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INTRODUCTION

Over the last decade, floating wind turbines (FWTs) emerge as a focus of research of renewable energy. The control system plays an important role in such large wind turbine systems. However, the standard control strategies developed for onshore wind turbines (as collective blade pitch (CBP) control) in above rated region can not be directly used on FWT due to the negative damping on the platform motion [START_REF] Nielsen | Integrated dynamic analysis of floating offshore wind turbines[END_REF]. Therefore, new control scheme must be developed given that the control objectives of FWTs in the above rated region are not only to ensure the rated power production, but also to reduce the platform motion. Notice that a key-point in such systems is the limitation of the structure fatigue load. Many works have been made in the FWTs field, in [START_REF] Jonkman | Influence of control on the pitch damping of a floating wind turbine[END_REF], the platform pitch motion is reduced thanks to a gain scheduling PI (GSPI) controller. In [START_REF] Lackner | Controlling platform motions and reducing blade loads for floating wind turbines[END_REF], the control scheme is made such that the rotor speed is set as a function of the platform pitch velocity whereas the generator torque is forced to its rated value; by this way, the platform pitching is reduced but the cost is larger power fluctuations. Linear control algorithms have been mainly used in the control of FWTs, such as linear quadratic regulator [START_REF] Namik | State-space control of tower motion for deepwater floating offshore wind turbines[END_REF], model predictive control and feed-forward control [START_REF] Schlipf | Comparison of feedforward and model predictive control of wind turbines using lidar[END_REF][START_REF] Schlipf | Collective pitch feedforward control of floating wind turbines using lidar[END_REF]. Some works have used additional control inputs such as individual blade pitch (IBP) angle or generator torque (Namik andStol 2014, Suemoto et al. 2017). However, most part of the controllers are based on linear models of FWTs around an operating point (depending on wind condition and rotor speed), the efficiency of the controller being guaranteed in a limited operating domain. Consequently, in order to keep an interest over a larger operating domain, controller gains must be changed versus operating conditions, to keep the efficiency (see for example GSPI). The task of controllers tuning appears to be fastidious. A solution to avoid this task is the use of nonlinear controllers, potentially based on nonlinear models. Thus, in (Sandner et al. 2012, Homer and[START_REF] Homer | Physics-based 3-d control-oriented modeling of floating wind turbines[END_REF],

The work of Cheng Zhang is financially supported by CSC (Chinese Scholarship Council).

nonlinear models have been developed, but their use is limited in the frame of control. Another approach consists in using robust controllers that can be applied to (linear or nonlinear) systems for which the knowledge is very limited. Concerning robust control, a class of such controllers is the sliding model control (SMC) one [START_REF] Utkin | Variable structure systems with sliding modes[END_REF][START_REF] Utkin | Sliding mode control in electro-mechanical systems[END_REF]). Among the numerous SMC algorithms (first order, second order, high order), the control law selected in this paper is the adaptive verion [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: Methodology and application[END_REF]) of the popular super-twisting (STW) [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. This second order sliding mode controller has several features that are well-adapted to FWTs control problem: it ensures the establishment of a second order sliding mode, that improves the accuracy with respect to standard sliding mode control; it offers a continuous control that reduces the chattering phenomenon, thereby well protected the actuators; it is an output feedback controller that reduces the use of time derivative of the sliding variable with respect to other second order sliding mode control laws; the controller gains can be dynamically adapted with respect to perturbations and uncertainties; and finally, the adaptive gains allow to have a very reduced knowledge of the system that can be nonlinear. This kind of control strategies have been very recently and successfully applied by the authors to a FWT, but without considering the electrical part of the wind turbine. In these previous works (Zhang et al. 2019a,b), several gain adaptation strategies for super-twisting controller have been used for the control of FWT, by considering only the aero/hydrodynamic part (electrical part of the FWT is not taken into accountit is supposed that the torque applied to turbine is constant). The control design has been made by supposing that only the relative degree of the control objective is known (that is a very limited information). This approach is totally new in the context of FWTs. Indeed, both these papers have shown that the use of such controllers allows to reach higher performances versus GSPI, even if the knowledge of the system is very reduced. In the current paper, a permanent magnet synchronous generator is now included in the system. A control based on adaptive super twisting algorithm is applied for the very first time to complete model of FWT including aerodynamic, hydrody-namic and electrical parts and, such control scheme combined the collective blade pitch angle control and the generator torque control.

