

Secure voice communications over voice channels

Presented by: Piotr Krasnowski

PhD supervised by: Prof. Bruno Martin, Dr. Jerome Lebrun and Arnaud Graube

 ${\rm DGA~supervision:~Thierry~Plesse}$ DGA Cifre-Defense program No 01D17022178 DGA/DS/MRIS

4 December 2019, Seoul

Security of voice communications

VoIP apps like **Signal** or **Telegram** are gaining popularity ...

... but are insecure against malware on the phone

" (...) governments around the world use digital spying tools designed for criminal investigations and counterintelligence to target journalists, human rights defenders, and others " Citizen Lab, 2017

Alternative: Crypto Phones

- closed and unverifiable systems
- expensive and not flexible

Project Outline

Figure: $CBOX^{TM}$ by BlackBoxSecu.

Characteristics:

- end-to-end voice encryption
- audio-to-audio processing
- real-time operation

Key technologies:

- 1. Data over voice channels
- 2. Key Exchange over voice channels
- 3. Speech encryption over voice channels (in progress)

Project Outline

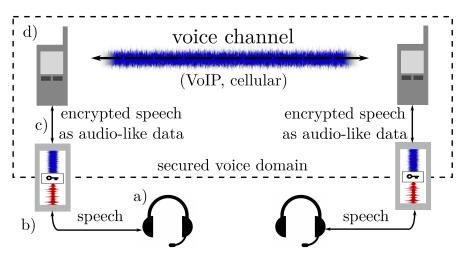
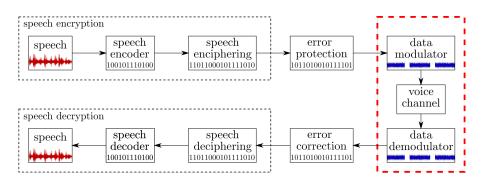



Figure: Encrypted voice over voice channel scheme.

1. Data over voice channels

How to send data over voice channels?

Digital voice channels

Elements of digital voice channels:

- Speech compression AMR, Speex, Silk ...
- Quality of Service Voice Activity Detection (VAD), Adaptive Gain Control (AGC), Noise Suppression (NS) ...

Objective of voice channels:

- to preserve speech **intelligibility**
- with an acceptable loss of **subjective** quality

Voice characteristics

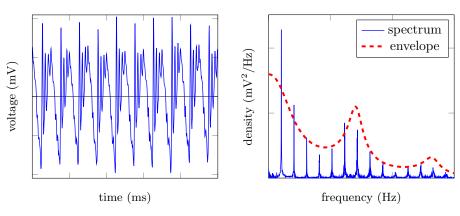
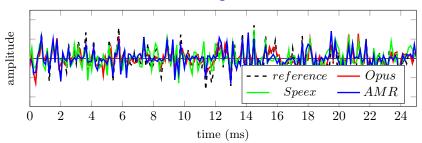
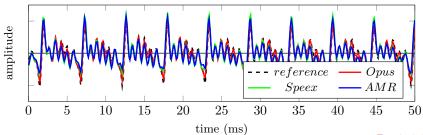




Figure: Vowel /a/ in time domain.

Figure: Vowel /a/ in frequency domain.

Voice compression

Linear Predictive Coding (LPC)

- most popular speech coding technique (AMR, Silk, Speex...)
- used in 2G-5G networks and VoIP (Skype, WhatsApp, Signal...)
- based on a model of speech production mechanism

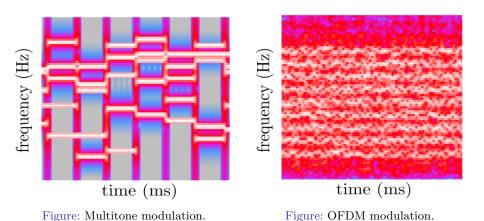
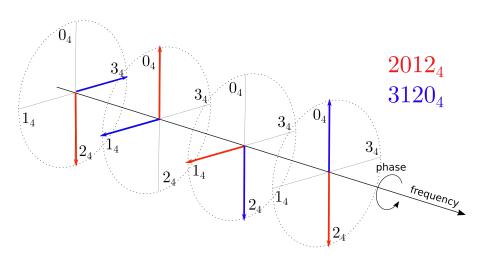

Pitch Period Impulse Train Vocal Tract Generator Parameters Voiced/ Time-Varying Unvoiced Digital Filter u[n]s[n]Switch H(z)Random Noise Generator

Figure: Vocal tract^a.


