs(<A,E>) = (1, 3). The list of all
occurrences of this pattern is Occ(<A,E>) = [(1, 3), (2, 3), (1, 3)].

Definition 2.5. The support of a pattern P , denoted by supp(P ), represents the number
of its occurrences in the sequence database: supp(P ) := |Occ(P )|. Usually a pre-defined
minimal threshold minsupp is fixed, in order to mine only frequent patterns: P is said
to be a frequent pattern if supp(P ) ≥ minsupp.

Let us take an example in Figure 1. The support of the pattern <A,E> is calculated
as follows: supp(<A,E>) = |Occ(<A,E>)| = |[(1, 3), (2, 3), (1, 3)]| = 3. If, for example,
we set minsupp = 2, the pattern <A,E> is a frequent pattern since supp(<A,E>) ≥
minsupp.

In state-of-the-art approaches and depending on research or applications goals, the
number of occurrences of a pattern in a given sequence may be counted in different ways
using various predefined anti-monotone frequency measures [4, 41]. In some approaches
one considers the exact number of occurrences while in others one counts only a single oc-
currence even if the pattern appears several times. Moreover, several frequency measures
are proposed, such as non-overlapped frequency [38], minimal occurrence-based frequency,
windows-based frequency [43], etc. As the algorithms we propose in this paper are based
on an anti-monotone measure (namely the minimal occurrence-based frequency measure),
they can be integrated into any traditional algorithm [41].

1A sliding window is the most common type of windows.
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Definition 2.6. The concatenation of two sequential patterns P = <p1, . . . , pk> and
Q = <q1, . . . , q`>, where tpk < tq1 in all occurrences of these patterns, is the pattern
P ⊕Q := <p1, . . . , pk, q1, . . . , q`>, of length k + `.

For example, let us consider from Figure 1 the two patterns <A,E> and <F>. The
concatenation of both patterns forms a new pattern as follows:
<A,E>⊕ <F> = <A,E, F>. Notice that, this new pattern is a frequent pattern since
supp(<A,E, F>) = |Occ(<A,E, F>)| = |[(1, 3, 10), (2, 3, 10), (1, 3, 4)]| = 3 ≥ minsupp =
2.

Definition 2.7. Let P , Q be two sequential patterns. A sequential association rule
R : P → Q is an association rule such that the consequent Q tends to occur after the
antecedent P . This tendency is often represented by the probability that Q occurs after P
knowing that P occurs. This conditional probability is the confidence of the rule R. It
is calculated as the support of the pattern P ⊕Q, divided by the support of the pattern P :

conf(P → Q) :=
supp(P ⊕Q)

supp(P )
(1)

The rule P → Q is said to be confident if

conf(P → Q) ≥ minconf,

where minconf is a predefined confidence threshold.

Problem formulation. One of our objectives is to extract sequential rules
P → Q in sequence databases that are both frequent and confident as defined in [56]:

• supp(P ⊕Q) ≥ minsupp
• conf(P → Q) ≥ minconf

Let us, once again, take an example from Figure 1. The rule A,E → F consists of
two patterns: <A,E> and <F>. We have supp(A,E → F ) = supp(A,E, F ) = 3 (it is
a frequent rule for minsupp = 2) and conf(A,E → F ) = supp(A,E, F )/supp(A,E) =
3/3 = 1. When, for example, minconf = 0.5, this rule is considered as confident.

2.2. Sequential Pattern Mining. Numerous algorithms have been designed to discover
sequential patterns in sequence databases. Among the most popular ones are GSP [56],
Spade [63], PrefixSpan [46], CM-Spam [15], and CM-Spade [15]. These sequential pattern
mining algorithms all take a sequence database and a minimum support threshold (fixed
by the user) as input, and provide the set of frequent sequential patterns as output. It is
important to mention that—for general algorithms without constraints—there is always
only a single correct answer (for a given sequence database and a given support threshold
value). Hence, algorithms differ in their strategies of searching the sequential patterns
(depth-first search, breadth-first search, etc.) and thus in their performance in terms of
time and memory consumption.

2.3. Mining Patterns under Constraints. Since the search space of all possible sub-
sequences in a database can be very large, sequential pattern mining is computationally
expensive in terms of execution time and memory [22, 56]. This is even more the case for
dense databases, or databases with a large number or long sequences.

Proposing an efficient algorithm for sequential pattern mining requires thus the integra-
tion of pruning techniques aiming to restrict exploration of the entire search space. The
basic techniques for pruning the search space is based on the anti-monotonicity property
of the frequency measure (also called Apriori property or downward-closure property) as
it is proposed mainly for association rules [4].
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However, using only anti-monotone frequency measures may not be enough in order to
prune the search space and to produce the required rules. For this reason, other constraints
can be added to progressively reduce execution time and memory consumption [18, 20, 33].

For example, many studies have focused on the mining of concise patterns (patterns
that respect predefined constraints). Among the traditional concise patterns, we can cite
high utility patterns [25, 61], popular patterns [42], maximal patterns [32, 59, 62] (i.e.,
frequent patterns that have no frequent super-patterns), closed patterns [7, 64, 65] (i.e.,
frequent patterns that have no super-patterns with the same support value), and periodic
patterns [6, 8, 19, 35, 36, 54, 55] (where the periodicity of a pattern is measured on the
basis of the temporal distance between consecutive occurrences of it). However, these
types of constraints are applied between the different occurrences of a pattern and not
within a single occurrence of a pattern, which is part of our objectives.

Last but not least there is the approach of considering maximal or minimal temporal
distances between occurrences of two consecutive events in a pattern, referred to as a
gap [2, 45, 48]—this approach is the closest to our approach. Note that the maximal gap
is frequently used as the upper bound of the temporal distance between two events within
the pattern [45], while, in our case, we are interested in a minimal gap.

