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ABSTRACT
Novelty Search is an exploration algorithm driven by the novelty of

a behavior. The same individual evaluated at different generations

has different fitness values. The corresponding fitness landscape

is thus constantly changing and if, at the scale of a single genera-

tion, the metaphor of a fitness landscape with peaks and valleys

still holds, this is not the case anymore at the scale of the whole

evolutionary process. How does this kind of algorithms behave?

Is it possible to define a model that would help understand how

it works? This understanding is critical to analyse existing Nov-

elty Search variants and design new and potentially more efficient

ones. We assert that Novelty Search asymptotically behaves like

a uniform random search process in the behavior space. This is an
interesting feature, as it is not possible to directly sample in this

space: the algorithm has a direct access to the genotype space only,

whose relationship to the behavior space is complex. We describe

the model and check its consistency on a classical Novelty Search

experiment. We also show that it sheds a new light on results of

the literature and suggests future research work.
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1 INTRODUCTION
Evolutionary algorithms rely on a selection process driven by a

fitness function that measures to what extent an individual satis-

fies a given goal. It has been shown that this goal-oriented fitness

function may be misleading and can actually be replaced by a goal-

independent selective pressure: a pressure towards novel behaviors
[9]. Surprisingly, although the goal to achieve is not taken into
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account at all in the search process, the resulting Novelty Search

(NS) process appears to be at least as efficient, if not more efficient,

than a goal-oriented search in a certain number of domains like

maze navigation and biped locomotion [9], swarms of robots [5],

or plastic neural networks design [20].

Evolutionary processes driven by a constant goal have a dynamic

that can be understood in terms of movements in a fitness landscape

[27]: the evolutionary process tends to drive the individuals towards

peaks of fitness. In NS, the fitness landscape changes from one

generation to another, as an individual that is considered as new

in one generation is likely to be much less novel in the next. What
is the dynamic of a NS process? How can it be modeled? The lack of

answer to these questions has practical consequences. When trying

to implement such an algorithm, many important questions remain

unanswered: how to select the behavior descriptors? What are the

most critical properties or parameters of NS? Several empirical

studies have explored the impact of a range of algorithmic choices

[4, 7], but there is still no theoretical model that integrates all of

their results to propose a unifying perspective of the approach.

Such a model would be interesting to evaluate the consequences of

design choices, and propose more efficient algorithms. Furthermore,

NS is also at the basis of Quality-Diversity algorithms [2, 18]. These

algorithms aim at finding a diverse set of efficient solutions, instead

of a single best performing solution. Their outcome is a container

that is filled during the search process by novelty-like principles.

Better understanding how NS works can thus also open the way to

better Quality-Diversity algorithms.

Novelty Search algorithms and their variants are expected to

lead to a good exploration of the behavior space [2, 18], and even

to explore it uniformly [4]. In this paper, we introduce a simplified

and theoretical model of novelty-driven algorithms based on the

assumption that NS leads to an indirect and uniform random search
process in the behavior space. A model is built on the basis of this

assumption, and its properties are analyzed and discussed and an

extension is proposed. These theoretical models are then compared

to experimental results, and their relevance is discussed in light of

the literature.

2 NOVELTY SEARCH
We take inspiration from the frequently used Reinforcement Learn-

ing framework to define the notations used throughout the paper.

In relation with the illustration of Figure 1, let’s define the tuple

< S,A,m,π > as follows:

• S is a state space, gathering all states the agent can be in. A

state is supposed to contain the information required by the

agent to decide what action to perform,

https://doi.org/10.1145/3321707.3321752
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Figure 1: Overview of the different spaces and functions re-
lated to Novelty Search. The Genotype space G describes a
policy π (1) that determines the actions in A to apply in a
given state s ∈ S (2). The sequence of states describes the
robot behavior (3) that is projected to lower dimension be-
havior spaces B1 or B2 (4). Note that B2 can also be called T

as it defines a task. In this case, Gд describes the goal to be
reached (5) and Rx the area of the task space T that is within
a single mutation range from the genotype x .

• A is an action space, gathering all the actions the agent can

take,

• m is a transition function that describes how the agent’s

state changes as a result of its action:

m : S ×A → S,

• π is a policy, a function that associates an action a ∈ A to

each state s ∈ S of the agent:

π : S → A.

