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ENVY-FREE CAKE CUTTING:

A POLYNOMIAL NUMBER OF QUERIES

WITH HIGH PROBABILITY

GUILLAUME CHÈZE

Abstract. In this article we propose a probabilistic framework in order to
study the fair division of a divisible good, e.g. a cake, between n players. Our
framework follows the same idea than the “Full independence model” used in
the study of fair division of indivisible goods. We show that, in this framework,
there exists an envy-free division algorithm satisfying the following probability
estimate:

P
(

C(µ1, . . . , µn) ≥ n7+b
)

= O

(

n−
b−1

3
+1+o(1)

)

,

where µ1, . . . , µn correspond to the preferences of the n players, C(µ1, . . . , µn)
is the number of queries used by the algorithm and b > 4. In particular, this
gives

lim
n→+∞

P
(

C(µ1, . . . , µn) ≥ n12
)

= 0.

It must be noticed that nowadays few things are known about the complexity
of envy-free division algorithms. Indeed, Procaccia has given a lower bound in

Ω(n2) and Aziz and Mackenzie have given an upper bound in nn
n
n
n
n

. As our
estimate means that we have C(µ1, . . . , µn) < n12 with a high probability, this
gives a new insight on the complexity of envy-free cake cutting algorithms.

Our result follows from a study of Webb’s algorithm and a theorem of Tao and
Vu about the smallest singular value of a random matrix.

Introduction

In this article we study the problem of fair resource allocation. It consists to
share an heterogeneous good between different players or agents. This good can
be for example: a cake, land, time or computer memory. This problem is old. For
example, the Rhind mathematical papyrus contains problems about the division of
loaves of bread and about partition of plots of land. In the Bible we find the famous
“Cut and Choose” algorithm between Abraham and Lot, and in the greek mythol-
ogy we find the trick at Mecone. More recently, the “Cut and Choose” protocol
has been used in the United Nations Convention on the Law of the Sea (December
1982, Annex III, article 8).

The problem of fair division has been formulated in a scientific way by Steinhaus
in 1948, see [33]. Nowadays, there exist several papers, see e.g. [1, 5, 6, 20, 21, 22,
25, 27, 30, 38], and books about this topic, see e.g. [3, 7, 28, 31]. These results
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2 CHÈZE, G.

appear in the mathematics, economics, political science, artificial intelligence and
computer science literature. Recently, the cake cutting problem has been studied
intensively by computer scientists for solving resource allocation problems in multi
agents systems, see e.g. [8, 12, 13, 24].

Throughout this article, the cake will be an heterogeneous good represented by
the interval C = [0, 1]. This assumption is classical and not restrictive for our study.
We also consider n players and we associate to each player a non-atomic probability
measure µi on the interval C = [0, 1]. More precisely, we suppose that the measures
µi are absolutely continuous with respect to the Lebesgue measure. These measures
represent the preferences, the utility functions of the players. We have µi(C) = 1
for all i.
The problem in this situation is to get a fair division of C = C1 ⊔ . . . ⊔ Cn, where
the i-th player get Ci.

When we study fair divisions, we have to precise what is the meaning of “fair”.
Indeed, several notions exist.

• We say that a division is proportional when for all i, we have

µi(Ci) ≥ 1/n.

• We say that a division is equitable when for all i 6= j, we have

µi(Ci) = µj(Cj).
• We say that a division is exact in the ratios (α1, α2, . . . , αn), where αi ≥ 0
and α1 + α2 + · · ·+ αn = 1, when for all i and j we have

µi(Cj) = αj .

• We say that a division is envy-free when for all i 6= j, we have

µi(Ci) ≥ µi(Cj).
A practical problem is the computation of fair divisions. In order to describe
algorithms we thus need a model of computation. There exist two main classes
of cake cutting algorithms: discrete and continuous protocols (also called moving
knife methods). Here, we study discrete algorithms. These kinds of algorithms
can be described thanks to the classical model introduced by Robertson and Webb
and formalized by Woeginger and Sgall in [40]. In this model we suppose that a
mediator interacts with the agents. The mediator asks two type of queries: either
cutting a piece with a given value, or evaluating a given piece. More precisely, the
two type of queries allowed are:

(1) evali(x, y): Ask agent i to evaluate the interval [x, y]. This means return
µi([x, y]).

