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Abstract. Piezoelectric patches with adapted electrical circuits or viscoelastic dissipative
materials are two solutions particularly adapted to reduce vibration of light structures. To
accurately design these solutions, it is necessary to describe precisely the dynamical behaviour
of the structure. It may quickly become computationally intensive to describe robustly this
behaviour for a structure with nonlinear phenomena, such as contact or friction for bolted
structures, and uncertain variations of its parameters. The aim of this work is to propose
a non-intrusive reduced stochastic method to characterize robustly the vibrational response
of a structure with random parameters. Our goal is to characterize the eigenspace of linear
systems with dynamic properties considered as random variables. This method is based on a
separation of random aspects from deterministic aspects and allows us to estimate the first
central moments of each random eigenfrequency with a single deterministic finite elements
computation. The method is applied to a frame with several Young’s moduli modeled as random
variables. This example could be expanded to a bolted structure including piezoelectric devices.
The method needs to be enhanced when random eigenvalues are closely spaced. An indicator
with no additional computational cost is proposed to characterize the ”proximity” of two random
eigenvalues.

1. Introduction
In order to accurately predict the vibrational response of a structure, uncertainty modeling and
quantification in computational mechanics have received particular attention in recent years.
This uncertainty, mainly due to the system parameters variability, is taken into account in
a probabilistic approach, well adapted to numerical resolution [1]. We are looking for the
eigenspace characterization of linear systems with dynamic properties considered as random
variables.

The matrices of interest in the present paper are the result of a finite-dimensional
approximation of an underlying continuous system and their randomness is tied to the
uncertainty in the parameters of this system. For such systems, closed-form expressions are
generally not available for the solution of the random eigenvalue problem. Current approaches
to this problem include statistical sampling, perturbation techniques, and polynomial chaos
representations coupled with Galerkin projections.

Methods based on statistical sampling provide a good framework to solve the random dynamic
problem, nevertheless they need intensive computation to remain accurate [2, 3]. The total
computational cost increases dramatically with the cost of each deterministic case. For these
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reasons, different non-sampling methods have been developed over the last few decades. Two
particular approaches are mainly used in the literature to approximate the statistical properties
of the response of a system : the perturbation and the spectral method.

The perturbation method is based on an approximation of the random variables of interest
through the truncation of its Taylor expansion. Its implementation is pretty easy but as high
order perturbation terms are computationally intensive, the expansion is generally limited to
second order. Moreover, variations of the system parameters should remain small to guarantee
accurate estimation of statistical moments [4]. Many papers are based on the perturbation
method to estimate statistics of random eigenvalues and eigenvectors [5, 6, 7].

The Spectral Stochastic Finite Element Method (SSFEM) was introduced by Ghanem and
Spanos in [8], inspired by Wiener [9]. The method is based on a representation of the random
variables and vectors of interest with respect to a basis set of orthogonal multidimensional
polynomials of orthonormal random variables.

In order to characterize the eigenspace of a system with random dynamic properties, the
Polynomial Chaos method gives a general and accurate framework but its implementation is
rather complex. On the other hand, perturbation methods are easy to implement but their
intrinsic assumptions limit their applications to small variations of the input parameters.

The aim of this paper is to propose an indicator to be able to discriminate which method
is more adapted : perturbation method for most of the cases or SSFEM for some cases.
The estimate of this indicator is based on a reduced number of deterministic finite element
computations.

The first section describes the proposed method to optimize the computational cost. The
appropriate indicator referred to as the ”Proximity Factor” is developed in the next section.
A three-degrees-of-freedom test case illustrates the accuracy of the method depending on the
random eigenfrequencies configuration and the capability of the Proximity Factor to predict
with sufficient accuracy and at low cost in with case a more accurate method like SSFEM must
be used. In the last section, the method is applied to a more realistic system consisting of a
frame with different random Young’s moduli.

