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CESAF: an Iterative & Collaborative Approach for Complex Systems 

Development 

Daniel KROB1 

1. Introduction 

Agile development methods are nowadays well established in software engineering. They refer to an 

approach to software development under which requirements and solutions evolve simultaneously 

through the collaborative effort of self-organizing cross-functional teams, including customer(s) and 

end-users(s), whose objective is to construct a software solution that answers as well as possible to 

its business needs. Agile approaches advocate adaptive planning, evolutionary development, early 

delivery and continuous improvement. They also encourage rapid and flexible responses to changes 

(see for instance [34], [56] or [68] for more details). 

The term agile was popularized – in the software engineering area – by the Manifesto for Agile 

Software Development that goes back to 2001 (cf. [1]). The values and principles proposed by this 

manifesto are especially the cornerstones of a broad range of modern software development 

frameworks, including Scrum and Kanban, which are among the most popular agile methodologies in 

these contexts (see [24] for a short history of agile methodologies). One shall finally point out that 

such agile approaches are nowadays widely used in the industry for non-critical software 

development: most of service industries (banks, insurances, retail, telecommunications, etc.) are 

typically using them on a daily basis for developing their business software capabilities.  

The maturity of agile approaches in software development can be measured by the worldwide 

success and dissemination of agile frameworks at enterprise scale, such as SAFe (whose acronym 

stands for Scaled Agile Framework) which is the most famous one in this matter (see [40], [57] or 

[58]). This last framework proposes a full body of knowledge for deploying and scaling agile methods 

at enterprise level: SAFe indeed explains how to use consistently agile approaches both at team, 

program, large solutions and enterprise portfolio levels, again still in the context of software 

development. 

The same maturity does however not exist in the context of complex systems development where 

one can only find some poor and still quite recent references to agile systems engineering. The first 

attempt of extending the agile framework to the context of system development seems for instance 

to only go back to the end of 2012 when an IBM researcher, Hazel Woodcock, proposed a revisit of 

the Agile Manifesto for systems engineering (see [76]). In the line of this seminal initiative, a working 

group of the International Council on Systems Engineering (INCOSE) started then – in 2014 – to work  

on agile systems engineering (see [38]) with a regular production on this subject, leading in particular 

to a first textbook which was published by B.P. Douglass in end 2015 (see [28]). Finally, one shall also 

point out a quite recent first attempt – that goes back to October 2017, as far as we could trace it – 

of SAFe team that proposed a sketch of a Model-Based Systems Engineering agile framework. This 

last proposal is however reduced to a very small number of ideas, not detailed at all and clearly not 

very effective and not supported by returns on experiments from real system developments (see 

[58]). 
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Moreover, these attempts for extending the agile paradigm to systems engineering clearly did not 

deeply penetrate the industry. In practice, most of the industrial development organizations are 

indeed not “agile” at all – taking here this term in the meaning of agile methods – and are still using 

quite classical more or less cascaded development approaches, based on a V-cycle organization with 

specialized teams working in silos, where customer-focus and transversal collaboration are usually 

weak. One may observe that this situation is probably due to the fact that physical systems are much 

more difficult to handle than software systems and that systems development frameworks are 

usually strongly constrained by regulatory issues, especially when dealing with critical systems.  

Nevertheless, we can however see that some industrial companies have successfully started to 

deploy agile systems engineering (also called iterative systems engineering) approaches with 

outstanding outcomes. Two of these examples are SpaceX and Gripen that are quickly presented 

below. 

 First of all, SpaceX was for instance able to apply an “agile” approach to a multidisciplinary 

industrial and complex system such as a launcher. Agility allowed SpaceX to significantly reduce 

program costs by transforming the classical unique single development cycle into a series of short 

design-build-test development cycles. During these short cycles, departments and disciplines are 

aligned on the same system view of the global product. All development actors involved in SpaceX 

engineering activities are also regularly synchronized to reduce over-costs and delays on each 

short iterative cycle. In the same way, customers’ requirements are permanently tracked and 

verified in order to optimize all design items covering these requirements at each iterative design-

build-test cycle.Note finally that digital continuity is key to improve collaboration and to master 

dashboarding status at each cycle, allowing the three SpaceX locations, each of them mixing many 

teams and sub-teams, to work as a global team sharing all key information. 