(2) cuti(x, a): Ask agent i to cut a piece of cake [x, y] such that µi([x, y]) = a.
This means: for given x and a, return y such that µi([x, y]) = a.

In the Robertson-Webb model the mediator can adapt the queries from the previ-
ous answers given by the players. In this model, the complexity counts the number
of queries necessary to get a fair division. For a rigourous description of this model
we can consult: [9, 40].
We can remark that this model of computation does not take into account the na-
ture and the number of operations performed by the mediator. The BSSRW model
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of computation introduced in [16] allows to avoid these drawbacks.

The first studied notion of fair division has been proportional division, [33]. Pro-
portional division is a simple and well understood notion. In [33] Steinhaus explains
the Banach-Knaster algorithm which gives a proportional division. There also exists
an optimal algorithm to compute a proportional division in the Robertson-Webb
model, see [21, 22]. The complexity of this algorithm is in O

(

n log(n)
)

. Further-
more, the portion Ci given to the i-th player in this algorithm is an interval.

Exact divisions in the ratios (α1, . . . , αn) exist for all ratios (α1, . . . , αn). The
existence of this kind of fair division follows from a convexity theorem given by
Lyapounov, see e.g. [20]. When we have αi = 1/n, for all i, we just say that the
division is exact. Unfortunately, there exist no algorithm to compute exact divi-
sions, see [31].
Equitable fair division is of the same kind. Indeed, there exist equitable fair di-
visions where each Ci is an interval, see [10, 14, 32]. However, there do not exist
algorithms computing an equitable fair division, see [11, 15, 29].

Envy-free fair division is difficult to obtain in practice. Indeed, whereas envy-free
fair divisions where each Ci is an interval exist, there does not exist an algorithm
in the Robertson-Webb model computing such divisions. These results have been
proved by Stromquist in [34, 35].
The first envy-free algorithm for n players has been given by Brams and Taylor in
[6]. This algorithm has been given approximatively 50 years after the first algo-
rithm computing a proportional fair division. The Brams-Taylor algorithm has an
unbounded complexity in the Robertson-Webb model. This means that we cannot
bound the complexity of this algorithm in terms of the number of players only. It
is only recently that a finite and bounded algorithm has been given to solve this

problem, see [1]. The complexity of this algorithm is in O
(

nnn
n
n
n
)

. When n = 2,

nnn
n
n
n

is bigger than the number of atoms in the universe. . . A lower bound for
envy-free division algorithm has been given by Proccacia in [26]. This lower bound
is in Ω(n2).

We can remark that there is a huge difference between the complexity in the

worst case O
(

nnn
n
n
n
)

and the lower bound Ω(n2). Therefore a natural question

arises:

Can we design an envy-free algorithm such that in practice the number of queries

is smaller than nd, where d is a given degree, with a high probability ?

In order to answer to this question we have to define a probabilistc framework.
When we consider indivisible goods there exist two probabilistic models, see e.g. [4].

The first model is the Full correlation model. In this model we suppose that
all agents have the same preference and all preferences are equiprobable. When
we want to share several indivisible goods, this case corresponds to the worst case.
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However, in the cake cutting situation, if we suppose that µ1 = . . . = µn then we
can easily obtain an envy-free division. Indeed, we ask to the first player to cut
the cake in n equals portions. Thus the full correlation model is not an interesting
model in the cake cutting situation.
The second model in the indivisible goods setting is the Full independence model.
In this model we suppose that all preferences are equiprobable and that all agents
have independent preferences. In the cake cutting setting, in order to obtain a
similar situation we consider the following construction:

First, we divide the interval [0, 1] into n witness intervals Wj = [(j − 1)/n, j/n],
where j = 1, . . . , n.
Second, we remark that for all probabilistic measures µi on [0, 1], the vector
(

µi(W1), . . . , µi(Wn)
)

belongs to the standard (n − 1)-simplex. Indeed, as µi is a
probabilistic measure we have for all j = 1, . . . , n, µi(Wj) ≥ 0, and

µi(W1) + · · ·+ µi(Wn) = µi(W1 ⊔ . . . ⊔Wn) = µi([0, 1]) = 1.

When we consider a random measure µi, it is natural to suppose that all witness
intervals play the same role. For example, there is no reason to suppose that the
players usually prefer the first part W1 of the cake.
Our probabilistic framework is thus the following:

We suppose that the distribution of
(

µi(W1), . . . , µi(Wn)
)

follows a uniform dis-

tribution over the standard (n− 1)-simplex.

