
HAL Id: hal-02561114
https://hal.science/hal-02561114

Submitted on 5 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Framework for Combined Module-and
Scale-based Product Platform Design

Fabrizio Marinelli, Olivier de Weck, Daniel Krob, Leo Liberti

To cite this version:
Fabrizio Marinelli, Olivier de Weck, Daniel Krob, Leo Liberti. A General Framework for Combined
Module-and Scale-based Product Platform Design. Second International Symposium on Engineering
Systems, Jun 2009, Cambridge, United States. �hal-02561114�

https://hal.science/hal-02561114
https://hal.archives-ouvertes.fr

A General Framework for Combined

Module- and Scale-Based Product Platform Design

Fabrizio Marinelli∗ Olivier De Weck†

Daniel Krob, Leo Liberti‡

Abstract

The modelling framework for product variety design proposed herein
caters to both module-based and scale-based platforming and carries out
commonality optimization on a set of product variants having different
functional architectures. The product family architecture is modeled by
a extended functional breakdown structure and valid design synthesis
across the variants is achieved by instrumenting an attribute propaga-
tion mechanism from customer requirements through functional mod-
ules to physical components. The model is based on a set of variables
and constraints which describe both component selection and attribute
value commonality and which can be used in conjunction with various
objective functions, depending on the market model employed.

1 Nomenclature

Sets
P product family, i.e., a set of product variants
Q set of physical components used to build the product

variants
V set of functional modules
W set of functional modules and physical components, i.e.,

∗Università Politecnica delle Marche, Dipartimento di Ingegneria Informatica, Ges-
tionale e dell’Automazione, via Brecce Bianche, I-60131 Ancona, Italy. Email:
marinelli@diiga.univpm.it

†Dept. of Aeronautics and Astronautics and Engineering Systems Division, MIT Cam-
bridge, Massachusetts, 02139 Email: deweck@mit.edu

‡LIX, École Polytechnique, F-91128 Palaiseau, France Email: {krob, lib-
erti}@lix.polytechnique.fr

1

W = V ∪Q
Fs set of continuous customer attributes
Fd set of discrete customer attributes
F set of customer attributes; F = Fs ∪ Fd

F (v) set of customer attributes relevant to module v, v ∈ V
As set of continuous functional or physical attributes
Ad set of discrete functional or physical attributes
A set of functional or physical attributes; A = As ∪Ad

A(u) set of functional or physical attributes relevant to
module or component u, u ∈W

Architecture tree
G = (V,E) tree graph modelling the product family

architecture
v0 root node of G; v0 ∈ V
N(v) set of neighbors of v; for all v ∈ V,N(v) = {u ∈ V |

(v, u) ∈ E}
L set of the leaf nodes of G; L = {u ∈ V | N(u) = ∅}
I(v) subset of physical components that can be used to

implement the leaf functional module v ∈ L;
I(v) ⊆ Q

Parameters
λi

vh requirements for the h-th customer attribute of module
v in product variant i, i ∈ P, v ∈ V, h ∈ F (v) (λi

vh is a subset of a given domain Λi
vh)

ϑq
k design bounds for the k-th physical attribute of the q-th

physical component, q ∈ Q, k ∈ A(q)
M large enough constant (used for modelling disjunctive

constraints)

Variables
yi

uk continuous: value of the attribute k of module or physical
component u in product variant i

wij
qk binary: 1 if product variants i and j use same component

q with same value for attribute k
xi

v binary: 1 if module v is used in product variant i
pq binary: 1 if q is a common component
zi
vq binary: 1 if physical component q implements elementary

module v in product variant i

2

ri
q binary: 1 if component q is used at least once in product i

Functions
ψi

vh requirement functions:
ψi

vh : R|A| → Λi
vh, for all i ∈ P, v ∈ V, h ∈ F (v)

δvk composition functions:
δvk : R|N(v)| → R, for all v ∈ V \ L, k ∈ A(v)

ϕv module interface functions:
ϕv : R|A|(|V |−1) → {0, 1}, for all v ∈ V

χq component interface functions:
χq : R|A|(|L|−1) → {0, 1}, for all q ∈ Q

We emphasize notation by always using i, j for product variants in P ,
u, v for functional modules in V , h for customer attributes in F , k for func-
tional/physical attributes in A and q for physical components in Q.

2 Introduction

The top-down platform approach (proactive platforming, see [24]) for the
design and development of a new product family can be broadly decomposed
into three stages, see [13]:

• Product definition which deals with the overall product positioning
strategy. The behavior of individual and groups of customers is inves-
tigated from the marketing perspective, i.e., in terms of needs, prefer-
ences and degree of satisfaction. The product family is then described
by a market segmentation grid which embodies a product variant for
each market niche, and the customer requirements of each product
variant are mapped, at various level of abstraction, into the functional
features that the variant should have. The product definition seeks
for different functional variety implementations which emphasize the
uniqueness of product variants and best fit with the market segmen-
tation grid.

• Product design which basically consists in a mapping process from the
hierarchy of functional features to the hierarchy of design parameters
and physical components. The mapping describes how the functional
features are implemented and takes into account both engineering con-
cerns and available product technologies.

3

• process and supply chain design which concerns costs of manufactur-
ing, assembly structure and resource allocation in the logistic domain.

In order to tradeoff between development costs and product performance
deviation from individual optima, product design exploits, at different con-
ceptual levels of the design process, both functional feature commonality
and physical component commonality [20].

At the architectural level of the design process, the main concern is to
identify the shared features and the cohesive functional architecture underly-
ing the product family. Indeed, each variant could have the own functional
structure since either (i) a customer requirement of a given market niche
could be translated to a functional feature which is not required in the
other variants of the product family or (ii) different product quality degrees
required from different customers could correspond to the same functional
feature but with different performance attributes which in turns presuppose
different technologies and hence different functional subsystems.

