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Abstract

In an effort to model dry and dense granular flows, two viscoplastic models with constant
viscosity and pressure-dependent thresholds are investigated through numerical simulations of
the collapse of columns of glass beads over a horizontal plane. The yield stress in the Drucker-
Prager model is proportional to the dynamic pressure, while that of the hydrostatic pressure
model depends on the flow height. Unlike the Drucker-Prager model, which may lead to small-
scale instabilities, the hydrostatic pressure model is well-posed. Both models are used to simulate
the spreading of granular columns, with aspect ratios equal to 0.7 and 2, and comparison with
experiments are presented. A level-set formulation for the Navier-Stokes equations is used, so
that the interface between the granular material and the ambient air is tracked. The rheology is
formulated as a projection, allowing for an efficient computation of the plastic part of the stress
tensor. Coulomb friction conditions are applied on the walls. The dynamics of the collapse and
the final deposit are accurately simulated with the Drucker-Prager model while the hydrostatic
pressure model produces non-physically relevant solutions. The sensitivity of the results, with
respect to the resolution, the viscosity, and the basal friction coefficient, is studied. During the
collapse, the granular material consists of a basal deposit overlain by a flowing layer, which
are separated by an interface that migrates upwards until the flowing layer is consumed. The
time evolution of this static-mobile interface is quantified and a good agreement is found with
experiments.

1 Introduction

Dense flows of dry granular matter are common phenomena in the environment and industry.
Modeling these flows is essential for testing rheological laws that govern the motion of the granular
material, and it is also important in the context of assessment of natural hazards or control of
industrial processes. Various configurations have been considered over the last decades to better
understand the behaviour of these flows (see the review GDR MiDi, 2004). Among them, the
collapse of dense and dry columns of granular materials over a horizontal plane, also known as the
dambreak configuration, has been extensively studied both experimentally and numerically (see,
for a recent review, Delannay et al., 2017). This configuration is particularly well-suited for testing
numerical simulations against laboratory experiments, from which detailed data on flow kinemat-
ics and deposit morphology can be acquired. The behaviour of granular dambreak flows is well
characterised. Once the granular column is released, the collapse, which lasts typically about one
second in laboratory experiments, can be decomposed in four stages: a quick initial acceleration
phase, followed by propagation of the front at constant velocity, further the flow decelerates and
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des Cézeaux, 3 Place Vasarely, TSA 60026 – CS 60026, 63178 Aubière Cedex, France
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finally, while the front has reached the runout (maximum) distance, the granular flow moves very
slowly until it stops. The granular flows during the collapse are formed by a basal deposit, growing
at a nearly constant rate, overlain by a moving part whose head slides on the bottom wall (Roche,
2012). During the last stage, once the front has stopped, the basal deposit still grows slowly until
it reaches the top and front of the mass. This internal dynamics, characterised by a static-mobile
interface between the deposit and the moving layer, is quantified from experiments (Roche, 2012).
Also, the final deposit is characterised by its height, its runout distance, and its profile. There-
fore, there are many available measured data on the collapse of granular flow, so that comparing
numerical methods and/or different modelling approaches for this problem is appealing.

Numerical simulation of granular drambreak experiments are performed either by using depth-
averaged models (see, for instance, Mangeney-Castelnau et al., 2005; Kerswell, 2005; Larrieu et al.,
2006; Gueugneau et al., 2017), Discrete Element Methods (see, for instance, Lacaze et al., 2008;
Girolami et al., 2012) or two-dimensional continuum models (Crosta et al., 2009; Lagrée et al.,
2011; Ionescu et al., 2015; Martin et al., 2017). Depth-averaged models are restricted to granular
columns with aspect ratio less than unity and are not able to compute the dynamics of the static-
mobile interface. Most of the above cited numerical studies focused on recovering scaling-laws
that characterise the flow runout distance and that are provided by experiments (see, for instance
Balmforth & Kerswell, 2005). In Ionescu et al. (2015) and Martin et al. (2017), detailed analyses
of the flow dynamics and comparisons of numerical simulations with experiments (Mangeney et al.,
2010) have been first attempted. These studies rely on the use of continuum viscoplastic models:
the µ(I)-rheology (Jop & Pouliquen, 2006) and the Drucker-Prager (DP) model. These models
share the same yield stress, which is proportional to the dynamic pressure, but they have different
viscosities. The DP-model can be viewed as a constant viscosity version of the µ(I)–rheology.
The main advantage of the DP-model is that the only parameter that has to be adjusted is the
viscosity while the µ(I)–rheology depends on parameters that are not easily measurable. Note that
developing a model with as less parameters as possible is advisable in a view to applying it to
geophysical flows. Little differences were observed in Ionescu et al. (2015), for viscosities in the
range [0.1, 0.5] Pa s, for collapse over a horizontal plane. Also, both models predicted results in
good agreement with experiments. Note that the numerical convergence of the results was not
addressed in Ionescu et al. (2015) and Martin et al. (2017).

In this paper, we propose to go further than earlier studies in the numerical simulation of
the collapse of granular columns with the DP-model by studying the numerical convergence, by
estimating the influence of the viscosity and of the basal friction and by analysing the dynamics
of the static-mobile interface. Two sets of experiments, which differ in the aspect ratio of the
granular column and the size of the particles, are considered. The first one, with aspect ratio
0.7, was already studied by Ionescu et al. (2015) so that comparisons with their numerical results
and with the experiment can be performed. Numerical results for the second experiment, which
was carried out by Roche et al. (2010) and had an aspect ratio equals to 2, are presented for the
first time. In the present study, the rheological parameters, namely the internal and basal friction
coefficients, are prescribed from the experiments. We have developed an efficient parallel code, so
that we were able to decrease the mesh size until the numerical convergence was obtained, which
assessed the reliability of the results. The effect of the viscosity on the results could also be studied
by decreasing its value down to 10−2 Pa s (ten times smaller than in Ionescu et al. (2015)).

While being able to reproduce the flow dynamics, models with DP yield stress are known to
be mathematically ill–posed and are characterised by small–scale instabilities (see Schaeffer, 1987;
Schaeffer & Pitman, 1988; Martin et al., 2017). As shown in Chupin & Mathé (2017), replacing
the dynamic pressure by a hydrostatic pressure (HP-model) in the yield stress leads to a well-posed
model. The predictability of the HP-model has, up to now, never been investigated. One of the
main objective of this paper is to evaluate the HP-model in the context of the collapse of granular
columns. Simulations performed with the HP-model are also compared with the aforementioned
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experiments.
In a viscoplastic rheology, the stress tensor is proportional to the strain-rate tensor when

its strength is above the yield stress otherwise it is not prescribed. In order to handle this
non-differentiable definition, a framework, which avoids the formalism of variational inequali-
ties (Glowinsky et al., 1981), was introduced in Chupin & Dubois (2016): it relies on a projection
formulation for the definition of the plastic part of the stress tensor. By coupling this approach
with classical fractional step methods to approximate solutions of the incompressible Navier-stokes
equations (Guermond et al., 2006), an efficient bi-projection scheme for the time discretisation
of Bingham equations was proposed and studied in Chupin & Dubois (2016). Note that in this
scheme, the plastic part of the stress tensor is computed with a fixed point procedure enjoying a
geometrical convergence rate. The bi-projection scheme was further extended in Chalayer et al.
(2018) to viscoplastic fluids with spatially variable viscosity, density and yield stress. A version
adapted from Chalayer et al. (2018) is used in the present paper.

The surface of the granular mass during the collapse was treated as a free surface in Ionescu
et al. (2015) and Martin et al. (2017), which means that the motion of the ambient medium was
not computed. In this paper, we use the level-set method (Sussman et al., 1994) to capture the
interface between the granular mass and the ambient air. Interface tracking methods allow to handle
a wider variety of problems and to use simple and efficient algorithms on Cartesian grids. In the
level-set approach the interface is the set of zeros of a smooth function advected by the velocity
field. However, for dambreak problems, the level-set method is known to encounter difficulties
in accurately predicting the angle between the interface and a wall (Della Rocca & Blanquart,
2014) and therefore the correct propagation of the front. We show in this paper that reducing
the order of the schemes in the neighbourhood of a boundary without adding ghost points and
implementing friction boundary conditions permits us to produce very accurate numerical results
in the context of the collapse of granular columns. Note that an alternative to the level-set method
is the Volume of Fluid method, which has been successfully used by Liu et al. (2016) to study
viscoplastic dambreaks.