 In the same way, Saab applied successfully an iterative systems engineering approach for 

developing the JAS 39 E/F Gripen military aircraft, with a huge impact on design complexity. The 

design cost of this aircraft is indeed estimated at 14 B€ instead of 25 B€ for the Dassault Aviation 

Rafale. The Gripen success is considered as mainly linked to the efficiency of the transversal 

collaboration between functional & design teams, who used digital and functional mockup tools 

as pivot to synchronize.  

These two examples are showing well the strategic importance of agility in the context of multi-

physical complex industrial system development.  

2. CESAF: CESAM Engineering Systems Agile Framework 

2.1 History 

CESAF2 is an agile model-based systems engineering framework, based both on real concrete 

applications & experiences in order to ensure practical applicability and on the CESAM model-based 

systems architecting framework (see [17] for more details). 

We already have defined the fundamentals of such a framework which, even if not fully formalized, 

was already used in several real development contexts in order to find quickly an optimal system that 

answers to all stakeholders’ needs. More specifically, we helped implementing since around three 
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years several agile development loops in complex system development contexts such as automotive 

(e.g. development of new advanced driver assistance services), high tech (e.g. development of a new 

camera in Japan and of a smart site management system in China), energy (e.g. development of a 

smart energy distribution system) and aeronautics (e.g. mechanical engine design and 

manufacturing). In aerospace, the development of a new aircraft turbomachine was re-analyzed last 

year through a complete coarse grain agile loop achieved in 3 months: it allowed fixing the main 

known engineering and manufacturing issues through the understanding of the key relationships 

between product features and characteristics of the most important manufactured parts. A second 

experience at engine level confirmed the achievement of – 20 % of lead time, as experienced with 

the first project with the same customer. 

Finally, we are working – since mid 2018 – within one of the key aircraft manufacturers in order to 

implement an ambitious transformation program at enterprise level, dedicated to the deployment 

through engineering, manufacturing and customer services of an agile development framework 

relying on model-based systems engineering. Note that these different experiences are of course 

confidential since they were all deployed on real development projects.  

2.2 Key Features  

2.2.1 Feature 1: Product / Organisation Alignement 

Preliminary definition of a product reference architecture:  

The first key element to enable agile engineering is an adequate product architecture. In this matter, 

it is key to construct first a generic reference product decomposition where the product is recursively 

decomposed into logical components which are as independent as possible from a functional & 

logical point of view. Such a decomposition will help reducing the functional & logical interfaces that 

are existing between product components, and consequently the issues linked to the concurrent 

design and the integration of these components. Such a generic reference product decomposition 

shall in particular contribute to a maximalist (“150 %”) high-level vision of the product of interest (or 

of a family of similar products if one is dealing with a product line approach) that include the 

definition of generic assets such as generic external & internal interfaces, generic needs and 

functional & constructional requirements, generic functional and logical architectures, etc.  
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Figure 1 – Reference functional-logical architecture of a single-aisle aircraft (Airbus A320)  

An example of such a generic reference architecture – that we constructed on the basis of publicly 

available documentation – is provided in Figure 1 for an Airbus single aisle aircraft. Note that these 

reference architectures are key for providing a standard & shared way of presenting and analyzing 

different design alternatives when relevant. They are also a natural support for impact analyses, as 

far as they have a double functional and constructional nature. 

Product / organisation alignment:  

Based on the previous reference product architecture, a second key element towards agile 

engineering is the alignment of the multidisciplinary activities and of the generic reference product 

architecture. Organization shall indeed replicate the product architecture in order to provide the 

best agility all over the development process. Traditional activity organization is indeed often a 

source of tunnel effect due to the fact that teams are not functionally independent, not sufficiently 

autonomous and even sometimes too big to be mastered in an agile process. It is therefore often key 

to reorganize the development teams in order to mimic the reference product architecture in the 

organization. 