Once the functional architecture of the product family has been estab-
lished, each variant may be instantiated by quantifying design parameters
within a given physical component configuration (scale-based platforming),
by combining existing components each one completely specified in term
of design parameters (module-based platforming), or both. In the former
case, commonality is achieved by defining a set of common design parame-
ters across the variants of the product family, whereas in the latter case the
platform consists in a set of common physical components.

Usually, optimization methods are only adopted in the instantiation level
of the design process where the functional architecture of the product fam-
ily is considered as given. Moreover, except few cases, module-based and
scale-based platforming are carried out separately. However, both the above
decompositions, i.e., functional vs. physical commonality and module at-
tributes vs. module combinations optimization, suffer of several weakness.

About the former, although computational optimization is in general
easier when the product family architecture is given beforehand, the choices
on the functional structure of the variants deeply affect the product variety
optimality. Moreover, the functional architecture of a variant could even be
unknown in advance since in general the customer tradeoffs among prod-
uct features, i.e., among product functional representation. Therefore, a
functional commonality problem arises beside the well-studied component
commonality problem.

For what concern scale- and module-based platforming decomposition,
it leads, as already observed by Fujita [7], to a egg-and-chicken situation.

4

Indeed, except of very few cases where module- and scale-based platform-
ing can be applied separately, e.g., well-standardized and technology-driven
products, design parameters quantification supposes a well-defined set of
physical components, and conversely the selection of a combination of phys-
ical components is clearly affected by the content of components. The simul-
taneous optimization of both design parameters and component combina-
tions instead has the advantage of achieving economy of scale of components
and increase the performance of the product family, since the commonaliza-
tion of design parameters makes physical components more similar to each
other and aim to standardize hidden subsystems or parts behind components
and therefore to reduce costs in the manufacturing domain.

In this paper, we propose a modelling framework for product variety
design that integrates module-base and scale-based platforming and carries
out commonality optimization on a set of product variants having different
functional architectures. The framework consists of decision variables and
constraints expressed as a mathematical programming formulation. This
model carries out commonality optimization with respect to both continuous
and discrete component attributes and product functionalities. The output
of the model consists in a selection of common components that should be
part of the platform and an assignment of values to the attributes of selected
components. We also show how several meaningful objective functions and
platform evaluation metrics addressed in the literature can be expressed by
means of the model variables.

Each variant of the product family is described by two interlinked hierar-
chical structures, the functional breakdown structure (FBS), and the physical
breakdown structure (PBS), and the product family architecture is described
by an extended FBS (e-FBS) as in Fig. 2. In our modelling framework, we
are interested in matching the elementary functions to components and in
determining attribute values, see Fig. 4.1. We distinguish several categories
of product attributes. Physical components are non-decomposable parts
with a separate identity as typically indicated by a part number [6]. These
are characterized by their physical attributes such as e.g. size, color, etc.

For example, the FBS of an electrical tootbrush can be described by the
root functional module “teeth cleaning”, further decomposable into “manip-
ulating”, “operating”, etc. The PBS’s root node would be the toothbrush
itself, composed of the housing, motor, etc. The product family architecture
is given by the merging of the constituent architectures of the individual
variants.

Module characteristics, such as the price, are described by functional at-
tributes. Customer attributes, such as the endurance, impose requirements

5

Extended
Functional Breakdown Structure

Extended
Physical Breakdown Structure

Elementary functions

Phyisical Components
allocation

Product Family Architecture

product variants

Variant #1

Variant #2
Variant #3

Variant #4

Market

Manufacturer

Figure 1: Functional and physical breakdown structure of product family archi-
tecture and product variants.

on the functional attributes by market segment. Attributes can either belong
to one or more amongst physical, functional or customer domain (e.g. the
weight can be a customer, functional or physical attribute). In this case, the
same attribute name will be used in different contexts. The key feature of
the proposed modeling framework is the propagation of different attributes
from customer through function to physical. This is implemented by means
of dependency relations between the different types of attributes and levels of
decomposition. For example, the values of the physical attributes “weight”
of each physical component associated to a certain functional module are
added up to define the functional attribute “weight” of the module; this
value must then satisfy the requirements imposed on the corresponding cus-
tomer attribute “weight”. Such relations can be linear or nonlinear analytic
expressions as well as black box functions. Weight provides an example of a
linear relation, Euclidean dimensions that of a nonlinear relation; the rela-
tion between the physical attribute “motor power”, the functional attribute
“brushing rate” and the customer attribute “price” is possibly best modeled

6

as a black box.
In this paper we assume we know (i) the functional and physical prod-

uct family architecture, together with the sets of physical, functional and
customer attributes, (ii) the number of product variants belonging to the
product family, and (iii) the customer requirements i.e. the ranges of cus-
tomer attributes for each market segment. We remark that we are mainly
concerned with product platform formation rather than tactical integrated
product/process platform problems, however the proposed framework en-
sures physical component compatibility even if we do not investigate the
manufacturing issues in details.

The rest of this paper is organized as follows. In Section 3 a product
platform design framework which unifies module- and scale-based platform-
ing and is based on a e-FBS representation of the product family is presented
and discussed amongst related works. Section 4 describes in detail the fea-
tures of such framework. Section 5 describes the relevant mathematical for-
mulation in terms of decision variables, constraints and objective functions.
Conclusions are drawn in Section 7.

3 Contribution and related works

In general a product architecture describes: (i) the hierarchical arrangement
of functionalities and components into modules and submodules, (ii) the al-
location of physical components to elementary functions, (iii) the functional
interfaces among modules and (iv) the physical interfaces among compo-
nents. Depending on the degree of coupling of functional and physical in-
terfaces systems range from having a totally modular product architecture
(independent attributes) to a totally integral product architecture (complex
and coupled attribute interfaces), see [26].

Although virtually no product architecture is entirely modular or inte-
gral, most of the references in the literature only deal with either module
combination optimization (module-based platforming) or module attribute
optimization (scale-based platforming). In the former approach, e.g. see
[21, 22, 25], the values of component attributes are fixed before optimiza-
tion and product variants are instantiated by adding and/or removing one
or more components from a set of common ones, i.e., from the platform. In
the latter approach, e.g. see [4, 15, 18], commonality is achieved by scal-
ing one or more component attributes; the platform is the set of attributes
having common values across all the variants of the family.

