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Abstract. This study looks at the dynamics of a Covid-19 type epidemic with a dual purpose. The first objective is
to propose a reliable temporal mathematical model, based on real data and integrating the course of illness. It is a daily
discrete model with different delay times, and whose parameters are calibrated from the main indicators of the epidemic.
The model can be broken down in two decoupled versions: a mortality-mortality version, which can be used with the
data on the number of deaths, and an infection-infection version to be used when reliable estimates of infection rate are
available. The model allows to describe realistically the evolution of the main markers of the epidemic. In addition, in
terms of deaths and occupied ICU beds, the model is not very sensitive to the current uncertainties about IFR.
The second objective is to study several original scenarios for the epidemic’s evolution, especially after the period of
strict lockdown. A coherent strategy is therefore proposed to contain the outbreak and exit lockdown, without going into
the risky herd immunity approach. This strategy, called zigzag strategy, is based on a classification of the interventions
into four lanes, distinguished by a marker called the daily reproduction number. The model and strategy in question are
flexible and easily adaptable to new developments such as mass screenings or infection surveys. They can also be used
at different geographical scales (local, regional or national)
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1. Introduction

The Covid-19 epidemic we are witnessing today has spread at a phenomenal rate. Leaving China at the
end of 2019 (see [58]), it reached almost all the countries of the world within four months. The speed of
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circulation of the virus Sars-CoV-2 and the short development time of Covid-19 disease leave little time to
react. In late April 2020, the epidemic has already absorbed, even saturated, the hospital capacities of many
countries, causing more than 200,000 deaths worldwide and seriously affecting the health of at least a million
people.The time of circulation and action of the coronavirus Sars CoV-2 appears to be much shorter than the
different reaction times of human institutions, whether they are hospital, industrial, scientific or political.

Therefore, to understand the dynamics of a Covid-19 type epidemic, it is necessary to look at the action
time of the virus and the disease it causes. Mathematical models that aim to predict these dynamics must
take into account clinical times from infection to recovery or to death. More specifically, durations of incuba-
tion and of contagiousness period, time from onset to admission in ICU (Intensive Care Unit) and time from
onset to death or discharge, are all important parameters that must be estimated and integrated into the mode
(see, e. g., [37]).

However, in the face of urgency, scientists cannot rely solely on complex computational models, whose im-
plementation, responsiveness, and needs in data require weeks of data collection and prohibitive calculation
costs.

Paradoxically, the importance of chronological aspects in understanding the epidemic potential of this virus
could lead to mathematical models that are less costly in terms of computing time and data collection. Indeed,
the space variable, although important, does not play a major role in its spread: the virus does not spread by a
wave that moves slowly from region to region, but by the multiplication of clusters and epidemic foci. Thus,
models that rely on systems of partial differential equations where the space variable lives in a continuum
may not be adequate for this epidemic. Moreover, it is now generally accepted that the age is a risk factor
(see, e. g., [57], [51]). It can therefore be deduced that this leads to population behaviors that differ with age,
causing variability in transmission. However, the influence of age on transmission is still unclear (see [11],
[19], etc.). For this reason, most existing epidemiological models for respiratory virus epidemics initially
focus on temporal aspects. Age and spatial structuring generally takes place in a second stage, with the aim
of refining the models so that they are as close as possible to reality.

There are many deterministic or stochastic mathematical models that describe the evolution of an epi-
demic. The most successful are time-continuous deterministic compartmentalized models. Often inspired
by Kermack-McKendrick’s SIR model [38] (see also [4]), these models generally consist in a repartition of
individuals into several epidemiological classes. The dynamics of this repartition is described by a system of
inter-coupled differential equations. As indicated in [26], there are a large number of these compartmental-
ized models (see for example [46], [30], [31], [24], [6], [7], [36], [12]). In addition, there is another family
of so-called stochastic models that have been developed in parallel with deterministic models. One can cite
the Reed-Frost model (see [1]), Greenwood model [22] or other later models (see [9], [52], [10] et [15]).
We can also mention agent-based models that aim to take into account all heterogeneities by mimicking the
behaviour of individuals as closely as possible (see [41], [25], [50], [28]).

The reader interested in all these models can consult the works of Anderson and May [3], Brauer and Castillo-
Chávez [12], Diekmann and Heesterbeek [17], Britton and Pardoux [13] or Thieme [48]. It should be noted
that many developments or adaptations of these classical models have been introduced very recently, during
the current Covid-19 pandemic. It is too early to make an exhaustive description and evaluation of all these
developments.

Furthermore, one of the difficulties encountered in the study of this pandemic stems from the collected data,
particularly those concerning the number of infected individuals. Many people are infected without develop-
ing severe clinical manifestations of the disease, while at the same time becoming contagious. In addition,
the difficulty of performing virological tests in large numbers is leading to a refocusing of screening on cases
who have severe illness symptoms. It is therefore unreasonable at this stage to base models solely on the
number of detected or confirmed cases as the only indicator, unless the number of unreported or asymp-



A discrete epidemic model and a zigzag strategy for Covid-19 Tahar Z. Boulmezaoud

tomatic cases is included in these models ([23], [36]). Even the proportionality the number of detected cases
to the total number of infected cases is not guaranteed, because of the continuous evolution of screening
capacities and public policies. On the other hand, it could be accepted without difficulty that mortality (or
in-hospital mortality), admission to intensive care units, or even hospitalizations, are markers that reflect the
evolution of the pandemic in a much more specific way.

Taking all these observations into account, we propose here a discrete deterministic model for forecasting
the temporal evolution of the epidemic from day to day, taking into account the different medical parameters
that characterize it. It is a decoupled model in which mortality is predicted from mortality data only, and
which makes it possible to simulate the evolution under several scenarios of various other indicators such as
the number of occupied ICU beds, the number of infected or recovered cases, and the number of active cases.
The fact that these predictions are based primarily on mortality data makes the model less sensitive to the
IFR (Infection Fatality Ratio), especially in realistic phases of the epidemic (the IFR will be used primarily
to deduce the numbers of infected, recovered or active cases from the death numbers). This model makes it
possible to monitor the impact of restrictive interventions and the behavior of individuals. It can also predict
the short- and long-term dynamics of the epidemic, according to several scenarios. The state of the epidemic
in France will be particularly examined.

The model has a number of parameters. These are mainly the daily reproduction number (to be distinguished
from the basic reproduction number), transmission coefficients, and certain time delays. The transmission
coefficients are calibrated from data using an inverse method (without making additional assumptions about
the contagiousness profile). Time delays are inferred from clinical data. As for the daily reproduction num-
ber, introduced here, it is a dynamic marker that can be measured from the data and allows the impact of the
public interventions to be assessed. It will play a fundamental role in predicting the course of the epidemic
under different scenarios, and in designing a technique to control it without maintaining permanent drastic
interventions. This technique, called zigzag strategy, consists of alternating periods of strict lockdown and
moderate deconfinement according to precise rules.

The remaining of this paper is oraganized as follows:

In section 2, we expose the main features of the model. For reasons of readability, its formal justification has
been moved to the Appendix A.
Section 3 is dedicated to the calibration of its various parameters (time delays, transmission coefficients, etc).
Section 4 deals with the study of the daily reproduction number in the case of several countries.
Section 5 includes the analysis of about ten scenarios for the lockdown exit, by choosing the example of
France. These scenarios are all replicable for other countries or for a specific region. The scenario of non-
application of lockdown is also studied.
In 6, the zigzag strategy for controlling the outbreak is outlined.
Section 7 is devoted to conclusions.