As a first approximation, and to simplify notations, we consider that

m and π are deterministic functions. Likewise, we consider that the

agent has a direct access to its state (or equivalently that its sensors

provide a state). In practice, it only has access to the observations of

its sensors. In the Reinforcement Learning theoretical framework,

the state is expected to have some properties, one of the most

important being the Markovian property, the fact that the states

contains all information to make a decision, i.e. that we don’t need

to take into account the past or that there is no noise. As we thought

it would not have a strong impact on our model, at least at the level

of analysis presented in this article, we have neglected this aspect

to simplify the notations.

Note that, for reasons that will appear clearer below, we omit the

usual reward function that associates a reward to each state.

In order to take into account the specificities of the NS approach,

we define additional spaces and functions:

• G is a genotype space, a space of parameters defining the

policy π , and that NS algorithms directly explore. A policy

parametrized by x ∈ G will be denoted πx ,
• B is a behavior space used to describe the agent’s behavior,

• oB is an observer function, which associates a behavior de-

scriptor b ∈ B to a trajectory of states τ = {s0, s1, . . . , sT }
of length T :

oB : ST → B.

In most cases, the characterization b of the agent’s behavior

is more compact than the complete trajectory τ , as the latter
contains a lot of superfluous information with respect to the

final task to solve,

• fд is a goal function, which defines a particular goal to reach

by associating a behavior b ∈ B with a boolean indicating if

it reaches the goal or not:

fд : B → B = {True, False}.

When a goal function fд is associated with a behavior space

B, we will use the Machine Learning notion of task and refer
to this space as a task space and denote it T . The concept of

goal function is very similar to the one of reward function

usually used in Reinforcement Learning, except that it is

defined in a behavior space instead of a state space. Note

that this definition of a goal function is not suitable for non-

boolean goals, like for instance when the task is to maximize

the speed of an agent. Such situations can be covered by this

definition by discretizing the continuous goal and associating

a separate goal to each of the corresponding bins. This is for

instance done in the MAP-Elites algorithm [15],

• Gд is a goal space. It is the support set of fд in the task space

T , such that:

∀b ∈ Gд ⊆ T , fд(b) = True.

The different spaces and functions we just defined are represented

in Figure 1. It is possible to abstract the whole process leading to

the generation of a behavior by defining a mapping φB between

a genotype space G and a behavior space B. It corresponds to a

combination of πx ,m, and oB such that:

φB(x) = oB(s0, s1, . . . , sT ) , with st+1 =m(st ,πx (st )).

We call this overarching function a behavior function [7].

The motivation behind the proposed goal function definition

is the hypothesis behind NS: a fitness gradient may not always

be available and/or might be misleading, and it is therefore more

appropriate not to follow it. The function fд is boolean, and thus

does not create a gradient to follow. Novelty Search replaces the

search for a greater fitness by a search for novel individuals. Its

selection process is driven by a novelty measure derived from the

distance between a new individual and its nearest neighbors in a

behavior space [9]:

ρ(x) =
1

k

k∑
i=1

dist

(
φB(x),φB(µi )

)
, (1)

where {µ1, . . . , µk } is the set of the k closest individuals to x in the

behavior space, and dist(., .) is a distance in the behavior space.
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In general, the set of individuals used to measure the novelty

of new solutions corresponds to the current population, plus an

archive of previous individuals, and the Euclidean distance is used

to compare behaviors. Several strategies exist to manage the archive

of past solutions [4]. It can contain either the individuals whose

novelty was above a threshold when first evaluated [9], the most

novel individuals at each generation [14], randomly chosen individ-

uals [8], or even none at all [16]. Solving a particular task consists in

discovering at least one genotype x for which fд(φT (x)) = True. As

already mentioned, no reward gradient is used to guide the search.

A genotype x is either a solution or not, and no intermediate value

indicates how far an individual is from a solution.

Note that, in this framework, the goal is defined in a behavior

space (making it a task space T ). However, this space cannot be

directly explored. The search process can only sample the genotype

spaceG , and the mappingφT betweenG and T is a priori unknown

and non-trivial. For instance similar genotypes can lead to very

different behaviors, and inversely. Despite this difficulty, NS is

designed to explore the space of behaviors as efficiently as possible,

making it easier to find a solution.