2. Eigenvalue problem
2.1. Problem presentation
The general eigenvalue problem of an undamped system can be expressed by

λk(θ)M(θ)Φk(θ) = K(θ)Φk(θ) (1)

where
λk(θ) ∈ R, Φk(θ) ∈ Rn, M(θ) ∈ Rn×n, K(θ) ∈ Rn×n, θ ∈ Ω

λk and Φk are the kth eigenvalue and the kth associated eigenvector. The relationship between
the eigenvalues and the natural frequencies of the system is λk = ω2

k. The eigenvector Φk is
assumed to be mass-normalized such that ΦT

kMΦk = 1, the identity matrix.
(Ω,F , p) is the probability space associated with the underlying physical experiments. The
space of square integrable random variables is denoted by L2(Ω) and forms a Hilbert space with
the norm ‖ · ‖L2(Ω). Matrices M(θ) and K(θ) represent the mass and stiffness matrices of the
structure. Their randomness is due to physical parameters of the structure such as mass density,
Young’s modulus or geometric properties. In this paper, E[·], Var[·] and σ[·] denote respectively
the mathematical expectation, variance and standard deviation.

Let us first consider the case of a structure composed of n sub-structures with n different
Young’s moduli (Y1, Y2, ...Yn). The Young’s moduli are assumed to be the only random
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parameters : the mass matrix M is supposed deterministic. The stiffness matrix can be written
according to different stiffness sub-matrices relating to each sub-structure:

K(θ) =

n∑
i=1

Ki(θ) =

n∑
i=1

γi(θ)Ki (2)

where γi(θ) is the random parameter corresponding to the ith Young’s modulus and defined as:

γi(θ) =
Yi(θ)

Y0i
; Y0i = E[Yi(θ)] and E[γi(θ)] = 1

To construct, as objectively as possible, the probability law of the input parameters, in this
case the Young’s moduli Yi(θ), some available information has to be taken into account [1].
The pdf could be constructed through the maximum entropy principle [10]. For example, a
real-valued random variable X such as Supp(X) =]0,+∞[, E[X] = mx and Var[X] = σ2

x given
follows a Gamma distribution. Young’s moduli can then be modeled as random variables with
Gamma distribution Yi  Gamma(αi, βi) = Γ(αi, βi) with E[Yi] = αiβi and Var[Yi] = αiβ

2
i .

2.2. A simple resolution approach : Stochastic Model Reduction method
2.2.1. Initial Stochastic Model Reduction method. It is assumed that Young’s moduli variations
around an expected value do not change the eigenvector shapes of the structure. The matrix
of random eigenvectors corresponds to the matrix of eigenvectors calculated with the mean
parameters.

This assumption added to the mass normalization of eigenvectors Φk allows us to rewrite the
kth random frequency as :

λk(θ) = ω2
k(θ) =

n∑
i=1

γi(θ)Φ
T
kKiΦk =

n∑
i=1

λkiγi(θ) (3)

where
λki = ΦT

kKiΦk (4)

The coefficients of this expansion are deterministic. This simplified method is referred to
hereafter as SMR1 method, for ”Initial Stochastic Model Reduction method”.

As the n Young’s moduli (Yi)1≤i≤n are assumed to be independent random variables, each
random eigenvalue λk(θ) obtained by (3) is completely determined. This complete probabilistic
description allows us to have an exact estimate of the expected value and of the standard
deviation of λk(θ). The expected value of the kth eigenvalue is obtained directly :

E[λk] =

n∑
i=1

E[γi]Φ
T
kKiΦk =

n∑
i=1

ΦT
kKiΦk =

n∑
i=1

λki = λk (5)

where λk represents the deterministic eigenvalue associated with the deterministic eigenvalue
problem. The variance of the kth eigenvalue is :

Var[λk] =

n∑
i=1

λ2
ki Var[γi] =

n∑
i=1

λ2
kiδ

2
i (6)

where δi = σ[Yi]/E[Yi] is the coefficient of variation of the random parameter Yi.
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2.2.2. Enhanced SMR method. The working assumption whereby eigenvectors can be assumed
deterministic is valid if the eigenvalues are not to close. In this case, in the vicinity of the kth

natural frequency , the contributions of distant eigenshapes to the corresponding kth eigenshape
are negligible and can be neglected. The kth eigenvalue is then approximated by equation (3).
When eigenvalues are getting closer, the variability of the corresponding eigenshapes increases
and has to be taken into account. In order to accurately estimate slightly close eigenvalues, the
SMR1 method could be improved by taking into account the eigenshapes variability. For this
purpose, it is proposed to expand the eigenvectors corresponding to close eigenvalues by their
Taylor expansions around E[Y (θ)] = Y0. This improvement is referred hereafter as SMR2.