As a consequence, a typical agile development organization shall be split into 2 - 3 or more layers 

according to product complexity and constraints. A typical 3 layers organization will for instance be 

decomposed into a system level, a sub-system level and a part level (this last one taking into account 

the part manufacturing constraints, typically for mechanical components). In this organization, each 

development team shall therefore be in charge of a unique component of the reference product 

decomposition of the product of interest, all components being covered by the different 

development teams. Note finally that one also has to identify “architects” that shall be in charge of 

synchronizing the development teams, both horizontally between the different disciplines and 

vertically between the different product layers. The resulting organizational model is illustrated in 

Figure 2. 

 

Figure 2 – Agile organization resulting from a product / organization alignment 
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2.2.2 Feature 2: Iterative Collaboration between Layers and Disciplines 

The second idea of our agile approach for complex systems engineering consists in iteratively 

defining the product by organizing its development into successive collaborative design loops of 

increasing length and granularity where the product relevancy, consistency and feasibility is assessed 

at more and more precise levels of analysis (see next figure). Each loop shall in particular cover and 

study several possible product variants at different levels of grain along their full development cycle, 

starting from top-level architecture up to manufactured part design and definition of manufacturing 

and maintenance concepts. The design choices shall be gradually frozen and deepened until 

achieving the full complete specification of the product and of its associated manufacturing and 

maintenance processes. All system stakeholders – in particular manufacturing & maintenance actors 

– shall be involved in these design loops in order to capture as early as possible their constraints.  

Such a development model makes it possible to freeze quickly structuring choices related to system 

global performance, system architecture, external or internal interfaces, critical parts or technologies 

and development, manufacturing & maintenance processes, ensuring the technical and industrial 

feasibility of the target system and providing a good control of risks at any time. 

During each design loop, all involved teams – that is say all engineering & manufacturing disciplines 

involved in a given product development – shall work collaboratively and share the same set of 

design drivers and hypotheses that will be progressively refined and frozen (see enabler 3). At the 

end of each design loop, a new product increment shall be generated through relevant models and 

tools (see enabler 4). Due to the progressive refinement of the design drivers, this approach provides 

a huge adaptability of the development process to new or updated requirements or constraints 

coming from various stakeholders. This approach also helps multidisciplinary teams to reach the 

global optimum choice of the product at each loop. The below Figure 3 illustrates such an approach 

with three design loops starting from a coarse grain high-level loop up to a fine grain detailed loop. 

 

Figure 3 – Our agile development model based on successive and more & more detailed design loops 

Each design loop will then analyze a number of design alternatives, starting typically with a dozen 

alternatives in the first loop, reducing them to 2-4 main alternatives in the second loop, up to 

converging to only 1-2 key alternatives in the last loop. This can be achieved by using trade-offs 

techniques, with different levels of details to reach a global optimum (see the below Figure 4). 
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Note that requirements are usually often over-specified and in much too important number, due to 

the fact that all actors in the development chain are creating requirements to protect themselves by 

taking local margins of security. In an agile approach, each design loop shall therefore pay a specific 

attention to formalize the system requirements to what is just necessary: this objective relies on 

prioritization techniques managed through collaborative requirements reviews, involving regularly all 

key development actors, where allocations of performance are collaboratively managed and 

optimized when descending into product architecture. 

 

Figure 4 – Examples of several architectures compared through a Pareto multi-criteria optimization approach 

Since we are dealing with systems, any agile development process shall also take into account deeply 

the constraints coming from manufacturing and maintenance since these are the steps where the 

“real thing” is constructed and used. In an agile systems engineering process, manufacturing teams 

must therefore be involved in each design loop – as already pointed out previously – in order to 

analyze design requirements from their perspective and to evaluate/simulate their impact on 

manufacturing and assembly processes with the “good” industrial KPIs (e.g. lead time, NRC & RC). 

Similarly support & services teams must be involved in order to evaluate the impact of design 

requirements on the maintenance processes using relevant KPIs (e.g. time and cost of maintenance 

operations).  