In this paper, we propose to formally analyze howNS approaches

explore the task space and find solutions. We hope that a better

understanding of its dynamic will guide the future design of more

efficient novelty-based approaches. It should be noted that NS algo-

rithms have to be coupled with generation algorithms that produce

new individuals to evaluate. This generation process is often done

via neuroevolution methods that are variants of NEAT [22]. Al-

though this generation component is taken into account in the

experiments of Sections 3.2 and 4.2, the model proposed in this

paper focuses on the selective pressure induced by NS algorithms.

3 UNIFORM SAMPLING MODEL
3.1 Model description
We’ve seen in Section 2, that NS is designed to explore a behavior

space efficiently. As a first approximation, we will consider that NS,

globally and after a transient phase, performs an ideal random and

uniform search in the behavior space T in which the task is defined.

This first model does not aim at depreciating the transient phase,

but at studying the steady phase. The transient phase is clearly

important in NS and will be considered in the model proposed in

the next section.

When the goal function is boolean, gradient-based approaches

cannot be used, and, if no prior is available on the task, approaches

that model the goal, like Bayesian optimization, are also inefficient.

The best search strategy thus consists in a systematic exploration

of the search space. Without a priori knowledge about the task

space, a random and uniform search in the task space is thus a

good option, if not the best. However this is not a trivial problem in

practice, as the search algorithm can sample T only indirectly, via

a sampling ofG . In order to derive an upper bound on the efficiency

of NS, we nonetheless assume here that the algorithm is capable of

such an ideal uniform sampling.

Accordingly, if b ∈ T is the behavior of an individual gener-

ated by a uniform random search process, the probability p1 that

(3)

(2)

(1)

start

Figure 2: Experimental maze in which (1) is the start region,
(2) is the dead-end region, and (3) is the exit region. The red
squares correspond to large regions representing 1/100 of
the total maze area. The blue squares correspond to small
regions representing 1/10000 of the total area.

b ∈ Gд ⊂ T is a solution is:

p1 =
|Gд |

|T |
, (2)

where |.| denotes the cardinality of a set. Likewise, the probability

pn that at least one solution has been found after n samples is:

pn = 1 − (1 − p1)
n = 1 − p̄1

n ,

which corresponds to the complement of not finding a solution n
times. This defines the dynamics of success of an ideal uniform

search, and should thus act as a statistical upper bound on the

performance of NS algorithms.

In line with the uniform sampling assumption, and with the

goal to test it with a dedicated experiment, we formulate different

hypotheses about the exploration produced by NS algorithms:

Hypothesis 1. The sampling produced by NS covers the whole
reachable behavior space.

Hypothesis 2. The sampling performed by NS tends towards a
uniform distribution in the reachable behavior space.

Finally, it is possible to set up NS such that it explores a be-

havior space B that differs from the task space T . If the behavior

descriptors of B are not related to the task to solve, we say that

B is unaligned with the task. In such a context, NS revealed to

perform poorly on difficult mazes [18]. The interpretation of these

results with the proposed model is straightforward: if a uniform

exploration in B does not imply a uniform exploration in T (or at

least of a subset of T containing Gд ), the search will likely fail.

Hypothesis 3. Performing NS on a behavior space B unaligned
with the task space T does not necessarily result in a uniform explo-
ration of T .

We will test these hypotheses and the consistency of the proposed

model by running some NS experiments.

3.2 Experiments
We propose to test the model on the typical maze experiment pro-

posed in the original NS article [9]. As illustrated in Figure 2, a two-

wheeled robot has to navigate a room obstructed with walls until it

reaches an exit. The agent is equipped with 3 distance sensors. It is

controlled by a neural network with 3 inputs, plus a constant input,
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Figure 3: Solutions generated by (a) a randomsearch of 10000
individuals in the genotype space and by (b) 100 generations
of 100 individuals via novelty search.

and 2 outputs corresponding to the speed of the two wheels. A di-

rect encoding of the network based on NEAT [22] is used, without

crossover, as described in [16]. With the "start simple" feature of

NEAT, it means 8 continuous parameters to explore at the begin-

ning of the search, this number growing or shrinking along a run,

and for each individual, depending on structural mutations (adding

or removing neurons or connections). Following the NS approach,

the selective pressure is the novelty of an individual behavior. The

characterization of a behavior consists in taking the 2-dimensional

position of the robot at the end of an episode ofT = 2000 iterations.