The kth random eigenvalue λk(γ(θ)) and the kth eigenvector Φk(γ(θ)) given by its Taylor
series expansions around the point E[γ(θ)] = 1 can be written as:

λk(θ) =
n∑
i=1

γi(θ)Φ
T
k (γ(θ))KiΦk(γ(θ)) (7)

Φk(Y (θ)) = Φk(Y0) +

n∑
i=1

∂Φk

∂γi

∣∣∣∣
γi=1

(γi(θ)− 1) (8)

The derivative of each eigenvector remains to be determined. Many papers on analysis and
calculation of eigenderivatives of dynamic systems [11, 12, 13] are based on methods developed
by Fox and Kapoor [14]. In order to minimize the computational cost of SMR2, Lin et al. [15]
propose an efficient algorithm to compute eigenvector derivatives.

2.2.3. Application to complex structures. For complex structures, the set of random eigenvalues
will contain well separated as well as close eigenvalues, the two refinement levels of the SMR
method have to be jointly used to ensure the best estimate of the statistical moments of all
the set of random eigenvalues. To this purpose, a simple resolution approach is summarized
on figure 1. This approach consists in the adaptation of the invested computational resources
to each considered random eigenvalue. First, all the random eigenvalue statistical moments are
estimated through the SMR1 method, assuming that all the eigenvectors are deterministic. This
first step provides an initial estimate of the statistical moments of all the eigenvalues which allows
us to identify the subset of well separated eigenvalues. Since the SMR1 method is accurate for
well separated random eigenvalues, these identifications will have a sufficient level of confidence.
For random eigenvalues identified as close, it is then proposed to better estimate their statistical
moments using the SMR2 method. The SMR2 method more demanding on computational cost
is applied only on a reduced set of eigenvalues. When the quality of the SMR2 estimation is
not sufficient enough, the random eigenvector could be modeled by their polynomial chaos (PC)
expansion. The coefficients of the eigenvector PC expansion are rather complex to determine
[16]. We propose to use the PC expansion only for the random eigenvalues for which the SMR2
accuracy is not sufficient.

The efficiency of the proposed approach now depends on the ability to qualify the proximity
of two random eigenvalues. The notion of “close eigenvalue” appears in different papers
about eigenvalue curve veering [17], statistical energy analysis [18], eigenvalues and eigenvectors
derivatives [15] and, a fortiori, random eigenvalue problems [6]. In the next section, we introduce
a proximity factor to discriminate the different cases and associated models.

3. Proximity Factor
3.1. Definition of a Proximity Factor
Du Bois et al. [17] propose a modal coupling factor analogous to the coupling factor of Perkins
and Mote [19]. This factor is based on the stiffness and mass matrix sensitivities, which are
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Random eigenvalue problem
λk(θ)M(θ)φk(θ) = K(θ)φk(θ)

SMR1
φk(θ) are deterministic

λk(θ) well separated END

SMR2
φk(θ) Taylor expansion

λk(θ) not ”too” separated END

φk(θ) Polynomial
Chaos expansion

NO

NO

YES

YES

Figure 1. SMR approach for eigenvalue problem resolution

deterministic and available from commercial software. An indicator could be constructed on
this basis in order to take into account the whole set of input random parameters but it would
be the object of future work. In this paper, an indicator inspired by the statistical overlap
factor of Manohar and Keane [18] seems to be more suitable because of its simplicity and its
low computational cost. The statistical overlap is defined as the ratio between the standard
deviation of the kth natural frequency and the mean modal spacing. In order to take into
account a potential difference between the standard deviation of two random eigenvalues, the
Proximity Factor (PF) of two random eigenvalues λi, λi+1 is defined as :

PF (λi) =
2(σ[λi] + σ[λi+1])

E[λi+1]− E[λi]
(9)

As the expectation and the standard deviation of every random eigenvalue are estimated
through the SMR methods, the proximity factor is obtained directly. The Proximity Factor
allows us to predict the quality of the estimation computed with the SMR methods : when the
proximity factor is greater than a limit value, initially assumed as PF > 1, the corresponding
eigenvalues are assumed to be closely spaced and the SMR assumptions (random eigenvectors
are deterministic for SMR1 and have small variations for SMR2) are not valid any more. To
qualify the indicator, we need to ensure that a strong relation exist between the value of the
indicator and the quality of the SMR results.