The reader not interested in the mathematical aspects of the model can simply read sections 5, 6, 7 and pos-
sibly 4.

Finally, it should be noted that the rigorous mathematical study of the model is postponed to another work.
Here, the emphasis is deliberately placed on modelling and prediction in the context of realistic scenarios.

2. Model and its parameters

In severe epidemic situations such as the Covid-19 epidemic, many countries adopt daily reporting of infec-
tion, hospitalization and mortality indicators. Therefore, the unit of time chosen here is the day. Here E
designates an entity with a sufficiently large population. Such an entity can be a given region, a country or
a set of countries. However, we can keep in mind, without losing generality, that the reference entity here is
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the country. We note P the initial size of its population.

In this model, we follow the evolution of the epidemic day by day, starting from a certain date J0. This
date could depend on the country chosen for the study. We denote (Jn)n>1 the sequence of subsequent days.
For all n >0, we denote by

• Sn the number of susceptible individuals at the end of the n-day,

• In the number of infected individuals after the first n days (In includes in particular individuals who
have recovered or died),

• Dn the total number of deaths due to the epidemic that occurred in the first n days,

• Rn the number of individuals recovered after the first n days,

• An the number of individuals who were admitted in ICU the first n days (due to the epidemic), even if
they have already left these units,

• A?n the number of occupied ICU beds at the end of the n-day (by patients affected by the epidemic).
Thus, An − A?n refers to the number of people who stayed in the ICU and left it before the end of the
nth day.

Let us specify from now on that in the whole model the number of deaths Dn can be replaced by the number
of deaths in hospital. The model will remain the same (provided that the mortality rate is adjusted, especially
when the epidemic is amplified). It will be seen that it is not necessary to know all these indicators at the
beginning of the epidemic. Recent data are sufficient to predict what will happen next.

For convenience, we set Dk = Ak = Rk = 0 for any integer k 6 0 and Ik = 0 for k < 0. Thus, I0
represents the number of individuals infected on day J0 (contagious or not, recovered or not). We also set

in = In − In−1, dn = Dn −Dn−1, an = An −An−1 for all n. (2.1)

In other words, in and dn represent the number of infections and deaths that occurred on day Jn, respec-
tively, while an represents the number of individuals admitted in ICU on the day Jn. We have the obvious
relationships for any n > 0

In =

n∑
k=0

ik, Dn =

n∑
k=0

dk, An =

n∑
k=0

ak. (2.2)

Let us summarize the proposed model for studying the evolution of the epidemic. Its justification is postponed
to appendix A. In the full version of the model, the dynamics of the number of deaths is governed by the
decoupled law (mortality-mortality):

dn = Cn−r(1−
Dn−1

αP
)

`−1∑
k=0

λkdn−m−k for n > 0, (2.3)

where Dn−1 is calculated from dk, 1 6 k 6 n− 1, by the relation (2.2), and

• ` > 1 refers to the observed average duration of contagiousness (days),

• m > 1 refers to the minimum time from infection to contagiousness (days),

• r > 1 is the average time from illness onset to death,

• α is the infection fatality ratio (IFR) (or the infection in-hospital fatality rate if Dn denotes the number
of deaths in hospital that occurred in the first n days),
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• λ0, · · · , λ`−1 are nonnegative transmission coefficients independent of n satisfying

`−1∑
k=0

λk = 1.

Qualitatively, the transmission coefficients λ0, · · · , λ`−1 describe the contagiousness of an infected individ-
ual (during the m + ` days following his infection). They depend in part on the evolution of his viral load.
They are estimated from actual data using a least-squares technique explained in Appendix A.

In (2.3), for any integer n > 1, Cn designates a nonnegative coefficient that we will call daily reproduction
number on day n. This factor depends on the interventions; it decreases when interventions are applied to
curb the epidemic, and increases when these interventions are relaxed. We will remember that a sufficient
condition to ensure a rapid decline in the epidemic is to keep the constant Cn below 1. An estimate of this
factor will be given in the absence of interventions and in periods of strict lockdown, and its evolution in
different countries will be compared.

We can observe that the parameter Cn intervenes in the model (2.3) with a delay of r days. This delay is
justified by the time from the application of interventions to their impact on mortality figures.

We also notice that the model (2.3) is a non-linear convolutional model. It is this model that we will adopt
in the following and that we will complete with the identities to calculate the other indicators. However, it
can be linearized if we look at the early stages of the epidemic, when the number of infections remains small
compared to the population size. In the latter case we obtain the linearized convolutional model

dn ≈
`−1∑
k=0

λkdn−m−k, (2.4)

The latter identity does not involve mortality rate α. In other words, to predict the evolution of mortality in the
early stages of the epidemic only a calibration of transmission coefficients λ0, · · · , λk and an estimation of
daily reproduction numbers Cn are necessary. In addition, this linearized model does not require knowledge
of the initial number of infections or deaths. After calibration of the coefficients, the prediction of mortality
on day n can be made from the actual mortality data on the (m+ `) days preceding it.

We now show how we calculate the number of infected individuals and of occupied ICU beds. These two
quantities are linked to Dn by the identities

Dn = αIn−r, for n > 0, (2.5)

A?n = γ(Dn+r−t −Dn+r−(t+p)) for n > 0, (2.6)

where t is the average time from infection to admission to ICU and p is the average time spent in ICU. Here
γ = β

α , where β is the ICU admission rate by infection. The γ coefficient is easy to measure because it
relates two quantities that are usually carefully monitored (number of deaths and number of occupied ICU
beds ). The relation (2.6) is therefore verifiable.

The relation (2.6) is easily extended to the number of occupied beds in hospital, replacing t by the time
between infection and admission in hospital, p by the length of stay in hospital and replacing γ by a corre-
sponding coefficient.

We will choose here to study the evolution of A?n rather than the evolution of An (although the latter is easy
to deduct). Indeed, A?n is an important marker in practice.
The relations (2.5) and (2.6) can be used in (2.4) to infer similar decoupled models for the dynamics of In
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and An. In particular, the following infection-infection model is obtained

in = Cn(1−
In−1

P
)

`−1∑
k=0

λkin−m−k. (2.7)

This identity has two remarkable advantages. On the one hand, it does not involve the mortality rate. On the
other hand, it focuses only on infection rate. Actually, by introducing the daily infection rate

i?n =
in
P
,

identity (2.7) becomes

i?n = Cn(1−
n−1∑
k=0

i?k)

`−1∑
k=0

λki
?
n−m−k. (2.8)

This infection-infection model is moreover independent of the overall size of the population studied. It can
be used when we have a few successive surveys measuring the infection rate. We will come back to that point
in the section 6.

It remains to estimate the number of recovered cases. It is calculated by the relation

Rn = (1− α)In−s = (
1
α
− 1)Dn+r−s, (2.9)

where s is the average recovery time. The number of susceptible individuals can be easily deduced from the
identity

P = Sn + In. (2.10)

Identities (2.3), (2.5) , (2.6) et (2.9) are sufficient to describe the evolution of the quantities Dn, A?n, In and
Rn, provided that they are completed with initial data I0, · · · , Im−1 (which is equivalent toDr, · · · , Dr+m−1).
However, according to the formula (2.4) it is not necessary to go back to the initial conditions at the start of
the epidemic, which are generally not well known. Mortality figures in the early stages of the epidemic can
be used over a time interval of m+ ` days. This provides a robustness of the model with respect to the initial
conditions at the start of the epidemic.