A classical way to obtain a uniform distribution on the standard (n− 1)-simplex
is the following, see [19, Theorem 4.1]: Consider n independent random variables
Xi with probability density function fi(x) = e−x. Set S =

∑n
i=1 Xi and Yi = Xi/S,

then (Y1, . . . , Yn) follows the uniform distribution on the standard (n− 1)-simplex.

Furthermore, we are going to suppose that agents have independent preferences.
This means for example that µ1(Wj) is independent of µ2(Wj).
Thus, in the cake cutting situation the Full independence model means that we
suppose that the following hypothesis holds:

(H): Taking randomly a matrix of the following kind

M =







µ1(W1) . . . µ1(Wn)
... . . .

...

µn(W1) . . . µn(Wn)







means that we consider a random matrix M = (mij) where

mij =
Xij

∑n
j=1 Xij

and Xij are independent exponential random variables, i.e. with a probability den-

sity function fij(x) = e−x.

We remark that we have define what is a random matrix M =
(

µi(Wj)
)

and
that we do not have define what is a random measure. Indeed, instead of taking
random measures and then construct the matrix M, we have directly define the
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probability distribution for the matrix M. This approach allows to obtain a simple
and explicit probabilistic framework.

In the following, we are going to study an envy-free fair division algorithm. We
will denote by C(µ1, . . . , µn) the number of queries used by this algorithm when
the inputs are µ1, µ2, . . . , µn.

Theorem 1. If we suppose that the hypothesis (H) is satisfied, then we have the

following result:

There exists a protocol in the Robertson-Webb model of computation giving an envy-

free fair division and such that for all b > 4 we have the following probability

estimate

P
(

C(µ1, . . . , µn) ≥ n7+b
)

= O
(

n− b−1

3
+1+o(1)

)

.

This theorem says: the bigger the number of queries, the smaller the probability.

We recall that f(n) = O
(

g(n)
)

means that there exists a constant C and an
integer n0 such that for all n ≥ n0, we have |f(n)| ≤ Cg(n).
The notation o(1) refer to a function f(n) such that limn→+∞ f(n) = 0.

Examples:

• If we choose b = 5 then

−b− 1

3
+ 1 + o(1) = −1

3
+ o(1).

When n is big enough we can suppose o(1) < 1/6 and then in this case

O
(

n− b−1

3
+1+o(1)

)

= O
(

n−1/6
)

.

This gives
lim

n→+∞
P
(

C(µ1, . . . , µn) ≥ n12
)

= 0.

• If we choose b = 11 then

−b− 1

3
+ 1 + o(1) = −7

3
+ o(1).

When n is big enough we can suppose o(1) < 1/3 and then in this case

O
(

n− b−1

3
+1+o(1)

)

= O
(

n−2
)

.

Thus Theorem 1 gives

P
(

C(µ1, . . . , µn) ≥ n18
)

= O
( 1

n2

)

.

These bounds are not very sharp but they give a precise statement of the following
idea: when n is big the probability that the algorithm uses more than n12 (or n18)
queries is very small.

Strategy of the algorithm and structure of the paper

The algorithm proposed in this article is just a slight modification of Webb’s super
envy-free division algorithm. Webb’s algorithm constructs an envy-free division
from the matrix M =

(

µi(Wj)
)

when det(M) 6= 0. The algorithm that we propose
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works as follows: if det(M) 6= 0 then use Webb’s algorithm else use another envy-
free algorithm.
When the hypothesis (H) is satisfied the probability that det(M) = 0 is equal to
zero. Thus, in practice our algorithm almost always corresponds to Webb’s algo-
rithm. As the number of queries needed in Webb’s algorithm can be written in
terms of the smallest singular value of M, the strategy to prove Theorem 1 relies
on a probabilistic study of the smallest singular value of M.

The structure of this article in thus the following:
In the first section, we recall what is a super envy-free fair division and we also recall
Webb’s super envy-free algorithm. Then, we give our algorithm. In Section 2, we
study the number of queries used by this algorithm. This leads us to recall some
standard results on singular values of a matrix and to write the complexity of the
algorithm in terms of the smallest singular value of the matrix M. In Section 3, we
use a theorem of Tao and Vu, see [36], about the probability that M have a small
singular value. This theorem will be the key point in the proof of Theorem 1.