Module-based platforming promotes supplementary value-adds compe-

7

tition as well as scale-based platforming is suitable for technology-driven
products but in general an integrated approach is more desirable. Despite
of this, as reported by Simpson [23], only few module- and scale-based plat-
forming integrated approaches, see Hernandez et al. [12, 11] and Fujita
and Yoshida [9], have been proposed as computational design optimization
methods.

Hernandez et al. describe a general top-down platform design approach
where each variant of the product family is regarded as a point in the space
of customization, i.e., in the geometric space defined by the feasible com-
binations of all the feasible functional feature values. They formulate the
problem of designing customizable products as an access problem in the
space of customization and hierarchically solve it by a multi-stage optimiza-
tion approach.

Fujita and Yoshida propose a unified framework based on the identifica-
tion of three different types of components: common, similar and unique. In
a common component, all the physical attributes take common values across
all members of the product family. In similar components there is a sub-
set of physical attributes taking common values across a subset of variants;
similarity could be necessary when a physical attribute can not spread the
large spectrum of values of a relevant customer requirement. In a unique
component, each physical attribute always takes distinct values for each
product variant of the family. Observe that similarity among components
describes, in a different perspective, the multi-platforming concept addressed
by other authors, see [12, 3, 14, 2]. Indeed, the number of platforms in a
multi-platforming approach indicates the number of distinct values that a
common design variable takes across the variants of the product family, each
value defining a subset of similar components.

However, both the above references do not address the functional archi-
tecture variety and carry out some kind of decomposition in the optimization
phase, sequential the former, hierarchical the latter. In particular, in [9] the
functional architecture is assumed as given and each product is composed
of a series of module slots where modules are installed, and for each slot a
set of variants are available. Scalar-based platforming is implemented in a
two-stage procedure: first, a suitable set of common scalar design variables,
i.e., the platform, is chosen by a genetic algorithm and then the values are
obtained via branch-and-bound and quadratic programming.

On the basis of Fujita et al. framework, both attribute and component
commonality/similarity is achieved in our model by considering equality (or
ε-difference for continuous attributes) of component types and component
attributes. Satisfaction of customer requirements is obtained by mapping

8

physical attribute values of components to functional attribute values of
modules through the product architecture tree up to the root node which
represents the final product. At each tree node, we enforce the node func-
tional attributes on the propagated functional attribute values and we re-
quire the satisfaction of customer requirements. When the mapping between
functional features and design parameters can be easily addressed through
the product family architecture, our integrated model can replace the mul-
tistage approach proposed by Hernandez. Otherwise, it can be used as an
evolved mode for managing product variety within the space of customiza-
tion proposed by Hernandez. Summarizing, our approach mainly contributes
to:

- express in sufficiently general mathematical terms the product fam-
ily design problem, a task which usually prelude the employment of
computational optimization techniques;

- make the cross-level attribute propagation problem independent by
means of abstract functions whose implementation depends on the
particular problem structure;

- provide a unified view of physical and functional architecture as well
as of module-bases and scale-based commonality;

- extend commonalization from physical components perspective to func-
tional features domain.

4 The modelling framework

In this section we discuss the proposed modeling framework in detail. The
concepts and mathematical notation are supported by a simple example
concerning the battery powered toothbrush illustrated in Fig. 4. A physical
and functional decomposition of the product is represented in Fig. 4 by
means of an object-process diagram, see [1].

4.1 Assumptions

The model rests on the following assumptions.

- The number of variants in the family is fixed: each product corresponds
to a market niche which is part of a given market segmentation grid
[19].

9

+- M

housing

battery

cover

switch

motor

shaft

tip

head
ring

battery-recharger

Figure 2: The battery powered toothbrush product.

- A given set of customer attributes identifies those product character-
istics that cause different degrees of satisfaction among customers and
influence their choice, and a range of feasible values (the customer re-
quirements) is given for each customer attribute of each product in
the family. We consider customer attributes in a broad sense: other
than merely physical properties of a product, such as the weight or the
color, a customer attribute could also be a functional characteristic,
e.g. the ability to uniquely identify a toothbrush.

- A given set of functional/physical attributes describes the functional
module/physical component characteristics, and a range of feasible
values, called design bounds, is given for each attribute of each physical
component which can be allocated to some product variant of the
family.

- The product family is described by means of a product family archi-
tecture which is an extended FBS/PBS (e-FBS/PBS). Each product
variant is thought of as a subgraph of the product family architec-
ture describing both the set of functional modules that the product
must provide (and therefore the set of functionalities), and the set of
physical components allocated to such functional modules (see Fig. 2

10

Teeth
Brushing

Choosing

Holding

Inserting

Powering

Rotating

Brushing
Rate [cm2/min]

Fit in Mouth

Endurance
[hrs]

Weight
[gr]

Unique ID
[yes/no]

Housing

Cover

Battery

Motor

Switch

Shaft

Ring

Tip

Head

Electric
ToothbrushUser

Hand

Mouth

Teeth

Fresh Water Toothpaste

Waste Water

Module 1

Module 2

Owner

Lh,Dh,th

each component
is characterized
by its design variables

Physical Product
Decomposition

Product

Modules

Components

Design Variables

Product Functional
Decomposition

can be

Functional
Attributes

Consumees

Resultee
Instrument

Price $,€
pays

Affectee

Agent

Beneficiary

Batt.-recharger

Module 3

Recharging

Figure 3: Toothbrush object-process diagram.

and Fig. 4.1). In the following we only focus on the e-FBS part of the
product family architecture; details of manufacturing are addressed by
means of component interface functions, see Section 4.5. Commonal-
ity is achieved either by using common components (see components
A and C in Fig. 4.1) or by sharing attribute values (see attribute 3 of
component E in Fig. 4.1).

4.2 Sets

Let P be the set of variants in a product family and Q the set of physical
components used to assemble the product variants in P .

