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Abstract. The Transient Fluctuation Theorem is used to calibrate an Atomic
Force Microscope by measuring the fluctuations of the work performed by a time
dependent force applied between a colloidal probe and the surface. From this
measure one can easily extract the value of the interaction force and the relevant
parameters of the cantilever. The results of this analysis are compared with those
obtained by standard calibration methods.
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In the measurement of forces in micro and nano
devices, the calibration of the apparatus may be
difficult and several techniques are used to improve the
accuracy of the instruments[1, 2, 3, 4, 5, 6, 7]. The
purpose of this letter is to show that using stochastic
thermodynamics, we can impose on the measured
results extra constrains, which may be useful either
as an alternative method of calibration or simply as a
test.

Stochastic thermodynamics extends the laws of
thermodynamics to small systems where the role
of thermal fluctuations cannot be neglected [8,
9]. Indeed in these systems not only the mean
values of thermodynamic quantities, such as the
work, the heat and the entropy, are important but
also their fluctuations and their probability density
functions (pdf). Many experimental studies have been
performed in the recent years to check the theoretical
predictions and to use them for several applications
[8]. One of the most important results of stochastic
thermodynamics is the Transient Fluctuation Theorem
(TFT)[10], which imposes some general constrains on
the pdf of the work performed on a system by external
forces. Specifically if the system is in an equilibrium
state and a force F is applied at time t = 0 then
the TFT states that the pdf P(Wτ ) of the work
Wτ performed by F (t) in a time τ has the following
property:

ln

(
P(Wτ )

P(−Wτ )

)
=

Wτ

kBT
, ∀τ (1)

where kB is the Boltzmann constant and T the
temperature of the heat bath. It is important to notice
that for the TFT the system at time t = 0, when the
force F (t) is applied, must be in equilibrium. In this
letter we will show how the constrains imposed by TFT
can be used to perform calibrated force measurements
with an Atomic Force Microscope (AFM) and to check
the standard calibration methods. We have applied
eq. 1 to the work performed by an external force on
an AFM cantilever in a viscous environment. We will
show that using eq. 1 we can easily extract the value
of the force without knowing the value of the stiffness
of the cantilever and the value of the viscous damping.

The experiments are performed using a home
made AFM which is characterized by a calibrated
measurement and a high resolution: the deflection
x of the cantilever is read by a quadrature phase

Vd

x

d

Figure 1. Experimental set-up. A polystyrene bead is glued
at the tip of the cantilever using UV cured glue. The bead,
the cantilever and the surface are coated with gold, so that a
voltage Vd can be used to apply a force. The deflection x is read
with a differential interferometer, sketched here by the two laser
beams [5].

differential interferometer, featuring an intrinsic floor
noise of about 10−14m/

√
Hz [5, 11]. We use commercial

silicon AFM cantilevers (Nanoandmore PPP-ContAu-
10) at the tip of which a polystyrene bead is glued. A
gold layer is then coated on the sphere/cantilever set to
ensure electrical continuity. The cantilever is typically
450 µm long, 50µm wide and 2 µm thick. The bead
radius is R = 76.0(5) µm, measured in a SEM before
the experiments.

The cantilever is placed in a cell which can be
filled either with a liquid or with nitrogen. The bead is
placed above a gold coated glass plate. We use a sphere
plane interaction to have a well defined geometry
that allows us to check the experimental results. A
schematic diagram of the set-up is presented in fig. 1. A
piezoelectric actuator with an integrated displacement
sensor allows the control, with an accuracy of 0.2 nm,
of the distance d between the sphere and the plane.
The gold coating on both surfaces allows us to apply
a voltage difference V between them. This voltage
creates an electrostatic attractive force on the bead,
which for d� R takes the form:

Felec =
πε0R

d
V 2 (2)

where ε0 is the vacuum permittivity [12, 13]. Felec

can be used as a test force and as a way to measure
d by comparing the response of the cantilever to the
applied voltage. However one has to take into account
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that independently from the applied voltage, a contact
potential Vc exists between the gold coatings of the
bead and the surface. Vc induces an offset in the total
voltage which is unknown because it depends on the
surface quality [11, 6]. Thus, in eq. 2, V = Vc + Vd
where Vd is the externally applied voltage and Vc must
be experimentally determined.

Using the piezoelectric actuator, the surface is
brought close to the bead, at a distance d ' 2 µm. At
this distance d� R and eq. 2 can be safely applied to
determine the interaction force and check the results.