Remark 2.1. The formula (2.6) can be used to predict mortality a few days before (8 days in France for
example) from the number of occupied ICU beds (2.3). Actually, one can rewrite it in the form

Dn+r−t =
1
γ
A?n +Dn+r−(t+p) for all n > 0, (2.11)

Remark 2.2. The above model can be completed by taking into account changes in overall population size.
This is equivalent to considering population size as a sequence (Pn)n>0 governed by an relation of the form

Pn+1 = (1 + τ)Pn − dn, (2.12)

where τ = τ+ − τ− is the difference between the daily fertility rate τ+ and the non-epidemic all-cause
mortality rate τ−. In this case, the number of susceptible individuals can be calculated by a recurrence
formula of the type

Sn+1 = (1− τ−)Sn + τ+Pn − in−1. (2.13)

Then we can readjust the model (2.3). One can also integrate the fact that a part of the population is initially
immunized as well as the re-infections of the same individuals in the longer term. These extensions will be
the subject of a forthcoming work.
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3. Calibration of model parameters

The model described in the previous section is essentially based on two families of parameters which will
be set by calibration from the data: the clinical times inherent to the illness and the normalized coefficients
of transmission λ0, · · · , λ`−1. There is also the coefficient γ linking the number of occupied ICU beds to
mortality, as well as the infection fatality rate α (we will see that it has a limited impact on the mortality and
on the occupancy of ICU). We are going to calibrate these parameters (with the exception of α) using on the
one hand, clinical data available in the literature, and on the other hand, mortality data published daily. The
aim is to make the model as close as possible to reality and to be able to make forecasts for the weeks and
months ahead. Note that the daily reproduction number Cn is a dynamic parameter which will be the focus
of specific discussions thereafter.

Determining Clinical Delays.

Recent studies place the onset of Covid-19 between the 2nd and 14th day, with a median around 5 days
(see, e. g., (voir [32], [34], [56], [40])). However, it is now known that infected individuals can be contagious
in the pre-symptomatic phase up to two days after infection (see [55], [33]). This is supported by estimates
of the mean serial interval (the time interval between the illness onset of a person already infected and of a
person subsequently infected). In [18], it is estimated to be 4 days. It is estimated to be 5.1 days in [56].
These are two of the main causes of rapid circulation of the Sars CoV-2 virus. The value m should therefore
be set at 2. Remember that m is not the average time of onset of contagiousness nor the incubation period. It
is a minimum time from which the infected individual becomes contagious).

In addition, a viral load may remain in the nasopharynx for up to 17 days (very exceptionally up to 21 days)
after illness onset (see [33], [57]), suggesting a period of contagiousness of up to 17 days. We choose ` = 17.
The time from illness onset to hospital admission is usually 3 to 9 days (see [34], [56]). According to [57],
arrival in ICU occurs on average within 12 days of onset. It is estimated to be 14.5 days in [40]. Again,
taking into account the incubation period, we choose t = 19.

According to [34] et [40], the average time of death is 17 to 24 days after the illness onset. Adding the aver-
age length of the incubation period, we choose r = 25 (average time between time of infection and death).
The average time from infection to recovery is estimated at 22 days: s = 22 (voir [57], [49]). Finally, the
average length of stay in ICU (in France) will be chosen equal to 17 days (see [44]): p = 17.

Model transmission coefficients

In order to complete this set of parameters, the transmission coefficients λ0, · · · , λ`−1 still need to be
fixed. We choose to set them by a least squares technique using mortality or in-hospital mortality data over
a certain calibration period. It should be noted that the calibration period in question is chosen according to
the country by meeting two criteria. The first criterion is that the mortality figures should be fairly significant
(i.e. not at the very beginning of the epidemic where the death figures are still not very representative). The
second criterion is that the interventions applied to contain the epidemic are not variable during a part of this
period. For the sake of simplicity, the mathematical explanation of this least-squares technique is given in
appendix A.

These coefficients have been estimated for several countries where the epidemic has advanced sufficiently
or even strongly. For each country, a calibration period was chosen that met both of the above criteria. The
resulting coefficients and calibration periods are detailed in Table 3 (in the appendix). The fact that these
coefficients are close to each other reinforces the idea that they are a characteristic of the epidemic. In ad-
dition, similar values of these coefficients are found worldwide. However, in the case of South Korea, the
coefficients are significantly different. It is concluded that the strategy used by South Korea has had a direct
impact on the distribution of transmission probabilities during the period of contagiousness.
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The infection fatality rate (IFR)

The difficulty in finding reliable estimates of the infection fatality rate (IFR) is a surprising fact about this
epidemic. In the urgency of the crisis, screenings are often restricted to individuals with severe symptoms.
This is a non-random sample of the population. However, a screening campaign based on the same principle
as surveys could lead to an estimate of this rate after a certain waiting period (as well as the infection rate at
a given time).

Today, the first estimates available in the literature are often based on data in China [49] or concerning pas-
sengers of the Diamond Princess cruise ship ([43]). In [43], it is estimated at 1.2% for Diamond Princess
passengers and 0.6% for China. In the case of France, a similar estimate can be found in [44]. Nevertheless,
these estimates are not the only ones, and it is not excluded that the rate is higher ([16], [53], [42]).

In the following, simulations will be based on the number of in-hospital deaths in France and for two values:
α = 0.6% and for α = 1.2%. It follows that α is the infection in-hospital fatality rate and is slightly lower
than the IFR.

The coefficient of proportionality γ

The coefficient γ links two important indicators through the identity (2.6): the number of deaths and the
number of occupied ICU beds. Since reliable figures are available for these indicators (if we restrict ourselves
to deaths in hospital), we would like to check first the validity of the proportionality identiy (2.6) which has
not been deduced from the observations. For this purpose, we choose hospital fatality data and the number
of people in ntensive care in France. These two figures are communicated on a daily basis by Santé Publique
France since March 17th 2020. In the Figure 1 we visualize the evolution of the ratio

γn =
A?n

Dn+r−t −Dn+r−(t+p)

from March 31 to April 13, 2020, according to in-hospital mortality data in France. The values of r and p
chosen at the beginning of this section (r = 25, p = 17) have been adopted here. It can be observed that this
ratio is almost constant, confirming the hypothesis of the model that led to this identity. In the following, we
will choose the value γ = 0.94.

.

Figure 1: The ratio γn calculated from March 31st to April 24th 2020. It can be observed that this ratio is
almost constant, confirming the assumed proportionality of the two quantities.
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4. Evolution of the daily reproduction number

The daily reproduction number Cn plays a prominent role in this model (Cn will act as a dynamic basic
reproduction number). By keeping Cn below 1, the epidemic decreases until it is extinguished. The rigorous
proof of a threshold theorem for this model, not really difficult, will be done in a future work (here we give
a numerical proof). As for the basic reproduction number, formula (A.6) indicates that this number Cn is
directly related to the average number of contacts of an infected person on day n, to the average transmissionx
probabilities and to the duration of contagiousness. Its estimation from epidemic data allows to quantify the
effectiveness of the interventions and to design realistic scenarios for the future.
For periods of time already passed, this parameter can be estimated by the formula (2.3) with a delay time of
r days

Cn−r =
dn

(1− Dn−1

αP
)

`−1∑
k=0

λkdn−m−k

(4.1)

The time r reflects the fact that any change in the interventions (or in the behavior of the population) on day
n will only have an impact on the number of deaths from day n+r. This delay in estimating this number can
be overcome if accurate data are available on the rate of infection. Atually, one can use the formula without
delay

Cn =
i?n

(1−
n−1∑
k=0

i?k)

`−1∑
k=0

λki
?
n−m−k

. (4.2)

The usefulness of this second formula and its advantages will be discussed in section 6. At the present stage,
the delayed formula (4.1) is used to estimate Cn in the past.