Customer preferences are described by a set F of customer attributes,
whereas module and component characteristics are described by a set A of
functional/physical attributes. Customer and functional/physical attributes
can be either continuous values, e.g. the weight or the endurance, or discrete
values, e.g. the color or the battery type. Therefore we assume that F =

11

A C

2 3

E G E E H

Fu
nc
tio
na
lv
ie
w

Ph
ys
ic
al
vi
ew

Component
allocation

Components

Attributes

4 5

1

2 3

6 7

A B C D E F G H

X
X

X

Common
Similar

Unique

Component

I(4) I(5) I(6) I(7)

λ1, y1

λ2, y2

λ3, y3

λ4, y4

λ5, y5

λ6, y6 λ7, y7

1
11 , E

E yϑ
1

22 , E
E yϑ

1
22 , G

G yϑ

1
11 , G

G yϑ

E
3ϑ

2
3

1
3 EE yy ≡

2
11 , E

E yϑ
2

22 , E
E yϑ

321
AAA yyy ≡≡

32
CC yy ≡

3
11 , E

E yϑ
3

22 , E
E yϑ

3
33 , E

E yϑ

3
11 , H

H yϑ
3

22 , H
H yϑ

3
33 , H

H yϑ
3

44 , H
H yϑ

Product Family Architecture

G = (V, E)

Elementary functions

Physical componentsQ =

Product variant #1 Product variant #2 Product variant #3

),(1
72

1
6232

1
32 yyy δ=

),(1
71

1
6131

1
31 yyy δ=() []1

1
1
1

1
2

1
21 ,λλψ ∈y

() []1
2

1
2

1
2

1
22 ,λλψ ∈y

e-FBS

Figure 4: product family architecture.

Fs ∪ Fd and A = As ∪ Ad where Fs (As) and Fd (Ad) are respectively the
set of scalar and discrete customer (functional/physical) attributes.

Example 4.1 The market segmentation grid of the toothbrush of Fig. 4 is
reported in Tab. 4.1. The product family P consists of 6 variants {L1, L2, L3, N1, N2, N3}.
Fig. 4 also shows the physical parts constituting the toothbrush. They fall
in two categories: those manufactured by changing the design parameters of
a base component (scale-based design), and those selected among different
models (model-based design). Shaft and cover, for example, belong to the
former category since different shafts can be obtained by varying the length
of the mould. The head, instead, is chosen between the linear and the circular
model and therefore falls in the latter type of part. Clearly, a more complex
situation in which both model selection and parameter setting are performed

12

Table 1: TOOTHBRUSH MARKET SEGMENTATION GRID.

women and children men
(small mouth) (large mouth)

Frequent brushers (2-3 times daily) N1 L1

Normal brushers (once daily) N2 L2

Travelers N3 L3

can be considered. In our example, the set of available physical components
are Q = {ring, housing, cover, switch, batteryA, batteryB, motor, tip, shaft,
headA, headB, recharger}.
From the customer perspective, the toothbrush is mainly described by the set
of attributes F = {price, weight, endurance, efficacy, uniqueness, fitness}.
Uniqueness, i.e., the property of being recognized among other toothbrushes,
is a boolean attribute depending on the color of the ring; fitness, which
depends on the size and the shape of the tip and the head, is a discrete
attribute taking values in the set {average, comfortable, fitting}. Therefore
Fs = {price, weight, endurance, efficacy, uniqueness}, and Fd = {fitness}.
Notice that boolean attributes are treated as continuous one, see Section 4.4.
The main functional/physical attributes are As = {length, weight, motor power,
price, rechargeable}, and Ad = {battery type, color, head type}. We remark
that discrete attributes such as color could be instantiated by either a single
element, e.g., the color of ring, or by a subset of the relevant domain, e.g.,
the different colors of housing, ring, tip, etc.

4.3 Product family architecture

Functional and structural views for a single product typically consist in hi-
erarchical data structures represented by rooted trees where the root is the
finished product, the nodes are functional subsystems or assembled compo-
nents and the leaves are functional or physical elementary components. The
most common type for a manufacturing firm is the Bill-of-Material (BoM).
Several solutions have been proposed in the literature to extend such rep-
resentation to describe product family architectures. The best known are
(i) the Generic Bill-of-Material (GBoM), introduced by Hegge and Wort-
mann [10], which allows all variants of a product family to be specified only
once, and (ii) graph rewriting systems [5], based on graph grammar tech-
niques and used for formal representation of product families and automatic
generation of variants. However, both GBoM and graph rewriting systems,

13

although being valid descriptive and prescriptive tools in the domain of
product modelling, suffer of inherent limitations when employed in an opti-
mization framework since they are mainly conceived as representation tools
rather than decision making optimization tools.

Let G = (V,E) be the FBS part of a product family architecture where
V is the union set of all the functional modules of the product family, and
E is the set of arcs representing the functional breakdown relationship. G
describes the arrangement of product functionalities into functional mod-
ules; in general it is a direct acyclic graph, see the example below, but it
often takes the shape of a tree. We indicate with v0 ∈ V the root node of
G, with N(v) the set of neighbors of v, for each v ∈ V , and with L the set
of the leaf nodes of G. Node v0 corresponds to the functional module im-
plementing all the required functionalities, i.e., to the end-customer product
variants in P . The set N(v) consists of the functional submodules obtained
by decomposing module v. Notice that in a product family architecture not
all the submodules of v must (or can) be part of v since the implementation
of variants and options. Finally, L is the set of the elementary functional
modules, i.e., those modules actually implemented by physical components
in Q. In the following, for each v ∈ L, I(v) ⊆ Q indicates the subset of
physical components that can be used to implement the elementary func-
tional module v. Notice that in general, the sets I(v) define a cover of Q,
i.e., a component can be allocated to more than one elementary module of
each product.

Example 4.2 (continued)
In the following we map index sets P, F and A to sets of natural numbers

of the same cardinality in order to keep index notation clear. Elements of
Q and V are referred to by letters and numbers as reported in Fig. 4.2.