MODELLING OF THE SYSTEM

The wind turbine considered in this work is the National Renewable Energy Laboratory (NREL) 5MW OC3-Hywind, supported by a spar-buoy platform that is modeled by an opensource software FAST (Fatigue, Aerodynamics, Structures and Turbulence) (see details in [START_REF] Jonkman | Definition of a 5-mw reference wind turbine for offshore system development[END_REF][START_REF] Jonkman | Definition of the floating system for phase iv of oc3[END_REF]). The model used in FAST is highly nonlinear, complex and not adapted for the control design; a reduced model can be used as detailed in the sequel. Furthermore, permanent magnet synchronous generator (PMSG) is supposed to be installed in the FWT.

Models of floating wind turbine

The mechanical dynamics of the wind turbine reads as

Ωr = 1 J (T a -ηT g ) Ω g = ηΩ r (1) 
with Ω r , T a , Ω g and T g the rotor speed, the aerodynamic torque of rotor, the generator speed and the generator torque respectively, J the overall inertial and η the ratio of gear box that connects both the shafts of turbine rotor and generator. Aerodynamic torque T a can be written as a function of power coefficient C P (λ , β ) [START_REF] Huang | Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics[END_REF][START_REF] Guenoune | Modeling and robust control of a twin wind turbines structure[END_REF])

T a = 1 2 C p (λ , β ) λ ρπR 3 V 2 (2)
with ρ (1.255kg • m -3 ) the air density, R the radius of wind turbine blade, V the wind speed, β the blade pitch angle. λ is the tip-speed ratio reading as

λ = Ω r V R (3) 
The power coefficient C P (λ , β ) can be described by

C p = c 1 (c 2 ξ -c 3 β -c 4 )e c 5 ξ ξ = 1 λ + 0.08β - 0.035 β 3 + 1 (4)
with c 1c 5 the C p curve fitting coefficients (for details, see [START_REF] Guenoune | Modeling and robust control of a twin wind turbines structure[END_REF]). These latter coefficients depend on the wind turbine and are estimated among large scale of simulations. As conclusion, it is clear that C p is not well-known and introduces uncertainties in the model. Notice that, according to (1)-( 4), rotor speed Ω r can be controlled by actuating on the blade pitch angle β , and thereby regulate the power output in the considered region. Indeed, the blade pitch angle β explicitly appears in the first time derivative of Ω r through T a ; it means that the relative degree [START_REF] Isidori | Nonlinear control systems[END_REF] of Ω r with respect to β equals to 1. However, the formal relation is very difficult to be precisely established. Furthermore, in the previous modelling, the hydrodynamics, i.e. the floating part of the system, is not taken into account. Notice that hydrodynamic models of the floating platform proposed in the literature, such as [START_REF] Betti | Development of a control-oriented model of floating wind turbines[END_REF][START_REF] Sandner | Reduced nonlinear model of a spar-mounted floating wind turbine[END_REF], are limited in the frame of control. A linear model ( 5) can be derived by FAST software. Such model is got thanks to linearization around an operating point (depending on wind and rotor speed conditions). Considering a limited degree of freedom and the variations around the operating point composed by platform pitch angle ϕ o and its velocity φo , rotor speed Ω ro and blade pitch angle u o , one gets the following linear dynamics

∆ ẋ = A • ∆x + B • ∆β + ∆δ
(5) with ∆x the system state vector, composed by the variations around the operating point of the platform pitch ∆ϕ, platform pitch rate ∆ φ and rotor speed ∆Ω r , ∆β being the variation of collective blade pitch angle. Given the term ∆δ that describes the perturbations on the FWT, the model ( 5) is viewed as a perturbed linear one. The system matrices A and B are obtained from the FAST software, their values depending on the considered operating point. As example, for a wind speed equal to 16m/s and a rotor speed equal to its rated value Ω ro , one has

A = 0 1 0 -0.0141 -0.0402 -0.0003 -0.0525 -2.0615 -0.1624 , B = 0 -0.0033 -0.9479 (6)
whereas, for a wind speed equal to 18m/s with the same rotor speed, one gets