In this article, numerical simulations of the collapse of columns of glass beads, with aspect ra-
tios 0.7 and 2, over horizontal plane are performed and compared with experimental results. Two
continuum viscoplastic models with constant viscosity and pressure-dependent yield stress are con-
sidered. In section 2, the mathematical models as well as the complementary boundary conditions
and definitions of the yield stress threshold are given. The numerical methods are summarised in
section 3. The numerical results are analysed and compared with laboratory experiments in sec-
tion 4. Two experiments are considered and they differ in the aspect ratio of the granular column
and the size of the glass beads. The flow dynamics and the profile of the granular mass obtained
with the DP-model are compared with experiment. Sensibilities of the numerical results upon the
resolution, values of the constant viscosity and/or the basal friction coefficient are studied. For the
second experiment, with an initial column with aspect ratio 2, numerical results are presented for
the first time. In this case, the static-mobile interface, which characterises the internal dynamics
of the granular flow, is analysed. For both experiments, simulations performed with the HP-model
are presented.

2 Mathematical modeling

2.1 Conservation laws and rheology

We consider the collapse of a granular mass over a horizontal rigid surface. The mathematical
model is written in two-dimension and involves two components: a viscoplastic part corresponding
to the granular mass, and a newtonian part modelling the surrounding air. The flow is assumed to
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be incompressible with variable density so that the mass and momentum conservation laws write

ρ
(
∂tu + u ·∇u

)
= divT + ρg, (1)

divu = 0, (2)

∂tρ+ u ·∇ρ = 0, (3)

where u is the material velocity, g an external force (gravity), ρ the mass density, and T the total
stress tensor. The rheology is defined by the viscoplastic law:

T = −p Id + 2ηD(u) + κ
D(u)

|D(u)|
, (4)

where p is the pressure, D(u) = 1
2

(
∇u+(∇u)t

)
is the strain rate tensor, η is the dynamic viscosity,

and κ is the yield stress. Here, the norm is the modified Frobenius norm |D(u)|2 = 1
2

∑
i,j D(u)2

ij .
Note that when D(u) = 0 the equation (4) must be read: T = −p Id + T ′ where T ′ is any
symmetric tensor such that |T ′| ≤ κ.
To take into account the presence of the two phases, we will assume that initially the density ρ
takes exactly two constant values: that of the air ρf and that of the granular medium ρs. We will
assume that this property will be satisfied throughout the experiment (from a numerical point of
view, this property will be ensured using a level-set method). Obviously, both the viscosity and
the yield stress also depend on ρ and may take two values:

η = ηf and κ = 0 if ρ = ρf , (5)

η = ηs and κ = tan(α) p if ρ = ρs. (6)

The constant ηf corresponds to the air dynamic viscosity, and we have chosen 0 as yield stress
in the air since air is a Newtonian fluid and has no plastic behaviour. The viscosity ηs is taken
constant in this work, but some works use a more complex pressure-dependent relationship (such as
the µ(I)-law). On the contrary, in the granular medium we use the Drucker–Prager law to describe
the relationship between the yield and the pressure: tan(α) is the static internal friction coefficient,
with α the internal friction angle.
In some cases, it may be interesting to replace, in the expression of yield stress, the pressure p by
a hydro-static pressure denoted phyd and depending on the weight above a point. This choice can
be intuitive when considering thin flows or more generally when the flows are mainly driven by the
pressure and the gravity forces: in that cases, the momentum equation (1) reduces to ∇phyd = ρg.
Consequently, we will also propose the following model instead of (6):

η = ηs and κ = tan(α) phyd if ρ = ρs, (7)

where phyd =

∫ top

z
ρg, with the value denoted ”top” corresponds to the height of the granular

mass. One of the objectives of this work is to compare the two possible rheologies (6) and (7). In
the remaining of the paper, the model based on (6) will be named the DP-model while HP-model
will be used to designate the one based on (7).

2.2 Boundary conditions

The equations (1)–(3) are completed with boundary conditions. Generally, the boundary ∂Ω of the
domain Ω will be composed of two parts: ∂Ωa and ∂Ωw on which we will impose different conditions.
The bound ∂Ωa will correspond to the part of the domain in the free air while the bound ∂Ωw will
refer to solid walls.

4



In any case, we will note by n the outgoing unit normal to the domain. In practice, we decompose
the velocity u at the boundary into normal velocity un = u ·n and tangent velocity ut = u−unn.
In the same way, we introduce the following notations for the stress: Tn = (T ·n) ·n and Tt =
T ·n− Tnn.
On the bound ∂Ωa, the velocity field satisfies

un = 0 and ∂nut = 0. (8)

On the back and bottom walls, we take into account the friction so that the boundary conditions
must be written:

un = 0 and Tt = −ηbut − κb
ut
|ut|

on ∂Ωw. (9)

The coefficients ηb and κb depend on the density. More precisely, we impose

ηb > 0 and κb = 0 if ρ = ρf , (10)

ηb = 0 and κb = tan(αb) (−Tn)+ if ρ = ρs. (11)

The coefficient tan(αb) is called the Coulomb friction coefficient and αb is the basal friction angle.
As in the case of Bingham’s law, when ut = 0 the second part of (9) must be read |Tt| ≤ κb.

Note that boundary condition (9) when applied to the part of ∂Ωw on which air (with κb = 0)
is sliding reduces to a Navier condition. Indeed, let us detail the particular case of the bottom wall
for which we have n = (0,−1)t. Therefore Tt = (−η∂yu, 0)t (indeed ∂xv = 0 as v = −un = 0) so
that (9) rewrites −η∂yu + ηbu = 0. The main advantage of Navier conditions is that, depending
upon the value of the parameter ηb, it allows to impose Dirichlet (ηb = ∞), mixed (0 < ηb < ∞)
or Neumann (ηb = 0) boundary conditions. In most numerical simulations presented in the paper,
the value ηb = 1 will be used for air on the bottom boundary.

3 Numerical method

3.1 Level-set approach

The interface between the air and the granular medium is tracked with a level-set function φ, so
that the interface Γ is the set of points where φ vanishes. The level-set function is a smooth function
of x: the signed distance function from the interface is commonly used; see Osher & Fedkiw (2003)
and the reference therein. The physical density is smeared out at the interface, so that we define

ρ(φ) = ρfHε(φ) + ρs(1−Hε(φ)), (12)

where Hε(φ) is the regularised Heaviside function

Hε(φ) =


0 if φ < −ε,
1
2

(
1 + φ

ε + sin
(πφ
ε )/π

)
if |φ| ≤ ε,

1 if φ > ε.

The yield stress κ(φ) and the boundary coefficients ηb(φ) and κb(φ) are treated as a sharp discon-
tinuity. In order to ensure continuity of the tangential shear stress, the viscosity η(φ) is a harmonic
mean of ηs and ηf

1

η(φ)
=
θ(φ)

ηs
+

(1− θ(φ))

ηf

where the height fraction θ(φ) is defined as in Sussman et al. (2007).
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In the level-set formulation (see Sussman et al., 1994; Chang et al., 1996; Sussman et al., 1998),
φ is advected by the velocity so that mass conservation equation (3) is replaced by a transport
equation. In this context, the level-set formulation modeling a column of granular medium sliding
into ambient air writes

∂tφ+ div (uφ) = 0, (13)

ρ(φ) (∂tu + div (u⊗ u)) +∇p = −ρ(φ)ge2 + div (2η(φ)D(u) + κ(φ)S), (14)

divu = 0, (15)

where g is the gravitational constant, e2 is the vertical unit vector and S is the plastic part of the
stress tensor that will be rigorously defined in section 3.2. Equations (13)-(15) are supplemented
by the boundary conditions (8)-(9) where the friction coefficients depend on φ. Note that nonlinear
terms are written in conservative form in level-set and momentum equations. Also, surface tension
forces are not taken into account.

The transport equation (13) is discretised with a finite volume WENO scheme of order 5 (Shu
& Osher, 1988; Jiang & Peng, 2000) in space combined with TVD RK3 scheme for the time
discretisation (Gottlieb & Shu, 1998). Even if the discrete level-set function is initialised as the
signed distance from the interface, it will not remain a distance function and, as it is suggested
in Sussman et al. (1994), a redistancing algorithm needs to be applied periodically in time. A
classical approach consists in solving numerically a Hamilton-Jacobi equation. Stationary solutions
of the Hamilton-Jacobi equation are distance functions and share their interface with the level-
set function. In this paper, the redistancing algorithm given by Min (2010) is used. It relies on
a TVD RK2 method as time marching scheme and on a ENO2 finite-difference scheme for the
spatial resolution. Also, we have implemented the subcell fix resolution detailed in Min (2010),
which modifies the ENO2 scheme near the interface in order to avoid artificial displacement of the
interface during the redistancing iterative process.