In order to use the TFT for calibration, a square
wave voltage between Vd = 0 V and Vd = Vsq at 5 Hz is
applied between the sphere and the plane (see fig. 2).
This corresponds to the application of an electrostatic
force Felec of eq. 2 which periodically changes from Fi
at V = Vc to Fsq at V = Vsq + Vc. Note that the
deflection x is very small (x � d), so that to a very
good approximation d can be considered as a constant
during all the protocol, hence the force is also a square
wave. Each plateau is much longer than the relaxation
time τrelax ≈ 20 ms of the cantilever to insure that
before each step of Vsq the cantilever is relaxed to
equilibrium. The position x(t) of the cantilever and
the applied voltage Vsq(t) are sampled for about 20
minutes at 50 kS/s.

Using these data, the value of the force jump
F = Fsq−Fi can be measured using eq. 1 without any
knowledge of the contact potentials Vc, the distance d
and the cantilever stiffness k. In order to measure F
one has to compute the work Wτ performed by F in
the time τ after each rise. Since F is constant,

Wτ = F

∫ τ

0

ẋ dt = F ∆Xτ (3)

where ∆Xτ = xf (τ) − xi(0) is the difference between
the final value xf at time τ and the initial value xi just
before the rise of Vsq. Since the protocol is equivalent
when the applied force goes up or down, the analysis
also uses both directions to accumulate more data. F
being constant, we can write that P(Wτ ) ∝ P(∆Xτ ).
Thus eq. 1 can be rewritten as:

Φ(∆Xτ ) =
F

kBT
∆Xτ , ∀τ (4)

where the symmetry function Φ is defined as:

Φ(∆Xτ ) = ln

(
P(∆Xτ )

P(−∆Xτ )

)
(5)

In eq. 4 the only unknown is F which can be
determined by a linear fit of Φ(∆Xτ ) versus ∆Xτ .
The symmetry function Φ can be easily determined
by measuring for each rise of the square wave ∆Xτ

and by computing its pdf P(∆Xτ ). An example of the
resulting distribution, taken over a full experiment is
shown in fig. 3.

Figure 2. The response of the cantilever driven by a square
wave force: deflection of a single experiment (blue), and average
over 20 minutes (green). xi is a reference point taken on the
equilibrium state before the square wave rise.

Figure 3. The distribution of P(∆X) and a Gaussian fit,
measured at Vsq = 250 mV. The histogram is computed using
the values of all τ > 2τrelax.

The corresponding Φ(∆Xτ ) is plotted in fig. 4
as a function of ∆Xτ and the slope of the linear fit
is a measure of F/kBT . We present three different
values of τ : 1 ms, right after the force jump, 10 ms,
during the relaxation of the cantilever and 90 ms,
in the equilibrium plateau. As expected from the
TFT, Φ(∆Xτ ) is independent of the value of τ . The
important point here is that, once the temperature T
is known, this force measurement based on TFT is
independent of any calibration of the device (except
x) and on the viscous dissipation. It also allows us to
recover the value of the stiffness k, the distance d and
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Figure 4. The symmetry function Φ(∆Xτ ) at different times
τ : aggregate of all τ (blue), 1 ms (red), 10 ms (yellow), 90 ms
(green). As expected from the TFT (eq. 4), Φ is linear in ∆Xτ .
Its slope is F/kBT , and as shown in the inset the value of F
deduced is independent on τ , even if the system has not relaxed
to equilibrium.

the contact potential Vc as we show in the following.
It has to be pointed out that, as P(∆Xτ ) is

Gaussian (see fig. 3) the function Φ(∆Xτ ) in eq. 4 takes
a simple form:

Φ(∆Xτ ) = 2
〈∆Xτ 〉
σ2
τ

∆Xτ (6)

where 〈∆Xτ 〉 is the mean value of ∆Xτ and στ its
standard deviation. From eq. 4 and eq. 6 we get:

F = 2kBT
〈∆Xτ 〉
σ2
τ

(7)

For the linear fit of Φ and in eq 6 and 7, the value of
〈∆Xτ 〉 and στ are computed using the values for all τ
and thus do not depend on τ anymore.

This allows for fast force measurements, because
the estimation of F using eq. 7 is less affected than the
linear fit (fig. 4) by the low statistics on the values of
Φ(∆Xτ ) far from the mean 〈∆Xτ 〉. The two methods
(the linear fit and the Gaussian approximation) give
the same results.