2.4. Sequential Rule Mining. Recently, efficient sequential rule mining algorithms
have been proposed, such as RuleGrowth [23] and ERMiner [17]. They adopt a pattern-
growth approach (resp. a vertical representation of the database) for discovering rules. It
should be noticed that these algorithms do not rely on a pattern mining step, probably
because a pattern mining step is very time-consuming.

A fixed gap constraint between the antecedent and the consequent of sequential rules
has been proposed for mining precise-positioning—as called by the authors—association
rules [9]. Using a strict gap may be a requirement in time-sensitive applications, such as
security trading. However, a strict gap is not suitable for our churn application.

2.5. Event Prediction. Based on sequential rules in a sequence database, event pre-
diction algorithms aim at predicting the next event [50]. Several classifiers with high
precision for early prediction have been proposed [13, 44, 51, 52], they use as little in-
formation as possible to make a prediction. However, theses techniques do not allow
modeling the occurrence horizon of the future event and often do not offer a satisfactory
explanation of the prediction.

Deep learning techniques for modeling sequence databases, such as RNNs, have been
proposed in the literature [10, 34]. Such models are known to be efficient for future event
prediction. However, recently it has become clear that such predictive models are only
applicable if they provide some degree of usable intelligence, i.e., being able to extract and
to provide explanations intelligible to domain experts [12, 28, 60]. Numerous explanation
approaches have been proposed and applied on images and text data [37, 49]. However,
to the best of our knowledge, there are no approaches built specifically for temporal se-
quential data. Consequently, despite their high performance level, deep learning methods
are not suitable for our objective of event prediction in temporal sequence databases as
no explanation can be provided. On the other hand, rule-based predictive models are
known to be inherently explainable to domain experts [3, 29], which is essential to our
application.

Conclusion. Fighting against churn, as discussed with our bank partner, requires to be
able to make early predictions. Also, in order to be able to take decisions and to provide a
satisfactory explanation of churn behavior, it has been decided to rely on sequential rules-
based approaches that are suitable for these objectives. As shown in the state-of-the-art
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section above, no existing approaches fully satisfy these goals. Consequently, we propose
to extend sequential rule mining with a minimal gap constraint between the antecedents
and the consequents of rules in order to be able to perform the challenging task of early
predictions in sequence databases. In the next section we describe our proposal.

3. Mining Sequential Association Rules for Distant Events Prediction. In the
following, we present the algorithms D-SR-postMining and D-SR-inMining for mining
distant sequential rules. The main contribution of these algorithms is to integrate a
minimal gap constraint within sequential rule-mining algorithms. This minimal gap,
located between the antecedent and the consequent of the rule, guarantees the fact that
the consequent is distant from the antecedent. As a consequence, the resulting rules can
be used for distant event prediction (the consequent of the rule), and this represents an
early prediction.

The gap constraint that we propose is a minimal temporal distance constraint imposed
on each occurrence of the rule. This constraint is imposed between the suffix of the
antecedent and the prefix of the consequent of the rule. As we do not need to take
into account each timestamp, our first proposal consists in modifying the traditional
representation of the occurrence of a rule R (see definition 2.4).

Definition 3.1. Let R : P → Q be a rule made of pattern P ⊕ Q = <p1, . . . pk, q1, . . . qe>.
An occurrence of R corresponds to an occurrence of P ⊕ Q and is represented by the
timestamps of the suffix of P and the prefix of Q as follows: occ(R : P → Q) = occ(P ⊕
Q : <p1, . . . pk, q1, . . . qe>) = (tpk , tq1). The occurrence list of R is built by performing a
temporal join between Occ(p1, . . . pk) and Occ(q1, . . . qe).

As it is customary in the literature [63], a temporal join is an operation that allows to
join the occurrences of two patterns while respecting the temporal order.

Let us take an example from Figure 1. The occurrence list of the rule (A,E → F ) is
represented as follows: Occ(A,E → F ) = [(3, 10), (3, 10), (3, 4)].

Let us now define the notions of minimal gap constraint and of distant sequential rule
as follows:

Definition 3.2. We say that occ(P ⊕Q) satisfies a minimal gap constraint of length
equal to gap and denote it by occgap(P ⊕ Q), when (tq1 − tpk) ≥ gap. The list of all
occurrences of P ⊕ Q that respect the gap is denoted as Occgap(P ⊕Q).

Definition 3.3. The rule R : P → Q is a distant sequential rule if it is frequent and
confident when we consider solely occurrences that respect the gap constraint:

R : P → Q is a distant sequential rule if:supp(P ⊕Q) = |Occgap(P ⊕Q)| ≥ minsupp,

conf(P ⊕Q) = |Occgap(P⊕Q)|
supp(P )

≥ minconf.
(2)

For example, let us check whether the occurrences of the rule Occ(A,E → F ) satisfy the
gap constraint gap = 5. The occurrences (3, 10) (in S1) and (3, 10) (in S2) satisfy this gap.
However, the occurrence (3, 4) does not satisfy this gap as (tq1 − tpk) = 4− 3 = 1 < gap.
The support of this rule is supp(A,E → F ) = |(3, 10), (3, 10)| = 2. Its confidence is
conf(A,E → F ) = |(3, 10), (3, 10)|/3 = 0.666 . . . If we set minsupp = 2 and minconf =
0.5, then the rule is frequent and confident and thus, a distant sequential rule.

We will now prove that the gap constraint as we define is an anti-monotonicity property.
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Definition 3.4. Let there be two rules:

R : P → Q = <p1, . . . pk, q1, . . . qe>

R′ : P ′ → Q = <p1, . . . , pk, . . . , pk+i, q1, . . . qe> (i ≥ 0).

We say that R′ is a super-antecedent rule of R when the antecedent P ′ is a super
pattern of P , i.e., P ′ is made of P with one or more events added to its right-hand side.