3.2 Bingham projection

According to the rheological law (4), the plastic part S of the total stress tensor is simply given
by S = D(u)/|D(u)|, which is not well defined in the rigid zone, i.e. where the strain-rate tensor
vanishes. In this case, the constraint |S| ≤ 1 should be added. A convenient way to define S is to
use the formalism introduced in Chupin & Dubois (2016) (see also Chalayer et al., 2018), that is

S = P (S + rκ(φ)D(u)), for any r > 0, (16)

where P is a projection operator which is explicitly defined by

P (L) =

{
L
|L| if |L| > 1,

L if |L| ≤ 1,

for any traceless symmetric tensor L. Note that the boundary condition (9) can be written similarly

Tt = −ηbut − κb(φ)st with st = Pb(st + rκb(φ)ut), for any r > 0, (17)

where Pb(v) =

{
v/|v| if |v| > 1,

v if |v| ≤ 1,
for any vector v. The complete system of equations is then

formed by (13)-(15) supplemented with (16)-(17).
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3.3 Chorin-Temam algorithm

Let δt > 0 be the time step. Assuming that the approximations (un, φn, pn,Sn, snt ) of (u, φ, p,S, st)
at discrete time tn = nδt are known, φn+1 is computed as described in section 3.1. Note that
un, which is a solenoidal velocity field, is used to advect φn and then compute φn+1. We set:
ρn+1 = ρ(φn+1), ηn+1 = η(φn+1), κn+1 = κ(φn+1), κn+1

b = κb(φn+1) and ηn+1
b = ηb(φn+1). The

momentum equation is discretised with a second-order fractional time stepping scheme inspired
from the pioneering Chorin-Temam algorithm (Chorin, 1968; Temam, 1969). This approach allows
to decouple velocity and pressure in a step predicting a non-solenoidal velocity field followed by
an update of the pressure used to project the estimated velocity onto the space of divergence-free
velocity field. Following Chupin & Dubois (2016) and Chalayer et al. (2018), the prediction step
reads

ρn+1

(
3ũn+1 − 4un + un−1

2δt
+ 2 div (un ⊗ un)− div (un−1 ⊗ un−1)

)
+∇pn = −ρn+1ge2 + div

(
2ηn+1D(ũn+1) + κn+1Sn+1

)
Sn+1 = P

(
Sn+1 + rκn+1D(ũn+1) + θ(Sn − Sn+1)

)
, for any r > 0, θ ∈ (0, 1),

un = 0, ∂nut = 0, on ∂Ωa,

T n+1
t = −ηn+1

b ũn+1
t − κn+1

b sn+1
t , on ∂Ωw,

sn+1
t = Pb

(
sn+1
t + rbκ

n+1
b ũn+1

t + θ(snt − sn+1
t )

)
, for any rb > 0, on ∂Ωw.

(18)

Then, the projection step reads

ρn+1

(
3(un+1 − ũn+1)

2δt

)
+∇(pn+1 − pn) = 0,

divun+1 = 0, (un+1 − ũn+1) ·n = 0 on ∂Ω

(19)

In (18), (ũn+1,Sn+1, sn+1
t ) are nonlinearly coupled. Due to the non-differentiability of the vis-

coplastic rheology, a Newton algorithm can not be directly applied. Therefore, we use a Picard
fixed point procedure to solve (18). The pseudo-relaxation terms depending on the parameter θ
added in the projectors P and Pb allows for a geometric convergence with common ratio (1− θ) of
the fixed point iterations; see Chupin & Dubois (2016) and Chalayer et al. (2018) for details. The
projection step (19) consists essentially in solving a variable coefficients elliptic equation for pn+1

followed by a correction applied to the non solenoidal velocity ũn+1 in order to obtain un+1, which
is divergence-free (up to the computer accuracy).

3.4 Numerical implementation

The aim of this paper being to numerically simulate, with a bi-dimensional model, the collapse of
columns of granular matter in a rectangular channel, Ω = (0,L)× (0,H) will be used as computa-
tional domain. The initial granular column is defined by its length Lc and height Hc as it can be
seen on figure 1 representing the configuration before release.

The computational domain is discretised in Ln
H × n cartesian mesh cells. Let us denote by

h = H
n the mesh size. As in the classical MAC scheme for the incompressible Navier-Stokes

equations (Harlow & Welch, 1965) the discrete velocity unknowns uij are located at the midpoint
of cell edges. The discrete pressure pij and level-set function φij are placed at the centre of the
mesh cell Kij . All components of the plastic tensor S are also discretised at the centre of the
mesh cell. This choice is arbitrary but allows to update all tensor components, through the local
projection (16), at the same mesh locations (Chupin & Dubois, 2016).

The implementation has been done in a F90/MPI code previously written for one phase Bingham
flows and used for simulating flows in a lid-driven cavity at Reynolds number up to 200 000 and
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Figure 1: Configuration for the collapse of a granular column initially at rest. The blue part of the
domain boundary corresponds to ∂Ωa (free air) while the red one corresponds to ∂Ωw (solid walls).

Bingham number equals to 100 (Chupin & Dubois, 2016). The PETSc library (Balay et al., 2018a,b)
is used to solve linear systems and to manage data on structured grids. The communications
between the processes are explicitly written with MPI subroutines.

4 Results and comparisons with laboratory experiments

4.1 Collapse of a dry granular column with aspect ratio 0.7 over a rough surface

4.1.1 Experimental setup

We first consider an experiment in Mangeney et al. (2010) consisting of the collapse of a dry
granular column (glass beads with diameter d ≈ 0.7 mm ±0.1 mm) in a 10 cm wide channel
between plexiglass walls. The horizontal plane is 3 m long and is roughened by a layer of glass
beads (with same diameter) glued on its surface. The granular medium is maintained in a reservoir
of length Lc = 20 cm and height Hc = 14 cm, resulting in an aspect ratio Hc/Lc = 0.7, by the
presence of a gate, which is opened at time t = 0 s. The particle density is ρp = 2500 kg m−3 so
that with a mass volume fraction of 0.62 the apparent flow density is ρs = 0.62ρp = 1550 kg m−3.

4.1.2 Validation of the implementation of the DP-rheology

In order to validate the numerical implementation of the DP-rheology with constant viscosity as
previously described, we first confront our results with the experiment and with those published
in Ionescu et al. (2015). Indeed in Ionescu et al. (2015), numerical simulations corresponding to this
experiment have been performed with a continuum model using the µ(I)–rheology, reformulated in
the framework of the Drucker-Prager rheology. Let us recall here this formulation. Following Jop
& Pouliquen (2006), the µ(I)–rheology can be written{

T ′ = µ(I)p D(u)
|D(u)| if D(u) 6= 0,

|T ′| ≤ tan(α)p if D(u) = 0,

where µ(I) = tan(α) + µ∞−tan(α)
1+I0/I

, I0 is a dimensionless number and µ∞ ≥ tan(α). The inertial
number I is defined by

I = 2|D(u)|d
√
ρs

p

with d the particle diameter of the granular material. By using the above definitions for I and
µ(I), we can rewrite the expression of the tensor T ′ in regions where D(u) 6= 0 as

T ′ = 2η(|D(u)|, p)D(u) + tan(α)p
D(u)

|D(u)|
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where η(|D(u)|, p) = (µ∞−tan(α))p
2|D(u)|+I0

√
p/d
√
ρs

. Instead of the above expression for T ′, we use a similar

rheology but replace the viscosity η(|D(u)|, p) prescribed by the µ(I)–rheology with a constant
viscosity ηs in the present study (see (4)–(6)). Note that very little differences were found in Ionescu
et al. (2015) between results obtained with constant and variable viscosity. Also, the authors
estimated values for ηs in the range [0.1, 1]Pa s by using the µ(I)–rheology. We choose the value
ηs = 0.5 Pa s for the simulations presented in this section.

Let us highlight the major differences between our numerical implementation of the DP-rheology
and the one used in Ionescu et al. (2015). In Ionescu et al. (2015), the presence of the ambiant
gaz (air) is not accounted for and equations of motions are only solved in the viscoplastic fluid
domain, i.e containing the granular material. In our study, both the granular and the ambient flow
are modeled through a level-set formulation (see section 3). Another difference is the presence of
the gate, which is not modeled in our numerical simulations, but is accounted for with a time shift
of −0.03 s, which is half the lifting time of the gate. In order to compare our numerical results
with those in Ionescu et al. (2015), the same rheological parameters are used and the reader is
referred to Ionescu et al. (2015) for explanations of the chosen values. The friction coefficient of
the glass beads on the plexiglass wall at the back of the channel is κb = tan(10.5◦) = 0.18 while
κb = tan(25.5◦) = 0.48 is used on the rough horizontal plane. The static friction coefficient in the
yield (6) and (7) is tan(25.5◦) = 0.48.