The evolution of Cn has been reproduced for several countries and for the whole world. For China (figure
??)„ the most intense period of the epidemic is chosen, i.e. from mid-January to early March 2020.

In the case of France, Italy and Spain, Cn is shown in Figure 3 until April 5th 2020 (data sources are given
at the end of the paper).

A closer look at the values obtained Cn for the total lockdown period in France, Italy or Spain shows that it is
generally between a minimum valueC− ≈ 0.6 and 1. The average for the strict lockdown period from March
17 to April 5, 2020 is 0.83 for France and Spain and 0.88 for Italy. It is not excluded that these averages
slightly decrease if the strict lockdown lasts longer, especially because the individuals in contact remain the
same. Indeed, if we observe this average for France over the period from April 1 to 7, 2020, it is declining
and has reached 0.66.

The curve shows the different dates of entry into lockdown for the three countries.

Changes in Cn for a few other countries were calculated from public data (some public data sources are listed
at the end of the paper). In figure 4 the evolution of this daily reproduction number is shown for Belgium,
Germany and South Korea. In Figure 5, this rate is evaluated for the United States and the United Kingdom.
The effectiveness of the public interventions in South Korea can be clearly seen, since the daily reproduction
number in this country is, in average, the lowest of all the countries illustrated here.

A first remark should be made at this stage: drastic restrictions of the strict lockdown lead to values of Cn
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Figure 2: Evolution of the daily reproduction number for China for the period from January 23rd to March
3rd 2020 during the Coronavirus Sars-CoV-2 pandemic. This number is calculated from mortality data.

Figure 3: Evolution of the daily reproduction number for France, Italy and Spain for the period from Febru-
ary 23rd to April 6th 2020 during the Coronavirus Sars-CoV-2 pandemic. This number is calculated from
mortality data.

barely lower than the threshold value 1. It can indeed be observed that outside a regime of drastic restric-
tions, values of Cn are clearly higher than 1, even in periods with strong but not drastic interventions. This
observation suggests that it will be difficult to control the epidemic in the long term without the application of
drastic interventions. Thus, according to these estimates, deconfinement, even moderate, will systematically
make the value of Cn greater tha 1. In the case of Covid-19, we are faced with a dilemma: to maintain a
strict lockdown with numerous socio-economic and systemic damages or to proceed to a deconfinement not
totally under control risking a rebound of the epidemic.
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Figure 4: Evolution of the daily reproduction number for Belgium, Germany and South Korea from February
28th to April 5th 2020 (Covid-19 pandemic).

Figure 5: Evolution of the daily reproduction number for the period from the end of February to the beginning
of April 2020 for the United States and the United Kingdom (Covid-19 pandemic).

5. Scenarios for the evolution of the epidemic

We are now able to use the calibrated model for studying some future scenarios of the epidemic. Although the
model is independent of the choice of country, we will focus on the French situation as an example of study.
In general, the results obtained for other countries lead to similar conclusions, and can be easily replicated.
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The study of these scenarios will be used in the design of a lockdown exit strategy.

Eleven scenarios, numbered from 0 to 10, are studied here. For all these scenarios, the focus will be on the
evolution of five markers: the number of deaths in hospital, the number of occupied ICU beds, the number of
active cases, the number of recovered cases and the number of infected individuals. Again, it should be noted
that the estimates of the first two markers provided by this model are little dependent on infection fatality
rates, except when the epidemic is large1.

Scenario 0 relates to the evolution of the epidemic in the case where strict lockdown had not been imposed
and the epidemic was allowed to run its course while strong but less drastic interventions were applied. This
scenario will give us an accurate idea of the severity of this crisis and what was avoided.

Scenario 1 consists of extending the strict lockdown beyond May 11th (the French government has set this
date to relax the lockdown).

The 2nd and the 3rd scenarios describe a moderate deconfinement installed abruptly by May 12, 2020, or
achieved gradually (over about a month).

Scenarios 4 and 5 involve a switch to a cyclic situation of alternating strict lockdown and deconfinement,
with periods of equal durations.

Scenarios 6, 7, 8, 9 and 10 involve alternating lockdown and deconfinement based on an organized schedule
(e.g., lockdown on some but not all days of the week).

5.1. Scenario 0: evolution of the epidemic without lockdown

Prior to imposing lockdown on the population, almost all the nations have tried to block the introduction of
the virus into the country, without any real success. They then tried to curb its circulation. If we look again at
the curves of the daily reproduction number, we can see that interventions in the pre-lockdown period have
contributed to a serious drop in this number, but rarely below 1. In France, in the ten days prior to entry into
strict confinement, Cn had an average of 1.4. That is way lower than the values prior to this period, but this
rate remains far enough away from the 1 threshold value.

In this scenario 0, we want to measure the impact of the strict lockdown, imagining that it had not been im-
posed, but keeping some strong interventions. It is therefore not the scenario where nothing is done (which
will be much more catastrophic) but the scenario where the interventions are not sufficient. We will impose
here a value of Cn equal to 1.3, and this will be effective from March 17, 2020, while keeping the actual data
before that date. Note that in France, Italy and Spain, and in many other countries, this value of 1.3 is lower
than the mean value measured the week before the lockdown (see Figure 3).

In Table 1, we indicate some figures from the simulations within the framework of this scenario. The evolu-
tion of the five markers chosen for these simulations is the subject of Figures 6 and 7.
The results confirm that strict lockdown has prevented a much more severe health situation than the one
currently experienced. Indeed, under the conditions of rather strong interventions of this scenario, and with
a fatality rate α = 0.6%, 100.000 deaths would have occurred in France in mid-June, and almost 170000 at
the end of August. The needed ICU beds would have exceeded 10000 places (per day) on April 14th 2020,
and 28000 places at the end of May 2020. The epidemic would have continued to grow until it peaked in
the last week of May 2020. On August 31st 2020, the number of infected people will reach, according to
this scenario, a little over 29 million (43.2% of the French population). It is noted that with a reproduction

1This fact may seem surprising, but the explanation is simple. Let us recall that in the model (2.3), the number of deaths is calculated
from the deaths already recorded. It is not necessary to go through the number of infected individuals (which is generally imprecise or
even unknown). On the other hand, estimating the number of infected cases will require setting a fatality rate per infection.
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Figure 6: Scenario 0 in France. Left: total number of deaths in hospital. Right: daily deaths in hospital.
Values up to March 17th 2020 are actual (public data).

Figure 7: Scenario 0 in France. Left: : number of occupied ICU beds (estimated by the model). Right: :
evolution of the number of active cases, the number of infected individuals and the number of recoveries
until early December 2020 (estimated by the model). We observe that the peak of the epidemic occurs at the
beginning or end of June 2020, depending on the value of the IFR. Values up to March 17th 2020 are actual
(public data).

rate of 1.3, the epidemic reached its peak after a delay of 2.5 to 3 months after March 17th. With a higher
reproduction rate, this period is obviously shortened.