1. The algorithm

1.1. Super envy-free algorithm. Super envy-free fair division is a strong kind
of envy-free division. This notion has been introduced and studied by Barbanel,
see [2, 3].

Definition 2. We say that a division is super envy-free when for all i 6= j, we have

µi(Ci) >
1

n
> µi(Cj).

This definition says that this division is proportional and all players think to
have stricly more than other players. Of course, this kind of fair division is not
always possible. For example, if µ1 = µ2 = · · · = µn, then the previous inequality
is not possible. Indeed, we cannot have µ1(C1) > 1/n > µ2(C1) = µ1(C1).
However, a super envy-free fair division exists when the measures µi are linearly
independent.

Definition 3. Let µ1, . . . , µn be n measures on a measurable set (C,B), where B
is the Borel σ-algebra. We say that these measures are linearly independent when
they are linearly independent as functions from B to [0, 1].

Theorem 4 (Barbanel’s theorem). A super envy-free division exists if and only if

the measures µ1, . . . , µn are linearly independent.

In the following we are going to use a witness matrix in order to know if the
measures are linearly independent.

Definition 5. The witness matrix associated to the measures µ1, . . . , µn is the
matrix M =

(

µi(Wj)
)

where Wj is the interval [(j − 1)/n, j/n] and j = 1, . . . , n.

Remark 6. If det(M) 6= 0 then the measures µ1, . . . , µn are linearly independent.

In [39], Webb gives a strategy to compute super envy-free fair division. In order
to recall this strategy, we recall what is a ε near-exact fair division.
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Definition 7. Let A be a measurable subset of C.
We say that a division ofA = A1⊔. . .⊔An is ε near-exact in the ratios (α1, α2, . . . , αn),
where αi ≥ 0 and α1 + α2 + · · ·+ αn = 1, when for all i and j we have

∣

∣

∣

µi(Aj)

µi(A)
− αj

∣

∣

∣ < ε.

Now, we can describe Webb’s algorithm.

Super Envy-free fair division algorithm

Inputs: A partition C = A1 ⊔ . . .⊔An, a matrix M0 = (mij) where mij = µi(Aj),
M0 is non-singular.
Ouputs: A super envy free division C = C1 ⊔ . . . ⊔ Cn.

(1) Compute M−1
0 = (m̃ij).

(2) Set δ :=
n− 1

n(1− tn)
where t = mini,j(m̃ij).

(3) Set N := (nij), where nii := 1/n+ δ and nij = 1/n− δ/(n− 1).

(4) Compute R = (rij) := M−1
0 N .

(5) For j = 1, . . . , n do
Compute a ε = δ/n2 near-exact fair division ofAj in the ratios (rj1, . . . , rjn),
this gives Aj = Aj1 ⊔ . . . ⊔ Ajn.

(6) For all i = 1, . . . , n do
Ci := A1i ⊔ A2i ⊔ . . . ⊔Ani.

We remark that in Step 2, we have t ≤ 0. Indeed, if t > 0 then the equality
M0M−1

0 = I is impossible, because the coefficients mij are non-negative. There-
fore in Step 2, we have δ > 0. The formula used to define δ implies that the
coefficients rij of R are non-negative. It is a straightforward computation to check
that the coefficients rij also satisfy

∑n
j=1 rij = 1.

In order to explain this algorithm, suppose that in Step 5 we compute an exact
fair division in the ratios (rj1, . . . , rjn) instead of an ε near- exact fair division with
these ratios. Then, by construction the partition C = C1 ⊔ . . . ⊔ Cn as the following
property µi(Cj) = nij . This gives µi(Ci) = 1/n+ δ and µi(Cj) = 1/n− δ/(n− 1).
Thus this partition gives a super envy-free division.
In practice, the computation of an exact fair division in the ratios (rj1, . . . , rjn)
is impossible, since it has been proved that such algorithms cannot exist, see [31].
That is the reason why a ε near-exact algorithm is used. Indeed, a ε near-exact
algorithm in the Robertson-Webb model exists, see [31, Theorem 10.2]. Therefore
the idea is to choose a small enough ε in order to obtain a result very close to the
theoretical result where ε = 0. Thus, we obtain in practice a partition where µi(Cj)
are very close to nij and then the division is super envy-free.