In figure 2, the granular mass at different times during its collapse is plotted and compared with
the profile of the experiment and of the numerical results presented in Ionescu et al. (2015). Note
that here, the numerical simulation is performed by using 256 mesh points in the vertical direction,
which corresponds to a mesh size h = 0.4/256 = 0.78125 mm similar to the size of the glass beads
used in the experiment; in Ionescu et al. (2015), the resolution was coarser with the mesh size in
the interval [3.3, 10] mm. We observe on figure 2 that the height of the granular column on the back
wall of the reservoir is maintained at its initial value during the whole collapse as in the experiment
while in Ionescu et al. (2015) the height of the final (stationary) state is underestimated by nearly
10%. The plateau, corresponding to the left upper part of the granular mass (and touching the
back plexiglass wall), found in the experiment is very well captured by our numerical simulation. In
both simulations, the fronts of the granular masses, corresponding to the most advanced part of the
sliding material located on the horizontal plate, are slightly ahead of the experimental front during
the first half period of the collapse, that is for t ≤ 0.42 s. This may be explained by the presence of
the gate, which is not properly accounted for in the numerical methods so that small differences on
the dynamics are observed at the beginning of the collapse process, namely the acceleration phase.

At the final stage, t = 1.06 s, the profile of the granular mass is noticeably well predicted
by our simulation with the DP-rheology. Note, however, that the experimental runout distance
is underestimated by about 7.5%. We will show below that the value of the viscosity ηs has an
influence on the runout distance, which can be more accurately predicted with smaller values of
ηs. Note that the simulation in Ionescu et al. (2015) found a runout distance overestimated by
only 1.4% but the height of the mass at the back wall 10% smaller was obtained though in the
experiment the material in this zone remained static. The slope of the deposit as well as the overall
distribution of the granular mass is more accurate in our simulation.

It is well known (Della Rocca & Blanquart, 2014) that the level-set method, especially the
reinitialisation procedure, which is mandatory so that the level-set function remains signed distance,
cannot predict the angle of the interface with walls for contact line problems. However, as shown
on figure 2, the front of the deposit at t = 1.06 s is found to be almost as thin as the experimental
one. Note that, according to Della Rocca & Blanquart (2014), we have adapted the high order
ENO and WENO schemes at the walls by reducing their order of accuracy when mesh points are
close to the boundaries so that no extrapolations at exterior ghost points are used. This allowed to
stabilise the level-set solver. We infer that the implementation of the Coulomb friction law (9)–(11)
at the boundaries is essential in order to obtain a so thin interface close to the ground level. Indeed,
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Figure 2: Comparison between numerical and experimental (pink dashed curve) results of the
collapse of a granular mass. The colour scale corresponds to the velocity Euclidean norm |u| (in
m s−1) computed by using the DP-rheology. The black solid curve corresponds to the DP-rheology
model while the green dot-dashed one () is from Ionescu et al. (2015). The numerical resolution is
h = 0.78125× 10−3 m and the computational domain is Ω = (0, 0.8)× (0, 0.2).
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Figure 3: Strain rate |D(u)| (in s−1) at different times during the granular mass collapse simulated
with the DP-rheology. The numerical resolution is h = 0.78125 × 10−3 m and the computational
domain is Ω = (0, 0.8)× (0, 0.2).

the frontal part of the experimental deposit at the final time has only one glass bead depth, that
is 0.7 mm±0.1 mm, over a horizontal distance of 1.5 cm (≈ 20 glass beads). As shown on figure 2,
the result from Ionescu et al. (2015), where a different numerical treatment of the interface is used,
overestimates the thickness of the deposit at the front and on a large area, that is for x ≥ 0.25,
resulting in a less accurate estimate of the slope of the deposit. As in Ionescu et al. (2015), the
volume loss of the granular mass during the numerical simulation is below 0.84%. Also shown on
figure 2 is the Euclidean norm of the velocity field inside the granular mass during the collapse.
This provides information on the flow dynamics. As it has been observed in experiments and
in other numerical simulations (Lacaze et al., 2008; Lacaze & Kerswell, 2009; Crosta et al., 2009;
Lagrée et al., 2011; Ionescu et al., 2015), two zones in the granular mass can be identified during the
collapse: a static one, corresponding to the basal deposit which is growing with time and which has
no motion, and a mobile one where glass beads are moving. The deposit shown in blue represents
a large part of the granular mass. The motion occurs in a narrow sublayer, underneath the surface
down to the ground and behind the front, and in the early stage of the collapse, that is for time
t ∈ [0, 0.42] s. At t = 0.42 s, the front has reached the maximum runout distance. During the
second half of the experiment, i.e. for t ≥ 0.42 s, the deposit represents an increasing part of the
whole granular mass until a stationary state is reached for t near 1.06 s.

Contours of the basal deposit and of the moving layer are also well defined by using the strain
rate |D(u)| as discriminant quantity. Indeed, in viscoplastic fluids plugs and dead zones correspond
to areas where the strain rate vanishes; both strain rate and velocity vanish in dead zones. On the
other hand, non-zero values of the strain rate indicate motion with deformations. This is clearly
visible on figure 3, which shows most intense shear along the bottom wall at the flow head.

On figure 4 representing the pressure, spatial oscillations, similar to characteristic lines for
hyperbolic problems, develop as soon as motion starts (t = 0.06 s) and are persistent during the
whole collapse. Such oscillations have also been identified by Martin et al. (2017) and seem to
be inherent to pressure dependent rheology, certainly related to the ”ill–posedness” nature of the
mathematical model. More precisely, it is well known that the DP-model is ill-posed (Schaeffer,
1987; Schaeffer & Pitman, 1988) and that some oscillations are likely to appear. Mathematically ill-
posed problems suffer from unbounded growth of short wavelength perturbations, which necessarily
lead to grid dependent numerical results that do not converge as the spatial resolution is enhanced.
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Figure 4: Pressure p (in Pa) at different times of the granular collapse simulated with the DP-
rheology. The initial static state at t = 0 s is also shown. Note that a different scale is used
for the initial pressure for which maximum value is about 2 129 Pa. The numerical resolution is
h = 0.78125× 10−3 m and the computational domain is Ω = (0, 0.8)× (0, 0.2).

In practice, a more complex rheology, the µ(I)-rheology, is well-posed for intermediate values of the
inertial numbers I, but it remains ill-posed for both high and low inertial numbers (Barker et al.,
2015). Note that recently, in Barker & Gray (2017), changes to the functional form of the µ(I) curve
have been considered in order to maximise the range of well-posed inertial numbers. Barker & Gray
(2017) shows that when the inertial number is low there exists curves for which the equations are
guaranteed to be well-posed. However, despite the presence of pressure oscillations, the granular
mass spreading is well predicted by the DP-model, and the shape of the granular mass as well as its
contours are accurately computed. By refining the mesh, we did not observe amplifications of these
oscillations. Moveover, pressure remains bounded and for all simulations maxΩs p ≤ ρsgHc ≈ 2129
Pa, where Ωs is the part of the computational domain filled by glass beads (ρ = ρs).

4.1.3 Numerical convergence

In order to investigate the sensitivity of the numerical results with respect to the mesh resolution,
we performed numerical simulations with n = 64, 128 and 256. The time step, adjusted in order
to ensure CFL stability condition for the finer mesh, is equal to δt = 10−4 s. The mesh size
dependency is analysed by focusing on the shape of the interface between the granular material
and ambiant air at t = 1.06 s (see figure 5), that is when the stationary state of the deposit is
reached, and on the dynamics of the collapse by plotting the time evolution of the distance of the
front at the bottom level from the back wall (see figure 6). It can be clearly observed on figure 5
that the deposit of the granular mass depends weakly on the resolution: results with different
mesh sizes are very close to each other. The most important difference is found by comparing the
computed runout distances: the value predicted with n = 64 is smaller than values obtained with
n = 128 and n = 256, which are close to each other, indicating numerical convergence. As it was
mentioned in the previous section, the front of the simulated deposit is slightly thicker than what
is observed in experiment. However, it is much thinner than what could be expected considering
the fact that the level-set method is used to compute the interface. Indeed, the latter is known
to have inherent difficulties to accurately compute the angle of the interface with walls for contact
line problems such as the one considered in this paper. The use of the Coulomb friction law at
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Figure 5: Profiles of the granular mass at the stationary state obtained with the DP-rheology with
different mesh resolutions: n = 64 (h = 3.125 × 10−3m), n = 128 (h = 1.5625 × 10−3 m) and
n = 256 (h = 7.8125× 10−4 m). Note that the size of the finer mesh is of the order of the particle
diameter (0.7± 0.1 mm).
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Figure 6: Plot of the front position as a function of time during the spreading of the granular
mass. The front stops at t = 0.5 s while the upper part of the basal deposit still moves up to
t = 1.06 s where a stationary state is reached. Results from simulations using different mesh sizes
are shown and compared to the experimental measurement. Simulations in the computational
domain Ω = (0, 0.8)× (0, 0.2) are performed with the DP-rheology.

