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Let S 1 be the unit circle, Ω a smooth, bounded and simply connected domain in R 2 , and k a positive integer. We prove that the set of configurations a = (a 1 , ..., a k ) ∈ Ω k for which each

In particular, this implies that the set of those u ∈ W 1,1 Ω, S 1 that admit a unique (mod 2π) minimal BV-lifting is dense in W 1,1 Ω, S 1 . This answers a question of Brezis and Mironescu.

Introduction

Suppose Ω is a smooth, bounded and simply connected domain in R 2 . It is known (see [START_REF] Giaquinta | Cartesian currents in the calculus of variations. II, volume 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]Section 6.2], [START_REF] Dávila | Lifting of BV functions with values in S 1[END_REF], [START_REF] Merlet | Two remarks on liftings of maps with values into S 1[END_REF] and [START_REF] Brezis | Sobolev Maps to the Circle. From the Perspective of Analysis[END_REF]Theorem 2.4]) that for each u ∈ W 1,1 (Ω, S 1 ) there exists a BV-lifting of u on Ω, i.e., there exists ϕ ∈ BV (Ω, R) such that u = e iϕ on Ω. This is "the best one can get", since such u need not have a lifting ϕ ∈ W 1,1 (Ω, R). For example, if a ∈ Ω, than u(x) =

x -a |x -a| belongs to W 1,1 (Ω, S 1 ), but has no lifting ϕ ∈ W 1,1 (Ω, R) [START_REF] Demengel | Une caractérisation des applications de W 1,p (B N , S 1 ) qui peuvent être approchées par des fonctions régulières[END_REF], [START_REF] Brezis | Sobolev Maps to the Circle. From the Perspective of Analysis[END_REF]Remark 2.6]. 1 Clearly, ϕ is not unique; if ϕ is a BV-lifting, then so is ϕ + 2kπ, k ∈ Z. Actually, non-uniqueness is much "richer": if ω ⊂ Ω is a finite perimeter set and ϕ is a BV-lifting of u, then so is ϕ + 2kπ 1 ω , with k ∈ Z. 

= sup ˆΩ ϕ div ζ | ζ ∈ C ∞ c (Ω, R 2 ), ∇ζ L ∞ ≤ 1 .
Minimal liftings appear naturally in connection with the "relaxed energy" associated with a map u ∈ W 1,1 (Ω, S 1 ). More specifically, set

(1.2) E rel (u) := inf lim inf n→∞ ˆΩ |∇u n | | (u n ) ⊂ C ∞ (Ω, S 1 ), u n → u .
Then E rel (u) equals the right-hand side of (1.1). Moreover, if (u n ) is a minimizing sequence in (1.2), then, possibly up to a subsequence, u n → e iϕ in L 1 (Ω), where ϕ is a minimal BV-lifting of u [2, Section 2.7].

Clearly, the infimum in (1.1) is attained, and thus minimal BVliftings do exist. In general, such a minimal BV-lifting is not unique, even (mod 2π). For example, the following functions have more than one minimal BV-lifting (mod 2π): (See Remark 10 below.)

In order to simplify the presentation, in what follows, uniqueness of liftings is meant (mod 2π). We do not specify this anymore.

We are going to answer the following question raised in [START_REF] Brezis | Sobolev Maps to the Circle. From the Perspective of Analysis[END_REF]: is the set of functions u ∈ W 1,1 (Ω, S 1 ) which admit a unique minimal BV-lifting, residual2 in W 1,1 (Ω, S 1 )?

The answer is positive. More specifically, we have the following result.

Theorem 1. Suppose Ω is a smooth, bounded and simply connected domain in R 2 . Consider the set U := u ∈ W 1,1 Ω, S 1 | u has a unique minimal BV -lifting .

Then U is a G δ dense subset of W 1,1 (Ω, S 1 ). Theorem 1 will be proved by using the geometrical description of the minimal liftings given in [START_REF] Brezis | Sobolev Maps to the Circle. From the Perspective of Analysis[END_REF], combined with some "generic" geometric properties of k-tuples in Ω k , where k is a positive integer. In fact, our proof will give a somewhat more precise result. Consider u ∈ W 1,1 (Ω, S 1 ) ∩ C(Ω\ {a 1 , ..., a k }), where a 1 , ..., a k are distinct points in Ω. It is easy to see (see Remark 9 below) that whether or not u admits a unique minimal BV-lifting, depends only on the vector of singularities a = (a 1 , ..., a k ) ∈ Ω k and the vector of degrees d = (d 1 , ..., d k ), with d j := deg(u, a j ) (the topological degree of u on a small circle around a j ). We have that, "with probability 1", the minimal BV-lifting of such u is unique:

Theorem 2.
Suppose Ω is a smooth, bounded and simply connected domain in R 2 . Let k be a positive integer. The set of configurations a = (a 1 , ..., a k ) ∈ Ω k for which every u ∈ W 1,1 (Ω, S 1 ) ∩ C(Ω\ {a 1 , ..., a k }) admits a unique minimal BV-lifting (regardless the choice of

d 1 , ..., d k ∈ Z) is of full measure in Ω k .
As we will see in Section 3 (see Remark 12), Theorem 2 implies (and is actually equivalent to) the following geometric result. Consider a = (a 1 , . . . , a k ) ∈ Ω k and (arbitrary) (d 1 , . . . , d k ) ∈ Z k . Then, with probability 1, there exists exactly one rectifiable curve C ⊂ Ω of minimal length among the rectifiable curves with boundary k j=1 d j δ a j . Here, the boundary is considered in the sense of geometric measure theory, i.e.,

ˆC dξ = k j=1 d j ξ(a j ), ∀ ξ ∈ C ∞ c (Ω).
Theorem 1 follows from Theorem 2 combined with a density result in [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF] (see Lemma 13 in Section 3).
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"Generic" properties of k-tuples in Ω k

In this part, Ω is an open subset of R 2 such that Ω = ∅, R 2 . We start by fixing some notation. Given a point x ∈ Ω, we will denote by P x its set of projections on the boundary of Ω, i.e.,

P x := {y ∈ ∂Ω | dist (x, ∂Ω) = |x -y|} .
We say that x ∈ Ω has a unique projection on ∂Ω if P x contains only one point. Also, given a set A ⊂ R 2 we denote by diam A its diameter.

For the convenience of the reader we mention some elementary geometric facts.

Fact 1. Consider r > 0. Suppose P is a point in the open ball B (O, r) ⊂ R 2 , which is not its center. Consider α ∈ [0, 2π] and let Q α ∈ ∂B (O, r) be such that the angle P OQ α equals α.

Then the distance |P Q α | is a strictly increasing function of α, for α ∈ [0, π]. Fact 2. Suppose P is a point in the open ball B (O, r) ⊂ R 2 , which is not its center. Consider α < β two angles in [0, π]. Suppose Q α is as above and Q β ∈ R 2 \B (O, r) is a point such that that the angle P OQ β equals β. Then |P Q α | < P Q β .
Fact 1 is a direct consequence of the cosine formula. Fact 2 is a direct consequence of Fact 1 and the cosine formula. Indeed, with the above notation, we have from Fact

1 that |P Q α | < |P Q β |. Now, since the function x → x 2 -2x |OP | cos β is increasing on (|OP | , ∞) and OQ β ≥ |OQ β | = r > |OP |, we have P Q β 2 = OQ β 2 -2 OQ β |OP | cos β + |OP | 2 > |OQ β | 2 -2 |OQ β | |OP | cos β + |OP | 2 = |P Q β | 2 > |P Q α | 2 .
Using these facts we prove the following geometric lemma.

Lemma 3.

Let Ω be an open subset of R 2 such that Ω = ∅, R 2 . Suppose that B (x 0 , r) ⊂ Ω. Then, for any ε > 0, there exist two numbers α, δ > 0 depending only on ε, and a cone C α of angle α, with vertex x 0 , such that for any x ∈ C α ∩ B (x 0 , δr) we have diam P x < ε.

Proof. Choose x 1 ∈ P x 0 . We can suppose without loss of generality that r = |x 1 -x 0 |. For each 0 < β < 2π we consider the open cone C β of angle β with vertex x 0 and axis determined by the vector x 1 -x 0 .

Let 0 < α < π/4 be an angle that will be chosen later. Fact 2 implies that

(2.1) B (x, |x -x 1 |) \B (x 0 , |x 0 -x 1 |) ⊂ C 2α
for any x ∈ C α . Indeed, suppose by contradiction that there exists

y ∈ B (x, |x -x 1 |) \B (x 0 , |x 0 -x 1 |) such that y / ∈ C 2α .
In particular, we have y ∈ R 2 \B (x 0 , r) and

| (y -x 0 , x -x 0 )| > α/2 > | (x 1 -x 0 , x -x 0 )|. Fact 2 gives now that |y -x| > |x 1 -x|, which contradicts the fact that y ∈ B (x, |x -x 1 |).
Now, for any ε > 0 there exists a δ > 0 depending only on ε , such that, if |x -

x 0 | < δr, then (2.2) B (x, |x -x 1 |) ⊂ B (x 0 , (1 + ε ) |x 0 -x 1 |) .
Fix ε > 0 and choose δ > 0 as above. From (2.1) and (2.2) we get that, for any x ∈ C α with |x -x 0 | < δr, we have the inclusion

(2.3) B (x, |x -x 1 |) \B (x 0 , |x 0 -x 1 |) ⊂ A α,ε , where A α,ε := C 2α ∩ B (x 0 , (1 + ε ) |x 0 -x 1 |) \B (x 0 , |x 0 -x 1 |) . If x ∈ P x , then |x -x | ≤ |x -x 1 |, and hence P x ⊆ B (x, |x -x 1 |).
Also, we have P x ⊆ ∂Ω, and since B (x 0 , |x 0 -x 1 |) contains no point from ∂Ω, it follows that

P x ⊆ B (x, |x -x 1 |) \B (x 0 , |x 0 -x 1 |). Hence, thanks to (2.3), we get P x ⊂ A α,ε .
It remains to observe that, if α and ε are sufficiently small, then diam A α,ε < ε. This implies

diam P x ≤ diam A α,ε < ε for any x ∈ C α ∩ B (x 0 , δr).
The above lemma implies the following proposition concerning the smallness of the set of points with non-unique projections on the boundary.