Figure 4.2 describes the FBS part of the toothbrush product family archi-
tecture. Teeth cleaning, represented by node v0, is the overall functionality
of the toothbrush. It can be decomposed into manipulating, operating and
recharging functions, so N(v0) = {v1, v2, v3}. Module Recharging is op-
tional, i.e., it can be included or not in the FBS of variants. Nodes v4
and v9, . . . , v17 correspond to elementary functions. Their interrelated ar-
rangement highlights the degree of coupling of functional interfaces in this
example. The component allocation to Battery and Head modules con-
sists in selecting a suitable component in a set of available alternatives, i.e.,
I(v12) = {E,F} and I(v16) = {K,L}. All other elementary modules are
implemented by a single physical component, i.e., component allocation is
performed by attribute scaling.

14

0. teeth
cleaning

F. batteryB

1. Manipulating

3. Recharging5. Holding

E. batteryA

2. Operating

6. Inserting 8. Rotating7. Powering

B. housing

C. cover G. motorD. switch J. shaftA. ring H. tip

K. headA

M. recharger

4. Choosing

15. Shaft10. Cover 12. Battery 17. Batt.
Recharging13. Motor9. Housing 11. Switch 14. Tip 16. Head

L. headB

Figure 5: e-FBS of the toothbrush.

4.4 Numerical parameters

For each product variant i and functional module v of the architecture tree,
let λi

vh be the requirements of the h-th customer attribute, i.e., the feasible
values that the h-th customer attribute can take. The set λi

vh is an interval
[λi

vh, λ̄
i
vh] ∈ R for scalar attributes and a discrete feasible set for discrete

attributes, and is a subset of a given domain Λi
vh.

Moreover, for each physical component q, let ϑq
k be the design bounds

for the k-th physical attribute, i.e., the feasible values that the k-th physical
attribute of q can take. As above, the set ϑq

k is an interval [ϑq
k, ϑ̄

q
k] ∈ R for

scalar attributes and a discrete feasible set otherwise.
In this paper we consider scalar and discrete customer and functional/physical

attributes. Notice that a boolean attribute h can be easily expressed as a
scalar one: h = 1 (respectively h = 0) means that the customer attribute is
(respectively, not) required, whereas 0 ≤ h ≤ 1 indicates that the attribute

15

h is optional. Similar considerations can be made for functional/physical
attributes.

We assume without loss of generality that the discrete sets ϑq
k and λi

vh

are sets of positive integers, and that discrete attributes always take scalar
values. Indeed, the value taken by a discrete attribute h could in general
describe a subset of the requirements (or the design bounds) for h. This
subset, however, can in general be modeled as a binary vector dh whose
components set to one correspond to the requirements (or the setting) for
h. The inclusion relationships between attribute sets can then be easily
formulated as integer linear constraints on the above binary vectors.

Example 4.3 (continued)
Some customer requirements are:

- children who frequently brush teeth (market niche N2) prefer an effec-
tive and identifiable toothbrush: λ5

04 ≥ 60%, and λ5
05 = 1;

- male travelers (market niche L3) opt for a light and durable toothbrush
without taking care of uniqueness: λ3

02 ≤ 50 gr, λ3
03 ≥ 50 hrs, and

λ3
05 ∈ [0, 1].

Some design bounds are:

- the length (and the weight) of the shaft must range in a given interval
due to manufacturing technological constraints: ϑJ

1 ∈ [80, 120] mm,
and ϑJ

2 ∈ [14, 20] gr;

- rings are available in three colours, i.e., ϑA
7 ∈ {red, blue, white}, whereas

all tips and housings are white, i.e., ϑB
7 = ϑH

7 = {white};

- batteries are available in two models: common household carbon-zinc
or alkaline (batteryA) and li-polymer (batteryB). The former is cheaper
but non rechargeable, i.e., ϑE

4 ∈ [0.4, 0.7] $, ϑE
5 = 0, and ϑE

6 ∈
{alkaline, carbon zinc}, whereas the latter is more expensive but recharge-
able, i.e., ϑF

4 ∈ [20, 40] $, ϑF
5 = 1, and ϑF

6 = {polymer}.

Notice that some attributes, such as rechargeable and motor power, are
relevant only for a subset of modules and/or components.

4.5 Abstract Functions

The product family architecture graph only partially provides the infor-
mation needed to describe how the variants of the product family can be

16

correctly assembled. Usually in design, customer requirements, functional
attributes and design bounds fall in distinct domains so that they are de-
fined independently and are not necessarily compatible with each other.
Hence, a full family description also requires some knowledge (i) on require-
ment translation, i.e., on how functional characteristics of a product result
in customer preferences, (ii) on module composition, i.e., on how submod-
ule attributes settle module attributes, and (iii) on module and component
interfaces, i.e., on what are the compatibilities among the values taken by
attributes, between functional modules and between physical components.
all the above features are implemented in our framework by sets of abstract
functions. In particular:

- for all i ∈ P, v ∈ V, h ∈ F (v), the requirement function ψi
vh : R|A| →

Λi
vh maps the values of the functional module attributes of v into the

value of the h-th customer attribute. Notice that the requirement
functions can be defined not only for v0 but also for submodules, since
customer requirements in fact can relate on characteristics of submod-
ules.

- for all v ∈ V \L, k ∈ A(v), the composition function δvk : R|N(v)| → R
maps the attributes of the submodules of v to the attributes of v; natu-
rally, δ will be defined in such a way that the argument corresponding
to u ∈ N(v) will be ignored if k 6∈ A(u), i.e. an attribute which is
irrelevant on a submodule will not influence the value of δ.

- for all q ∈ Q, the component interface function χq : R|A|(|L|−1) →
{0, 1} decides whether the current assignment of attribute values of
the selected physical component q is compatible with the attribute
values of other selected components.

- for all v ∈ V , the module interface function ϕv : R|A|(|V |−1) → {0, 1}
decides whether the current assignment of attribute values of module
v is compatible with the attribute values of other modules.