Figure: LPC synthetizer^a

^a Lawrence et al. Theory and applications of digital speech processing. 2011_1355 BLACKBOXSECU

Multiharmonic signals over voice channels

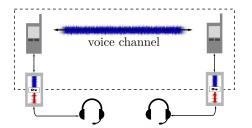
OFDM and quaternary error correction codes

Performance of DoV

Application	Bitrate	Error rate	
3G	1.6 - 3.2 kbps	$\approx 1\%$	
Skype	3.2 - 6.4 kbps	$\approx 0.1\%$	
WhatsApp	3.2 - 6.4 kbps	$\approx 0.1\%$	
Signal	3.2 - 6.4 kbps	$\approx 0.1\%$	

Enough to send voice in real time!

Codec2: 700 bps, 1200 bps, 1400 bps, 1600 bps **MELP:** 300 bps, 600 bps, 1200 bps, 2400 bps


2. Key Exchange over voice channels

Challenges:

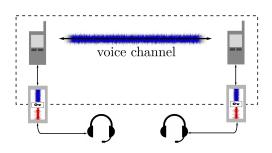
- No Trusted Third Party
- Small bandwidth and signal fading
- Half-duplex analog interfaces
- Large round-trip time $\sim 2s$

Requirements:

- Strong authentication
- Session Key secrecy
- Perfect Forward Secrecy
- Flexible and simple!

What the adversary can do?

Very likely:


- Eavesdrop the traffic
- Distort the channel

Possibly:

- Replay messages
- Modify messages
- Perform the MITM attack
- Hijack the device

Assumption:

• Ephemeral values secure

ECDHE with Short Authentication Strings

Setup:	1 : Alice	$\longleftrightarrow \begin{array}{c} A/B \text{ role} \\ \\ \text{negotiation} \end{array}$	Bob
	$N_A \leftarrow \mathbb{Z}_{32}^*$		$N_B \leftarrow \mathbb{Z}_{32}^*$
	$d_A \leftarrow \mathbb{Z}^*_{256}$		$d_B \leftarrow \mathbb{Z}^*_{256}$
	$Q_A = d_A G$		$Q_B = d_B G$
	$R_A \leftarrow_{\$} \mathbb{Z}^*_{128}$		$R_B \leftarrow_{\$} \mathbb{Z}_{32}^*$
Key Exchange:	2:	$\xrightarrow[h_{128}(ID_A N_A Q_A R_A)]{ID_A, N_A, Q_A}$	
	$3: Z = d_A Q_B$	$\leftarrow ID_B, N_B, Q_B, R_B$	$Z = d_B Q_A$
	$4:K_S=h_{256}(Z\ \bullet)$	$\xrightarrow{R_A}$	$K_S = h_{256}(Z \bullet)$
Acknowledgment:	5:	← ACK	
Vocal Verification:	$6: SAS = h_{32}(\spadesuit)$	$\xleftarrow{SAS \text{ vocal}}$ $\xrightarrow{\text{comparison}}$	$SAS = h_{32}(\spadesuit)$

$$\phi \equiv R_A ||R_B||ID_B||Q_B||N_B$$

$$\bullet \equiv ID_A ||N_A||ID_B||N_B$$

ECDHE with Signature Authentication

Setup:
$$1: \textbf{Alice} \longleftrightarrow \begin{array}{c} A/B \text{ role} \\ negotiation \\ N_A \leftarrow \mathbb{Z}_{32}^* \\ d_A \leftarrow \mathbb{Z}_{256}^* \\ Q_A = d_A G \\ \end{array} \qquad \begin{array}{c} N_B \leftarrow \mathbb{Z}_{32}^* \\ d_B \leftarrow \mathbb{Z}_{256}^* \\ Q_B = d_B G \\ \end{array}$$

$$Key \text{ Exchange:} \qquad 2: \\ 3: Z = d_A Q_B \longleftrightarrow \begin{array}{c} ID_A, N_A, Q_A \\ ID_B, N_B, Q_B \\ \hline Sign_{S_B}(^{\mathsf{B}}\mathsf{B}'||\mathbb{A}||\mathbb{V}) \\ \hline Acknowledgment:} \qquad 5: \\ \end{array} \qquad \begin{array}{c} ACK \\ \end{array}$$