13



1 acceleration

(0, t1)

3 deceleration

(t2, t3)

2 constant velocity

(t1, t2)

4 deposit

(t3, tf )

Figure 7: The four stages of the granular mass collapse.

the bottom boundary is compulsory in order to obtain a good approximation of the interface at
the front end of the deposit. The simulation on the finer mesh was performed by using 16 MPI
processes during 9 days (waiting time). Note that the mesh size for n = 256 is h = 0.78125× 10−3

m, which corresponds to the diameter of the glass beads (d = 0.7± 0.1 mm).
A good agreement between simulated and experimental results is also obtained for the prediction

of the mass spreading as shown on figure 6. Only the last measured point (x = 0.4750 m) is missed
by the numerical simulations, which stop at 0.442 m for the finest resolution. Note that on the
last 1.5 centimeters, corresponding to 20 glass beads, the experimental deposit has a thickness of
the order of 0.8 mm, which means than the last visible particle locates at x = 0.4750 m. For a
numerical method solving a continuous fluid model with interface tracking, being able to capture
a front end of one mesh size high extended on 20 mesh sizes seems to be unattainable. We will
see in the next section that reducing the value of the viscosity ηs improves the approximation of
the runout distance. Despite this reasonably small discrepancy, the overall time history of the
front is accurately captured. Indeed, as in the experiment, four time phases are clearly identified:
the time interval (0, tf ), where tf is the time where steady state is reached, can be split into
four sub-intervals with bounds denoted by t1, t2, t3, tf (see figure 7). During the first stage, for
t ∈ (0, t1) s, acceleration occurs once the gate is lifted, then for t ∈ (t1, t2) s the front moves
forward at a constant speed. In the following phase t ∈ (t2, t3) s the flow decelerates and, finally,
over a longer time interval t ∈ [t3, tf ] s the front has reached the runout distance and does not
advance anymore, while the upper surface of the basal deposit still moves upwards very slowly
until it reaches the surface at t = tf = 1.06 s. From figure 6, we may infer values of the bounds
ti, i = 1, 2, 3: t1 ≈ 0.1 s, t2 ≈ 0.35 s and t3 ≈ 0.45 s. Note that during the last time interval,
t ∈ (0.45, 1.06) s, which is more than half of the whole time interval of the simulation, the motion
at the surface of the granular material is very slow while the front has already reached the runout
distance of the granular collapse. During the constant propagation speed phase the front is found
in the experiment to move at a speed equal to 0.775 m s−1 while the numerical simulations predict
a faster displacement ≈ 0.952 m s−1. This was also observed in Ionescu et al. (2015).

An important parameter in the numerical algorithm is the pseudo–relaxation coefficient θ added
in the Bingham projection in order to ensure geometrical convergence of the Picard’s algorithm
used to solve the coupling in (18) (see also Chupin & Dubois, 2016; Chalayer et al., 2018). This
parameter must be chosen sufficiently small in order to ensure that the plastic part of the stress
tensor is well resolved. The theory suggests that θ should be of the order of the time step δt (see
Chupin & Dubois, 2016; Chalayer et al., 2018) ensuring the time scheme to be first order accurate.
In practice, we found that using θ = 10 δt as value for this parameter provided accurate predictions
of the slump dynamics. This value is optimal in the sense that it reduces the computational cost
and ensures accurate results.
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Figure 8: Profile of the granular deposit at t = 1.06 s obtained for various values of the viscosity
ηs in the DP-rheology. The resolution corresponds to the finer mesh with h = 0.78125 × 10−3 m
and the computational domain is Ω = (0, 0.8)× (0, 0.2).
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Figure 9: Plot of the front position as a function of time during the spreading of the granular mass.
The front stops at t = 0.5 s. Results from simulations performed with the DP-rheology and using
different values of the viscosity ηs are shown and compared to the experimental measurement. The
computational domain is Ω = (0, 0.8)× (0, 0.2) and the mesh size is h = 0.78125× 10−3 m.
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Figure 10: Time evolution of the profile of the granular mass during its collapse obtained with the
DP-rheology and simulated with viscosity ηs = 0.1 Pa s (left) and ηs = 0.01 Pa s (right). The
computational domain is Ω = (0, 0.8)× (0, 0.2) and the mesh size is h = 0.78125× 10−3 m.
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Figure 11: Comparison of dynamic pressure p (in Pa) with respect to different viscosity values ηs

(in Pa s). The granular collapse is simulated with the DP-rheology. The numerical resolution is
h = 0.78125× 10−3 m and the computational domain is Ω = (0, 0.8)× (0, 0.2).

4.1.4 Influence of the value of the viscosity ηs on the numerical results

We conclude the analysis of the results obtained with the DP-model for the 0.7 aspect ratio column
by estimating the influence of the viscosity coefficient ηs. As it was mentioned in section 4.1.2,
all previously discussed simulations were conducted with the value 0.5 Pa s for ηs. This choice
was made following the estimates provided in Ionescu et al. (2015). Using smaller values of ηs will
attest the robustness of our code and of the implementation with a bi-projection scheme in the
framework of level-set method of the DP-model. From a physical point of view, as the value of
this granular viscosity is a priori not known, investigating the dependency of the results upon this
parameter is relevant. In order to complete our study, we performed simulations with ηs = 0.1 Pa
s and 0.01 Pa s. Note that in Ionescu et al. (2015), values of the viscosity for the DP-model, but
with a different numerical implementation, in the range [0.1, 10] Pa s have been used. The authors
mentioned that, for computational issues, they were not able to take smaller values of ηs. Setting
ηs = 0.01 Pa s with our parallel code did not induce any technical difficulty. The time step, for
stability reason, was divided by two and the number of MPI processes was doubled in order to keep
constant the computational costs. Figure 8 shows profiles of the granular mass at stationary state
obtained with the considered values of the viscosity and compared with the experimental one. First
of all, the overall distribution of the granular mass in the domain is weakly influenced by the value
of the viscosity. The best result is obtained with ηs = 0.01 Pa s for which an almost perfect match
with the experimental deposit is found. Indeed, the runout distance increases as ηs decreases and
almost matches the experimental value. Figure 9 indicates a convergence with respect to the value
of ηs. The height of the granular mass at the back wall is also well approximated: 0.1384 m, which
is only 1.5% below the experimental value. All profiles are very similar and close to each other.
The front of the granular mass propagates slightly faster for values of the viscosity smaller than
0.5 Pa s but the curves for ηs = 0.1 Pa s and 0.01 Pa s are close to each other up to t = 0.3 s
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Figure 12: Comparison between numerical (black solid curve) and experimental (pink dashed curve)
results of the collapse of a granular mass. The colour scale corresponds to the velocity Euclidean
norm |u| (in m s−1). The HP-rheology model is used. The numerical resolution is h = 0.15625×10−2

m and the computational domain is Ω = (0, 0.8)× (0, 0.2).

(see figure 9). Figure 9 is completed by figure 10, which shows profiles at different times during
the collapse obtained with ηs = 0.1 Pa s and ηs = 0.01 Pa s. Differences in the profiles occur in
the aera x ∈ [0.05, 0.1] m where the height of the granular flow is larger with ηs = 0.01 Pa s. As a
consequence, the slopes of the profiles are steeper for x ∈ [0.1, 0.2] m. The overall behaviour of the
collapse is well captured and values of the viscosity have minor effects on the flow dynamics.

On figure 11, we observe that the dynamic pressure is affected by the value of the viscosity.
Namely, in the area corresponding to the basal deposit, the pressure has less small-scale oscillations
for the simulations performed with the values ηs = 0.1 and 0.01 Pa s than with ηs = 0.5 Pa s. These
oscillations are persistent and still visible but mainly in the sublayer where the flow motion occurs.
These results are counter-intuitive as the DP yield stress, i.e. without viscosity, yields itself to an
ill–posed model.