A = 0 1 0 -0.0141 -0.0405 -0.0004 -0.0757 -2.3031 -0.2304 , B = 0 -0.0035 -1.1864 (7)
Notice that, from ( 6) or ( 7), it is confirmed that the relative degree of the rotor velocity versus the blade pitch angle equals to 1. Consequently, due to the wind variations and considering a large operating domain, it is reasonable to assume the FWT model as follows

ẋ = A(t) • x + B(t) • β + δ (8) with x = [ϕ φ Ω r ]
T and δ the perturbation term including all the uncertainties, and external perturbations (waves and wind effect, ...). By a more general point-of-view, the previous system can be viewed as a class of nonlinear system reading as ẋwt = f wt (x wt ,t) + g wt (x wt ,t)u wt + δ (9) with x wt = [ϕ φ Ω r ] T , u wt = β , f wt (x wt ) including the term with δ and g wt (x wt ) being uncertain and unknown. One can also assume that

• from ( 5)-( 7), both the rotor speed Ω r and platform pitch velocity φ can be controlled by blade pitch angle β . Furthermore, the relative degree of Ω r and φ equals to 1; • f wt (x wt ,t) and g wt (x wt ,t) are bounded because the wind speed and rotor speed are limited.

Model of the electrical machine

The permanent magnet synchronous generator model in the dq frame reads as [START_REF] Guenoune | Modeling and robust control of a twin wind turbines structure[END_REF])

id = - R s L d i d + pL q L d Ω g i q + 1 L d V d iq = - R s L q i q - pL d L q Ω g i d - pφ f L q Ω g + 1 L q V q (10)
with i d , i q , V d , V q the currents and the voltages along the dq axes respectively, L d and L q the inductance. R s , p and φ f are respectively the stator resistance, the number of pole pairs and the permanent-magnet flux linkage. Then, as the wind turbine, the electrical machine reads as a nonlinear system such that ẋem = f em (x em ,t) + g em (x em ,t)u em (11) with x em = [i d i q ] T , u em = [V d V q ] T , f em (x em ,t) and g em (x em ,t) being uncertain and not well-known.

PROBLEM STATEMENT

In the above rated region (often named Region III), the first control objective is the regulation of the power at its rated value: in other words, the objective is to limit the power in order to protect the electric machine and the mechanical structure. On the other hand, the floating platform pitch motion can induce instability and increases load fatigue. As a consequence, it is necessary to reduce the platform pitch motion, i.e. to reduce platform pitch velocity.

Rotor speed reference

From ( 5)-( 7), the two control objectives, i.e. rotor speed and platform pitch velocity, have to be achieved by a single control input (collective blade pitch angle). A solution to solve such problem is to take advantage of the physical features of the floating wind turbine. Consider that the desired rotor speed Ω * r is a function of platform pitch velocity as

Ω * r = Ω ro -k • φ (12)
where Ω ro is the rated rotor speed (Ω ro = 12.1 rpm) and k is a positive constant. The idea of such reference makes use of the trade-off between rotor speed and platform pitch. Suppose that Ω * r = Ω ro and the control is efficient, i.e. Ω r = Ω * r . Now, φ becomes negative: therefore, from (12), Ω * r increases. Therefore, the aerodynamic force that is opposite to the tower motion, increases. Then, | φ| is reduced: from (12), Ω * r decreases. The system naturally reduces the pitch motion [START_REF] Lackner | Controlling platform motions and reducing blade loads for floating wind turbines[END_REF][START_REF] Cunha | Reducing blade fatigue and damping platform motions of floating wind turbines using model predictive control[END_REF], and so on.

Direct current reference

The existence of large direct current i d induces oscillations of the electromagnetic torque: such oscillations can degrade the power production and increase the fatigue loads of the shafts [START_REF] Bose | A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine[END_REF]). Therefore, the current i d must be forced to zero in order to avoid those negative effects.