3.2. Characterization of the Proximity Factor
In order to qualify the Proximity Factor a simple three-degrees-of-freedom (Dof) undamped
spring-mass system is considered. This example is taken from [20] and [6] and presented in
figure 2. The advantage of this example is to easily drive the system eigenvalues with only one
of the input random parameters. This allows us to characterize the quality of the SMR method
when eigenvalues are well separated or close and the pertinence of the Proximity Factor as a
good indicator.
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m1

m2

m3k1

k2

k3k4 k5

k6

Figure 2. Three-degrees-of-freedom undamped spring-mass random system

The mass and stiffness matrices of this three Dof system are given by:

M =

m1 0 0
0 m2 0
0 0 m3

 and K =

k1 + k4 + k6 −k4 −k6

−k4 k2 + k4 + k5 −k5

−k6 −k5 k3 + k5 + k6

 (10)

It is assumed that only spring stiffnesses ki with i = 1, ..., 6 are randomly varying and the
vector of the random stiffnesses is noted x = [k1, ..., k6]t. Each random stiffness is assumed to
have a Gamma distribution with expectation ki = 1 N·m−1 for i = 1, ..., 5. The mean value of
k6 is varying between 1.275 N·m−1 and 3 N·m−1, this allows us to bring the second and third
random eigenvalues closer. k6 = 3 N·m−1 corresponds to the case of well separated eigenvalues,
k6 = 1.275 N·m−1 to the case of close eigenvalues. The standard deviation of each random
stiffness is σki = 0.15 N·m−1 for i = 1, ..., 6.

A Monte-Carlo simulation allows us to compute the pdf and the two first statistical moments
of the random eigenvalues. The samples of the six independent Gamma random variables ki for
i = 1, ..., 6 are generated and the eigenvalues are computed from the eigenvalue problem (1).
A simulation with 30000 samples guarantees the estimation of the two first statistical moments
with an error range of ±0.1%. Results from this Monte-Carlo simulation are considered as
reference to evaluate the quality of the SMR method.

Figure 3 represents the relative error of the estimation of the expectation and the standard
deviation of the 2nd and 3rd random eigenvalues of the three-Dof system. This figure illustrates
the decrease of the quality of the SMR1 and SMR2 methods when the Proximity Factor is
increasing : when the Proximity Factor is increasing, the quality of the first moments estimation
decreases. For Proximity Factors less than 1 the relative error of the SMR1 method is less
than 0.7% for the expectation estimation and less than 3% for the standard deviation. The
same quality is obtained for higher Proximity Factor with the SMR2 method, then for a given
quality, the limit value of the Proximity Factor should be adapted to the employed method. The
Proximity Factor is then a good indicator for the quality of SMR1 and SMR2 methods.

3.3. Error on the Proximity Factor estimation
The Proximity Factor qualifies the quality of the SMR methods. Nevertheless, the error of the
first moments estimation by SMR1 leads to a certain approximation of the Proximity Factor
itself. Two eigenvalues are considered close depending on their expectation and their standard
deviation. It is then proposed to study the estimation of the Proximity Factor with SMR1 and
SMR2 when the expectation and the standard variation of the corresponding random eigenvalues
vary.

Figure 4 presents the relative error between the reference Proximity Factor of the 2nd and 3rd

random eigenvalues and its estimation obtained with SMR1 and SMR2 when the two random
eigenvalues are getting closer. A set of 120 configurations have been simulated and for each
simulation, the random input stiffness k6(θ) is defined as a Gamma random variable with
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Figure 3. Error on the first moments estimation when PF increase

Re
lat

ive
 e

rro
r o

f t
he

 P
rox

im
ity
 F

ac
tor

 

Re
lat

ive
 e

rro
r o

f t
he

 P
rox

im
ity
 F

ac
tor

 

Figure 4. Relative error of the Proximity Factor respectively computed with SMR1 and SMR2

expectation E[k6] (10 values between 1.275, and 4) and coefficient of variation δ[k6] = σ[k6]/E[k6]
(12 values between 0.05 and 0.3). The reference values of PF are obtained through Monte-Carlo
simulations with 30000 samples. It can be observed that for PF < 1, corresponding to the half
plane behind the line with equation y = x, the estimation of PF with SMR1 and SMR2 are close
to the reference values.