As a summary, the dependency of the numerical results upon the value of ηs is very weak, thus
attesting the robustness of both the DP-rheology and the numerical implementation used in this
paper.

4.1.5 The HP-rheology

One of the objectives of this work is to compare the two usual pressure chosen as a threshold in the
viscoplastic rheology defined in (4). In the DP-model, κ = tan(α)p is used as yield stress where p
is the total pressure of the flow whereas in the HP-model the choice of the hydrostatic pressure

phyd(x, y) =

∫ top

y
ρ(x, z) g dz in the threshold κ = tan(α)phyd is made, where ”top” is the heigth

of the granular mass. The motivation for introducing the HP-model is that it has been proven
in Chupin & Mathé (2017) to be well-posed, unlike the DP-rheology. However, from the best
of our knowledge, the HP-model has never been used to perform simulations of the gravitational
collapse of a granular column. We hereafter investigate the applicability of the HP-rheology in
this context. The spatial resolution and the computational domain used are respectively n = 256
(h = 0.78125 × 10−3 mm) and Ω = (0, 0.8) × (0, 0.2). The viscosity ηs was set to 0.5 Pa s. As
shown on figure 12, the prediction, provided by the HP-rheology, of the shape of the granular

17



0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15 t = 0.06 s

0 600 1200 1800

p (Pa)

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15 t = 0.18 s

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15 t = 0.30 s

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15 t = 0.42 s

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15 t = 0.50 s

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15 t = 1.06 s

Figure 13: Pressure p (in Pa) at different times during the granular mass collapse computed with
the HP-rheology. The numerical resolution is h = 0.15625×10−2 m and the computational domain
is Ω = (0, 0.8)× (0, 0.2).

deposit at steady state is acceptable: the height at the back wall has the correct value, the slope
of the deposit downstream the left plateau is slightly larger than the expected one and, the runout
distance is underestimated by 24% compared to the experimental value. However, the HP-model
fails to reproduce the correct dynamics. After the acceleration phase, i.e. at t ≥ 0.18 s, a small
bump appears at the right upper corner of the granular mass. It further develops into a growing,
non physically relevant protuberance for t ∈ [0.3, 0.42] s. The strength of the threshold, being
vertically stratified by definition, is far too strong at the ground level and as a result the right
margin of the granular column moves very slowly as a block and the interface with air remains
vertical. Finally, a transition occurs for times in the interval [0.42, 0.5] s characterised by the fall
of the nose-like bump on the horizontal surface. Note that the phase near t = 0.42 s is critical and
difficult to capture with an interface tracking method as the slump moves down and touches the
ground. This shows the robustness of our implementation of the level set method in the context
of viscoplastic dambreak problems. Further in time, the front moves forward very slowly and the
stationary stage is reached for t ≈ 1.06 s as for the experiment and the DP-model simulations.
Note that as in the simulations with the DP-rheology, static and moving zones can be identified
from the values taken by the velocity and/or strain-rate norms (figure 13 and 14). Unlike the
DP-model, the pressure as well as the strain rate predicted by the HP-model are smooth and have
no oscillations (see figures 13 and 14). This is due to the fact that the model based on the HP-
rheology is well-posed and provides smooth solutions. Note however, that the order of magnitude of
these quantities are similar for both models. As a summary, the HP-model produces an acceptable
steady state (i.e. deposit) but fails to reproduce the dynamics of the granular slump. Moreover,
non physical solutions are observed during the transient phase. As it was previously done with the
DP-model, numerical simulations with values of the viscosity set to ηs = 0.1 Pa s and ηs = 0.01 Pa
s were performed. It can be seen on figure 15 that the value of the viscosity has an impact on the
runout distance: a smaller value of ηs increases the maximum distance reached by the HP-model
simulations. However, the transient profiles are also non physically relevant and the flow dynamics
is weakly influenced by the value of the viscosity and is therefore governed by the apparent viscosity
due to the yield stress.
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Figure 14: Strain rate |D(u)| (in s−1) at different times during the granular mass collapse computed
with the HP-rheology. The numerical resolution is h = 0.15625 × 10−2 m and the computational
domain is Ω = (0, 0.8)× (0, 0.2).
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Figure 15: Time evolution of the profile of the granular mass during the collapse obtained with
the HP-rheology and simulated with viscosity ηs = 0.1 Pa s (left) and ηs = 0.01 Pa s (right). The
numerical resolution is h = 0.15625×10−2 m and the computational domain is Ω = (0, 0.8)×(0, 0.2).

4.2 Collapse of a dry granular column with aspect ratio 2 over a smooth surface

4.2.1 Experimental setup

Note that from the best of our knowledge, the results presented below are the first ones comparing
numerical simulations with an experiment carried out by Roche et al. (2010) with an initial column
of width Lc = 20 cm and height Hc = 40 cm. Moreover, due to the fact that the aspect ratio of the
column is larger than unity, depth-averaged models can not be used. The glass beads used in this
case are ten times finer than the ones used in the previous experiment and have a (mean) diameter
d = 0.08 mm. The reservoir (0, Lc)× (0, Hc) is connected with a channel with a smooth base, which
is 10 cm wide and 3 m long, through a gate opened at t = 0 s. In our numerical simulations, the
gate is not modelled and we assume that the whole granular column is released at t = 0 s. The
particle density is ρp = 2500 kg m−3, which leads to an apparent flow density ρs = 1550 kg m−3 (a
mass volume fraction of 0.62 is taken into account). The static (inner) friction coefficient for the
considered glass beads is determined from 27◦, which is equal to the material repose angle (Roche,
2012).

4.2.2 Influence of the basal friction angle

The friction angle of the glass beads on the plexiglass plates of the channel is estimated by con-
sidering, at increasing slope angles, onset of motion of a layer of beads covered by a solid metal
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Figure 16: Profiles of the granular mass at the final time of the mass spreading obtained with the
DP-rheology for the (0, 0.2)× (0, 0.4) initial column. Profiles obtained with different basal friction
angles (14◦, 17◦ and 19◦) are shown and compared with the experimental result.

block. When the beads are free to roll, the block moves at an angle of 8◦± 1◦. Note that with this
technique, it is almost impossible to be sure that glass beads do not overlap and that the thickness
of the basal layer remains equal to the particle diameter during the test. Furthermore, the apparent
low friction angle is most certainly due to rolling of the particles. In contrast, when the layer of
glass beads is glued to the block, the onset of motion of the block occurs at an angle of 19◦, which
is assumed to be close to the friction angle between the beads and the plates. Notice that this
value was considered in Gueugneau et al. (2017). Unlike for the experiment at aspect ratio 0.7,
we assume that the friction angles for all contact surfaces, namely both the vertical back wall and
the bottom plate, have the same value, which is chosen close to 19◦ as stated above. In order to
estimate the influence of the basal friction angle on the dynamics of the granular mass slump, we
retained the three following representative values: 14◦, 17◦ and 19◦. On figure 16, we compare the
mass profiles at the final time, namely t = 1.36 s, of the collapse of the granular column obtained
with the DP-rheology, on a grid with 768 × 256 mesh points (h = 0.46/256 ≈ 1.8 mm); the time
step has to be set to δt = 10−4 s in order to ensure numerical stability. Note that in this case the
mesh size h is 22.5 times larger than the particle size. Using a mesh with two times more points
will increase the amount of computational resources (CPU time and number of MPI processes)
required but remain feasible. Nevertheless, using a mesh as fine as the glass beads as in section 2
is out of reach. Therefore, the choice of a grid with 768 × 256 mesh points is a good compromise
between the amount of computational resources involved and the waiting time to get simulations
done (8 days with 32 MPI processes).

Figure 16 shows that the values tan(17◦) and tan(19◦) for the basal friction coefficient give very
similar approximations of the profile of the final deposit, i.e. at t = 1.36 s. For these coefficients,
the runout distances are respectively underestimated by 9% and 17%. Close to the back wall,
i.e. for x ≤ 0.3 m, the numerical profile, obtained with tan(17◦), is 2.5% below the experimental
one while a perfect match is found with tan(19◦). With the smallest angle 14◦, the front stops at
1.205 m compared to 1.2 m for the experiment but the height of the granular mass on the interval
x ∈ [0, 0.35] m is underestimated by nearly 7%.
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Figure 17: Time evolution of the front position during the spreading of the granular mass. The
front stops at t = 0.9 s and the upper part of the basal deposit grows up to t = 1.36 s where a
steady state is reached. Results obtained with three different values of the basal friction angle (14◦,
17◦ and 19◦) are shown and compared with the experimental result.