Lemma 3.1. Let R be a rule and R′ a super-antecedent rule of R. Then if R does not
respect the minimal gap constraint, R′ also does not respect this constraint.

Proof. As R does not respect the minimal gap constraint, we have: (tq1 − tpk) < gap. We
know also that P ′ is a super pattern of P , which means that (tq1 − tpk+i

) ≤ (tq1 − tpk),
and thus obviously (tq1 − tpk+i

) ≤ (tq1 − tpk) < gap. As a consequence, according to
definition 3.2, R′ also does not respect the minimal gap constraint.

Corollary 3.1. The minimal gap constraint is an anti-monotonicity property.

We use this property to prune the search space during the mining process and it con-
tributes to the computational efficiency of our algorithms.

As we have mentioned before, state-of-the-art algorithms for mining sequential rules
can be divided into two types: (i) algorithms that mine patterns and then form rules, and
(ii) algorithms that mine directly rules by fixing the consequent early during the mining
process. Addressing these two types, we propose two algorithms D-SR-postMining and
D-SR-inMining as extensions of traditional algorithms. Our algorithms extract distant
rules by incorporating into them the minimal gap constraint. Thus, the originality of
our algorithms is that they represent a general framework, that we call D-SR, for mining
sequential rules (for example if the gap is set to 0 then both proposed algorithms behave
like classical sequential rule mining algorithms).

We next present the two algorithms for mining distant rules: D-SR-postMining in § 3.1
and D-SR-inMining in § 3.2.

3.1. D-SR-postMining : Distant Rule Mining Algorithm during the Post-pro-
cessing Step. Most traditional rule mining algorithms are not directly designed to build
distant rules, as they first form patterns and then form rules. This fact has two draw-
backs. First, due to complexity issues, the window W (see Definition 2.2) used by these
algorithms is generally relatively small, so that the rules have a consequent that is close
to the antecedent. Second, when an event is appended to a pattern while it is formed,
the mining algorithm is unable to know whether this event will be part of the consequent
of the rule or part of its antecedent. In other words, the algorithm lacks the information
whether it has to constrain or not the distance of the appended event to the previously
formed pattern during the mining process. Consequently, integrating the gap constraint
needed for mining distant rules cannot be performed during the mining process. For this
reason, we propose to integrate the gap constraint in a post-processing step.

A pseudo-code of the algorithm D-SR-postMining is presented below (Algorithm 1). It
has two main steps, presented in order of execution:

1. During the mining of a sequential pattern P ⊕ Q : <p1, . . . pk, q1> by a traditional
mining algorithm (which consists in appending the event q1 to its right hand side), we
keep track of the temporal distance between pk and q1 (as in Definition 3.1). This can
be performed by saving the occurrences and their timestamps (Algorithm 1, lines 5
and 6).

At timestamp tq1 , we are not able to know whether the new event q1 will be the
consequent of a frequent and confident rule. However, the temporal distance between
the antecedent and the consequent of each occurrence of the rule is already known.
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2. (Gap and support pruning.) Once the rule R : P → Q = <p1, . . . pk, q1> is con-
structed, we perform a post-processing step in order to filter out the occurrences
of R that do not respect the predefined minimal gap constraint (see Definition 3.2,
Lemma 3.1 and Algorithm 1, line 10). The support and confidence values are up-
dated during this step (see Definition 2.5, equation 1, Definition 3.3 and Algorithm 1,
line 12). We then keep only frequent and confident rules, all occurrences of which
respect the gap constraint Occgap(R). They represent the distant sequential rules we
are seeking (see Definition 3.3).

Despite the use of the anti-monotonicity property of the gap constraint, the efficiency
of this post-processing approach is nevertheless limited by the efficiency of the sequential
rule mining algorithm used.

Algorithm 1: D-SR-postMining

input : a sequence database S , values of minsupp, minconf, gap
output: RDS: list of distant sequential rules

1 Main Procedure Mining distant sequential rules:
2 Pattern mining then rule construction via a traditional algorithm ;
3 Gap pruning ;

4 Procedure Pattern mining then rule construction via a traditional algorithm:
5 foreach P ⊕Q ∈ set of frequent patterns do
6 save occ(<p1, . . . pk, q1>) = (tpk , tq1)

7 Procedure Gap pruning
8 foreach P → Q ∈ set of frequent and confident rules do
9 foreach occ(P ⊕Q) = occ(<p1, . . . pk, q1>) = (tpk , tq1) do

10 if (tq1 − tpk) ≥ gap then
11 add occ(P ⊕Q) to Occgap(P ⊕Q)

12 if P → Q is frequent and confident based on Occgap(P ⊕Q) then
13 add P → Q to RDS

3.2. D-SR-inMining : Distant Rule Mining Algorithm during the Mining Pro-
cess. Recently, traditional algorithms have been proposed [14, 23] that mine directly
sequential rules without relying on a pattern mining step. Such algorithms start by join-
ing two events to form a rule where both the antecedent and the consequent are made of
a single event: R : <p1> → <q1>. If the support and the confidence of this rule exceed
the predefined thresholds, then the rule is extended by adding one event, either to its
antecedent or to its consequent, in order to mine longer rules, and so on.

Below, we describe algorithm D-SR-inMining that can be integrated into the mining
process of such existing algorithms. We consider rules with a single-event consequent as
it is often the case in the literature. Our algorithm uses a recursive depth-first search
based approach. Its three main steps are detailed below and the pseudo-code is shown in
Algorithm 2:

1. (Gap pruning.) At each step of the rule mining process, when considering a can-
didate rule R : p1, . . . pk, pk+1 → q1 (see Algorithm 2, line 2 for a candidate rule
p1 → q1 and line 14 for a longer rule), we construct the list of its occurrences that
respect the minimal gap constraints Occgap(p1, . . . pk, pk+1, q1) (see Definition 3.2 and
Algorithm 2, lines 3, 15).
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Occgap(p1, . . . pk, pk+1, q1) is built by performing a temporal join between
Occgap(p1, . . . pk, q1) and Occ(pk+1) (Algorithm 2, line 8). Notice that for a single
event, such as pk+1, we have Occgap(pk+1) = Occ(pk+1).