An important conclusion which is necessary at this stage is not only to confirm the effectiveness of strict
lockdown, but to note that the coronavirus Sars-CoV-2 leaves an extremely narrow margin of maneuver to
control its circulation (let us recall indeed that this scenario 0 is that of the continuation since March 17th of
strong but not drastic interventions). This observation will be reinforced when scenarios with even stronger
interventions are analyzed.

It is nevertheless useful to indicate that according to this model, strict lockdown has saved France about 1233
in-hospital deaths as of April 15th 2020, and about 7496 hospital deaths as of April 27th 2020 (i.e. 12 days
later). We will see thereafter (scenario 1) that this reduction in the number of deaths due to lockdown will be
around 21720 cases on May 11th, and around 80928 cases on June 15th 2020. It has also avoided an overflow
of the hospital system that would have occurred as early as mid-April (see Table 1 and Figure 7).
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15/4/2020 11/5/2020 15/6/2020 31/7/2020 31/8/2020
Total deaths at hospital 11829 39119 101717 159663 171190
Daily deaths at hospital 689 1423 1868 636 195

α = 0.6% ICU 10986 22694. 29563 10287 3181
(IFR) Infected 6282628 13775511 23476048 28315221 29031306

(9.36%) (20.54%) (35.00%) (42.22%) (43.28%)
Recovered 2324174 7218145 17764407 26746052 28450238

Active cases 3946624 6518245 5609923 1409505 409877
Total deaths 11876 41637 133337 280397 325436
Daily deaths 702 1663 3432 2249 846

α = 1.2% ICU 11233 26737 54390 35984 13703
(IFR) Infected 3331208 8394252 18468035 26656200 28244898

(4.96%) (12.51%) (27.53%) (39.74%) (42.11%)
Recovered 1163428 3863872 11839933 23613638 26988761

Active cases 2155903 4488741 6494764 2762164 930701

Table 1: Scenario 0 (evolution of the epidemic in France without strict lockdown on March 17th 2020). Main
indicators on the date of relaxing lockdown (May 11th), June 15th, July 31st and August 31st 2020.

5.2. Scenario 1: Continuation of strict lockdown

Here we would like to study the consequences of the eventuality (now ruled out) of an extension of the strict
lockdown in France after May 11th 2020, with the same interventions. To do so, by set Cn = Cconf after this
date, with Cconf = 0.83 (which is, it should be remembered, close to the average value observed in France,
Spain and Italy during strict lockdown). .
We ran simulations with two values of α: α = 0.6% and α = 1.2%. We found that the predicted number
of hospital deaths and ICU needs are almost the same for both values, in accordance with the observations
made previously (if the epidemic is not significant in terms of the number of infected people, the IFR has
little influence on the model’s predictions of mortality and ICU needs).

In the Table 2, some numbers predicted by the model have been given. The Figures 8 to 9 summarize the
evolution of different indicators when strict lockdown is maintained.

In comparison with scenario 0, we observe that at May 11th 2020, the model predicts that lockdown will
save approximately 21720 lifes. The number of deaths per day will be about 165 (compared to 175 on March
17th 2020). About 2,668 places in ICU will remain occupied. However, it should not be concluded that
strict lockdown only postponed a situation by two months. It is indeed necessary to take into account delays
between infection and admission to resuscitation or death.

On the other hand, the model predicts a number of active cases on 11/5/2017 equal to 386,335 cases. To find
an equivalent number of active cases, the model indicates that it is necessary to go back to March 3rd 2020
i.e. two weeks before lockdown (see Figure 9). At 17/3/2020 (start of strict lockdown), the number of active
cases is estimated at 1,415,775 cases. In terms of the number of active cases, on 11/5/2020, when strict
lockdown is due to end, the situation in France will be similar to that of March 3rd 2020 (in almost two
months, strict lockdown has reduced the number of active cases by a dozen days).

If strict lockdown is extended beyond May 11th, the simulation predicts that the number of deaths per day
and the number of occupied ICU beds will drop significantly before the end of June (see Table 2). By the
end of July, the total number of hospital deaths will be approximately 22,240 if α = 0.6% and about 23,025
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11/5/2020 15/6/2020 31/7/2020 31/8/2020
Total deaths at hospital 17399 20791 22009 22224
Daily deaths at hospital 165 53 12 5

α = 0.6% ICU 2668 851 184 66
Infected 3362987 3611423 3699615 3715156

(5.01%) ( 5.38%) (5.51%) (5.53%)
Recovered 2959254 3468723 3651360 3683642

Active cases 386335 121910 26247 9290
Total deaths at hospital 17463 21184 22713 23027
Daily deaths at hospital 172 62 16 7

α = 1.2% ICU 2783 998 255 102
Infected 1706272 1854882 1915530 1927987

(2.54%) (2.76%) (2.85%) (2.87%)
Recovered 1477887 1758469 1873640 1897345

Active cases 210924 75230 19178 7615

Table 2: Scenario 1 (continuation of lockdown in France after May 11th 2020). Main indicators at the date
of relaxing lockdown (11/5/2020), June 15th, July 31st and August 31st 2020.

if α = 1.2%. It will only increase very slowly thereafter.

.

Figure 8: Scenario 1 in France. Left: total number of deaths in hospital. Right: daily deaths in hospital.
Values up to April 30th 2020 are actual (public data).

5.3. Scenarios 2 and 3: direct or progressive moderate deconfinement

The estimation of the daily reproduction number, discussed in section 4, revealed that a progressive decon-
finement leading to values of Cn lower than 1 will be difficult to achieve, unless new drastic interventions
replace strict lockdown.

Scenarios 2 and 3 look at a lifting of strict lockdown in two ways. The first way (scenario 2) is to move di-
rectly to a soft deconfinement by lifting the lockdown abruptly on May 12th 2020. By "soft deconfinement"
we mean a slightly relaxed lockdown or a partial lockdown (that is, a situation with strong interventions that
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Figure 9: Scenario 1 in France. Left: number of occupied ICU beds (estimated by the model). Right:
number of active cases, of the number of infected persons and of recovered persons until December 4th 2020
(estimated by the model). Values up to April 30th 2020 are real (public data).

are not totally drastic). The second way will be to reach the same deconfined regime in a "gradual" manner,
i.e. after a transition phase of one month (from May 12th to June 15th 2020). On arrival (i. e. in deconfine-
ment regime), a daily reproduction number slightly higher than 1 will be imposed.

In the results presented here, we choose Cn = 1.2 in deconfinement period (starting May 12th in scenario
2, and reached linearly on June 15th in scenario 3). This value is not very far from that obtained by lock-
down. In particular, it is significantly lower than the mean value observed in France the week before the strict
lockdown (it was around 1.40, when some interventions to curb the transmission of the virus were already
in place). In other words, these two scenarios 2 and 3 are almost minimalist (i.e. without exaggerating the
consequences of deconfinement). In both the scenarios, we set Cn = Cconf = 0.83 between May 1st and
May 11th (the deconfinement date). The data before April 30th are actual.

We impose an infection in-hospital fatality rate α = 0.6%.

The results of the simulations are described in Figures 10, 11 and 12. In both cases, the epidemic is again
on the rise, with a time lag of one and a half months between the two scenarios, and a slight reduction in the
magnitude of the epidemic in the event of a gradual deconfinement. In both scenarios, the peak of the epi-
demic will be in the period from mid-October 2020 to the end of November 2020, i.e. next fall, i.e. between
four and a half and five and a half months after the start of deconfinement.