The fact that the simulations with tan(17◦) and tan(19◦) match fairly well the experiment
suggests that the assumption of a particle-wall friction coefficient of tan(19◦) based on the test
with the sliding block is reasonable. In experiments, however, friction occurs also at the lateral
walls. The effect of the lateral walls is probably small because the height of the flowing layer becomes
increasingly small compared to the channel width when the granular mass spreads, but it is certainly
non-negligible. If lateral friction was considered in the simulations then at given friction coefficient
the runout distance, for instance, would be smaller than observed in the present simulations. In
consequence, lower coefficients would be required to match the experiment. This suggests that the
particle-wall friction coefficient is close to but less than tan(19◦). A possible explanation is that
the particles at the flow base in the experiment may have some rolling component whereas the
particles glued at the base of the solid block used for the test are truly static.

Also, according to the discussions in sections 4.1.3 and 4.1.4, the prediction of the runout
distance could probably be improved by using a finer spatial resolution and/or a smaller value of
the viscosity. Due to a larger computational cost, simulations with smaller values of ηs were not
performed for this experiment. Remember that the time step had to be divided by two in section
4.1.4, for ηs ≤ 0.1 Pa s. As a summary, the value tan(17◦) is a good compromise and is retained
for the simulations further discussed. Note that for this initial column, the final deposit clearly has
two slopes: a first one of 7◦ for x ≥ 0.5 m up to the front of the granular mass and a steeper one
of 29◦ for x ≤ 0.35 m. These slopes are well approximated by all simulations (see figure 16). As
for the previous experiment, the level-set method is able to predict a thin deposit near the front:
the angle between the surface of the deposit and the flat horizontal plate is very small. Indeed, we
respectively find 2.85◦, 3.5◦ and 4.85◦ for increasing values of the basal friction compared to 2.5◦

for the experiment. As a summary, dependence of the results upon the basal friction is weak and
the three different results are more than acceptable when compared to the experiment.

By looking at the time evolution of the front of the granular mass during the collapse shown on
figure 17, we deduce as in section 4.1.2 that the dynamics of the slump can be divided in four phases:
a short acceleration phase followed by a time period where the propagation speed of the front is
constant, then a deceleration phase and finally a long time period with a very slow motion until the
flow stops. Due to the fact that effects of the gate is not accounted for in our simulations, a small
time delay in the sliding of the front is visible during the acceleration period, that is for t ∈ [0, 0.15]
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s. In the second phase, that is t ∈ [0.15, 0.5] s, all the three basal friction coefficients provide curves
that can not be differentiated and are superposed with the experimental one until the deceleration
phase. The propagation speed is here better approximated than for the shorter column shown on
figure 6. However, simulations for the different values of the basal friction coefficient have slightly
different deceleration phases as they reach different runout distances.

4.2.3 Numerical results obtained with 17◦ as basal friction angle: comparison with
experiment.

According to the previous discussion, the basal friction coefficient is chosen equal to κb = tan(17◦)
for further analysis. On figure 18, profiles of the granular mass computed with the DP-model are
shown at different times during the collapse and compared with the experimental one. Except
during the acceleration phase, i.e. for t ≤ 0.16 s, where the experimental front is further advanced
than the numerical one, the numerical profiles are in good agreement with the experimental ones.
During the deceleration phase (t ≥ 0.4 s), the granular mass consists of two areas with different
surface slopes: a bend on the interface occurs at x ≈ 0.4 cm.

At the final (stationary) time t = 1.36 s, the slope of the interface at the back wall is particularly
well approximated by the numerical simulation. In the ranges x ∈ [0, 0.3] m and x ∈ [0.5, 1.1] m,
both profiles are almost identical while the profile predicted by the numerical simulation is slightly
below the experimental curve for x ∈ [0.3, 0.5] m. By looking at the norm of the velocity field |u|
(in m s−1) (in figure 18) and the strain rate |D(u)| (in s−1) (in figure 19), a basal deposit growing
with time is clearly visible. Also, as already observed for the 0.7 aspect ratio column, the motion
takes place in a thin surface layer. The velocity takes its largest values in a narrow zone behind
the front. The maximum velocity at the front is of the order of 1.6 m s−1.

Both the pressure (figure 20) and the strain rate (figure 19) exhibit short wave oscillations
during the whole collapse. As this was the case for the 0.7 aspect ratio column, despite these
oscillations the simulations remain stable and the pressure is bounded by ρsgHc ≈ 6082 Pa. As
it was discussed in section 4.1.2, pressure oscillations are well-known for the DP-rheology and are
related to the ill-posedness of the model. Nevertheless, the DP-model permits us to obtain accurate
simulations of the collapse of granular columns, which is somehow disturbing from a mathematical
point of view.

4.2.4 Structure of the granular flow and characteristics of the deposit

From measurements and analyses of experiments, it has been shown in Roche et al. (2010) and Roche
(2012) that the flow of a granular material during the collapse of column consists of a basal deposit
growing at a nearly constant rate and overlain by a moving layer with a sliding head where most
of the flow motion occurs. Following Roche (2012), we aim to characterise both the basal deposit
and the flow head by computing several related quantities and then by comparing numerical and
experimental results. It was somewhat difficult to find a good numerical criteria in order to define
the deposit zone and the moving layer. We used the velocity norm as discriminant quantity and
defined the basal deposit as the region inside the granular mass where the velocity norm was below
1% of its maximum value. On figure 21 the granular mass, at any time during its spreading, is
schematically split into a basal deposit extending from the back wall of the channel up to the
distance Ld + Lc where Ld is the length of the deposit measured from the gate, which is located
at x = Lc from the origin. The flow occurs in the layer above the basal deposit and below the
interface with ambient air: the dotted area on figure 21. The foremost part of this layer sliding on
the bottom wall is named the head of the granular flow and is characterised by the length Lh, which
is defined by: Lh = L−Ld where L is the total length of the granular mass measured from the gate.
As observed in the experiment, the length Lh of the sliding head increases, then reaches a plateau
and finally decreases as the time evolves (see figure 22, left curve). Note that a better agreement
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Figure 18: Comparison between numerical (black solid curve) and experimental (pink dashed curve)
results of the collapse of a granular mass. The colour scale corresponds to the velocity Euclidean
norm |u| (in m s−1) computed by using the DP-rheology. The numerical resolution is h = 1.796875×
10−3 m (n = 256), the computational domain is Ω = (0, 1.38) × (0, 0.46) and the basal friction
coefficient is κb = tan(17◦).
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Figure 19: Strain rate |D(u)| (in s−1) at different times during the granular mass slump simu-
lated with the DP-rheology. The numerical resolution is h = 1.796875 × 10−3 m (n = 256), the
computational domain is Ω = (0, 1.38)× (0, 0.46) and the basal friction coefficient is κb = tan(17◦).
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Figure 20: Pressure p (in Pa) at different times during the granular mass slump simulated with the
DP-rheology. The initial static state at t = 0 s is also shown. Note that a different scale is used for
the initial pressure, which takes a larger maximum value (≈ 6082 Pa). The numerical resolution is
h = 1.796875 × 10−3 m (n = 256), the computational domain is Ω = (0, 1.38) × (0, 0.46) and the
basal friction coefficient is κb = tan(17◦).

24



L x

H
y

0

Hc

Lc

gate

Ld Lh
L

Figure 21: Granular flow structure determined by the upper flow surface (bold black) and the
interface with the basal deposit (thin black). The wall contact surface between the granular flow
and the channel is shown in red. The dashed line represents the initial granular column. The length
of the granular mass on the x-axis, measured from the gate, L is decomposed into the basal deposit
length Ld and the length of the sliding head Lh.
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Figure 22: Structure of the granular flow for Hc/Lc = 2. Time evolution of the length of the sliding
head Lh (left). Lh/L represented as a function of the ratio Ld/Lf (right) where Lf is the runout
distance. Results obtained with basal coefficients tan(17◦) and tan(19◦) are compared with values
measured from the experiment.
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Figure 23: Structure of the granular flow for Hc/Lc = 2. Deposit area Ad (gray region on figure 21)
normalised by the total area A of the granular flow outside the reservoir as function of normalised
time (left) and position (right). The final time is tf = 1.36 s, i.e. where the experiment ends
and Lf is the runout distance. Results obtained with basal coefficients tan(17◦) and tan(19◦) are
compared with values measured from the experiment.
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Figure 24: Comparison between numerical (black solid curve) and experimental (pink dashed curve)
results of the collapse of a granular mass. The colour scale corresponds to the velocity Euclidean
norm |u| (in m s−1) computed by using the HP-rheology. The numerical resolution is h = 3.90625×
10−3 m (n = 128), the computational domain is Ω = (0, 4)×(0, 0.5) and the basal friction coefficient
is κb = tan(19◦).
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Figure 25: Profiles of the granular mass at different times, predicted by the HP-model. The
numerical resolution is h = 3.90625 × 10−3 m (n = 128), the computational domain is Ω =
(0, 4)× (0, 0.5), and the basal friction coefficient is κb = tan(19◦).

with the experimental curve is found when the basal coefficient is set to tan(19◦). Also shown on
figure 22 (right curve) is the ratio Lh/L, which decreases linearly with the distance Ld/Lf , where
Lf is the runout distance reached by the granular mass at stationary state, i.e. when the flow
motion ends (at time t = tf ). A very good agreement with the experimental values is obtained
both with tan(17◦) and tan(19◦).