Proposition 4. Let Ω ⊂ R 2 be an open set such that Ω = ∅, R 2 . If M
is the set of the points of Ω which have unique projection on ∂Ω, then M c := Ω\M is a Lebesgue null set.

Proof. First we note that

M = ∞ n=1 M n where M n := {x ∈ Ω | diam P x < 1/n} .
We will show that each M n contains a Lebesgue measurable set of full measure and hence the exterior measure of each M c n is 0. This will show in particular that each M n is measurable, M is measurable and

m (M c ) ≤ ∞ n=1 m (M c n ) = 0.
Fix n ≥ 1. With ε = 1/n, let α and δ be as in Lemma 3. If B(x 0 , r) ⊂ Ω and Q is a square centred at x 0 and such that Q ⊂ B(x 0 , δr), by applying Lemma 3, we can find a cone C of angle α with vertex

x 0 such that C ∩ Q ⊂ M n . Note that (2.4) m(C ∩ Q) m(Q) ≥ η,
where 0 < η < 1 only depends on α and hence it only depends on n.

Consider a nonempty open set V ⊂ Ω. We claim that we may write

V = ∞ j=1 Q j ,
with Q j essentially disjoint squares such that, for each j, there exists some ball B(x j , r j ) ⊂ Ω (where x j is the center of Q j ) with Q j ⊂ B(x j , δr j ). Indeed, it suffices to consider first the Whitney decomposition

V = ∞ k=1
Qk of V , then cut each Qk into a finite number of squares of size < δr 0 , where r 0 is the distance from Qk to ∂Ω. Applying (2.4), we get a collection of cones

C 1 , C 2 ,... such that C j ∩ Q j are essentially disjoint and m(C j ∩ Q j ) ≥ ηm(Q j ) for all j ≥ 1. Now, for A := ∪ j≥1 (C j ∩ Q j ) we have m (A) = ∞ j=1 m(C j ∩ Q j ) ≥ η ∞ j=1 m(Q j ) = ηm(V ). Note that, since each C j ∩ Q j is included in M n , we have A ⊂ M n .
This implies that, for any nonempty open set V ⊂ Ω (of finite measure) and any θ > 0, there exists a closed set

A ⊂ V ∩ M n such that (2.5) m(A) m(V ) ≥ η -θ.
We now introduce the following quantity

R := inf V ⊂Ω sup A⊂Mn∩V m(A) m(V ) ,
where inf is taken over all nonempty open sets V ⊂ Ω and sup is taken over all closed sets A ⊂ V ∩ M n . By (2.5), we have η ≤ R ≤ 1. We show that R = 1.

Let V be as above. Choose 0 < θ < R. We can find a closed set

A 0 ⊂ V ∩ M n such that m(A 0 )/m(V ) > R -θ. The set V \A 0 is nonempy and open. Hence, by (2.5) we can find A 1 ⊂ (V \A 0 ) ∩ M n such that m(A 1 )/m (V \A 0 ) > R -θ. We have that A 0 ∪ A 1 ⊂ V ∩ M n and m(A 0 ∪ A 1 ) m(V ) = m(A 0 ) m(V ) + m(A 1 ) m(V ) ≥ m(A 0 ) m(V ) + (R -θ) m (V \A 0 ) m(V ) = m(A 0 ) m(V ) + (R -θ) 1 - m(A 0 ) m(V ) = (1 -R + θ) m(A 0 ) m(V ) + R -θ ≥ (1 -R + θ) (R -θ) + R -θ.
Since θ can be chosen arbitrarily small, we get

R ≥ (1 -R) R + R. Hence, we have R = 0 or R = 1. Since R ≥ η > 0, we get R = 1.
This shows that M n has full measure in Ω, concluding the proof of the Proposition 4.

A shorter proof of this proposition can be given by using Rademacher's differentiation theorem. The following proof was suggested to the author by P. Bousquet.