Note that the size of the behavior space is smaller than the one of

the genotype space, but this does not appear to be a critical property,

as it has been shown that the size of the behavior characterization

had a limited impact [9]. The size of the population at each gen-

eration is set to 100, the size of the archive is unbounded, and, as

suggested in [4, 9], the number of neighbors to estimate novelty

is k = 15. After each generation is evaluated, the most novel indi-

vidual is added to the archive. The source code of the experiment

is available at https://github.com/doncieux/navigation.git, in the

ns_theory branch.

With respect to the proposed formalism, the state space S is the

space of wall distances and robot positions. The wall distance is

used by the policy and the observer function consists in extracting

the final robot position. The action space A is the space of motor

actions.

Figure 3 shows the solutions explored by a random search in the

genotype space and by the considered NS algorithm. The random

search results in a poor exploration of the task space (see Figure

3(a)), whereas NS appears to cover the whole reachable task space

during the first 100 generations (see Figure 3(b)). This result is

compatible with hypothesis 1.

Figure 4 shows the evolution of the coverage of the behavior

space by the NS algorithm. During the first generations, this cov-

erage is not uniform (see Figure 4), but it rapidly tends towards a

more uniform distribution after several generations (see Figure 4).

This result is compatible with hypothesis 2.

Note however that the coverage produced by NS exhibits a cer-

tain dynamic. The probability to generate an individual in a given

region of the task space is not constant throughout the generations,

like it would be the case with an ideal uniform sampling. We pro-

pose to study this property by considering different regions in the

task space, and estimate the probability to reach them throughout

the exploration. We have chosen 3 different regions: one near the

robot’s starting position (1), one in the dead-end (2) and the last

one near the exit (3) (see Figure 2). Two different region sizes are

considered:

• large: the large regions are squares of size 0.1×0.1 relative to

the size of the environment. Due to the presence of obstacles

(walls), the area reachable by the agent is equal to 68.9% of

the total area of the environment. The theoretical value of

p1 is thus equal to: 0.01/(1 × 0.689) = 14.51 × 10
−2
.

• small: the small regions are squares of size 0.01 × 0.01 rel-

ative to the size of the environment. They correspond to a

theoretical probability p1 equal to: 14.51 × 10
−4
.

In the experiment, p1 is empirically estimated by measuring the

total number of individuals whose behavior is in a given region,

divided by the total number of individuals generated so far. Figure 5

shows how this empirical probability evolves against the number of

generations. The large region (1), next to the starting position of the

robot, has a probably to be reached above 0.06 at the beginning of

the exploration. This is not surprising as many randomly generated

individuals may not move a lot. The large dead-end region (2)

is reached after only a few generations, whereas the large exit

region (3) starts to be reached, i.e. p1 > 0, only after 49 generations

(median). A similar evolution of the probability can be observed for

the small regions. This behavior is not surprising. It corresponds to

a bootstrap phase of NS, that needs to discover the genotypes that

will explore regions that the majority of random networks do not

explore. After this initial phase, the estimation of p1 converges to

similar values for the three areas. Furthermore, this value is close to

the theoretical value. This result is thus conform to the asymptotic

uniformity hypothesis (hypothesis 2). Robots may end up blocked

against a wall. It results in a bias with more solutions against walls,

as can be seen in Figure 4. This may explain why the estimated

value of p1 is below the theoretical one.

So far, we have considered experiments in which the behavior

space explored by NS is the task space. In order to test hypothesis 3,

we run the same experiment, except that the behavior descriptor

corresponds this time to the orientation of the robot at the end of

the episode [18]. As shown in Figure 6, the sampling is uniform

in the “orientation” behavior space, but not in the end position

space. As a consequence, the empirical value of p1 converges to

different values for the three regions. This result is compatible with

hypothesis 3.

3.3 Interpretation and consequences
In this model, the probability that at least a solution was found after

n samples solely depends on p1 =
|Gд |

|T |
. It has several consequences.

The larger Gд , the higher the probability to find a solution. In the

maze experiments, for instance, the upper bound of the probability

to find a solution depends on the relative size of the exit area. This

parameter is not usually described in the literature, whereas it has

a significant impact on the results according to our model and

as shown on Figure 5. Likewise, it may also explain why novelty
search performs poorly in the case of an open environment [9]: if the
environment is open, T is unbounded. If Gд is bounded, p1 then

tends to 0.