Thanks to the anti-monotonicity property of the minimal gap constraint (see
Lemma 3.1), when the rule does not respect the gap constraint there is no need
to extend its antecedent, as the resulting rule will also refrain from respecting this
gap. It can thus be pruned and it is not extended anymore, i.e., none of its super-
antecedent rules enter the mining process (and this reduces significantly the search
space).

Recall that in this step we mine only rules with a single event in the consequent.
However, if we would like to mine rules with longer consequents, we do not need to
perform a gap verification, as the distance between the suffix of the antecedent and
the prefix of the consequent does not change when we extend the consequent.

2. (Support pruning.) Support and confidence verification (see Equation 3.3) are per-
formed on rules that respect the gap constraint in order to obtain distant sequential
rules (Algorithm 2, lines 4, 5, 16, 17). If the rule is not frequent, then the process
stops, i.e., the rule is not extended and no candidate rules are generated from it,
according to the anti-monotonicity property of support. This is the second step of
candidate rule pruning.

3. (Antecedent extension.) For each frequent rule the occurrences of which respect the
minimal gap constraint, the mining process continues by extending the antecedent
of the rule (Algorithm 2, lines 7, 19).

It is important to mention that the anti-monotonicity property of both the gap con-
straint and the frequency measure is a key factor for candidate rule pruning during the
mining process and thus for the efficiency of the algorithm in terms of execution time and
memory consumption.

3.3. Application of distant rules in a distant event prediction task. Let us now
discuss the way mined distant rules are used in a distant event prediction task and how
they can be actionable and intelligible to domain experts. Before starting the mining
process, the unit used to represent timestamps should be determined as it depends on
the application domain and especially on the velocity of the sequence generation: it may
be minutes for Twitter applications, days for purchase frameworks, months for Earth
observation, or just the position of the event (regardless of time) for click-prediction
application, etc.

For a prediction task, during the monitoring of the event sequence database, we wait
until a rule matches the sequence, i.e., until the events of its antecedent appear in the
sequence, keeping the same order. Once a rule matches a sequence, the prediction of its
consequent is immediately triggered and estimated within at least gap timestamps. Let us
consider the online shopping framework, the temporal unit used to represent timestamps
being days. An example of mined rule could be: R: camera, lens, tripod→ printer, gap =
10 days, conf(R) = 0.9, in other words: when monitoring the purchase flow, once a client
buys a camera, then a lens and then a tripod, the prediction of the printer purchase is
triggered. With a probability of 90%, this purchase is estimated within at least 10 days.
Another example related to churn application is presented in Section 4.4.1.

In the following section, we present experiments performed to evaluate the two proposed
algorithms.
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Algorithm 2: D-SR-inProcess

input : a sequence database S , values of minsupp, minconf, gap
output: RDS: List of distant sequential rules

1 Procedure Rule construction via traditional algorithm
2 foreach p1 → q1 ∈ set of candidate rules under construction do
3 Occgap(p1, q1) := Gap Pruning(Occ(p1),Occ(q1))
4 if |Occgap(p1, q1)| ≥ minsupp then
5 if conf(p1 → q1) ≥ minconf then
6 add p1 → q1 to RDS

7 Extend Antecedent(p1 → q1)

8 Procedure Gap Pruning (Occ(pk+1),Occgap(p1, . . . , pk, q1))
9 foreach occ(p1, . . . pk, q1) ∈ Occgap(p1, . . . , pk, q1) do

10 construct occ(p1, . . . pk, pk+1, q1)
11 if (tq1 − tpk+1

) ≥ gap then
12 add (tpk+1

, tq1) to Occgap(p1, . . . , pk+1, q1)

13 return Occgap(p1, . . . , pk+1, q1)

14 Procedure Extend Antecedent (p1, . . . , pk → q1)
15 Occgap(p1, . . . , pk, pk+1, q1) := Gap Pruning(Occ(pk+1),Occgap(p1, . . . , pk, q1))
16 if |Occgap(p1, . . . , pk, pk+1, q1)| ≥ minsupp then
17 if conf(p1, . . . , pk, pk+1 → q1) ≥ minconf then
18 add p1, . . . , pk, pk+1 → q1 to RDS

19 Extend Antecedent(p1, . . . , pk, pk+1 → q1)

4. Experimental results. This section is dedicated to the evaluation of the two algo-
rithms : D-SR-postMining and D-SR-inMining (two algorithms of the general framework
D-SR).

As already mentioned, our algorithms run as extensions of traditional state-of-the-art
algorithms. For the experiments we used the state-of-the-art algorithms MINEPI+ [31]
that first mines patterns and then rules, and TRuleGrowth [24] that mines directly rules.

We use the same publicly available data sets and settings used by the authors of TRule-
Growth in [16, 23] to evaluate algorithm performances. In addition, we present some
results on a real-world data set for churn analysis in banking.

Experiments are performed on a laptop computer with a 2.6 GHz Intel Core i7 Proces-
sor and 16 GB of RAM, running on an OS X system. All the algorithms are implemented
in Java. MINEPI+ has been implemented by ourselves and TRuleGrowth has been down-
loaded from their authors’ website 2 and adapted to our needs.

In the remainder of this section, we present the data sets used, as well as the perfor-
mance of our algorithms in terms of execution time, scalability and in the frame of a
prediction task.