The module interface functions, and similarly the component interface
functions, are used to model compatibility and restrictions relating to sub-
sets of modules. They are conceived as boolean functions: their arguments
are the attribute values of the selected modules and they return 1 if both
the current selection of modules and the assignment of values to attributes
are compatible, and 0 otherwise. A special case of such functions are the
AND/OR conditions employed in the Generic Bill-of-Material (GBoM) [10]

17

since they do not depend on the values taken by the module attributes. In-
deed, an AND condition simply describes a module composition, i.e., that all
the submodules of v must be used to implement v whatever are the values of
their attributes, whereas an OR condition simply describes options through
which one can derive product variants, i.e., exactly one of the submodules
of v can be used to implement v.

The above definitions are very general; as such, they do not explicitly
describe the actual form of the ψ, δ, ϕ, χ functions. The time and space
complexity for finding a feasible solution for the model mainly depends on
the form of such functions. For example, composition functions may range
from easily linearizable (e.g. a summation of attributes) to functions that
cannot be expressed in closed algebraic form (e.g. δvk could be the result of
an auxiliary optimization or simulation problem).

Example 4.4 (continued)
Since Price and Weight attributes are both customer and functional, sim-

ple requirement functions working on homogenous dimensions are sufficient
to model the translation between customer and functional domains. On the
other hand, non trivial requirement functions must be defined for Endurance,
efficacy, uniqueness and fitness customer attributes. The endurance of a
variant, for example, can be computed by ψi

03 in terms of employed battery
type. Analogously, requirement function ψi

04 can return the efficacy of a
variant in terms of head type and brushing rate (the latter depending on the
motor power functional attribute), and ψi

05 can link the uniqueness to the
color of the ring. Finally the fitness can be computed by ψi

06 in terms of
length of the shaft and type of the head. Observe that, function ψi

06 depends
from the market niche since fitness is a subjective customer attribute.

The overall structure of the toothbrush must be consistent. Since the ex-
tended FBS describes the product family, i.e., each variant in general consists
of a subset of modules, module interface functions implementing AND/OR
conditions must be defined. For example, function ϕ0 enforces module v0
to be composed by both modules v1 and v2, and, optionally, by module v3.
Additional interface constraints can occur. For example, the condition that
a recharger is required if and only if a rechargeable battery is adopted can be
implemented by function ϕ7.

The values of functional attributes must be set throughout the extended
FBS according to the allocation of components. In our example, the overall
weight and price of the toothbrush are given by functions δ02 and δ04 respec-
tively, that simply add up weights and prices of submodules. Composition
function δ01 associated to length attribute is a little bit different since the

18

overall toothbrush length depends on only housing, tip and head component
lengths. Finally, δ07 determines the color of the toothbrush as the union of
ring, housing and tip colors.

5 A mathematical formulation

The model framework described in Section 4 can be formalized in terms of
mathematical modelling by means of the following sets of variables, con-
straints and objective functions.

5.1 Decision variables

There are three kinds of variables in the model: the real variables y that
describe the values taken by functional/physical attributes, the binary vari-
ables x, z and r that model the selection of functional modules and physical
components, and finally the binary variables p and w that count component
and attribute commonality. More formally:

- For all i ∈ P, u ∈W,k ∈ A(u), let yi
uk be the value associated with the

attribute k of module or physical component u in product variant i.

- For all i ∈ P, v ∈ V , let xi
v = 1 if module v is used in product variant

i, and let xi
v = 0 otherwise;

- For all i ∈ P, v ∈ L, q ∈ Q, let zi
vq = 1 if component q implements

elementary module v in product variant i, and let zi
vq = 0 otherwise;

- For all i ∈ P, q ∈ Q, let ri
q = 1 if component q is used at least once in

product i, and let ri
q = 0 otherwise;

- For all q ∈ Q, let pq = 1 if component q is common, and let pq = 0
otherwise;

- For all i < j ∈ P, q ∈ Q, k ∈ A(q), let wij
qk = 1 if i, j use same compo-

nent q with same value for attribute k, and let wij
qk = 0 otherwise.

We can consider ordered subsets of variables by contracting the relevant
indices, e.g. yi

v = (yi
v1, . . . , y

i
v|A(v)|) for all i ∈ P, v ∈ V and so on.

5.2 Constraints

The model constraints mainly relate to (i) module composition (ii) interface
implementation and (iii) evaluation of commonality.

19

5.2.1 Module composition

For each variant i of the product family, a set of physical components must be
selected and set up in such a way that all the customer requirements of i are
satisfied and all the design bounds of the chosen components are fulfilled. To
this aim, we introduce a set of constraints implementing a propagation device
that translates, through the levels of the product architecture, component
design bounds into customer requirements. In particular, for each product
variant i the propagation device must guarantee that:

- the attribute values of each functional module are feasible with respect
to the requirements of the corresponding customer attributes;

- the attributes of a module u are consistently obtained from the at-
tributes of the modules constituting u;

- the attribute values of a selected elementary module are feasible with
respect to the design bounds of the component which has been selected
to implement it.

The first step is implemented by constraints (1) and (2): for each customer
attribute h, the scalar (discrete) value yielded by the requirement function
ψi

vh must belong to the interval (the set) of the relevant requirement.

∀i ∈ P, v ∈ V, h ∈ Fs(v) λi
vh ≤ ψi

vh(yi
v) ≤ λ̄i

vh (1)
∀i ∈ P, v ∈ V, h ∈ Fd(v) ψi

vh(yi
v) ∈ λi

vh. (2)

The second step can be modeled by resorting to the composition functions
δvk. The attribute values of a module depend on the attribute values of
its selected submodules, see constraints (3), whereas the attribute values of
an elementary module must correspond to those of the physical component
used to implement it, see constraints (4).