The number of behavior descriptors is inconsequential if it does not
impact p1. If increasing the dimension of the behavior space does

https://github.com/doncieux/navigation.git
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Figure 4: Solutions generated by novelty search experiments at generations 5, 50, 300, and 2000. They are plotted as a heatmap.
The environment is divided in 50x50 bins and the color represents the number of individuals in the corresponding bin.
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Figure 6: Experiment with NS when the behavior space corresponds to the final orientation of the robot. (a) Distribution of
the final orientation of the robot over generations 1500 to 2000. (b) Distribution of the robot final positions in the (unaligned)
task space. (c) Evolution of p1 for the small regions.

not modify p1, then it has no impact on the upper bound of the

probability of convergence. This is what has been observed in [9].

In the original maze experiments, the task space corresponds to the

space of robot positions at the end of an episode. If some interme-

diate points of the trajectory are added as behavior descriptors, p1

remains unchanged as these new dimensions have no impact on the

success or failure of the individual: if bT = (xT ,yT ) is in the goal

space Gд , any b
′ = (xt ,yt ,xT ,yT ), with t < T , is also a solution,

regardless of the added descriptors (xt ,yt ), and thus p′
1
= p1.

4 MODEL INCLUDING REACHABILITY
The uniform samplingmodel proposed in Section 3 is an idealmodel

of how NS behaves, just as a search process climbing fitness peaks

is an ideal model of how goal-oriented evolutionary algorithms

behave. A typical evolutionary algorithm does not systematically

follow the fitness gradient, but balances exploration and exploita-

tion [1, 3]. The result is that, although a goal-oriented evolutionary

algorithm can be seen as a fitness peak climber, new genotypes do

not all correspond to an increase in fitness. This is the same for the
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uniform sampling model of NS: although we assumed the algorithm

leads to a uniform sampling of the behavior space, a significant part

of the generated individuals may correspond to already sampled

behaviors, in particular at the beginning of a run. Offspring may,

for instance, have the same behavior as the one of their parents,

or a significant number of them may have a similar behavior (not

moving at all, for instance, or bumping into a wall). More generally,

the generation of new individuals might be skewed such that only a

subpart of the behavior space can be sampled at a given generation.

It corresponds to a loss of search efficiency. In this section, we refine

our model to capture this phenomenon.

The proposed extension relies on the concept of evolvability.

This notion is essential to evolution, but its precise definition is

debated [17]. For Wagner and Altenberg, it is "the ability of random

variations to sometimes produce improvement" [25]. For Kirschner

and Gerhart, it is "the capacity to generate heritable, selectable phe-

notypic variation" [6]. They further add that "this capacitymay have

two components: (i) to reduce the potential lethality of mutations

and (ii) to reduce the number of mutations needed to produce phe-

notypically novel traits". In this paper, we consider that evolvability

characterizes the fact that the generation of new individuals might

only cover a subpart of the behavior space explored. It represents

only one of the facets of evolvability. To avoid any ambiguities, we

will thus call it with a different name: the reachability.

4.1 Model description
Let us call Rx the subpart of the behavior space reachable by ap-

plying random mutations on the genotype x (see Figure 1). It cor-

responds to the evolvability of genotype x according to Kirschner

and Gerhart’s definition and follows the one used in [12]. Contrary

to the uniform model, the probability to generate a solution in this

second model depends on the genotype used to generate the new

sample:

p1,x =
|Gд

⋂
Rx |

|Rx |
=

ϵx,д |Gд |

αx |T |
= γx,д .

|Gд |

|T |
= γx,д .p1, (3)

ϵx,д and αx are respectively the proportions of Gд and T within

reach from x , and γx,д =
ϵx,д
αx is the reachability of the goal д from

genotype x .
The reachability is individual-based and does not allow to make

predictions if the corresponding genotypes are unknown, but reach-

ability can also be seen at the population level [12, 13, 26]. To this

end, we assume that reachability is a population-based property

that depends on the number of individuals sampled so far, and not

on the particular genotype x a new individual is generated from,

i.e.: γx,д = γn,д . This assumption simplifies Equation 3 and pro-

vides a bound on the probability of success. We can see γn,д as the

reachability of the goal д after n individuals have been sampled.
The probability of success p

(д)
n of the model with evolvability is:

p
(д)
n = 1 −

n∏
k=1

(1 − γk,дp1), (4)

which corresponds to the complement of the probability of not

finding a solution n times.