To estimate the dependence on d of the force F ,
measured using the TFT for an applied voltage Vsq =
250 mV, we repeat the measure at different distances
by displacing the plane with the piezo. The results are
shown in fig. 5 where we plot 1/F versus the distance
d controlled by piezo. We define the origin of distance
such that d = 0 when 1/F = 0. d calibrated in this way
now reflects the real sphere / plane distance, with an
uncertainty of ±40 nm estimated from the linear fit at
distances larger than 1 µm which are very safe to avoid
surfaces damage. We recover the trend Fsq ∝ 1/d as
expected from equation 2.

Figure 5. The inverse of the force 1/F measured with the TFT
for an applied voltage Vsq = 250 mV at distances d between 1µm
and 2 µm, and linear fit. The linear trend expected from equation
2 is recovered. The origin of the horizontal axis is chosen so that
1/F = 0 when d = 0.

Figure 6. The ratio ∆F/Vsq as a function of Vsq and the
estimation of the contact potential Vc.

Let us now estimate the contact potential by using
the quadratic dependence of F in Vc:

F = A[(Vsq + Vc)
2 − V 2

c ] = A(Vsq + 2Vc)Vsq (8)

with A = πε0R/d according to eq. 2. Thus one
can obtain Vc and A by doing a linear fit of the
function F/Vsq versus Vsq, whose values, measured at
d = 1.95 µm, are plotted in fig. 6. The fit gives Vc =
194(15) mV, and a slope A = 1.01(8)× 10−9 N/V2.
The expected value for A at d = 1.95 µm and R =
76 µm is 1.08× 10−9 N/V2, in good agreement with
the measured one. The contact potential Vc is
here independant of the distance d, because d
does not vary much in our experiment so we can
consider Vc constant, which is consistant with
fig. 5.

Furthermore, as Vc is known, the measurements
of F as a function of d plotted in fig. 5 can be
used to measure the prefactor B = πε0R(V 2 − V 2

c )
in eq. 2 where V = Vsq + Vc. The slope of 1/F
versus d in fig. 5 is B−1 = 2.85(9)× 1015 N−1m−1

in good agreement again with the expected value of
2.97(14)× 1015 N−1m−1 (where the uncertainty comes
from that on Vc).

It is important to stress again that all these results
have been obtained without knowing the stiffness of
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Vsq F (pN) FGauss k (N/m) kGauss

(mV) (pN) (N/m)
From eq. 4 9 7 10

50 21.4 21.4 0.398 0.398
100 51.0 50.9 0.400 0.399
150 84.3 83.6 0.400 0.396
200 122.8 117.1 0.413 0.394
250 154.9 160.6 0.388 0.402

Table 1. Values of the force and stiffness obtained using the
TFT with and without the Gaussian approximation. This gives
an average value across the experiments of k = 0.400(8) N/m
and kGauss = 0.398(3) N/m.

Figure 7. The power spectrum density Sx of the deflection
when the cantilever is subjected to an electrostatic driving at
ωd = 2π 40 rad/s. The quadratic dependency in voltage is
evidence by the narrow peaks at ωd (term V0Vc in eq. 13) and
2ωd (term in V 2

0 ). The rest of the spectrum is only thermal noise
driven. The SHO fit is performed on a 1 kHz window around the
first resonance of the cantilever. The second resonance peak
corresponds to the first torsion mode. The 1/f noise at low
frequency is due to the viscoelasticity of the gold coating and is
not taken into account in the SHO model [14].

the cantilever and without making any model of the
cantilever dynamics and of the contribution of the high
order modes to the measurements. However from the
previous measurement the stiffness can be measured
using TFT as

k = F/〈∆X〉 (9)

where F is measured using the slope of Φ(∆Xτ ) and
eq. 4. Another estimation of k can be computed using
the Gaussian approximation (eq. 7):

k =
2kBT

σ2
τ

(10)

The values resulting from the measurements at
different voltages and obtained by using the linear fit
(eqs. 4 and 9) and the Gaussian approximation (eqs.
7 and 10) are shown in table 1.