Quadratic current reference

Denoting P o the rated power, the corresponding generator torque reads as

T * g = P o ηΩ r (13) 
Meanwhile, the generator torque is defined as

T g = 3 2 pφ f i q (14)
Hence, one can conclude that the control of generator torque is equivalent to the control of i q . Therefore, from ( 13)-( 14), if the objective is to limit the power to its rated value, the reference of i q reads as

i * q = 2P o 3ηΩ r pφ f . ( 15 
)

CONTROL DESIGN

The floating wind turbine system withstands not only the system uncertainties due to flexible structures, but also the influence of wind and waves. Hence, such system is highly perturbed, uncertain and nonlinear. The linear controller proposed in the literature, such as GSPI, is designed based on the linearized model around an operating point: it is efficient while system is evolving around the range of this point. However, a large set of gains must to be tuned in order to keep the control efficiency at different operating points that increases the tuning effort. It is necessary to design a nonlinear robust controller with a single set of parameters tuning meanwhile keeping the control efficiency among the large operating range despite of the uncertainties and perturbations. Furthermore, the controller design must require a very limited knowledge on the system. Hence, the previous mentioned super-twisting algorithm is adopted, in addition, given the unknown terms of the rotor and platform pitch dynamics, the uncertainties on turbine and electrical machine, the external perturbations, the controllers gains must be chosen sufficiently large to accommodate those effects. This fact gives a "high gain" control that induce chattering and degrade the controller performance. Therefore, adaptive version of STW Shtessel et al. ( 2012) is used: it allows to dynamically adapt the gain versus uncertainties and perturbations while keeping high level of performances, even in case of very reduced knowledge of the system.

Recalls

Consider the following system ż = f (z) + g(z)υ y = S(z,t)

with z ∈ Z ⊂ IR n the state and υ ∈ U ⊂ IR the control input, f and g the bounded unknown nonlinear functions, y the system output. Define S(z,t), called the "sliding variable" and defined such that, once S = 0, then y → 0.

The idea of SMC is to design the control input υ such that the sliding variable S(z,t) is forced to reach the sliding surface S(z,t) = 0 in a finite time, in spite of uncertainties and perturbations. Once S(z,t) = 0, the system trajectories are evolving on this surface, and y goes towards 0. Notice that the sliding variable S(z,t) is defined according to control objective y and its relative degree. Assume that Hypothesis 1. The relative degree of system (16) equals to 1.

Define S = y: one gets The objective now is to drive sliding variable S to zero thanks to the control υ. The Super-twisting algorithm [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] given by

Ṡ = ∂ S dt + ∂ S dz f (z) a(z,t) + ∂ S dz g(z) b(z,t) υ (17)
υ = -k 1 |S| 1 2 • sign(S) + w ẇ = -k 2 • sign(S) (18) 
with k 1 and k 2 the controller gains

k 1 > a M b M , k 2 2 ≥ 4a M b 2 m • b M b m • k 1 + a M k 1 -a M ( 19 
)
ensures S = Ṡ = 0 in a finite time 1 . It is clear that the sliding mode can be established in a finite time with sufficiently large gains. However, in practice, the bounds of uncertainties and perturbations are difficult to determine; furthermore, even if they are determined, they are often over-estimated that degrade the control performance.

A solution is to use adaptive gains strategy: it allows to increase the gains when accuracy is not sufficient, and to reduce them when control objectives are reached. An adaptive version of the super-twisting (ASTW) controller has been proposed in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: Methodology and application[END_REF] and reads as ( 18) with the gains k 1 and k 2 defined as

k1 =    ω χ 2 sign(|S| -µ) if k 1 > k 1m k if k 1 < k 1m k 2 = εk 1 (20)
with k 1m , ε, ω, χ, µ and k positive constants. Furthermore, k 1 (0) > k 1m . The idea of the adaptation law ( 20) is the following

• if |S| > µ, it
means that the accuracy is low. Then, it could be due to a low gain: k 1 (and then k 2 ) is increased;

• if |S| < µ, it
means that the accuracy is good. Then, it means that the gain is enough large and could be reduced: k 1 (and then k 2 ) is decreased; • if k 1 becomes very small, and in order to guarantee its positiveness, k 1 is smoothly increased.