γk,д may be higher than 1. Actually, if Rx = Gд , p1,x = 1 and

thus γx,д = γn,д =
1

p1

. This situation happens if the sampling

100 101 102 103 104 105 106 107 108

0.0

0.2

0.4

0.6

0.8

1.0

p
n

Probability of success for p1=0.0001

Uniform

n, g = = 0.1

n, g = = 0.3

n, g = = 0.6

n, g with k=1.0E+04

n, g with k=1.0E+06

n, g with k=1.0E+08

Number of generations

Figure 7: Probability to generate a solution in a region w.r.t.
the number of samples n in the model, taking into account
the reachability with p1 = 0.0001 and γ either constant or in-
creasing with the number of samples: γn,д = γn = 1−exp(−nk ).
There are 100 samples per generation.

is not uniform in the behavior space. This has been invalidated

by the previous section, at least in the proposed experiment and

in the steady phase. The theoretical models we will consider to

fit the experimental data will thus make the assumption that the

sampling is uniform and not biased, i.e. that p1 is an upper bound of

p1,x = p1,n and thus that γn,д ≤ 1. The corresponding theoretical

evolution of pn with reachability is displayed in Figure 7 for two

different scenarios: γn,д = γд = constant , and γn,д = 1 − exp(−nkд
).

This second model corresponds to a reachability that increases over

the number of samples to asymptotically converge to 1. In both

cases, the impact of the reachability is a delay in the increase of pn .
The main difference between the two models is the slope, that is

steeper for the model with an increasing reachability.

This extended model allows us to formulate the following hy-

pothesis:

Hypothesis 4. The increase of pn is delayed with respect to the
theoretical value derived from the uniform sampling model, and this
delay depends on the goal.

Following the literature [12], we can also make the following

hypothesis:

Hypothesis 5. The reachability γn,д increases with the number
of sampled individuals.

4.2 Experiments
The following experiments rely on the same maze navigation setup

as in Section 3.2. Figure 8 shows, for regions (1) and (3), the value of

pn estimated over 150 runs, together with curves derived from the

theoretical model of pn with reachability. The theoretical curves

are optimized for both models of γn,д . The values of γд and kд are

estimated by dichotomy to make the theoretical curve fit with the
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Figure 8: Estimation of pn on the basis of 150 runs. The
values of the theoretical models (TM) corresponds to p1 =

0.0001451 and either a constant reachability (γn,д = γд ) or an
increasing one (γn,д = 1 − exp(−nkд

), in this case, kд value is
indicated). There are 100 samples per generation.

empirical one for pn = 0.5. The results of region (2) have been

omitted to improve the readability of the figure.

The variations of pn for both regions are similar to the one of the

theoretical uniform sampling model, but with a delay that differs

between the two goals. The delay is larger for the exit region (3),

that is more difficult to reach. The estimated value of pn for region

(1) starts with an initial value above the theoretical one. It shows

that, at this moment, the sampling is biased towards that area. It

is not surprising as many randomly generated individuals remain

close to the starting position (Figure 3(a)). Except at this moment,

hypothesis 4 thus seems to be valid in this experiment.

The increase of reachability during exploration has been experi-

mentally observed, and is thought to be due to the divergent search

property of NS [12]. Yet, according to Figure 8, the hypothesis 5 is

not fully validated by our model, that shows a more complex pic-

ture. The fit with the two proposed reachability models (constant vs

increasing value) suggests a reachability whose behavior changes

along the generations. For the start region (1), the fit is better with

a constant reachability before the inflexion point (pn = 0.5), and

better with an increasing reachability after the inflexion point. On

the contrary, for the exit region (3), the pattern is reversed, and

the fit is better with an increasing reachability first, and a constant

reachability after the inflexion point. These results suggest that the

evolution of reachability requires a more refined model.

4.3 Interpretation and consequences
A low reachability slows down the exploration process and creates a

significant delay before reaching the goal space. The reachability γд
better fitting the empirical data is 0.25 for region (1) and 0.074 for

region (3). pn = 0.5 is reached at generation 48 for the theoretical

model and empirically at generation 187 for the region (1) and 645

for the region (3) (Figure 8). Actually, when γ is constant, it can be

shown that the number of samples required to reach a probability of

success pn = ps is:
ln(1−ps )

ln(1−γp1)
. It further confirms that this criterion

needs to be maximized.