Another proof of Proposition 4. Consider the function ϕ

: Ω → R de- fined by ϕ(x) := (dist(x, ∂Ω)) 2 . Choose x ∈ Ω such that ϕ is differen- tiable in x. Fix v ∈ R 2 . If x ∈ P x , then ϕ(x + tv) ≤ |x + tv -x | 2 = |x -x | 2 + 2t v, x -x + t 2 |v| 2 = ϕ(x) + 2t v, x -x + t 2 |v| 2 ,
for any t ∈ R with x + tv ∈ Ω. Hence, if t > 0 is as above, we get

ϕ(x + tv) -ϕ(x) t ≤ 2 v, x -x + t |v| 2 ,
and letting t → 0, we obtain ∇ϕ(x), v ≤ 2 v, x -x . By a similar argument (considering t < 0) we get ∇ϕ(x), v ≥ 2 v, x -x . Since v is arbitrary, we get ∇ϕ(x) = 2 (x -x ). In particular, we obtain that P x = {x } (x has unique projection on ∂Ω). (This argument is taken from [7, p. 14].) Since ϕ is locally Lipschitz, the set of points x ∈ Ω such that ϕ is differentiable in x is of full measure in Ω. By the above observation we get Proposition 4.

Lemma 5. Suppose d 1 , d 2 ∈ N * and K ⊂ (0, 1) d 1 × (0, 1) d 2 is a closed set with m (K) > 0. For any y ∈ (0, 1) d 2 define K y := x ∈ (0, 1) d 1 | (x, y) ∈ K .
Then, there exists a measurable set A ⊂ (0, 1)

d 2 × (0, 1) d 2 , with m (A) > 0, such that for all the pairs (y 1 , y 2 ) ∈ A, m (K y 1 ∩ K y 2 ) > 0.
In particular, there exists a point P = (y 1 , y 2 ) ∈ A such that all of its 2d 2 coordinates are pairwise distinct and m (K y 1 ∩ K y 2 ) > 0.

Proof. For (y 1 , y 2 ) ∈ (0, 1) d 2 × (0, 1) d 2 we write

m (K y 1 ∩ K y 2 ) = ˆ(0,1) d 1 1 Ky 1 (x) 1 Ky 2 (x) dx = ˆ(0,1) d 1 1 K (x, y 1 ) 1 K (x, y 2 ) dx.
Integrating on (0, 1) d 2 × (0, 1) d 2 , and using the Cauchy-Schwarz inequality, we get ˆ(0,1)

d 2 ˆ(0,1) d 2 m (K y 1 ∩ K y 2 ) dy 1 dy 2 = ˆ(0,1) d 1 ˆ(0,1) d 2 1 K (x, y 1 ) dy 1 ˆ(0,1) d 2 1 K (x, y 2 ) dy 2 dx = ˆ(0,1) d 1 ˆ(0,1) d 2 1 K (x, y) dy 2 dx ≥ ˆ(0,1) d 1 ˆ(0,1) d 2 1 K (x, y) dydx 2 = (m (K)) 2 > 0,
whence the first claim.

To get the second claim we observe that the set of the points in (0, 1) d 2 × (0, 1) d 2 for which at least two of the 2d 2 real coordinates coincide, is contained in a finite union of hyperplanes, and hence is a Lebesgue null set. Hence, its complement is of full measure and intersects A.

We now use the above lemma to prove the following. Lemma 6. Let Ω ⊂ R 2 be an open set such that Ω = ∅, R 2 , and k ∈ N * . Consider some real numbers a i , 1 ≤ i ≤ k, α ij , 1 ≤ i < j ≤ k not all zero, and c ∈ R. Almost everywhere on Ω k , we have

1≤i≤k a i dist (x i , ∂Ω) + 1≤i<j≤k α ij |x i -x j | = c. Proof. Consider the function f : Ω k → R defined by f (X) = 1≤i≤k a i dist (x i , ∂Ω) + 1≤i<j≤k α ij |x i -x j | , where X := (x 1 , ..., x k ) ∈ Ω k .
Suppose by contradiction that the set M := x ∈ Ω k | f (X) = c has nonzero measure. Since f is continuous, the set M is closed. By Lemma 5, we can find some

Y 1 = (x 1 2 , ..., x 1 k ), Y 2 = (x 2 2 , ..., x 2 k ) ∈ Ω k-1 such that the elements x 1 2 , ..., x 1 k , x 2 2 , ..., x 2 k are pairwise distinct and m (M Y 1 ∩ M Y 2 ) > 0. We have that, for any x ∈ M := M Y 1 ∩ M Y 2 ⊂ Ω, a 1 dist (x, ∂Ω) + k j=2 α 1j x -x 1 j = c 1 , (2.6) a 1 dist (x, ∂Ω) + k j=2 α 1j x -x 2 j = c 2 (2.7)
where c 1 and c 2 are some constants. By subtracting the above equalities, we get for any x ∈ M ,

k j=2 α 1j x -x 1 j - k j=2 α 1j x -x 2 j = c 3
for some constant c 3 . The function g : Ω\ {x 1 2 , ..., x 1 d , x 2 2 , ..., x 2 d } → R defined by

g(x) = k j=2 α 1j x -x 1 j - k j=2 α 1j x -x 2 j
(which is real analytic) is constant on M . Since m(M ) > 0, it follows that g ≡ c 3 on Ω. Suppose now that α 1j 0 = 0 for some j 0 ≥ 2. We can write

(2.8) α 1j 0 x -x 1 j 0 = - k j=2 j =j 0 α 1j x -x 1 j + k j=2 α 1j x -x 2 j + c 3
on Ω. However, in a neighborhood of x 1 j 0 , the right hand side of (2.8) is a C 1 function, while the left hand side is not. Hence, we must have α 1j = 0 for all j ≥ 2.