Regular rituals, involving design, manufacturing and maintenance teams, and more generally all 

relevant stakeholders, shall therefore be regularly organized within each design loop in order to 

integrate all these different point of views in the design. Model-based systems engineering plays a 

key role in these rituals since they shall be balanced between a product and a project focus. A typical 

agile design ritual indeed consists in examining and discussing collectively more and more precise 

models of the product under development (see an automotive example in the next figure).  
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Figure 5 – Example of a development ritual using model-based representations of a complex system 

2.2.3 Feature 3: Iterative Key Design Driver’s Management 

The third key idea is the preliminary identification of the key design parameters on which each 

design loop rely. They shall form for each design loop a coherent set of interdependent 

characteristics, dealing with either product environment (e.g. mission profiles, use cases, customer & 

stakeholder requirements), either functional (e.g. presence of specific functions, behavioral 

performance) or constructional (e.g. mass, geometry of critical parts, technology) requirements, or 

manufacturing & maintenance constraints. These key design drivers also allow to explore design 

space and to identify potential architecting variants. The first loop focuses for instance on the 

structuring parameters of the product to analyze with highest priority. Note finally that these drivers 

can be derived from the analysis of a stakeholder need and functional & constructional requirement 

architecture, which are thus the first key models on which relies our agile approach. 

 

Figure 6 – Examples of design drivers identified in the context of an innovative camera development,  
here used to define two product variants that were analysed during a first design loop   

The Key Design Drivers (KDD) represent the hypotheses shared between all teams involved in an agile 

development, i.e. the shared design space. During a given design loop, teams work with a fixed range 

for each KDD, with freedom of design while their parameters are contained into the defined ranges, 



 

Page | 8 

from each synchronization ritual to the next one. At each iteration, teams define and evaluate 

potential architecture variants within KDD ranges in order to progressive reduce these ranges at the 

end of the iteration. If no feasible architecture can be defined within the design space defined by the 

current KDDs, a synchronization activity will redefine new KDD ranges.  

This approach ensures agility to adapt the design in a robust way by mastering the traceability from 

initial stakeholder requirements to shared design functional & constructional hypotheses. 

2.2.4 Feature 4: DMU and FMU as Pivots for Transversal Synchronization 

The last ingredient of an agile systems engineering process is to use Digital & Functional Mockup 

(DMU and FMU) as pivots for transversal synchronization in each design loop. The key idea is that at 

the end of each iteration, each team shall produce models (3D, thermal, mechanical resistance, 

thermodynamics, etc.) which are to be integrated in a shared DMU (for the geometrical aspects) and 

in a shared FMU (for the functional aspects), whose overall coherence is analyzed. Due to the need of 

synchronizing all disciplines at each product increment, the use of these digital models as pivots for 

the design is therefore key to support an agile approach.  

Note that usually the functional digital mockup is not a single tool, but rather a series of 

interconnected tools (e.g. Capella, Simulink, FL Editor, etc.). A key difficulty is here to ensure the 

alignment of the system decomposition used in the functional digital mockup with the geometrical 

decomposition on that the digital mockup manages, which currently is still a matter of human 

expertise. Both tools have indeed different modeling constraints and traditionally have been 

imposed separately. Nevertheless, to implement agile engineering, functional and discipline 

integration through both functional oriented design tools and CAD is a key enabler. 

 

Figure 7 – Illustrations of Digital and Functional Mockup views 

A key point is also that the FMU shall be designed to provide comprehensive system level predictive 

models, that is to say models integrating all key product dimensions, typically of multi-physical 

nature, that allow to simulate the system under design within its environment in order to validate 

hypotheses and manage trade-offs. The levels of detail and the representativeness of such models 

must necessarily be aligned with the granularity of the design loops. These models can be existing 

models (e.g. Simulink / Modelica models) or existing model aggregations via ad hoc tools (e.g. 

Optimus). Such system level simulation models are in particular key for evaluating design 

performances, validating the design choices, managing the initial trade-offs and helping to negotiate 

the customer 
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3. Conclusion 

The CESAF framework has 4 key features, allowing an industrial company to successfully implement 

an agile / iterative systems engineering framework. These features are: 

1. Product and organization alignment,  

2. Iterative collaboration between layers and disciplines,  

3. Iterative key design driver’s management, 

4. DMU and FMU as pivots for transversal synchronization. 

Note that features 1 and 3 do strongly rely on systems engineering and architecting techniques, 

when feature 2 is rather an adaptation of agile and SAFe principles to industrial contexts and 

feature 4 refers to the digital tooling support.  
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