4.1. Data sets. Table 1 shows the characteristics of the three data sets used in the
experiments. They are briefly described below:

2http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php, downloaded
on February 2018
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Table 1. Characteristics of the data sets

Data set # Sequences # Events Average event number per sequence
(average sequence length)

Kosarak very large sparse 990,000 (70,000) 21,144 7.97 (max= 796)
BMS1 small sparse 59,601 497 2.51 (max= 267)
Banking very large sparse 825,741 71 25.00 (max= 80)

1. Kosarak3 is a sparse data set that contains a large number of sequences of click-
stream data from an online news portal. This data set fits perfectly for the evaluation
of the scalability of the algorithms when varying the number of sequences in the data
set. For some experiments, as will be shown later, only 70,000 sequences have been
used, like in [23].

2. BMS-WebView1 (BMS1)4 is a very sparse data set that contains sequences of
click-stream e-commerce data.

3. Banking is an anonymized real-world banking data set provided by Crédit Mutuel
ARKEA5. It represents the history of actions (events) of a large number of clients.
Each sequence is related to a single client and represents his/her actions ordered by
their timestamps. Notice that events can occur multiple times within each sequence
and that the average frequency of the 71 distinct events is huge (more than 200,000
times each). This data set is used to show the utility of the mined rules for churn
prediction in a real-world bank expert context.

Tables 2 and 3 show the results of all experiments performed on the Kosarak data set
and on the BMS1 data set. These experiments allow to compare algorithms MINEPI+,
TRuleGrowth, D-SR-postMining and D-SR-inMining in terms of scalability (number of
mined rules and execution time). Furthermore, they present the performance of our
algorithms in a prediction task. The values of algorithm parameters are shown in the
first five columns of Tables 2 and 3. For each experiment, we vary only one parameter
in order to study its impact (represented in blue or in red), while all other parameters
remain fixed (represented in black). Among the varying values of the parameter we select
the one that provides us with a sufficient number of rules to pursue experiments, and this
value we represent in red.

4.2. Scalability Evaluation. Tables 2 and 3 present the results of evaluation exper-
iments on the scalability of our algorithms. Scalability is evaluated by observing the
amount of mined rules as well as execution time, when varying:

• the number of sequences (this is relevant only for the Kosarak data set, as it
contains a large number of sequences that allows us to evaluate scalability: we vary
the number of sequences from 10,000 to 200,000 with an incremental step of 20,000),
• the gap size (for both data sets) and
• the window size (for both data sets).

Notice that D-SR-postMining can be used with both MINEPI+ and TRuleGrowth as post-
processing step. However, D-SR-inMining can be used only with TRuleGrowth (during
the mining process), as TRuleGrowth mines rules directly.

3Kosarak data set: http://goo.gl/4B6ve5, downloaded on February 2018. The name kosarak is
Hungarian, it is pronounced kósharak and means “shopping baskets”.

4BMS1 data set: http://www.philippe-fournier-viger.com/spml/index.php?link=datasets.

php, downloaded on February 2018.
5This data set has been anonymized within the Datalabs service of Crédit Mutuel ARKEA in order

to be used for research purposes. It is confidential and cannot be distributed online.
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Table 2. Performance on Kosarak data set

minsupp minconf w gap #seq MINEPI+
D-SR

-postMining
Whole
process

TRuleGrowth
D-SR

-postMining
Whole
process

D-SR
-inMining

Whole
process

D-SR prediction

time #R time #R time time #R time #R time time #R time accuracy coverage

0.001 0.5 10 5 70k 948 70,000 21.4 700 969.4 500 70,000 21.4 700 521.4 5 700 50

0.003 0.5 10 5 70k 331 1,700 1 450 332 70 1,700 1 450 71 1 450 25

0.005 0.5 10 5 70k 201 270 0.2 20 201.2 50 270 0.2 20 50.2 0.8 20 15

0.003 0.2 10 5 70k 951 3,200 1.1 703 952.1 628 3,200 1.1 703 629.1 6 703 78

0.003 0.5 10 5 70k 331 1,700 1 450 332 70 1,700 1 450 71 1 450 25

0.003 0.8 10 5 70k 146 68 0.1 5 146.1 30 68 0.1 5 30.1 0.5 5 8

0.003 0.5 10 5 70k 331 1,700 1 450 332 70 1,700 1 450 71 1 450 25 29 45

0.003 0.5 15 5 70k 1,145 7,000 1.6 650 1,146.6 300 7,000 1.6 650 301.6 1 650 70 35 46

0.003 0.5 20 5 70k 1,988 17,000 8 701 1,989 900 17,000 8 701 908 5 701 85 40 46

0.003 0.5 20 0 70k 1,988 17,000 11 3,922 1,999 900 17,000 11 3,922 911 20 3,922 402 40 35

0.003 0.5 20 5 70k 1,988 17,000 8 701 1,996 900 17,000 8 701 908 5 701 85 38 32

0.003 0.5 20 15 70k 1,988 17,000 3.1 102 1,991.1 900 17,000 3.1 102 903.1 1 102 34 30 20