By a similar argument we get that all the coefficients α ij are zero.

The relation (2.6) reads now as a 1 dist (x, ∂Ω) = c 1 on M . Suppose a 1 = 0 and consider the set

S := {x ∈ Ω | dist (x, ∂Ω) = c 1 /a 1 } .
Since M ⊂ S, the set S has positive measure. Hence, there exists a Lebesgue point x 0 in S, i.e., some x 0 ∈ S satisfying (2.9) lim r→0 m (S ∩ B(x 0 , r)) m (B(x 0 , r)) = 1.

Let x 1 ∈ ∂Ω such that |x 0 -x 1 | = dist (x 0 , ∂Ω). Using the notation from the proof of Lemma 3, we have that

C 2π/3 ∩ S∩B(x 0 , |x 0 -x 1 |) = ∅. Indeed, if x ∈ C 2π/3 ∩B(x 0 , |x 0 -x 1 |), then dist (x, ∂Ω) < c 1 /a 1 . Hence, lim r→0 m (S ∩ B(x 0 , r)) m (B(x 0 , r)) = lim r→0 m (S ∩ B(x 0 , r)) \C 2π/3 m (B(x 0 , r)) ≤ 2π -2π/3 2π = 2 3 ,
which contradicts (2.9).

Hence a 1 = c 1 = 0. By a similar argument we get also that all the coefficients a i are zero, obtaining a contradiction.

With this results we can easily prove the following Proposition 7. Let Ω ⊂ R 2 be an open set such that Ω = ∅, R 2 , and k ∈ N * . For almost all X = (x 1 , ..., x k ) ∈ Ω k we have that the numbers dist (x i , ∂Ω), 1 ≤ i ≤ k, |x i -x j |, 1 ≤ i < j ≤ k are linearly independent over Z and each x i has a unique projection on ∂Ω.

(We will say that a point X as above has the property (P ).)

Proof. Let v 1 , v 2 , ..., be an enumeration of the set Z N \ {0}, where

N := k + k 2
, and for each X = (x 1 , ..., x k ) ∈ Ω k consider the vector

∆(X) := (dist (x i , ∂Ω)) 1≤i≤k , (|x i -x j |) 1≤i<j≤k ∈ R N . Let Λ n := X ∈ Ω k | v n , ∆(X) = 0 for n ≥ 1.
By Lemma 6 we have that m (Λ n ) = 0 for all n ≥ 1. Hence, the set

Λ : = X ∈ Ω k | there exists v ∈ Z N \ {0} with v, ∆(X) = 0 = ∞ n=1 Λ n is Lebesgue null.
This fact combined with Proposition 4 gives the result. 

Geometric properties of liftings in 2D

From now on we suppose that Ω is a smooth, bounded and simply connected domain in R 2 . We are going to apply the Proposition 7 in order to obtain the prevalence of the set of those u ∈ W 1,1 (Ω, S 1 ), with a finite number of singularities, that admit a unique minimal BVlifting. We will use the conventions and several facts from [2, Chapter 3] to describe the minimal liftings (and the minimal configurations) of a given u ∈ W 1,1 (Ω, S 1 ) with a finite number of singularities. We quickly recall these conventions and facts.

Consider a function u ∈ W 1,1 (Ω, S 1 )∩ C(Ω\ {a 1 , ..., a k }) where a 1 , . . . , a k ∈ Ω are pairwise distinct points. To the vector of singularities a = (a 1 , a 2 , ..., a k ) we associate the vector of degrees d = (d 1 , d 2 , ..., d k ) where d j := deg (u, a j ) is the degree of u computed on a small circle around a j . We consider a fictitious point a k+1 ∈ ∂Ω, of degree

d k+1 = - k j=1 d j .
We split the family of points a 1 , a 2 , ..., a k , a k+1 in two disjoint parts: the family of "positive points" whose degree is positive and the family of "negative points" whose degree is negative. We omit the points of zero degree. The points from the first family will be denoted P l and those from the second family N l . With these points we create a list {P l , N l } 1≤l≤m by repeating |d j | times each point of degree d j . It is easy to see that there are as many positive and negative points, and therefore these points can be matched in pairs.