Application to floating wind turbine

As described in Section 2 by ( 9)-( 11), the control input vector u and the output vector y of the whole system read as

u = β V d V q , y = y 1 y 2 y 3 =   Ω r -Ω * r i d -i * d i q -i * q   (21)
Recalling that the control objective is to ensure y → 0 and the relative degree of the outputs y 1 , y 2 and y 3 with respect to u equal to 1, the sliding variable vector S is defined as

S = [S 1 S 2 S 3 ] T = [y 1 y 2 y 3 ] T (22) Therefore, time derivatives of S read as Ṡ1 = 1 2J ( C p (λ , β ) Ω r ρπR 2 V 3 -3η pφ f i q ) + k φ Ṡ2 = - R s L d i d + pL q L d Ω g i q + 1 L d V d Ṡ3 = - R s L q i q - pL d L q ηΩ g i d - pφ f L q ηΩ g - 2P o Ωr 3η pφ f Ω 2 r + 1 L q V q
(23) Dynamics of S 1 depends on C p and φ is not well-known. Furthermore, it can be numerically shown that, in the operating domain and from (4), the power C p can be approximated as

C p = C p1 (•) +C p2 (•)β (24)
Consequently, the dynamic of S 1 can be rewritten as Ṡ1 = a 1 (•) + b 1 (•)β (25) with a 1 and b 1 unknown but bounded functions.

Dynamics of S 2 can be rewritten from the second equation of ( 23) as Ṡ2 = a 2 (•) + b 2 (•)V d (26) Note that, in the model (10) of PMSG, each parameter is composed by a known nominal part and unknown uncertainty one (for example, the resistance R s can be written as R s = R sn + ∆R s , R sn being its nominal value and ∆R s the associated uncertainty). Then, one gets

a 2 = a 2n + ∆a 2 , b 2 = b 2n + ∆b 2 (27)
with a 2n and b 2n the nominal part and a 2u and b 2u the uncertainty part. The terms a 2n and b 2n read as 2

a 2n = - R s L d i d + pL q L d Ω g i q , b 2n = 1 L d (28) 
Dynamics of S 3 depends on the dynamics of Ω r that is not well-known and coupled with the blade pitch angle β . However, numerical analysis in the operating domain shows that the influence of β is very limited on S 3 dynamics. Therefore, consider the term in Ṡ3 that contains Ωr as a bounded perturbation which gives Ṡ3 = a 3 (•) + b 3 (•)V q (29) with a 3 = a 3n + ∆a 3 and b 3 = b 3n + ∆b 3 . The terms a 3n and b 3n read as

a 3n = - R s L q i q - pL d L q ηΩ g i d - pΦ f L q ηΩ g , b 3n = 1 L q (30)
Therefore, the control input reads as

u = β V d V q =      υ 1 1 b 2n (-a 2n + υ 2 ) 1 b 3n (-a 3n + υ 3 )      (31) 
with υ 1 , υ 2 and υ 3 based on the ASTW algorithm ( 18)-( 20)

υ 1 υ 2 υ 3 =        -k 11 |S 1 | 1 2 sign(S 1 ) - t 0 k 12 sign(S 1 )dτ -k 21 |S 2 | 1 2 sign(S 2 ) - t 0 k 22 sign(S 2 )dτ -k 31 |S 3 | 1 2 sign(S 3 ) - t 0 k 32 sign(S 3 )dτ        . (32) 
with the gains k 11 , k 21 , k 31 and k 12 , k 22 , k 32 respectively defined as k 1 and k 2 in (20).

GSPI+PI control

The control of rotor speed considered in this paper is the baseline GSPI controller, it is regarded as a comparison object.

The control objective being to regulate rotor speed at its rated value Ω ro that gives

υ 1 = ηk p (Ω r -Ω ro ) + ηk i t 0 (Ω r -Ω ro )dτ (33) 
with k p and k i obtained for different operating points and scheduled as functions of blade pitch angle; the gains and the gain scheduled PI are derived from [START_REF] Jonkman | Influence of control on the pitch damping of a floating wind turbine[END_REF]) in order to avoid platform pitch resonance. The control of direct current/power control is as stated in Section 3.3 with a PI controller, then, the control inputs υ 2 and υ 3 are defined as

υ 2 = k p2 S 2 + k i2 t 0 S 2 (τ)dτ υ 3 = k p3 S 3 + k i3 t 0 S 3 (τ)dτ (34) 
2 These expressions are given with the nominal values of all the parameters.