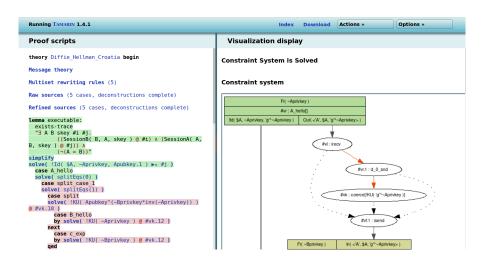
$$Acknowledgment: \qquad 5:$$

$$\Delta \equiv ID_A || N_A || Q_A \qquad \bullet \equiv ID_A || N_A || ID_B || N_B
\nabla \equiv ID_B || N_B || Q_B$$

ECDHE with Double Authentication

Setup:	1 : Alice	$\xleftarrow{ \text{A/B role} }$ $\xrightarrow{ \text{negotiation} }$	Bob
	$N_A \leftarrow_{\$} \mathbb{Z}_{32}^*$		$N_B \leftarrow_{\$} \mathbb{Z}_{32}^*$
	$d_A \leftarrow \mathbb{Z}^*_{256}$		$d_B \leftarrow \mathbb{Z}^*_{256}$
	$Q_A = d_A G$		$Q_B = d_B G$
	$R_A \leftarrow \mathbb{Z}^*_{128}$		$R_B \leftarrow \mathbb{Z}_{32}^*$
Key Exchange:	2:	$\xrightarrow[h_{128}(ID_A N_A Q_A R_A)]{ID_A, N_A, Q_A}$	
	$3: Z = d_A Q_B$	$\leftarrow \frac{ID_B, \ N_B, \ Q_B, \ R_B}{Sign_{S_B}(\mathrm{'B'}\ \blacktriangle \ \blacktriangledown)}$	$Z = d_B Q_A$
	$4:K_S=h_{256}(Z\ \bullet)$	$\xrightarrow{R_A} \xrightarrow{Sign_{S_A}({}^{\backprime}\mathbf{A}^{\backprime}\ \blacktriangledown\ \blacktriangle)} \to$	$K_S = h_{256}(Z \bullet)$
Acknowledgment:	5:	← ACK	
Vocal Verification:	$6: SAS = h_{32}(\blacklozenge)$	$\xrightarrow{SAS \text{ vocal}}$ $\xrightarrow{\text{comparison}}$	$SAS = h_{32}(\blacklozenge)$

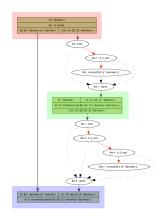
 $abla \equiv ID_B ||N_B||Q_B$


 $\blacktriangle \equiv ID_A ||N_A||Q_A \qquad \bullet \equiv ID_A ||N_A||ID_B||N_B$

Security verification

- 1. Are my ciphers secure?
- 2. Is my protocol secure? symbolic model verification
- 3. Is my implementation secure?

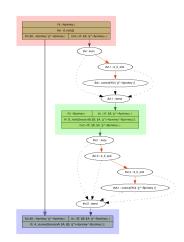
symbolic model analysis Tamarin, ProVerif, AVISPA ...


Tamarin Prover

Tamarin Prover

Tamarin code: Protocol diagram:

```
theory Diffie Hellman Croatia
begin
builtins: diffie-hellman
rule A hello:
    let
        Apubkey='g'^~Aprivkey
    [Fr(~Aprivkey)]
    [!Id($A,~Aprivkey,Apubkey),
      Out(<'A',$A,Apubkey>)]
rule B hello:
    let
        Boubkev='a'^~Borivkev
        skey=Apubkey^~Bprivkey
    [ Fr(~Bprivkey),
      In(<'A',A,Apubkev>) 1
    -- [SessionB(SB.A.skev)]->
    [Out(<'B',$B,A,Bpubkey>)]
rule A receive:
    let
        skev=Bpubkev^~Aprivkev
    // !Id($A.~Aprivkev.Apubkev)
       In(<'B', B, $A, Bpubkey>) 1
    -- [SessionA(SA.B.skev)]->
lemma executable:
 exists-trace
  "Ex A B skev #1 #1.
   SessionB(B,A,skey) @ i &
   SessionA(A,B,skev) @ i &
   not( A = B )"
end
```