We introduce the following pseudometric on Ω:

dist s (A 1 , A 2 ) := min {|A 1 -A 2 | , dist (A 1 , ∂Ω) + dist (A 2 , ∂Ω)} , for A 1 , A 2 ∈ Ω.
With this we define the quantity:

(3.1) L (a, d) := min σ∈Sm m l=1 dist s P l , N σ(l) .
We recall that ([2, Chapter 3, Lemma 3.4]) we can further add points from ∂Ω to the collection {P l , N l } 1≤l≤m , to obtain a possibly larger collection {P l , N l } 1≤l≤n satisfying the properties:

(3.2) n l=1 δ P l = k j=1 d j >0 d j δ a j , n l=1 δ N l = k j=1 d j <0
d j δ a j in D (Ω) , and

(3.3) L (a, d) = n l=1 |P l -N l | .
We will say that a collection of oriented segments (P l , N l ) 1≤l≤n (counted with multiplicities) formed with points satisfying (3.2) and (3.3) is a minimal configuration associated with (a, d). Note that, in general there is more than one minimal configurations for a given u.

A connection associated with (a, d) is an R 2 -valued measure µ on Ω of the form µ = ∞ i=1 ν i H 1 (S i ∩ Ω) , where S i are Borel subsets of C 1 oriented curves in R 2 of normal vectors ν i , with ∞ i=1 H 1 (S i ∩ Ω) < ∞,
and satisfying curl µ = k j=1 d j δ a j .
A minimal connection (associated with (a, d)) is a connection µ (associated with (a, d)) such that µ M = L(a, d).

It is known (see [2, Chapter 3]) that there is a one-to-one correspondence between the minimal connections and the minimal liftings of a given u ∈ W 1,1 (Ω, S 1 ) ∩ C(Ω\ {a 1 , ..., a k }). (Recall that, by our convention, two minimal liftings are equal if they differ by an integer multiple of 2π.) Remark 9. The above one-to-one correspondence between the minimal liftings and the minimal connections gives us that the property that u ∈ W 1,1 (Ω, S 1 )∩C(Ω\ {a 1 , ..., a k }) admits a unique minimal BVlifting depends only on the vector of singularities a = (a 1 , ..., a k ) ∈ Ω k and the vector of degrees d = (d 1 , ..., d k ).

Remark 10. Let us discuss the examples, presented in the introduction, of maps having several minimal BV-liftings. a) In the case of u(z) := z |z| , on Ω = B(0, 1), we have one singularity at the origin, of degree +1. The minimal configurations are given by the pairs (P 1 , N 1 ) where P 1 = 0 and N 1 is any point on ∂D(0, 1) (considered with the degree -1). Hence, there are infinitely many minimal configurations. Each one of these configurations corresponds to a minimal connection, hence we have an infinite number of minimal BV-liftings for this u.

b) In the case of u(z)

:= 2z -1 |2z -1| 2z + 1 |2z + 1| , on Ω = (-1, 1) 2 , we have two singularities, a 1 = -1/2, respectively a 2 = 1/2, of degrees d 1 = +1, respectively d 2 = -1.
We have in this case exactly two minimal configurations. One configuration is given by the collection of oriented segments (P 1 , N 1 ), (P 2 , N 2 ), where P 1 := -1/2 (of degree +1), N 1 := -1 (of degree -1), N 2 := 1/2 (of degree +1), P 2 := 1 (of degree +1). Another minimal configuration is given by the oriented segment (P 1 , N 2 ) (the same notation). Each one of these configurations corresponds to a minimal connection, hence we have two minimal BVliftings for this u.

Remark 11. In order to prove Theorem 2, we will use a property weaker than the bijective correspondence between the minimal connections and the minimal liftings. More specifically, we rely on the fact that there is a surjective correspondence between the minimal configurations and the minimal liftings of a given u ∈ W We need to introduce some new notation. Let u ∈ W 1,1 (Ω, S 1 ) ∩ C(Ω\ {a 1 , ..., a k }) and (a, d) be given as above, and suppose the vector a = (a 1 , a 2 , ..., a k ) ∈ Ω k has the property (P ) described in Proposition 7, namely, the numbers dist (a i , ∂Ω), 1 ≤ i ≤ k, |a i -a j |, 1 ≤ i < j ≤ k are linearly independent over Z and each a i has unique projection on ∂Ω. Let P be a positive point and N a negative point as above. We observe that one and only one of the following may happen: 

M : = {(P i , N j ) | 1 ≤ i, j ≤ m, (P i , N j ) is in case (i)} ∪ P i , N j | 1 ≤ i, j ≤ m, (P i , N j ) is in case (ii) ∪ {(P i , N j ) | 1 ≤ i, j ≤ m, (P i , N j ) is in case (ii)} ,
respectivelly the set of numbers Note that, thanks to the definition of dist s , this is a sum with elements from M d . Proposition 7 allows us to define the set

M d : = {|P i -N j | | 1 ≤ i, j ≤ m, (P i , N j ) is in case (i)} ∪ P i -N j | 1 ≤ i, j ≤ m, (P i , N j ) is in case (ii) ∪ {|P i -N j | | 1 ≤ i, j ≤ m, (P i , N j ) is in case (ii)} .
C σ := δ -1 (r) , n | (r, n) ∈ M d × N, r appears exactly n times in (3.4) . If C σ = δ -1 (r 1 ) , n 1 , ..., δ -1 (r p ) , n p , let C σ be the collection δ -1 (r 1 ) , ..., δ -1 (r 1 ) n 1 times , ..., δ -1 (r p ) , ..., δ -1 (r p ) np times . Thanks to Proposition 7, we immediately see that if σ 1 , σ 2 ∈ S m are such that L σ 1 = L σ 2 , then C σ 1 = C σ 2 . If σ is minimal, i.e, L σ = L(a, d),
then C σ is a minimal configuration. In particular, it follows that there is only one minimal configuration. Hence, we get Theorem 2 (see Remark 11).