SIMULATIONS AND RESULTS

Benchmark

Simulations are made thanks to the co-simulation between MATLAB/SIMULINK and FAST nonlinear model. All DOFs of the FAST nonlinear model are enabled. The parameters of the FWT can be found in [START_REF] Jonkman | Definition of a 5-mw reference wind turbine for offshore system development[END_REF] 

Results and Discussion

All the performances indicators of are normalized and are shown in Figure 1. Figure 1-top including the root mean square (RMS) of power error, platform pitch rate and platform motions; the variation (VAR) of blade pitch angle that indicates the use of blade pitch actuator. Figure 1-bottom displays the standard deviation (STD) of tower base (TB) moments in foreaft, side-to-side and torsional directions, the STD of blade root (BR) edge-wise and flap-wise moments. For all the indicators, the smaller the values are, the better the performances are. recall that the tuning of the sliding mode control is simpler (a single tuning for the whole operating domain). One can find the trajectories of main system variables in Figure 2. Tracking of i q i q -GSPI+PI i q -ASTW i q * -GSPI+PI i q * -ASTW 302.5 302.6 302.7 302.8 734 735 736 Fig. 3. Currents i d (A) and i q (A) obtained by GSPI+PI and ASTW controllers versus time (sec.).

The results of the electrical part are shown in Figure 3 and Table 1. ASTW allows smaller tracking errors on both i d and i q . In other words, the ASTW can keep better control efficiency in spite of perturbations than PI (see Figure 3). Figure 5 displays the stator voltages and currents. Indeed, PI control might improve the performance by using the gainschedule technology as the turbine part control used, but a large scale of tuning must be done. Note that the ASTW control used in this work can keep good performance with a single phase of tuning thanks to its adaptation. Indeed, the controller gains are dynamically adapted versus model uncertainties and perturbations (see Figure 4). Adaptive super-twisting algorithm is applied on the floating wind turbine equipped by a permanent magnet synchronous machine in above rated region. The proposed controller is evaluated on FAST software and has better performances on the power regulation, platform pitch motion and direct current reduction than baseline GSPI controller. The main features of ASTW controller are that very few information of the system model is required, and the controller tuning is simplified given that controller gains are dynamically adapted with respect to uncertainties and perturbations.

  Hypothesis 2. a(z,t) and b(z,t) are unknown but bounded functions, such that |a| ≤ a M , 0 ≤ b m ≤ b ≤ b M for z ∈ Z and t > 0, a M , b m and b M being the positive constant.

Fig. 2 .

 2 Fig. 2. FWT variables versus time (sec.) obtained by GSPI+PI (blue) and ASTW (red) controllers.

Fig. 4 .

 4 Fig. 4. Adaptive gains k 11 , k 21 and k 31 versus time (sec.).

Fig. 5 .

 5 Fig. 5. Stator voltages (V) and currents (A) along the three phases frame versus time (sec.), by using ASTW controller. 6. CONCLUSION

  • , 90 • ], and the associated rate is limited between [-8 • , 8 • ].

	); the PMSG has
	5 pairs of pole with stator resistance, stator inductance and flux
	linkage equal to 1.06 Ω, 14.29 mH and 8.6 W b respectively.
	Two kind of controllers are compared
	• GSPI+PI: rotor speed GSPI (33) with power/direct cur-
	rent control (34);
	• ASTW: super-twisting algorithm (31)-(32) with gain
	adaptation proposed in Sections 4.1 and 4.2.
	All the simulations are under same conditions: 18m/s stochas-
	tic wind with 15% turbulence intensity; irregular wave with
	significant height of 3.25m, peak spectral period of 9.7s; since
	there is no blade dynamic in the FAST model, the blade pitch
	angle is saturated between [0

Table 1 .

 1 Mean tracking error of PMSG currents.

	Controller Mean tracking error (A) of i d	Mean tracking error (A) of i q
	GSPI+PI			0.0812				0.2157
	ASTW			0.0536				0.1233
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In practice, the supertwisting controller ensures, in a finite time, the establishment of a "real"second order sliding mode[START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], i.e. |S| < µ 1

T 2 e , | Ṡ| < µ 2 T e with T e the control sampling time, µ 1 and µ 2 positive constant.