In addition, according to the model, the number of ICU beds required will exceed 5,000 by the end of August
2020 for Scenario 2, and by mid-October for Scenario 3. As of August 31st, 2020, the infection rate of the
population will be about 12.15% for scenario 2, and 8.67% for scenario 3. These two rates will reach 27.35%
and 25.22% by March 1st 2021. In both scenarios, the total number of deaths exceeds 95,000 by the end of
February 2021.

In conclusion, a scenario of measured deconfinement, whether sudden or gradual, will not be effective in the
mid- or long-term even with strong interventions (i.e. slightly less stringent than those of strict lockdown).
Such deconfinement will only push the peak of the epidemic into the last quarter of the year.
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Figure 10: Deconfinement Scenarios 2 and 3 (France). Left: : total number of deaths in hospital. Right: :
daily deaths in hospital. Scenario 1 of continuation of strict lockdown is shown for comparison. All Values
up to April 30th 2020 are actual (public data).

Figure 11: Deconfinement Scenarios 2 and 3 (France). Left: : number of occupied ICU beds (estimated by
the model). Right: : number of active cases until March 4th 2021 (estimated by the model). Scenario 1 of
continuation of lockdown is shown for comparison. All Values up to April 30th 2020 are actual (public data).

5.4. Scenarios 4 and 5: periodic (or cyclic) deconfinement

We are now studying original scenarios consisting of alternating two phases: a phase 1 of strict lockdown
with drastic restrictions, and a phase 2 of moderate deconfinement with slightly less drastic restrictions. It
will be assumed that the two phases have the same time duration T/2 (alternating with unequal durations
will be discussed in the following scenarios). We impose a daily reproduction number Cn = Cconf in the
phase of strict lockdown with Cconf = 0.83. In the soft deconfinement phase, a value Cdeconf is imposed, with
Cdeconf = 1.1 (4th scenario) or Cdeconf = 1.35 (5th scenario). Qualitatively a value of Cdeconf close to 1 means
that the deconfinement practiced in phase 2 is accompanied by strong interventions to curb the circulation
of the virus. A periodicity of T = 2 days is adopted (i.e. strict lockdown every other day). Note that this
periodicity does not have much influence on the obtained results (we obtain practically the same results with
alternating every other week). We chose to run simulations with a fatality rate α = 0.6%. The simulations
with other values of α give qualitatively similar results, but with numbers that may differ.

We are mainly interested in the influence of the daily reproduction number practiced on the days of decon-
finement Cdeconf.
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Figure 12: Deconfinement Scenarios 2 and 3 (France). Total number of infected individuals until early March
2021.

In figures 13 and 14, the evolution of the main indicators of the evolution of the epidemic was visualized
with a periodicity of one day. The curve of active cases 14 shows that scenario 4 leads to the extinction of
the epidemic, a little slower than strict lockdown. The cumulative number of in-hospital deaths will reach
about 25074 on August 31st, and 27900 in early March 2021 (compared to 24600 with continuation of the
strict lockdown). By the latter date, the percentage of the population having been infected will be 6.96%. It
is therefore not a scenario of herd immunity.

As for scenario 5, the epidemic is curbed but not stabilized. The epidemic rises slowly and then falls back,
over several months. The peak is reached about 4 months after the start of deconfinement. The number of
in-hospital deaths will fluctuate between 70 and 160 until February 2021. Similarly, between 1500 and 2300
ICU beds will remain occupied until February 2021. In the long term, the cumulative number of in-hospital
deaths will reach around 29800 by the end of August and continue to rise to 50200 by the beginning of March
2021. By the latter date, 12.92% of the French population will have been infected. This scenario is not that
of a herd immunity.

Naturally, if we choose a value of Cdeconf greater than that adopted in this scenario 5 (where Cdeconf = 1.35),
the epidemic will become even more widespread. Unsurprisingly, an alternation of strict lockdown - total
deconfinement is to be excluded.

We conjecture at this point that the extinction condition of the epidemic in this scenario is written as follows

Cmean < 1, (5.1)

where Cmean is a mean value of Cconf and Cdeconf. The search for the exact expression of this mean value
is a mathematical question that we do not address in this work. However, we can make the approximation
that Cmean is close to the arithmetic mean of Cconf and Cdeconf (the durations of the two phases being equal).
This results in the following approximate criterion for a periodic-type scenario to stabilize or mitigate the
epidemic without amplifying it:

Cconf + Cdeconf

2
6 1,

or
Cdeconf 6 2− Cconf. (5.2)

We saw in paragraph 4 that in several countries (including France) the lockdown leads to valuesCn in general
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Figure 13: Scenarios 4 and 5 of periodic deconfinement (France). Left: : total number of deaths in hospital.
Right: : daily deaths in hospital. Scenario 1 of continuation of strict lockdown is shown for comparison. All
Values up to April 30th 2020 are actual (public data).

Figure 14: Scenarios 4 and 5 of periodic deconfinement (France). Left: : number of occupied ICU beds
(estimated by the model). Right: : number of active cases until March 4th 2021 (estimated by the model).
Scenario 1 of continuation of lockdown is shown for comparison. All Values up to April 30th 2020 are actual
(public data).

around 0.80. If we use this value as a reference we deduce the following constraint on Cdeconf:

Cdeconf 6 C+ ≈ 1.2 (5.3)

This approximate criterion is used here, although it is not exact. It defines the level of periodic deconfinement
compatible with the control or extinction of the epidemic. We will come back to this point during the so-
called zigzag strategy.
5.5. Scenarios 6 to 10: scheduled deconfinement

In this last series of simulations, we imagine epidemic control scenarios based on a precise schedule of
strict lockdown on certain days of the week (or of the month) and soft deconfinement on the other days.
We will call it a scenario of weekly organized deconfinement. One can also adopt a monthly organized
deconfinement, choosing certain days of the month for strict lockdown.

More generally, such a scenario can be imagined by organizing a duration W (W = 7 when it is a weekly
scenario), which will then be repeated identically.
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Figure 15: Scenarios 4 and 5 of periodic deconfinement (France). Total number of infected individuals until
early March 2021.

Let k, 0 6 k 6 W , the number of days of deconfinement over that period. Note again Cdeconf the daily
reproduction rate during these deconfinement days. The remaining W − k days are days of lockdown.
One of the questions that occurs naturally is how many days per week at most can be relaxed (i. e. softly
deconfined) without a resumption of the epidemic?

For simulations, we choose W = 7 (week). We impose on the days of strict lockdown Cn = Cconf = 0.83
(average value observed during strict lockdown in France). The days of deconfinement (or relaxed lockdown)
we impose a rate Cdeconf = 1.35 > 1. The same value of α =0.6% is maintained in these simulations
(simulations carried out with other values give qualitatively similar results). The scenarios studied correspond
to k = 5 deconfinement days per week and W − k = 2 lockdown days (scenario 6), k = 4 (scenario 7),
k = 3 (scenario 8), k = 2 (scenario 9) and k = 1 (scenario 10). The evolution of the different indicators

.