0.003 0.5 20 20 70k 1,988 17,000 1 23 1,989 900 17,000 1 23 901 1 23 12 25 15

0.003 0.5 10 5 10k 243 1,900 1 450 244 30 1,900 1 450 31 1 450 25

0.003 0.5 10 5 30k 250 1,750 1 420 251 40 1,750 1 420 41 1.2 420 26

0.003 0.5 10 5 50k 300 1,600 0.9 405 300.9 50 1,600 0.9 405 50.9 1 405 20

0.003 0.5 10 5 70k 331 1,700 1 450 332 70 1,700 1 450 71 1 450 25

0.003 0.5 10 5 90k 339 1,550 0.9 401 339.9 80 1,550 0.9 401 80.9 1.3 401 19

0.003 0.5 10 5 110k 487 1,500 0.9 391 487.9 100 1,500 0.9 391 100.9 1.2 391 18

0.003 0.5 10 5 130k 499 1,550 0.9 401 499.9 150 1,550 0.9 401 150.9 1.2 401 19

0.003 0.5 10 5 150k 514 1,600 0.9 405 514.9 200 1,600 0.9 405 200.9 1.2 405 20

0.003 0.5 10 5 170k 549 1,650 0.9 401 549.9 408 1,650 0.9 408 408.9 1 401 19

0.003 0.5 10 5 190k 596 1,700 1 450 597 270 1,700 1 450 271 1 450 25

Table 3. Performance on BMS1 data set

minsuppminconf w gap#seq MINEPI+
D-SR

-postMining
Whole
process

TRuleGrowth
D-SR

-postMining
Whole
process

D-SR
-inMining

Whole
process

D-SR prediction

time #R time #R time time #R time #R time time #R time accuracy coverage

0.72 0.5 10 5 70k 25 5,000 1 450 26 70 5,000 1 450 71 1 450 30 40 69

0.72 0.5 12 5 70k 110 18,000 1.6 650 111.6 300 18,000 1.6 650 301.6 1.1 650 100 42 70

0.72 0.5 16 5 70k 170 20,000 8 701 178 900 20,000 8 701 908 1.3 701 140 43 71

0.72 0.5 20 5 70k 210 25,000 8 701 218 900 25,000 8 701 908 1.3 701 200 44 72

0.003 0.5 20 0 70k 1,98817,000 11 3,922 1,999 900 17,000 11 3,922 911 10 3,922 402 44 72

0.003 0.5 20 5 70k 1,98817,000 8 701 1,996 900 25,000 8 701 908 1 701 200 35 60

0.003 0.5 20 15 70k 1,98817,000 3.1 102 1,991.1 900 17,000 3.1 102 903.1 1 102 34 30 50

0.003 0.5 20 20 70k 1,98817,000 1 23 1,989 900 17,000 1 23 901 0.8 23 12 26 30

4.2.1. Performance of Each Individual Algorithm. We first compare the execution time
and the number of mined rules of each algorithm, on each data set separately for scalability
evaluation.

Recall that our algorithms D-SR-postMining and D-SR-inMining coexist with state-of-
the-art algorithms by extending them, namely by adding an additional step in order to
mine distant rules. Therefore, their performance in terms of execution time is not directly
comparable to the one of state-of-the-art algorithms.
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We notice that both traditional algorithms MINEPI+ and TRuleGrowth mine a large
number of rules (as can be seen in Table 2 for the Kosarak data set: 1,700 rules when
#seq = 70k). These rules are strictly filtered by our algorithms, and thus we manage to
have 450 distant rules when #seq = 70k for the Kosarak data set. In the same way,
the number of final rules mined by D-SR-inMining algorithm is significantly lower than
the one of TRuleGrowth on the Kosarak data set. This is due to the fact that our
algorithm D-SR-inMining imposes more constraints during the mining process (i.e., the
gap constraint), and thus stops the completion of a rule at an earlier stage of the mining
process. However, it results in rules with lower support which are potentially filtered out.

We also notice that MINEPI+ needs a large amount of time to mine a large amount
of rules (331 seconds to mine 1,700 rules when #seq = 70k, as can be seen in Table 2).
TRuleGrowth needs less time (only 70 seconds) to mine the same set of rules. However, our
algorithms D-SR-postMining and D-SR-inMining perform even better, and take nearly
1 second to get distant rules, regardless of the traditional algorithms in which they are
incorporated.

Let us now turn to execution time. As expected, execution time of both traditional
algorithms, MINEPI+ and TRuleGrowth, increases linearly with respect to the size of the
data set (the number of sequences). However, the execution time needed to mine distant
rules remains approximately constant and depends rather on the number of mined rules.
For example, in Table 2 for the Kosarak data set, we can notice that for the extreme case
of minsupp = 0.001, the number of rules increases significantly. However, this impacts
only slightly the execution time of our algorithms: D-SR-postMining takes 21.4 seconds,
while D-SR-inMining only takes 5 seconds.

Also, we notice that the execution time of both algorithms TRuleGrowth and D-SR-
inMining grows with the size of the data set. We also notice that D-SR is nearly constant
and its execution time is constant while the number of sequences varies from 10,000 to
200,000. However, the execution time of TRuleGrowth is multiplied by 9 in the same
situation. Once again, the low execution time of our algorithm D-SR-inMining is due
to the fact that it imposes more constraints during the mining process (i.e., the gap
constraint), and thus stops the completion of a rule at an earlier stage of the mining
process.

We conclude that our algorithms for mining distant rules are more scalable than tradi-
tional algorithms.

4.2.2. Performance of the Whole Process of Distant Rule Mining. Let us now turn to the
evaluation of the whole process in terms of time needed to mine distant rules, in the case
of traditional algorithms combined with one of our two algorithms. It is important to
mention that, in the case of mining distant rules using D-SR-postMining , the total exe-
cution time represents the sum of execution time of the traditional algorithm (MINEPI+
or TRuleGrowth) and execution time of D-SR-postMining , since D-SR-postMining runs
once the traditional algorithm has finished its mining process. In the case of mining
distant rules using D-SR-inMining , only TRuleGrowth can be used as it mines directly
rules. Thus, in this case, the total execution time represents the sum of the new execution
time of TRuleGrowth (after pruning during the mining process) and the execution time
of D-SR-inMining . Recall that D-SR-inMining runs through different levels of TRule-
Growth which prunes the search space. Consequently, no clear separation between both
algorithms can be done.