As expected, over the limit value PF = 1, the estimation of PF is less accurate. Nevertheless,
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Figure 5. Definition of the three beams frame

the purpose is to identify the validity domain of the SMR1 and SMR2 methods, i.e. to identify
with a certain precision the limit value of PF above which the method used to compute the
random eigenvectors has to be refined. It can be noticed that the error of the estimation of the
limit value PF = 1 with SMR1 is less than 10% while the error is around 1% with SMR2. It
could therefore be considered that PF estimated with SMR1 allows us to identify when SMR2
needs to be used. The PF estimated with SMR2 is more reliable and could allow us to identify
when the SMR2 method needs to be refined using the eigenvector Polynomial Chaos expansion.

3.4. Discussion
The PF estimation is more sensitive to the random eigenvalue proximity than the estimation
of the two first moments themselves. Nevertheless, it is not critical because the main purpose
is to choose the best suitable method to estimate the first moments. Considering the SMR1
results, the PF limit value PF = 1 is estimated with an error close to 8% but the corresponding
expectation and standard deviation are estimated with relative errors respectively less than 0.8%
and 3%. Even if the PF is not estimated with a high precision, the error of the first moments
estimated with SMR1 is acceptable. The same approach can be done for the PF estimation with
SMR2.

The PF limit value criterion is then a key point of the SMR method. Decreasing the limit
value of PF allows us to increase the quality of the solution by refining the method used to
compute the random eigenvector for a larger number of random eigenvalues but it implies a
bigger investment in computational cost. As a partial conclusion, even if it is based on statistical
moments estimations, the Proximity Factor is able to identify a certain validity domain of the
two SMR methods. Its capability is based on the choice of the limit value which depends on the
required quality or the available computational resources.

4. Application to a frame
In this section, an application of the SMR method is proposed on a structure with different
Young’s moduli, to test the method on a more realistic structure discretized by finite elements.

4.1. System modeling
The studied structure, presented in figure 5, is a frame composed of three substructures with
two random Young’s moduli denoted Y1(θ) and Y2(θ) and one deterministic Young’s modulus,
denoted Y3. The three substructures are beams with the same geometrical properties : length
250 mm, width 10 mm and thickness 1 mm. The three beams are assumed to have the same
density ρ = 2800 kg·m−3. The frame is modeled by finite elements with 30 beam elements and
3 Dof for each node. The base of the frame is assumed to be clamped. The complete system
has 87 Dof.
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Figure 6. Marginal density of the 5 first random frequencies andthe corresponding eigenshapes

The two input random parameters of the structure, Y1(θ) and Y2(θ), are modeled as
independent random variables with Gamma distribution. Their expectations and standard
deviations are respectively E[Y1] = E[Y2] = 75 GPa and σ[Y1] = σ[Y2] = 5 GPa (corresponding
to a coefficient of variation δ = σ[Yi]/E[Yi] = 1/15 ' 0, 066) and correspond to small variations
of the Young’s moduli. The Young’s deterministic modulus is Y3 = 20 GPa.

A Monte-Carlo simulation with 30 000 samples allows us to compute the pdf of each random
variable of interest. It constitutes the reference framework to compare the results from the SMR
method.

4.2. Numerical results
4.2.1. Illustration of the SMR founding assumption. The Monte-Carlo simulation allows us to
estimate the first five random eigenfrequencies through 30000 draws of the two input Young’s
moduli. Figure 6 shows the marginal density functions of the first five random eigenvalues
and the corresponding eigenvectors of the frame. It can be noticed that the 1st, 2nd and 5th

eigenshapes do not vary significantly while the 3rd and 4th eigenshapes have high variations.
This illustrates the SMR1 assumption that, under certain conditions, the random eigenvectors
of the structure could be considered as deterministic. The behaviour of the 3rd and 4th random
eigenmodes should be related to the relative closeness of the random eigenvalues. An overlap
could be observed representing their marginal pdf on the same axis.