The number of queries used by the ε near-exact division algorithm is at most
n× (2 + 2n3/2)/ε, see [31, Theorem 10.2]. As already remarked in [31], this bound
can be improved . However, we just want to get a bound on C(µ1, . . . , µn) in terms
of a polynomial in n, thus this estimate is sufficient.
Therefore, the number of queries used by Webb’s super envy-free algorithm is at
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most n4 × (2 + 2n3/2)/δ, since ε = δ/n2 and in Step 5 we compute n ε-near-exact
fair divisions. Thanks to the definition of δ we get the following lemma.

Lemma 8. The number of queries used by the super envy-free division algorithm

in the Robertson-Wenn model is bounded by

n5 × (2 + 2n3/2)× (1 − tn)

n− 1
∈ O

(

|t|n6.5
)

.

1.2. An envy-free algorithm.

Envy-free fair division algorithm

Inputs: A cake C = [0, 1], n measures µ1, . . . , µn.
Ouputs: An envy free division C = C1 ⊔ . . . ⊔ Cn.

(1) % Construct the matrix M = (mij) where mij = µi(Wj). %
For all i = 1, . . . , n, do

For all j = 1, . . . , n do
mij := evali(Wj).

(2) If det(M) = 0 then compute an envy-free fair division algorithm thanks to
Aziz-Mackenzie’s algorithm,
Else compute a super envy-free fair division algorithm thanks to Webb’s
algorithm.

Remark 9. When det(M) = 0, we have to use an algorithm different from Webb’s
algorithm . Indeed, in this caseWebb’s algorithm is not defined (we cannot compute
M−1). Furthermore, it is not necessary to use Aziz-Mackenzie’s algorithm. The
bound given in Theorem 1 will not change if we use another envy-free algorithm
when det(M) = 0.

2. Complexity analysis

The number of queries used by our envy-free division algorithm is O
(

|t| × n6,5
)

when det(M) 6= 0. In the next subsection, we are going to bound |t| by σ−1
n where

σn is the smallest singular value of M. Then, in the second subsection, we use an
estimate on the probability P(σn ≤ n−b) in order to prove our theorem.

2.1. The smallest singular value. We recall here the definition and a simple
result about the singular values of a matrix.

Definition 10. The singular values of a matrix M are the square roots of the
eigenvalues of MTM. They are denoted by σ1(M) ≥ · · · ≥ σn(M).

Remark 11. We have det(M) = 0 ⇐⇒ σn(M) = 0.

The smallest singular value allows to bound the coefficients of the inverse of a
matrix.

Proposition 12. Let M be a non-singular matrix, such that M−1 = (m̃ij).
Let σn(M) be the smallest singular value of M. We have

max
ij

(

|m̃ij |
)

≤ ‖M−1‖2 = σ−1
n (M).

Proof. This is a classical result, see [23, Formula 2.3.8 page 56] and [18, Theo-
rem 3.3]. �
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The previous proposition allows us to obtain an upper bound on the complexity
of the super envy-free algorithm in terms of σn(M).

Corollary 13. When n ≥ 19, the number of queries used by the super envy-free

division algorithm in the Robertson-Webb model is bounded by

n7 ×max
(

1, σ−1
n (M)

)

.

Proof. We have already remarked that in Step 2 of the super envy-free algorithm
we have t = mini,j(m̃ij) ≤ 0. Then Proposition 12 gives

−t = |t| ≤ max
i,j

|m̃ij | ≤ σ−1
n (M).

Then Lemma 8 implies that the number of queries used by the super envy-free
division algorithm in the Robertson-Webb model is bounded by

n5 × (2 + 2n3/2)× (1 + nσ−1
n (M))

n− 1
.

As we have supposed that n ≥ 19, we get

2 + 2n3/2

n− 1
≤ n

2
.

Then, we have

n5 × (2 + 2n3/2)× (1 + nσ−1
n (M))

n− 1
≤ n6

2
× (1 + nσ−1

n (M))

≤ n7

2

(

1 + σ−1
n (M)

)

≤ n7 ×max
(

1, σ−1
n (M)

)

.

�

The singular value σn(M) measures how farM is from a singular matrix. There-
fore, if σn(M) is small then the measures µi are nearly linearly dependent and the
previous corollary shows that the number of queries is big. This result satisfies the
general result: if the agents have “very different” preferences it will be easier to get
an envy-free fair division. A precise statement of this result with an explicit bound
has been given in [17, Corollary 17].