In Tables 2 and 3, the total time is represented by the blue, green and pink columns
and is calculated from execution times (gray columns) of the traditional algorithm and of
the D-SR algorithm on its left-hand side. We notice that the total execution time needed
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to mine distant rules via D-SR-postMining is quite high because it depends on the perfor-
mance of the traditional algorithm. For example, in Table 2 for the Kosarak data set,
it is equal to 332 seconds for #seq = 70k when using MINEPI+, and to 71 seconds when
using TRuleGrowth. Notice that, due to application constraints, in case one doesn’t have
the choice of the distant-rule algorithm to use and no directly-mining-rules algorithm is
available, one may have to use D-SR-postMining . It is noteworthy that the total execu-
tion time is significantly reduced when the process is based on a traditional algorithms
that mine rules directly. For example, in Table 2, the total time is only 25 seconds when
#seq = 70k.

Also, as expected, when increasing minsupp and minconf, the execution time and the
number of rules decrease linearly for all algorithms. The same conclusion is valid for both
data sets.

We can conclude that for mining distant rules, when we have the choice of the traditional
algorithm on which D-SR algorithms car run, it is more efficient in terms of execution
time to use an algorithm that mines rules directly with D-SR-inMining .

4.2.3. Impact of w and gap on Scalability. Tables 2 and 3 show the performance of our
algorithms when varying the window size from 10 to 20. To accelerate the experiment on
the Kosarak data set, we use the first 70,000 sequences of this data set. While execution
time of both D-SR algorithms stays nearly constant, execution times of MINEPI+ and
TRuleGrowth increase significantly for larger window sizes. D-SR-inMining has a scala-
bility coefficient of 5, while the scalability coefficient of TRuleGrowth reaches 12. This
is due to the fact that D-SR-inMining results in much less rules, since the integrated
constraints (= the gap) stop the mining process early.

Tables 2 and 3 show the impact of the gap size on the execution time and on the number
of mined rules of D-SR (notice that since the gap parameter is not available for traditional
algorithms, their execution times remain the same). As expected, the execution time of
both D-SR algorithms decreases significantly when the gap size grows, as significantly less
rules are mined for large values of the gap.

From Table 3 on the BMS1 data set, we can draw the same conclusions as those for
the Kosarak data set, and this is as expected, since the BMS1 data set is only slightly
denser than the Kosarak one.

We conclude that both D-SR algorithms are significantly more scalable when varying
the window size than when varying the number of sequence. This proves the high impact
of the number of sequences on the running time of the mining algorithms. Both D-SR al-
gorithms not only run faster than MINEPI+ and TRuleGrowth during these experiments,
but also have good scalability coefficients. As we mentioned before, this high performance
of D-SR is related to the early pruning that the algorithm performs in order to mine rules.

4.3. Performance in a Prediction Task. In order to evaluate the performance in
prediction of an association rule mining algorithm, each data set is split into two subsets:
one used for training (generation of distant rules using a D-SR algorithm), and the other
for testing (prediction task). In order to perform training, we use, for both data sets,
the sets of sequences already used for scalability evaluation in the experiments described
in Tables 2 and 3. In particular, for Kosarak, the first 70k sequences are used for
training and the 70k subsequent sequences are used for testing. For BMS1, the 29,800
first sequences are used for training and an equal number of subsequent sequences is used
for testing.

The prediction is accomplished by first scanning all mined rules to identify those that
match the sequence in the test data set (a rule matches a sequence when its antecedent
appears in the sequence), and then getting a prediction that corresponds to the consequent
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of the matching rules. This is performed by selecting the matching sequential rule (@10)
with the best confidence in the given experiment.

In addition, the task of distant prediction in a sequence is to predict the occurrence of
the consequent following the antecedent of the rule at a gap-minimum distance.

It is important to notice that for the same parameter values and whatever the algorithm
used to mine distant rules (D-SR-postMining or D-SR-inMining), the final number of
distant rules remains the same. For this reason, in this section we refer indifferently to
D-SR-postMining or D-SR-inMining as D-SR.

In order to evaluate the prediction performance, we measure the accuracy and define it
as the number of good predictions divided by the number of sequences in the test set. We
measure also the coverage (or the match rate) and define it as the number of sequences
for which it was possible to make a prediction, i.e., when the antecedent finds a match in
the sequence. In this experiment, we evaluate the prediction performance when varying
the gap and the window size w, these two values are proper to D-SR algorithms.

4.3.1. Impact of w on performance in a prediction task. Tables 2, 3 and Figure 2 show
the evaluation of prediction performance of algorithms when varying w for the Kosarak
and BMS1 data sets. The initial parameters for all the experiments in this sub-section
are shown in Tables 2 and 3.

Overall, we observe that using D-SR always provides an (up to 30%) higher accuracy
but a lower coverage. As expected, the coverage of D-SR is significantly lower than the one
of TRuleGrowth, as rules mined by D-SR are more specific and include more constraints
(i.e., the order of events).

When w = 20 on the Kosarak data set, D-SR provides 40% accuracy and 46%
coverage, while TRuleGrowth provides 20% accuracy and 50% coverage. On the BMS1
data set, D-SR provides 45% accuracy and 70% coverage, while TRuleGrowth provides
30% accuracy and 90% coverage. Even though D-SR has a low coverage, it is able to
predict more accurately the distant events, which represents a very satisfactory result in
the context of distant events prediction. Actually, in several applications where a risky or
costly action should follow each prediction, it is preferable and safer to correctly predict
few events instead of badly predicting a large number of them.

The experiment has also shown that using the window-size constraint is beneficial.
When increasing w, specific rules are potentially more frequent and thus can potentially
be retained, which, in turn, can increase the coverage resulting by these rules.

The same conclusions can be drawn for the BMS1 data set.
We conclude that, for both used data sets, D-SR performs better than traditional

algorithms in a prediction task, even though the coverage is lower.

4.3.2. Impact of the gap on performance in a prediction task. In Tables 2, 3 and in Fig-
ure 3, we evaluate the accuracy of D-SR when varying the gap constraint on the Kosarak
and BMS1 data sets. When gap = 0, we can compare D-SR and TRuleGrowth (accuracy
and coverage values for the algorithm TRuleGrowth are set to 0 when gap > 0, as this
algorithm does not include the gap constraint).