The basal deposit can also be characterised by the area Ad (gray area on figure 21), which is
equal to the area of the deposit in the channel. The fraction of the basal deposit area Ad over the
area A of the whole granular material in the channel slowly increases during the stage of constant
speed propagation, that is for t ∈ (t1, t2), reaching approximately 20−25% (see figures 23). During
the last stages, Ad/A increases more rapidly until motion in the granular mass stops, so that
Ad = A. Note that the basal friction coefficient has a small influence on the results which are in
good agreement with the experimental values both with tan(17◦) and tan(19◦).
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Figure 26: Pressure p (in Pa) at different times during the granular mass slump simulated with
the HP-model. The numerical resolution is h = 3.90625 × 10−3 m (n = 128), the computational
domain is Ω = (0, 4)× (0, 0.5) and the basal friction coefficient is κb = tan(19◦).

4.2.5 The HP-rheology

As discussed previously (section 4.1.5), numerical simulations with the HP-model were performed
in order to evaluate its ability to reproduce the flow dynamics and the final deposit characteristics
for the collapse of the initial column with aspect ratio 2. As shown on figures 24 and 25, the
HP-model fails to reproduce both the flow dynamics and the final deposit. The runout distance is
underestimated by almost 50% though the height on the back wall is correctly predicted. Unlike
what was obtained with the DP-model, the shape of the final deposit is wrong as the HP-model
predicts a decrease of the granular mass with a constant slope (≈ 17◦) while two different slopes
should be found as mentioned in section 4.2.2. As already mentioned, the strength of the yield stress
defined as proportional to the hydrostatic pressure is stratified and far too strong, thus inhibiting
motion of the right foot of the column, which destabilises in a non-physical manner from above.
The simulation is stopped at t = 1.98 s, because at this time both the velocity and strain-rate
norms are sufficiently small to consider that a steady state has been reached. In contrast in the
experiment, the final time is found to be tf = 1.36 s. As expected and due to the well–posedness
of the HP-model, the computed dynamic pressure has no visible small-scale oscillations as the ones
produced by the DP-model (see figure 26). Note that the computational domain in this case was
extended in the horizontal direction up to L = 4 m (instead of 1.38 m for simulations with the
DP-model) for the following reason. Between t = 1.2 s and t = 1.5 s, the velocity speed in the
ambient air suddenly and locally increases close the front. This results in a fast and small vortex
sliding along the horizontal axis, visible on figure 27 for x ≈ 0.8 m. If the computational domain
is not long enough, so that dissipation of this vortex occurs before it reaches the domain exit,
numerical instabilities may develop and eventually lead to a blow-up.

5 Summary and conclusions

In an effort to improve the modeling of granular flows as a continuum and in order to go further
than previous numerical studies, the efficiency and behaviour of the viscoplastic rheology with
pressure-dependent threshold have been investigated in this study through the comparison with
experiments and other (published) numerical results when available. Two experiments of the col-
lapse of columns of glass beads, with diameters respectively equal to 0.7 mm and 0.08 mm, and
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Figure 27: Stream function in the ambient air, at times t = 1.20 s and 1.36 s, obtained with the HP-
model. The structure in the neighbourhood of x = 0.8 m moves right, artificially grows and leads to
a numerical instability if the computational domain is not long enough. Here, Ω = (0, 4)× (0, 0.5).

aspect ratios respectively equal to 0.7 and 2, were considered. For the latter, numerical simulations
are presented and analysed for the first time. In that case, depth-averaged models are likely to be
less accurate as the aspect ratio exceeds the unity.

Two viscoplastic models have been retained for this study. They both have constant viscosity
but different yield stress: the Drucker-Prager (DP) yield stress is proportional to the dynamic
pressure of the flow while the yield stress in the hydrostatic pressure (HP) model depends on
the static pressure derived from the flow height. The HP-model is known to be well–posed while
the DP-model is ill-posed and leads to small-scale instabilities. Nevertheless, the latter has been
shown to be able to reproduce the main features of experimental granular mass collapse presented
in previous publications (Ionescu et al., 2015; Martin et al., 2017). One of the objective of this
paper was to evaluate the efficiency of the HP-model by comparing numerical simulations with
experiments and with DP-model simulations.

A level-set formulation for the momentum and mass conservation equations is used. The in-
terface between the granular material and the ambient air is tracked with high-order schemes and
with an appropriate treatment near boundaries. Coulomb friction boundary conditions are applied
on the walls so that sliding of the front during the spreading of the granular mass is allowed. The
non-differentiability of the yield stress rheology is handled with a projection formulation allowing
a computation of the plastic part of the stress tensor through a fixed point procedure having a
geometric convergence. Using the level-set method for the collapse of a granular column is chal-
lenging as this method is known to have difficulties to reproduce accurately the sliding of a front
on a wall. In the present study, the level-set method coupled with Coulomb friction conditions on
the horizontal wall is able to capture a very thin front of the granular mass, almost as thin as the
experimental one.

Despite its ill-posedness, the DP-model provides accurate predictions of the dynamics, the
runout distance and the shape of the granular mass during the collapse for both experiments. In
the case with aspect ratio 0.7, the mesh size was decreased down to the diameter of the glass beads
(0.7 mm) and a remarkably accurate prediction of the interface between the granular flow and the
ambient air is recovered. Sensitivity of the results with respect to the viscosity is also investigated.
When the viscosity is decreased, convergence of the numerical results is observed and more accurate
runout distances are obtained. In the area close to the vertical back wall, the numerical results
perfectly fit the experimental ones. The four different stages characterising granular mass spreading
and observed in experiments are well predicted by the DP-model. Also, the granular mass during
its collapse is known to separate into a basal deposit over which flows a thin layer of materials with
a sliding head. For the taller initial column, the internal dynamics of the granular mass, namely the
static-mobile interface between the basal deposit and the flowing layer, is well captured and a good
agreement with the experiment is found. We present for the first time numerical quantification of
the static and moving parts of a granular material during its spreading.

On the other hand, the well-posed HP-model completely fails to reproduce the dynamics of
the granular mass collapse. Intermediate profiles are not physically relevant because the vertically
stratified yield stress is too strong and inhibits sliding of the front, so that the granular column
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destabilises from the top. Surprisingly, an acceptable final deposit is predicted for an initial column
with aspect ratio 0.7, although the runout distance is underestimated, but this is no longer the
case when the aspect ratio exceeds the unity.

In order to develop further the present work, columns with larger aspect ratios could be consid-
ered and simulations with finer resolutions could be investigated in the case of beads smaller than
0.08 mm. We plan also to extend our code to three-dimensional geometries, possibly with lateral
walls. Interesting test cases are the collapse of 3D columns and fast flows on inclined planes for
which lateral walls may have non negligible effects (see Brodu et al., 2015).
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Declaration of Interests. The authors report no conflict of interest.

References

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dal-
cin, L., Dener, A., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., May,
Dave A., McInnes, Lois Curfman, Tran Mills, R., Munson, T., Rupp, K., Sanan, P.,
Smith, B.F, Zampini, S., Zhang, H. & Zhang, H. 2018a PETSc users manual. Tech. Rep.
ANL-95/11 - Revision 3.10. Argonne National Laboratory.

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
May, Dave A., McInnes, Lois Curfman, Tran Mills, R., Munson, T., Rupp, K.,
Sanan, P., Smith, B.F, Zampini, S., Zhang, H. & Zhang, H. 2018b PETSc Web page.
http://www.mcs.anl.gov/petsc.

Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. Journal of
Fluid Mechanics 538, 399–428.

Barker, T. & Gray, J.M.N.T. 2017 Partial regularisation of the incompressible µ(I)-rheology
for granular flow. J. Fluid Mech. 828, 5–32.
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