2.2. Proof of Theorem 1.

We consider the event C(µ1, . . . , µn) ≥ n7+b.
During the envy-free algorithm two situations appear:

First, det(M) 6= 0, then in this situation the algorithm used the super envy-free
algorithm. Thanks to Corollary 13, the number of queries used in this situation
satisfies

n7+b ≤ C(µ1, . . . , µn) ≤ n7 ×max
(

1, σ−1
n (M)

)

.

As n > 1, it follows

nb ≤ σ−1
n (M).

This means that we have the following inclusion

(⋆) {det(M) 6= 0} ∩ {C(µ1, . . . , µn) ≥ n7+b} ⊂ {σn(M) ≤ n−b}.
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The second situation corresponds to det(M) = 0. Thus the second situation
corresponds to σn(M) = 0 and obviously σn(M) ≤ n−b. This gives the following
inclusion

(⋆⋆) {det(M) = 0} ⊂ {σn(M) ≤ n−b}.
Thanks to (⋆) and (⋆⋆) we get

{C(µ1, . . . , µn) ≥ n7+b} ⊂ {σn(M) ≤ n−b}.
We deduce then the following inequality between probabilities

P
(

C(µ1, . . . , µn) ≥ n7+b
)

≤ P
(

σn(M) ≤ n−b
)

.

In the next section we are going to prove the following proposition.

Proposition 14. If we suppose that hypothesis (H) is satisfied then the following

holds:

Let b > 4 be a constant, then there exists a constant c > 0 depending on b such that

P
(

σn(M) ≤ n−b
)

≤ c
(

n− b−1

3
+1+o(1) + ne−

√
n + n2e−

√
n−1

)

.

In order to finish the proof of Theorem 1, we remark that for all b > 4 we have

ne−
√
n + n2e−

√
n−1 = O(n− b−1

3
+1). Therefore, we get

P
(

C(µ1, . . . , µn) ≥ n7+b
)

≤ P
(

σn(M) ≤ n−b
)

= O
(

n− b−1

3
+1+o(1)

)

,

which gives the desired estimate.

3. An estimate for P(σn(M) ≤ n−b)

In this section we prove Proposition 14.
In order to bound P

(

σn(M) ≤ n−b
)

, we are going to introduce some notations.
As we suppose that hypothesis H is satisfied we have

M = DX ,

whereD is the diagonal matrix with coefficients in the i-th row equal to 1/(
∑n

j=1 Xij),
X is the matrix with coefficients Xij and Xij are indepent exponential random vari-
ables with probability density function fij = e−x.

We also consider the two following events:

A = {σn(M) ≤ n−b} ∩ {σn(D) ≤ n−3/2}.

B = {σn(M) ≤ n−b} ∩ {σn(D) ≥ n−3/2}.
Obviously, we have

(♯) {σn(M) ≤ n−b} = A ∪B.

Now, we are going to bound P(A) and P(B).

Lemma 15. We have

P(A) ≤ ne−
√
n.
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Proof. We have A ⊂ {σn(D) ≤ n−3/2}. Thus

P(A) ≤ P
(

σn(D) ≤ n−3/2
)

.

As D is a diagonal matrix with coefficients 1/(
∑n

j=1 Xij), we have

σn(D) ≤ n−3/2 ⇒ min
i

( 1

Xi1 + · · ·+Xin

)

≤ n−3/2

⇒ X11 + · · ·+X1n ≥ n3/2

⇒ ∃i,X1i ≥
√
n.

We set Ai = {X1i ≥
√
n}, we have

A ⊂ ∪n
i=1Ai.

Furthermore,

P(Ai) =

∫ +∞

√
n

e−xdx = e−
√
n.

Therefore, we get

P(A) ≤
n
∑

i=1

P(Ai) = ne−
√
n.

�

In order to to give a bound on P(B) we are going to use the following theorem
due to Tao and Vu, see [36], and see also the erratum in [37].

Theorem 16. Let Y be a random variable with mean zero and bounded second

moment, and let γ ≥ 1/2, a ≥ 0 be constants. Then there is a constant c depending

on Y , γ, and a such that the following holds. Let Y be the random matrix of size

n whose entries are independent and identically distributed copies of Y , let M be a

deterministic matrix satisfying ‖M‖2 ≤ nγ. Then

P
(

σn(M + Y) ≤ n−(2a+2)γ+1/2
)

≤ c
(

n−a+o(1) + P
(

‖Y‖2 ≥ nγ
)

)

.