Typical measures of evolvability estimate the diversity of mu-

tated solutions [11, 21, 23]. It roughly corresponds to the average

evolution speed at a given generation, whereas pn and the reacha-

bility can be used to estimate the length of the path to reach a given

goal space when starting from randomly generated solutions.

A fundamental feature of the reachability and pn is that they are

specific to a given goal space and thus highlight that each region
of the task space may have a different reachability. The diversity
of mutated solutions in the genotype space does not take into

account the mapping between the genotype and the goal spaces

and can thus hardly capture these differences. Variations in the

reachability of different regions is an estimation of the difficulty to

reach some parts of the task space. The reachability estimates two
features of a particular NS algorithm: its speed to cover the whole

task space when we consider its average value, and its biases when

we look at its inter-region variations. Both pieces of information are

important and can lead to more refined comparisons of alternative

NS algorithms, including the selection algorithm and the underlying

neuroevolution part.

In Section 3, it was hypothesized that NS performs, asymptot-

ically, a uniform search in the behavior space. The differences of

reachability between the regions highlight the differences in the

transient phase, not the differences in the following phase: once a

region has been reached, it tends to be sampled as frequently as the

others, as shown by Figure 5. The reachability then characterizes the
dynamics of the search process and how fast it tends to be uniform.

As shown on Figure 8, the reachability also has its own dynamics

that needs to be further studied.

5 DISCUSSION
The main motivation for NS is to enhance exploration. It can be

for two reasons: (1) reaching a particular goal space as rapidly or

as frequently as possible, this is what was emphasized in the first

works on novelty search [9], or (2) generating a set of solutions

that is as diverse as possible while not targeting a particular goal

space, as in QD algorithms [2, 18].

To reach a particular goal space more rapidly, a first possibility

suggested by the proposed model is, of course, to increase the

probability to generate a solution p
(д)
1
=

|Gд |

|T |
, which is problem-

dependent and completely independent from the search process.

There are at least two different ways to influence it: (1) change the

genotype space G to include a statistical bias in favor of the goal

spaceGд , or (2) change the task spaceT to a new task spaceT ′
such

that

|G′
д |

|T′ |
>

|Gд |

|T |
. The efficiency of the task space sampling depends

on the reachability and designing a new task space in which p1 is

higher, may result in a lower reachability. Let us consider a task

space T ′ = {b1,b2} in which the behavior function φT′ projects

the genotypes with right behaviors on b1 and those with the wrong

behaviors on b2, i.e. fд(b1) = True and fд(b2) = False . It results in
p1 = 0.5, but the reachability would be very low as most individuals

are likely to get a behavior descriptor equal to b2. Building a new

task space then requires to find an appropriate tradeoff between p1

and γn,д .
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A second possibility suggested by the model is to increase the

reachabilityγn,д . The reachability depends on the genotype [19, 24],
but also on the evolutionary process [12, 13, 26]. Likewise, the

behavior function has a critical impact [7]. All the cited studies

have been performed in different contexts. The proposed theoretical

model may help to combine them in a common framework.

QD-algorithms based on novelty search, like Novelty Search with

Local Competition [10], consider the archive as the outcome of the

algorithm [2, 18]. Their goal is to generate a set of solutions that is

both efficient and diverse. The uniformity of the search promoted

by the novelty criterion is thus critical for such algorithms as it will

better cover the set of reachable behaviors and promote better local

competitions. For these algorithms, it is then important to look for

uniform reachabilities, i.e. reachabilities that do not depend on the

goal: γn,д = γn .
MAP-Elites is a QD algorithm based on a grid [15]. It has the

interesting feature to provide insights on the behavior space
1
and

it is thus used as an analysis tool [15, 18, 23]. The proposed model

could help analyse its efficiency with goal spaces corresponding to

MAP-Elites grid cells.

6 CONCLUSION
We have introduced a simple model to analyze and interpret Nov-

elty Search algorithms. The model is based on the hypothesis that

NS algorithms perform an indirect, uniform random search in the

behavior space. This is an interesting feature as this space cannot

be directly sampled. Experiments done on the deceptive maze of

Lehman and Stanley are consistent with the model. We have ex-

tended the model to include evolvability as a reachability in the

task space and also checked the consistency of this extension with

the experimental data.

This model is expected to help people willing to use Novelty

Search to understand how it works and what it aims at. It also

sets theoretical boundaries to the expected performance of these

algorithms.
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