∀i ∈ P, v ∈ V \ L, k ∈ A yi
vk = δvk(yi

k � xi) (3)

∀i ∈ P, v ∈ L, k ∈ A(v) yi
vk =

∑
q∈I(v)

zi
vqy

i
qk (4)

Notice yi
k�xi = (yi

ku1
xi

u1
, . . . , yi

kuα
xi

uα
) where α = |N(v)|, and that each ar-

gument yi
kux

i
u of δvk takes the value yi

ku if submodule u is currently selected,
and 0 otherwise.

The third step is implemented by constraints (5) and (6) which guarantee
that the scalar and discrete attribute values of a chosen physical component

20

belong to the relevant design bounds.

∀i ∈ P, q ∈ Q, k ∈ As(v) ϑq
k ≤ yi

qk ≤ ϑ̄q
k (5)

∀i ∈ P, q ∈ Q, k ∈ Ad(v) yi
qk ∈ ϑ

q
k. (6)

Finally, each selected elementary module must be implemented by exactly
one physical component:

∀i ∈ P, v ∈ L xi
v =

∑
q∈I(v)

zi
vq. (7)

5.2.2 Interface implementation

The functional and physical interfaces mainly concern the compatibility be-
tween selected modules and components. Due the definition of interface
functions (see §4.5), such compatibility can be simply modeled by logical
implications: the functional module v (physical component q) cannot be
selected, i.e., xi

v = 0 (zi
vq = 0), if the current module (component) se-

lection and functional (physical) attribute setting are not compatible, i.e.,
ϕv(yixi) = 0 (χq(yixi) = 0).

∀i ∈ P, v ∈ V xi
v ≤ ϕv(yi � xi) (8)

∀i ∈ P, v ∈ L, q ∈ I(v) zi
vq ≤ χq(yi � xi) (9)

where yi � xi = (yi
v1k1

xi
v1
, yi

v1k2
xi

v1
, . . . , yi

v2k1
xi

v2
, . . .), with v 6∈ {v1, v2, . . .}.

Observe that composition and interface functions address more general
compatibility patterns than diversion feasibility, simultaneity, capacity con-
straints (see [8]) and AND/OR conditions between submodules. Indeed, the
latter can be easily expressed as linear constraints on xi.

5.2.3 Commonality evaluation

In our framework we consider both component and attribute commonalities.
A component is common if it is always allocated with the same attribute
configuration across the variants of the product family, whereas a component
attribute is common for a pair of variants allocating the relevant component
if it takes the same value. Component and attribute commonalities are

21

modeled by the following constraints.

∀i ∈ P, v ∈ L, q ∈ I(v) zi
vq ≤ ri

q (10)

∀i < j ∈ P, q ∈ Q, k ∈ A(q) |yi
qk − yj

qk| ≤M(1− wij
qk) (11)

∀i < j ∈ P, q ∈ Q, k ∈ A(q) wij
qk ≤ ri

q (12)

∀i < j ∈ P, q ∈ Q, k ∈ A(q) wij
qk ≤ rj

q (13)

∀q ∈ Q |A(q)|

 |P |∑
i=1

ri
q − 1

−
|P |−1∑
i=1

∑
k∈A(q)

wi,i+1
qk

≤M(1− pq) (14)

Constraints (10)-(14) model implications. Constraints (10) are needed since
the sets I(v), v ∈ L, in general define a cover of Q, i.e., for each product
a component can be allocated to more than one module. The allocation of
component q to both the products i and j, and a different value assignment of
attribute k imply wij

qk = 0, see constraints (11)-(13). In constraints (14) the

term α =
∑|P |−1

i=1

∑
k∈A(q)w

i,i+1
qk counts, for each relevant attribute of com-

ponent k, the number of variants across the product family which share the
same value. Such number cannot be greater than |A(q)| times the number of
variants that allocate component k, i.e., the term β = |A(q)|

(∑|P |
i=1 r

i
q − 1

)
.

Clearly, β − α > 0 implies pq = 0.
Finally, observe that non-linear constraints (11) can be easily linearized,

see [16].

5.3 Objective functions

Several objective functions and platform evaluation metrics have been pro-
posed in the literature. Aspects as customer needs, engineering perfor-
mances, product robustness, component commonalization and production
cost are the most addressed topics, each of them concerning the problem
from a different perspective. Actually the most important and ultimate ob-
jective is product family net present value (NPV). We show here the flexibil-
ity and generality of the proposed framework by expressing some meaningful
objective functions and evaluation metrics in terms of the decision variables
of the model.

From the market domain perspective, where the expectations of market
segments and the behavior of customers are taken into account, the main
focus is on the customer satisfaction. A suitable measure is how well the
customer needs are met by the platform [17].

22

The following maximizes conformance to customer needs.

max
1
|P |

∑
i∈P

∑
h∈F

νi
h(ψh(yi

0))
|F |

, (15)

where νi
h : λi

h → R+ (for i ∈ P, h ∈ F) is a market specific value-generating
functions which translate the value of the h-th functionality of the product
i into an absolute scalar quantity called “value” and usually expressed in
monetary units.

From the engineering domain perspective, robustness and product/process
commonality are the most important platforming objectives. The former
allows flexibility and make easier the adaptation to changes. The latter
pursues economies of scale: sets of common features, components and sub-
assemblies in general lead to lowering production costs. The robustness of a
product architecture can be controlled by limiting the use of extreme values
for component attributes, since they could be difficult to meet and could
cause poor performance. This is implemented in the following objective
function.

max
∑
i∈P

∑
q∈Q

∑
k∈A(q)

ri
q

√
(yi

qk − ϑq
k)(ϑ̄

q
k − yi

qk)

ϑ̄q
k − ϑq

k

. (16)

Product commonality can be quantified by directly resorting to the vari-
ables w and p. The following objective maximizes attribute commonality:

max
|P |−1∑
i=1

|P |∑
j=i+1

∑
q∈Q

∑
k∈A(q)

wij
qk, (17)

and the following maximizes component commonality:

max
∑
q∈Q

pq. (18)

Although the objectives (17) and (18) give a measure of commonality,
they do not take into account the production cost savings due to the econ-
omy of scale. To this aim and similarly to [9], we can introduce a multiperiod
production cost function which models production horizon and learning ef-
fect due to the production volumes.

min
∑
τ∈T

∑
q∈Q

∑
i∈P

ri
q(1− pq)Cqζ(ni) +

∑
τ∈T

∑
q∈Q

pqCqζ

(∑
i∈P

ri
qni

)
, (19)

where:

23

- T is the number of periods in the production planning horizon;

- ni is the overall production volume (i.e. number of parts) of the i-th
variant;

- Cq is the unit production cost of physical component q;

- ζ : R → R is a function representing learning effect:

ζ(n) =
n

T

(
1− e

T
nτ

)
.