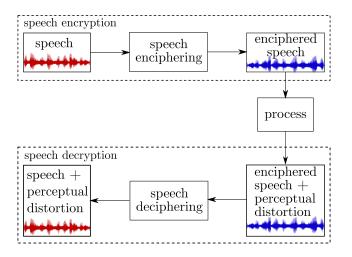


Lemma - example

lemma secrecy:

```
"All Alice Bob secret #i .
AliceSession(Alice, Bob, secret) @ i
==> /* implies */

Ex #j. BobSession(Bob, Alice, secret) @ j
& /* and */
/* adversary never knows the secret */
not(Ex #k. KU(secret) @ k)"
```



Security properties verified by Tamarin

Table: Security properties verified by Tamarin in four authentication scenarios.

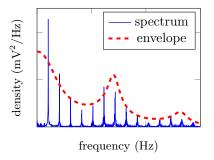
Authentication scenario:	mutual signature	unilateral signature	vocal verification	nothing
Session Key secrecy	✓	✓	✓	Х
forward secrecy	✓	✓	✓	X
injective agreement	✓	✓	✓	X
reflection attack	✓	✓	Х	X
key compromise	,			
impersonation	'	•	-	-

3. Fully joint speech encryption over voice channels (in progress)

Distortion-tolerant speech encryption

Encryption properties:

- perceptually-oriented
- distortion-tolerant
- format-preserving
- lossy

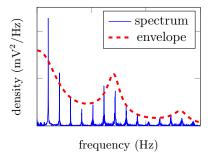

Main challenges to solve:

- 1. what parameters to encrypt?
- 2. how to encrypt?
- 3. how to synthesize the signal?

Towards a perceptually linear space of speech signals

Perceptual parameters of speech:

- loudness
- pitch
- timbre

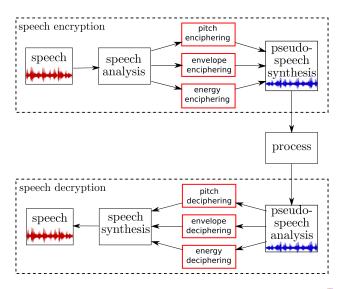

Signal parameters:

- signal energy
- fundamental frequency
- \approx spectral envelope

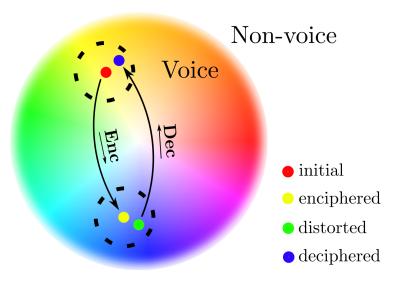
Towards a perceptually linear space of speech signals

Perceptual parameters of speech:

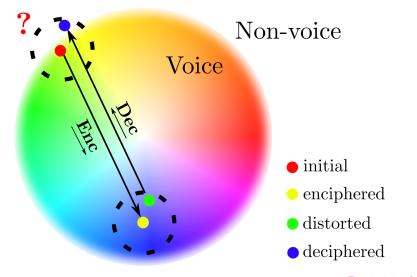
- loudness
- pitch
- timbre


Signal parameters:

- signal energy
- fundamental frequency
- \approx spectral envelope


Perceptually (almost) linear representation:

- logarithm of energy
- log. scaled fundamental freq.
- 10-13 MFCC coefficients
- + boundaries


Towards a distortion-tolerant encryption

Towards a distortion-tolerant encryption

Encryption by random translation

What next?

- Improving the quality of synthesized speech.
 LPC-Net: A Real-Time Neural Vocoder (J.M. Valin, 2018)
- 2. Investigation into homomorphic encryption schemes. introducing more operations on encrypted speech homomorphic signal processing
- 3. Investigation into different speech representations. male-female-child, phonemic

Questions?