In spite of the fact that the TFT gives us an
accurate and precise description of the interaction we

check the results using standard calibration techniques.
The AFM cantilever is described by a simple harmonic
oscillator (SHO) of stiffness k, mass m, and viscous
damping coefficient γ. Its transfer function is:

G(ω) =
x̃(ω)

F̃ (ω)
=

1

k −mω2 + iγω
(11)

where the tilde designs Fourier transform and ω =
2πf the angular frequency. The thermal noise power
spectrum density in deflection Sx of such an SHO is

Sx(ω) =
2kBTγ

π

1

(k −mω2)2 + γ2ω2
(12)

The value of the stiffness k = 0.40(2) N/m extracted
from the SHO fit of the experimental data of fig. 7 can
be cross-checked by the direct measure of the variance
x(t) which is related to k by the energy equipartition:
k = kBT/〈x2〉. Both methods give a stiffness equal
within error bars to the one estimated using TFT.

To measure the distance and contact potential, we
can use a technique derived for Kelvin Probe Force
Microscopy, applying a voltage Vd = V0 cos(ωdt) to the
cantilever. The force in the Fourier Space is:

F (ω) =
πε0R

d

[
(V 2
c +

V 2
0

2
)δ(ω) + 2V0Vcδ(ω − ωd) +

V 2
0

2
δ(ω − 2ωd)

]
(13)

The psd of x in presence of the electric forcing is
plotted infig. 7, showing two peaks at ωd and 2ωd.
The response at 2ωd is only caused by the applied
voltage and allows for a measurement of the distance,
whereas the term at ωd couples the applied voltage
to the contact potential and allows us to measure Vc
[11, 6].

Using eqs. 11 and 13 at ω = 2ωd, we have:

x̃(2ωd) = G(2ωd)
πε0R

d

V 2
0

2
(14)

d = G(2ωd)πε0R
Ṽ 2(2ωd)

x̃(2ωd)
(15)

The term Ṽ 2(2ωd)/x̃(2ωd) is numerically computed
as the transfer function between V 2(t) and x(t).
This method is used to measure the distances during
the experiments in good agreement with the values
measured with TFT.

Using eqs. 11 and 13 at ω = ωd, we have:

x̃(ωd) = G(ωd)
πε0R

d
2V0Vc (16)

Vc =
1

G(ωd)

d

2πε0R

x̃(ωd)

Ṽ (ωd)
(17)

Vc =
1

2

G(2ωd)

G(ωd)

Ṽ 2(2ωd)

x̃(2ωd)

x̃(ωd)

Ṽ (ωd)
(18)

The term x̃(ωd)/Ṽ (ωd) is obtained as the transfer
function between the measured deflection x(t) and the
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applied voltage V (t). This gives a reference value for
the contact potential of Vc = 207(5) mV, again in very
good agreement with the value measured by TFT.

As a conclusion, we have shown that the TFT
is a useful tool to check the accuracy of a force
measurement by an AFM cantilever. It is independent
of the viscosity and of the stiffness calibration of
the system. The results are in perfect agreement
with those of other methods with a comparable
accuracy. Other techniques inspired by stochastic
thermodynamics could be used but they are slightly
more complex and we presented the TFT as a proof of
principle experiment.

The proposed method can be applied as soon
as the measurement of the deflection x is calibrated.
This is straightforward for an interferometric AFM as
we have used, as long as the measurement laser is
carefully tuned at the tip position. For more common
AFM setups and unknown tip-sample interaction, a
calibration of the sensitivity of the detector (usually a 4
quadrant photodiode) should be performed separately,
for example using a force curve on a hard surface.

Colloidal probes, as the one used in this letter, are
commonly used in many applications, such as chemical
sensing and detection, intermolecular or adhesion
forces measurement[15], elasticity characterisation in
biology or soft matter, magnetic detection, etc. In
this very well defined sphere plane geometry, for a
known interaction at d � R it is possible to extract
also the sensitivity if R is known. One has to use
the force versus distance and force versus potential
measurements (see figs. 5, 6) and eq.2 where the
only unknown is the x calibration. Another calibration
possibility for colloidal probe is to use the viscous drag
in a fluid of viscosity η, with FH = 6πηR2ḋ/d for
d � R, where in this case d is the modulated control
parameter instead of V . The analysis can be performed
as presented here by computing the work of FH [16].
Thus for such AFM probes using TFT we can estimate
in the same measurement the calibration factor, the
value of the force, the stiffness and the sphere/plane
distance.

As a final remark let us emphasis that the
technique of modulating d can be also useful for
estimating any kind of tip-sample interaction force in
practical cases. Indeed, as long as the force can be
considered constant on the explored deflection range,
applying steps in d faster that the response of the
cantilever will result in steps in F . The analysis can
then be performed with the TFT as presented here,
leading to the force-distance determination.

Data Availability Data available on request
from the authors.
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