Figure 16: Scenarios 6 to 10: weekly organized deconfinement (France). Left: : total (cumulative) number
of deaths in hospital. Right: : dialy deaths in hospital. Scenario 1 of continuation of lockdown is shown for
comparison. All Values up to April 30th 2020 are actual (public data).

is illustrated in the figs 16, 17 and 18. It can be observed that for 1, 2 or 3 days of deconfinement per week
(scenarios 8, 9 and 10 respectively), the epidemic continues to die down at various speeds. On the other
hand, when deconfinement occurs 4 or more days per week, the epidemic starts to rise again with a peak
reached on mid-October 2020. On March 5th 2021, with 5 days of deconfinement, the model predicts that at
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Figure 17: Scenarios 6 to 10: weekly organized deconfinement (France). Left: : number of occupied ICU
beds (estimated by the model). Right: : number of active cases until March 4th 2021 (estimated by the
model). Scenario 1 of continuation of lockdown is shown for comparison. All Values up to April 30th 2020
are actual (public data).

.

Figure 18: Scenarios 6 to 10: weekly organized deconfinement (France). Total number of infected individuals
until early March 2021.

least 27.3% of the French population will be infected, compared to 16.75% for 4 days, 9.43% for 3 days of
deconfinement, 6.74% for 2 days and 5.90% for one day. So these are not gregarious immunity scenarios.

Based on these simulations, it remains to be determined how many days of strict lockdown within a week
are necessary to control the outbreak (we want to define a simple rule). Of course, this number depends
on the quality of the deconfinement, i.e. the level of restrictions applied on deconfinement days. As in the
previous section, it is assumed that it boils down to a condition of form (5.1) with Cmean an average daily rate
expressed as a function of Cconf and Cdeconf. Here we will approximate it by th arithmetic mean of Cconf and
Cdeconf weighted by number of days in every regime. We get the approximate condition

(W − k)Cconf + kCdeconf

W
6 1,

that is,

0 6 k 6 k+ with k+ = W
1− Cconf

Cdeconf − Cconf
. (5.4)

It can be observed that this upper limit k+ of the number of deconfined days is naturally decreasing with
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respect to Cconf and Cdeconf respectively. A deconfinement at least one day per week is possible if

W
1− Cconf

Cdeconf − Cconf
> 1.

This conditions means that

Cdeconf 6 C? where C? =W − (W − 1)Cconf. (5.5)

In the case of a weekly organized deconfinement and with choice Cdeconf = 0.83, the constraint (5.4) is
written

k 6
1.19

Cdeconf − 0.83
, (5.6)

where Cdeconf indicates the level of interventions during deconfinement. In this case C? = 7−6Cconf ≈ 2.02.
Note that this limit is independent of the fatality rate by infection.
Thus, in conclusion, an organized weekly deconfinement makes it possible to stabilize the epidemic under
two conditions

(i) a deconfinement level not exceeding the C? bar,

(ii) a number of deconfinement days per week checking the constraint (5.6).

As an example, if we want a deconfinement level comparable to that of the week preceding the decision of
lockdown in France, the constraint (5.6) gives k 6 2.08, where we used the value Cdeconf = 1.40 (mean value
observed the week preceding the decision of strict lockdown in France. See paragraph 4). In other words, a
deconfinement of 3 days (or more than) per week with interventions comparable to those applied the
week before the lockdown in France does not guarantee an extinction or stabilization of the epidemic.

6. A zigzag strategy to control the epidemic

6.1. Schemes and principles of the strategy

We propose here a non-pharmaceutical strategy to get out of the strict lockdown, while stabilizing or gradu-
ally reducing the outbreak. To explain this strategy, we need to classify the regime of restrictions into four
lanes2 defined as follows and represented in the Figure 19 below. Let us add that this classification and the
resulting strategy are by no means a view of the mind. They stem directly from the detailed study in parts
4 and 5 (see, for example, Figure 20 where the daily reproduction number for France, Spain and Italy, is
reproduced with the limits of the four lanes).

• The first lane is the drastic lane. This is the situation that results from a regime of drastic restrictions
(at least equivalent to strict lockdown). Mathematically, this means that Cn 6 1. In practice, strict
lockdown in France, Italy and Spain indicate that this number is generally between C− = 0.6 and 1
with an average of approximately 0.83. This is therefore a narrow lane.

• The second lane is the semidrastic lane. It is characterized by a slight relaxation of the drastic inter-
ventions or by a set of strong interventions not reaching in balance those of a drastic regime. Mathe-
matically, it is characterized here by a daily reproduction number Cn satisfying 1 < Cn 6 C+ ≈ 1.2.
It is also a very narrow lane. We will see that this lane will play an important role in the deconfinement
strategy we are proposing.

• The third lane is the intermediate lane (or cautionary lane). It is characterized by a situation in
which the population is alerted of the presence of the virus and adopts precautionary measures and
behaviors that are objectively insufficient to limit its circulation. At this stage, public interventions
aim to curb the epidemic, without necessarily being restrictive (restaurants, coffee shops, schools,
public establishments and public transport are still open). Mathematically, it is characterized by a
daily reproduction number satisfying C+ 6 Cn 6 C?, with C? ≈ 2.

2This terminology seemed to us to be adequate because it helps explain this strategy using the analogy of a four-lane highway
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• The fourth lane is the relaxed lane (or carefree lane). It is characterized by the total or almost total
absence of restrictions. It corresponds to the situation of ordinary and unrestricted lifestyle, either
because the virus is not present in the population, or because it is still in the introduction stage and that
the population is reckless. Mathematically, this lane is characterized by the condition Cn > C?.

.

Figure 19. Simplified four-lanes diagram showing the levels of interventions to curb the epidemic.

Figure 20: Superposition of the limits of the four lanes with the evolution of the daily reproduction number
for France, Italy and Spain (for the period from February 23rd to April 2nd 2020 during the Coronavirus
Sars-Cov-2 pandemic)

Let us make some observations:

• Switching from one lane to another is done by adding or relaxing interventions. In view of the data,
we conjecture here that these interventions are of the order of those indicated on the diagram 19,
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• only the drastic lane leads to an extinction of the epidemic. The other three lanes are conducive to its
spread, but at different rates. Thus, any strategy of deconfinement that excludes the drastic lane will
lead to a rebound in the epidemic in the short to medium term,

• the relaxed lane is a lane to be excluded in any deconfinement strategy (in the absence of drug solu-
tions). Indeed, it is a way without interventions and is very conducive to contagion. It should not be
used in the presence of the virus (even for one day per week).

These observations explain the dilemma faced by almost every country in the world: in the absence of
pharmaceutical solutions, the narrow and very expensive lane of drastic interventions must be taken.

As it stands, the reasonable time frame for quantifying the impact of any measure on deaths is approximately
25 days to 1 month. It is also a delay that allows to measure retroactively the daily reproduction number and
and to determine which lane has been taken. However, a practice of mass screening can considerably shorten
this time frame and lead to a real-time conduct of the interventions. We will come back to this point later.

In light of the analysis of different exit scenarios studied in section 5, a gradual zigzag strategy for exiting
lockdown while controlling the epidemic is proposed here. This strategy is based on a weekly organized
deconfinement that can be adjusted over time (as a reminder, weekly organized deconfinement consists of
imposing strict lockdown on certain days of the week, and moderate deconfinement on the other days).

This strategy, called zigzag strategy, has several phases

• The first phase consists of a weekly organized deconfinement with a maximum of 2 deconfinement
days per week. Deconfinement on these two days must be accompanied by strong interventions limit-
ing the circulation of the virus (the effect of which will be measured in the next step). If we take the
classification below, this amounts to changing the lane two days a week, as illustrated in the diagram 21
and returning to the drastic lane on the other days (hence the name zigzag strategy). Such deconfine-
ment can tolerate the use of part of the intermediate lane when the number of days of deconfinement
is equal or less than 3 days. This lane becomes prohibited when the number of days of deconfinement
is greater than 3.