Remark 12. Consider a connection µ associated with (a, d) as above. We can associate with µ a unique 1-rectifiable current given by

C := ∞ i=1 τ i H 1 (S i ∩ Ω) ,
where τ i is obtained from ν i by a rotation of -π/2 (hence τ i is tangent to the C 1 curve that supports S i ). We have

(3.5) ∂C = k j=1 d j δ a j .
Also to each 1-rectifiable current satisfying (3.5) we can associate a unique connection µ. In case where µ is a minimal connection, C is a mass minimizing 1-rectifiable current.

In the language of geometric measure theory, Remark 9 and Remark 11 give the following: if there exists only one minimal configuration for (a, d) as above, then, there exists only one mass minimizing 1-rectifiable current (i.e., "least length curve") with (measure geometric) boundary We next explain how Theorem 1 follows from Theorem 2 . From now on, we consider domains Ω which are bounded, simply connected and smooth.

Fix

k ∈ N. Let d = (d 1 , ..., d k ) ∈ (Z\ {0}
) k and consider the set W d of those u ∈ W 1,1 (Ω, S 1 ) for which there exist some distinct a 1 , ..., a k ∈ Ω such that u ∈ W 1,1 (Ω, S 1 ) ∩ C(Ω\ {a 1 , ..., a k }) and deg (u, a j ) = d j for all 1 ≤ j ≤ k. The set W d is a metric space with the norm induced by W 1,1 (Ω, S 1 ).

It is easy to see that each u ∈ W d can be written as u = u a e iψ with a = (a 1 , ..., a k ) as above, with u a given by the formula

u a (z) := k j=1 z -a j |z -a j | d j , z ∈ Ω, and ψ ∈ W 1,1 (Ω, R).
This can be proved as follows. From [2, Chapter 3], we have

J (u) = J (u a ) = π k j=1 d j δ a j
where J (u) := curl (u ∧ ∇u) /2 is the distributional Jacobian of u. Hence, if v := u -1 a u = u a u, then v ∈ W 1,1 (Ω, S 1 ) and (3.6) J (v) = J (u a ) + J (u) = -J (u a ) + J (u) = 0.

Here, we have used the properties J(uv) = Ju + Jv, J(u) = -Ju, ∀ u, v ∈ W 1,1 (Ω, S 1 ); see [2, Section 2.2].

Combining (3.6) with [2, Chapter 2, Lemma 2.8], we find that there exists some ψ ∈ W 1,1 (Ω, R) such that v = e iψ .

We have the following. For u := u a e iψ we have

∇ (u -u ) L 1 ≤ ∇ (u a -u a ) L 1 + ˆΩ |u a -u a | |∇ψ| dx < ε.
Note that Theorem 2 allows us to choose a ∈ Ω k as above and such that u ∈ U d admits a unique minimal BV-lifting.

Note that, since the set of those u ∈ W 1,1 (Ω, S 1 ) with a finite number of singularities is dense in W 1,1 (Ω, S 1 ) (see [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF]), Lemma 13 immediately implies that U is dense in W 1,1 (Ω, S 1 ). This gives the density part in Theorem 1.

To complete the proof of Theorem 1, it remains to prove that U is a G δ set in W 1,1 (Ω, S 1 ). We present below the argument.

For each u ∈ W 1,1 (Ω, S 1 ), we consider the set L (u) of all minimal BV-liftings φ of u satisfying 

D n := u ∈ W 1,1 Ω, S 1 | diam ρ L (u) < 1/n , n ≥ 1.
We easily check that U = ∩ n≥1 D n and hence it suffices to prove that each D n is open in W 1,1 (Ω, S 1 ).

For this purpose we start by establishing some useful properties. First, let (u m ) m≥1 be a sequence in W 1,1 (Ω, S 1 ) converging to some u ∈ W 1,1 (Ω, S 1 ), and let (ϕ m ) m≥1 be a sequence in BV (Ω, R) such that ϕ m is a minimal lifting of u m for each m ≥ 1. If ϕ m converges to some ϕ ∈ BV (Ω, R) in the L 1 norm, then ϕ is a minimal lifting of u.

"

  Minimal" liftings are distinguished BV-liftings. By definition, ϕ is a minimal BV-lifting of u if (1.1) |ϕ| BV = inf u=e iφ |φ| BV , where |φ| BV := Dφ M(Ω,R 2 )

  a) u(z) := z |z| , on Ω := B(0, 1) (the unit disc); b) u(z)

Remark 8 .