4.2.2. Five first random eigenvalues of the frame. Figure 7 shows the marginal pdf obtained
with SMR1 and SMR2 in comparison with the marginal pdf from the Monte-Carlo simulation.
For the three well separated eigenfrequencies, the SMR1 and SMR2 methods fit properly the
reference marginal pdf. In the case of two close eigenfrequencies, as illustrated by the 3rd and
4th eigenfrequencies, the SMR1 method does not accurately estimate the marginal pdf whereas
the SMR2 method is still fitting the reference results.

The relative errors of the two first statistical moments are presented on figures 8 and 9. It
can be noticed that for the three random eigenfrequencies which are well separated, the relative
error of the estimation of the two first moments with the SMR1 method is less than 0.5%. The
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Figure 7. Marginal density functions of the first five eigenfrequencies estimated with SMR1
and SMR2

Figure 8. Relative error of the expectation estimated with SMR1 and SMR2

SMR2 method obviously gives better results but it is not necessary to invest in more complex
computations while SMR1 results are sufficient. The table below the error diagrams 8 and 9
presents the approximation of the proximity factor computed from the first moments estimations
of the SMR1 and SMR2 methods compared to the reference proximity factor from Monte-
Carlo simulation. The proximity factor between the first and second random eigenfrequencies
corresponds to the cell between these two eigenfrequencies and so on. The cell is purple if the
proximity factor is under the limit value PF = 1 and is orange when it is over this limit. It can
be noticed that PFSMR1 correctly identifies the two close random eigenfrequencies for which the
method has to be refined.
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Figure 9. Relative error of the standard deviation estimated with SMR1 and SMR2

5. Conclusion
A non-intrusive method to estimate the two first statistical moments of the random eigenvalues
of a structure is presented. Referred to as SMR for Stochastic Model Reduction method, it
requires only a single deterministic finite element computation. The SMR method is based on
the assumption that, in the vicinity of a given natural eigenfrequency, the dynamical behaviour
of a system is mainly characterized by the modal propriety of the considered eigenfrequency if
all other eigenfrequencies are well separated. The eigenvectors of the problem are assumed to be
deterministic in first approximation. This assumption is no longer valid when eigenvalues become
closely spaced. In this case, the system becomes more coupled. So it is proposed to refine the
method by considering the eigenvectors’ randomness through their first order Taylor expansion.
To decide when the method should be refined, an indicator referred as Proximity Factor, based
on the two first statistical moments, is proposed. Computationally free, the efficiency of this
indicator depends on the choice of its limit value criterion.

A first case of a three-degrees-of-freedom system is used to validate the method and to
characterize the behaviour of the Proximity Factor. This example highlights the criticality of
the choice of the limit value of this indicator over which the method needs to be refined. In
a second application case, a frame with random Young’s moduli allows us to apply the SMR
method to a wide range of random eigenfrequencies. We illustrate the basis assumption of the
SMR method by plotting the random eigenshapes of the frame. The ability of the Proximity
Factor to identify when the method needs to be refined is presented and the criticality of its
limit value criterion is discussed.

We conclude that the SMR method is an efficient method due to its ratio
accuracy/computational-time. The Proximity Factor is a key parameter of the method, allowing
one to refine only when it is necessary. Particular attention should be paid to the choice of the
Proximity Factor limit value depending on the tradeoff accuracy/computational-time imposed
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by the designer.
The computational gain of the SMR method is even greater for large degree-of-freedom

systems. The method could then be applied to more complex examples from industrial
structures. Of particular interest is the case of a bolted assembly where the stiffness of each
bolted joint would be considered as a random variable. The SMR method allows us to estimate
the marginal pdf of each random eigenfrequency. Nevertheless, by the definition of the SMR
method, the coupling between eigenvalues is not taken into account and the joint pdf cannot
be accurately estimated. In order to consider the coupling between two random eigenvectors
corresponding to two close random eigenvalues, another model of the random eigenvectors should
be implemented. Further work will study the expansion of the random eigenvectors on the
Polynomial Chaos.
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