We notice that accuracy decreases when the gap grows. This is expected since the
larger the gap, the more difficult the prediction is, as we predict events occurring after
a long time interval. We also notice that accuracy remains relatively acceptable for high
values of gap. For example, when gap = 20, accuracy is about 25% for Kosarak, and
about 26% for the BMS1 data set. We consider this as a high performance, as rules here
aim at predicting events after 20 time units.

We conclude that, for both used data sets, D-SR succeeds in predicting distant conse-
quents and performs better than TRuleGrowth in the prediction task.
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4.4. Evaluation on a Real-World Banking Data Set. In this section we evaluate
our algorithm D-SR on the real-world Banking data set, with the main goal to present
real-world examples of mined rules and their utility in an early churn prediction.

4.4.1. Comparison of the Rules Formed. As an extension of traditional algorithms, D-SR
integrates a minimal gap between the antecedent and the consequent of the sequential
rule. When gap = 0, the situation is almost similar to the one of traditional algorithms.
As in the previous section, we choose to compare D-SR to TRuleGrowth.

Table 4 displays the prediction performance and the number of rules produced by
our algorithm and by TRuleGrowth on the Banking data set, for minsupp = 0.109,
minconf = 0.8, w = 360, and gap = 180 days. The gap parameter is not used for
TRuleGrowth.

D-SR builds about 200 sequential rules, whereas the algorithm TRuleGrowth mines
about 1,000 rules, this represents a 80% decrease of the number of mined rules. As shown
in the section on scalability evaluation, this decrease is due to the fact that D-SR imposes
additional constraints (gap and order of events), so that these rules are more specific. D-
SR is more efficient than TRuleGrowth in predicting distant events (events at more than
gap = 180 distance) with accuracy of 64%. Actually, due to the criticality of the churn
application in this paper, it is important for us to outperform state-of-the-art algorithms
especially for this real-world banking data set. We also notice that TRuleGrowth covers
more rules than D-SR. However, these rules have not been designed to mine distant rules
as they do not model the distance between events, so, as expected, they are less accurate
than those of D-SR.

Table 4. D-SR vs. TRuleGrowth on Banking data set

Algorithm #Rules Accuracy Coverage
D-SR 200 64% 52%
TRuleGrowth 1,000 55% 80%

We present now some examples of sequential rules extracted by D-SR. Recall that for
confidentiality reasons imposed by Crédit Mutuel ARKEA (the provider of this real-world
Banking data set), we are not allowed to show all experiments or more examples of rules.

(House credit simulation, cancellation of house insurance contract,

exceptional external money transfer)

→
(client attrition), with gap = 180 days.

Application of this rule in a distant event prediction task. While monitoring the event
sequence during a prediction task, once all (ordered) events of the antecedent of the rule
appear, they trigger the prediction of rule consequent within at least gap timestamps.
In the same way, during the monitoring of banking actions of clients (that represent a
sequence database), we can choose days as timestamp unit (the same unit as when mining
the rules). Thus, when detecting a client profile that (a) does a house loan simulation,
(b) cancels his/her house insurance contract, and then (c) transfers a given amount of
money to an account in another bank, then he/she is likely to leave the bank within at
least 180 days. The bank thus may potentially benefit from these 180 days to contact the
client in order to propose solutions to eventually prevent him/her from leaving the bank.
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Here is a rule that has been extracted by TRuleGrowth, but not by D-SR, as it does
not satisfy the desired sequential-rule characteristics:

(Salary no more received on the account, exceptional external money

transfer, closure of savings account, exceptional external money transfer,

decreased online activities)

→
(client attrition), within N time units (N � 180) between antecedent and conse-
quent.

This rule means that when detecting a client profile for which the monthly salary is
no more received on his/her account, and he/she transfers a given amount to an external
account, then closes his/her savings account, transfers again a given amount to an external
account, and finally connects only scarcely to his/her account, this means it is likely that
he/she may leave the bank within at least N days. The interval of N � 180 days is
considered as very short and probably not sufficient for the bank to react and eventually
prevent the client’s departure.

This rule is useful in applications where the goal is to predict close events. However, in
the context of early prediction of distant events, this rule does not fit, as its consequent
is too close to its antecedent.

5. Conclusion and Perspectives. In this paper, we have proposed two original algo-
rithms (D-SR-postMining and D-SR-inMining) that mine sequential rules with distant
consequents under an anti-monotone minimal gap constraint. These algorithms represent
a general framework allowing the use of existing traditional rule mining algorithms in
order to mine distant rules. Both algorithms were evaluated on three data sets. Experi-
ments show that our algorithms are scalable and more efficient than other state-of-the-art
algorithms in terms of execution time for the used data sets. They are also more accurate
in a prediction task for the real-world banking data set, which is very important due to
the criticality of the churn application in this paper.

The algorithms mine rules with a minimal gap constraint between the antecedent and
the consequent. This constraint can be very strict in several applications, when occur-
rences of rules that do not strictly respect the gap are not accepted. For future work, we
aim at introducing interestingness measures in order to provide more flexibility on the
gap constraint.

As we have shown in this paper, a window is used to constrain the research space of
the mining algorithms. The value of this window constraint is fixed on the level of each
run of the algorithm. We notice that the larger the window, the more distant is the
consequent of the mined rules. For this reason, in future work we aim at removing this
window constraint in order to be able to mine simultaneously rules with consequents at
all distances, namely near, distant and very distant consequents. The challenge will be
to propose a solution that does not explode the search space.

As we have shown, the anti-monotonicity property is a key factor for pruning rules
using our algorithms. In future work, we intend to propose new frequency-constraint
or temporal-constraint measures, again relying on the anti-monotonicity property. We
assume that will allow to mine more precise rules and will improve the efficiency of the
algorithm in terms of time and memory consumption.
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