 8 It is easy to see that Lemma 3, Proposition 4, Lemma 6 and Proposition 7 remain true in R d for d ≥ 3. The adaptations of the above proofs are obvious.

  (i) dist s (P, N ) = |P -N |; (ii) dist s (P, N ) = |P -N | + |P -N | for some P , N ∈ ∂Ω with dist (P, ∂Ω) = |P -N | and dist (N, ∂Ω) = |P -N |. Thanks to property (P ), the points N and P are unique. Indeed, the definition of d s ensures that the pair (P, N ) is in at least one of the above cases. Also, thanks to the fact that |P -N |, |P -N |, |P -N | are linearly independent over Z, we have that only one of the above situations is possible. Consider the set of oriented segments

  Clearly, the function δ : M → M d , defined by δ (P, N ) := |P -N |, is a bijection. Fix σ ∈ S m . Consider the sum (3.4) L σ := m l=1 dist s P l , N σ(l) .

d

  j δ a j . (See [2, Chapter 3, Section 3.9.4] for details.) Thus the proof of Theorem 2 implies the following: for a.e. (a 1 , . . . , a k ) ∈ Ω k , and for every (d 1 , . . . , d k ) ∈ Z k , there exists exactly one least length curve with boundary k j=1 d j δ a j .

Lemma 13 .

 13 Fix k ∈ N. For each d ∈ (Z\ {0}) k , the set U d := U ∩ W d is dense in W d .Proof. Let ε > 0 and u ∈ W d . From the above observation, we can write u = u a e iψ for some a = (a 1 , ..., a k ) ∈ Ω k , and ψ ∈ W 1,1 (Ω, R). If a ∈ Ω k and the distance |a -a | is sufficiently small, then ∇ (u a -u a ) L 1 < ε/2 and ˆΩ |u a -u a | |∇ψ| dx < ε/ (2 + 2 ∇ψ L 1 ) .

  ˆΩ φ (x) dx ≤ π.We endow L (u) with the L 1 metric and we consider ρ :L (u) × L (u) → [0, ∞) defined by ρ (ϕ 1 , ϕ 2 ) := inf k∈Z ϕ 1 -ϕ 2 + 2πk L 1 , (ϕ 1 , ϕ 2 ) ∈ L (u)×L (u) . Define (3.8) diam ρ L (u) := sup φ 1 ,φ 2 ∈L(u) ρ (φ 1 , φ 2 ) ,and consider the sets

  1,1 (Ω, S 1 ) ∩ C(Ω\ {a 1 , ..., a k }). In particular, if there exists only one minimal configuration for u as above, then, there exists only one minimal lifting of u. (See [2, Chapter 3, Remark 3.8].)

Recall that a residual (or comeagre) set is a countable intersection of sets with dense interiors.

Indeed, u m -e iϕ L 1 (Ω) = e iϕ m -e iϕ L 1 (Ω) ≤ ϕ m -ϕ L 1 (Ω) → 0, when m → ∞. It follows that u m → e iϕ ∈ BV (Ω, S 1 ) in the sense of distributions and hence u = e iϕ , i.e., ϕ is a BV-lifting of u.

Define, for u ∈ W 1,1 (Ω, S 1 ),

The relevance of Σ(u) in the study of minimal liftings is provided by the following result [2, Corollary 2.4] (see also [START_REF] Brezis | W 1,1 -maps with values into S 1 . In Geometric analysis of PDE and several complex variables[END_REF]): if ϕ ∈ BV(Ω, R) is a BV-lifting of u, then u is a minimal lifting if and only if

(We emphasize the fact that (3.9) by itself does not suffice to deduce that ϕ is a minimal lifting of u. We also need to know that ϕ is a BV-lifting of u.) By (3.9), we have

Since ϕ is a BV-lifting of u, in order to show the minimality of ϕ, it suffices to prove that

for any ψ ∈ BV (Ω, R).

Fix ψ ∈ BV (Ω, R). By (3.10) we have, for all m ≥ 1,

Also, Dϕ m → Dϕ in the sense of distributions and hence, from (3.11) we get

A second observation is that the supremum in (3.8) is attained. Indeed, by the above observation,

Going back to the proof Theorem 1, it remains to prove that D c n is a closed set. We have that:

n converging to some u ∈ W 1,1 (Ω, S 1 ). From (3.12), there exist two sequences (ϕ m 1 ) m≥1 , (ϕ m 2 ) m≥1 with ϕ m 1 , ϕ m 2 ∈ L (u m ) for all m ≥ 1, such that u m = e iϕ m 1 = e iϕ m 2 and

, possibly up to a subsequence. According to our observation, ϕ 1 and ϕ 2 are minimal liftings of u. We have from (3.13) and the continuity of ρ that ρ (ϕ 1 , ϕ 2 ) ≥ 1/n. Also, ϕ 1 , ϕ 2 satisfy (3.7). Therefore, we have u ∈ D c n . The proof of Theorem 1 is complete.