Finally, we observe that a meaningful and more suitable objective func-
tion can be obtained by considering a weighted sum of two or more of the
previous objective functions, with a view of balancing a trade-off between
market and engineering needs.

6 Computational issues

[To be filled]

7 Conclusion

In this paper a modelling framework for integrated module-based and scale-
based platforming has been introduced. The mathematical model works on
an extended product family architecture and uses native product platform
design decision variables and abstract functions to address module compo-
sition and interface implementation.

[to be completed]

References

[1] Object-process methodology (opm).
URL http://www.objectprocess.org.

[2] O.L. de Weck. Determining product platform extent. In T.W. Simp-
son, Z. Siddique, and J.R. Jiao, editors, Product Platform and Product
Family Design - Methods and Applications. Springer, New York, USA,
2006.

24

[3] O.L. de Weck, E.S. Suh, and D. Chang. Product family and plat-
form portfolio optimization. In ASME Design Engineering Techni-
cal Conference, 2003. Chicago, IL, September 2-6, Paper number
DETC2003/DAC-48721.

[4] B. D’Souza and T.W. Simpson. A genetic algorithm based method for
product family design optimization. Engineering Optimization, 35(1):1–
18, 2003.

[5] X. Du, J. Jiao, and M.M. Tseng. Product family modeling and design
support: an approach based on graph rewriting systems. AIEDAM,
16(2):103–119, 2002.

[6] D. Frey, J. Palladino, J. Sullivan, and M. Atherton. Part count and
design of robust systems. Systems Engineering, 10(3):203–219, 2007.

[7] K. Fujita. Product variety optimization under modular architecture.
Computer-Aided Design, 34:953–965, 2002.

[8] K. Fujita, H. Sakaguchi, and S. Akagi. Product variety deployment and
its optimization under modular architecture and module commonaliza-
tion. In 1999 ASME Design Engineering Technical Conferences, 1999.
Paper number DETC99/DFM-8923.

[9] K. Fujita and H. Yoshida. Product variety optimization: simultaneous
optimization of module combination and module attributes. In 2001
ASME Design Engineering Technical Conferences, 2001. Paper number
DETC2001/DAC-21058.

[10] H.M.H. Hegge and J.C. Wortmann. Generic bill-of-material: a
new product model. International Journal of Production Economics,
23:117–128, 1991.

[11] G. Hernandez, J. K. Allen, and F. Mistree. A theory and method
for combining multiple approaches for product customization. Interna-
tional Journal of Mass Customisation, 1(2).

[12] G. Hernandez, J. K. Allen, and F. Mistree. Platform design for cus-
tomizable products as a problem of access in a geometric space. Journal
of Engineering Optimization, 35(3):229–254, 2003.

[13] J. Jiao, T.W. Simpson, and Z. Siddique. Product family design and
platform-based product development: A state-of-the-art review. Jour-
nal of Intelligent Manufacturing, 18:5–29, 2007.

25

[14] R. Kumar and V. Allada. Customer need driven function-behavior.
platform formation. In IDETC/CIE 2005 Design Automation Confer-
ence, 2005. Long Beach, California, September 24-28.

[15] R. Kumar, V. Allada, and S. Ramakrishan. Ant colony optimization
method for product platform formation. In ASME Design Engineer-
ing Technical Conferences, Advances in Design Automation, and Com-
puters and Information in Engineering Conferences, 2004. Salt Lake
City, Utah, September 28 - October 2, Paper number DETC2000/DAC-
14264.

[16] L. Liberti. Reformulation techniques in mathematical programming,
November 2007. Thèse d’Habilitation à Diriger des Recherches.

[17] Hölttä-Otto, K. and Otto, K. Platform concept evaluation. In T.W.
Simpson, Z. Siddique, and J.R. Jiao, editors, Product Platform and
Product Family Design - Methods and Applications. Springer, New
York, USA, 2006.

[18] A. Messac, M.P. Martinez, and T.W. Simpson. A penalty function for
product family design using physical programming. ASME Journal of
Mechanical Design, 124:164–172, 2002.

[19] M. Meyer and A. Lehnerd. The Power of Product Platforms. The Free
Press, New York, USA, 1997.

[20] W.L. Moore, J.J. Louviere, and R. Verma. Using conjoint analysis to
help design product platforms. Journal of Product Innovation Manage-
ment, 16(1):27–39, 1999.

[21] R. Rai and V. Allada. Modular product family design: Agent-based
pareto optimization and quality loss function-based post-optimal anal-
ysis. International Journal Production Research, 41(17):4075–4098,
2003.

[22] Z. Siddique. Assembly process selection to minimize existing assem-
bly system modification cost during new product family member de-
sign. In Proceeding of International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conferences,
2005. Long beach, California, Paper number DETC2005-85016.

[23] T. W. Simpson. Product platform design and customization: Status
and promise. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 18(1):3–20, 2004.

26

[24] T.W. Simpson, Z. Siddique, and J.R. Jiao. Product Platform and Prod-
uct Family Design - Methods and Applications. Springer, New York,
USA, 2006.

[25] M.A. Slevinsky and P. Gu. Modular platform design using mechan-
ical bus architectures. International Journal of Mass Customization,
1(1):65–82, 2005.

[26] K. Ulrich. The role of product architecture in the manufacturing firm.
Research Policy, 24:419–440, 1995.

27