In the following we will need the following lemma.

Lemma 17. Let A and B be two n× n matrices, we have

σn(A)× σn(B) ≤ σn(AB).

Proof. When M is an n×n matrice we have ‖M−1‖−1
2 = σn(M), see [18, Theorem

3.3]. Thus

1

σn(AB) = ‖(AB)−1‖2 = ‖B−1A−1‖2 ≤ ‖B−1‖2 × ‖A−1‖2.

Therefore σn(AB) ≥ ‖B−1‖−1
2 × ‖A−1‖−1

2 , which gives the desired result. �

Proposition 18. There exists a constant c such that the following holds

P(B) ≤ c
(

n− b−1

3
+1+o(1) + n2e−

√
n−1

)

.
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Proof. With our notations we have M = DX and by Lemma 17 we have

(⋆) σn(D)× σn(X ) ≤ σn(M).

If the event B is realized then by definition we have

σn(M) ≤ n−b and σn(D) ≥ n−3/2.

The inequality (⋆) implies

σn(X ) ≤ n−b+3/2.

We set C = {σn(X ) ≤ n−b+3/2}. We have thus shown B ⊂ C.
Now, we are going to applied Theorem 16 to σn(X ).
We set Y = X − 1, where X is the exponential distribution with the probability
density function f(x) = e−x.
Furthermore, we denote by M the n× n matrix with all its entries equal to 1. We
denote by Y = (Yij) the n×n matrix where its coeffcients Yij are independent and
identicaly distributed copies of Y . Therefore, the matrix M +Y corresponds to our
matrix X .
Furthermore, we remark easily that we have ‖M‖2 = n. Then we can set γ = 3/2.
Now, we are giving a bound on P

(

‖Y‖2 ≥ n3/2
)

. We recall the classical bound, see
[23],

‖Y‖2 ≤ nmax
i,j

|Yij |,

where Y = (Yij). Therefore, we have

‖Y‖2 ≥ n3/2 ⇒ max
i,j

|Yij | ≥
√
n.

We denote by Ci,j the following set

Ci,j = {|Yij | ≥
√
n}.

We deduce then the following inclusion

{‖Y‖2 ≥ n3/2} ⊂ ∪n
i,j=1Ci,j .

By definition of Y, we have Yij = Xij − 1 where Xij follow the exponential distri-
bution. Therefore Xij ≥ 0 and

|Yij | ≥
√
n ⇐⇒ |Xij − 1| ≥ √

n ⇐⇒ Xij ≥
√
n+ 1.

This gives

P(Ci,j) = P
(

|Yij | ≥
√
n
)

= P(Xij ≥
√
n+ 1) =

∫ +∞

√
n+1

e−xdx = e−
√
n−1,

it follows

P
(

‖Y‖2 ≥ n3/2
)

≤
n
∑

i,j=1

P(Ci,j) ≤ n2e−
√
n−1.

Then Theorem 16 gives

P

(

σn(M + Y) ≤ n−3(2a+2)/2+1/2
)

≤ c
(

n−a+o(1) + n2e−
√
n−1

)

.

By construction, we have M + Y = X , then if we set

−b+
3

2
= −(2a+ 2)× 3

2
+

1

2
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then we have

a =
b − 1

3
− 1

and

P
(

σn(X ) ≤ n−b+3/2
)

≤ c
(

n− b−1

3
+1+o(1) + n2e−

√
n−1

)

.

�

Now, we can prove Proposition 14.
Thanks to (♯), we have P(σn(M) ≤ n−b) ≤ P(A) + P(B).
Furthermore, by Lemma 15 and Proposition 18, there exists a constant c such that

P(σn(M) ≤ n−b) ≤ P(A) + P(B) ≤ c
(

n− b−1

3
+1+o(1) + ne−

√
n + n2e−

√
n−1

)

,

which gives the desired result.

Conclusion

We have shown that, with high probability, the use of an unbounded algorithm
can be more efficient than a bounded algorithm. Indeed, in Webb’s algorithm we
cannot bound the number of queries in term of the number of players, but if we
use this algorithm in our probabilistic framework, then P

(

C(µ1, . . . , µn)
)

≥ n19
)

is
small.
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