.

Figure 21: Simplified diagram of a zigzag strategy by a weekly organized deconfinement. Here we have
chosen Monday and Thursday as days of deconfinement. The other days of the week are lockdown days.
Schematically, deconfinement amounts to a change of lane, which can go up to the intermediate lane (be-
cause only two days per week are deconfined). The relaxed lane is excluded (or forbidden). When the number
of days of deconfinement increases, the intermediate lane may become excluded as well.

• The transition from one phase to the next is made after measuring the impact of deconfinement by
estimating the daily reproduction number from the main indicators using the formula (4.1), or possibly
the formula (4.2). From this, we deduce Cdeconf during the days of deconfinement. The number of
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deconfinement days is then decided in the next phase according to the simplified rule (see paragraph
5):

Number of days of deconfinement per week 6W
1− Cconf

Cdeconf − Cconf
.

The number of deconfinement days may increase, remain the same, or decrease. It decreases if it is
found that deconfinement has has not been sufficiently moderate.

This strategy remains flexible. For example, we can adopt a deconfinement at scheduled months, with exactly
the same phases, but by replacing the above rule by the rule (5.4) with D = 30.

Similarly, if Cdeconf is below 1.2, we can also adopt a periodic deconfinement: we alternate periods of strict
lockdown and deconfinement with equal durations (see diagram 22). Periodic deconfinement has been dis-
cussed in paragraph 5. It is illustrated in the diagram in figure 22.

Periodic deconfinement uses only two lanes: the drastic lane and the semi-drastic lane. It has the ad-
vantage of allowing a free choice of the length of the period, as it does not have much influence on the results
obtained. One can thus opt for every other confined day, or every other confined week, etc. Nevertheless, the
period should remain small compared to the time needed to reach the peak of the epidemic if deconfinement
is maintained (which is in the order of 4 to 5 months). Qualitatively, a periodic deconfinement is equivalent to
a weekly organized deconfinement with 3 and a half days of strict lockdown per week. Therefore, its success
as a first phase of deconfinement cannot be guaranteed. Nor is it intended to be definitive (the goal being to
deconfine completely). It is therefore a solution that can be adopted in the intermediate stages of the above
zigzag strategy.

.

Figure 22: Simplified diagram of a zigzag strategy by periodic deconfinement. Strict lockdown and moderate
deconfinement alternate over equal periods of time. Schematically, deconfinement amounts to a change of
lane. The intermediate lane and the relaxed lane are prohibited in this strategy.

It should be noted that this zigzag strategy does not lead to herd immunity (on the horizon, the infection
rate remains relatively low). It is therefore not an attenuation strategy like the one studied in [21]. Nor
is it based on controlling the epidemic by using thresholds in the number of ICU occupied beds to trigger
measures, as is the case with the suppression strategies proposed in the same paper [21]. Indeed, this zigzag
strategy is based on an alternation between semi-drastic attenuation measures and suppression measures.
It aims to control the total number of deaths in the long term (which automatically induces a control of
the number of ICI occupied beds, according to (2.6)). Moreover, the fact that it is not very dependent on
triggers makes it easier to program it in the medium or long term, while still being able to adjust it (by
increasing or decreasing the number of deconfined days). Finally, the zigzag strategy can be used on a local,
regional or national scale (with possible variations from one region to another). However, a local use, with
a zigzag strategy by location or by region, seems to us to be the most effective, since it allows for regional
heterogeneities to be taken into account.
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6.2. Usefulness of the generalization of screening tests

One of the greatest challenges in the fight against the Sars-CoV-2 Coronavirus pandemic is the estimation
of the number of infected cases. The vast majority of these cases develop mild symptoms or are asymp-
tomatic, requiring no hospitalization.

Today, the possibility of mass screening is becoming possible in many countries. In general, tests aim to
detect the virus (virological tests) or to detect the presence of antibodies (serological tests). Many questions
are raised regarding the use of these tests: privacy issues (in the case of mass tracking), respect for equality
between individuals (if only immunized persons are allowed to go to work by issuing a so-called immuno-
logical passport), duration of immunity, etc. Moreover, the reliability and accuracy of these tests is itself
subject to serious controversy.

Within the framework of the model proposed here and the zigzag strategy screening tests could have a deci-
sive impact on how to manage the pandemics. Indeed, the adjustment of the zigzag strategy at the end of each
of the above phases is based on the estimate of the daily reproduction number, which is considered here as
the thermometer of the general situation. However, the estimation of this rate must be based on statistically
reliable data. The use of fatality figures needs a period of 25 days, due to the delay between interventions and
their effects on mortality. This could be slightly shortened by using ICU or hospitalization figures according
to the same model.

However, screening tests performed daily on a fairly representative sample in the manner of a survey can
be used to infer the percentage of infected individuals in the population. In this case, it becomes possi-
ble to switch to a formula for calculating the daily reproduction number based on the infection rate of the
population, and not on the number of deaths. Recall that according to (4.2), this formula is written as follows

Cn =
i?n

(1−
n−1∑
k=0

i?k)

`−1∑
k=0

λki
?
n−m−k

.

Unlike (4.1), this formula does not include the r delay time.
Such a breakthrough would put the finishing touches to the strategy to make it a real-time decision-making
tool. By measuring the daily reproduction number on a daily basis, we can determine exactly what lane we
are on, and therefore adjust the driving of the epidemic, without waiting for hospitalization or death figures.

7. Conclusions

The deterministic model introduced in this study is used to predict the dynamics Covid-19 epidemic and its
impact on deaths and ICU occupancy. By relying heavily on public data, the model reveals several charac-
teristics of the epidemic and inspires a plan to contain or stabilize it without resorting to herd immunity
or strict long-term lockdown.

In the light of this model, it has been shown that moderate deconfinement with strong but non drastic
interventions, whether gradual or sudden, can lead to a rapid resumption of the epidemic, with satu-
ration of intensive care units in the fall and a peak of the epidemic in winter.

It has also been shown through this model that scenarios alternating strict lockdown and moderate deconfine-
ment can allow the epidemic to be brought under control without resorting to group immunity. The weekly
organized deconfinement scenario with some days of strict lockdown and other days of moderate deconfine-
ment allows to curb the epidemic. Similarly, alternating strict lockdown - deconfinement in equal periods of
time allows the epidemic to be controlled, provided that deconfinement contains some strong interventions.
In the latter scenario, the choice of the length of the alternating period remains free and does not affect this
finding. Let us add that in both scenarios, the number of infected individuals remains far from that of herd
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immunity and does not exceed 10% of the population.

Another finding of this study is that drastic interventions (like strict lockdown) are barely sufficient to con-
trol the epidemic. There is very little room for manoeuvre to alleviate these drastic interventions while
controlling the epidemic.

In other words, any lockdown exit strategy must include not only strong interventions but also a calcu-
lated dose of drastic interventions (here, drastic interventions are defined as a set of interventions whose
effectiveness when they are in effect is equal to or greater than that of strict lockdown).

Finally, the model and the simulations carried out made it possible to classify interventions into four lanes,
one of which, the first, is necessary in any non-pharmaceutical deconfinement strategy (the drastic lane).
The fourth lane is, on the contrary, to be excluded in any approach to controlling the epidemic. These lanes
are schematized in Figure 19.

The result of all these elements is the gradual zigzag strategy that can control the epidemic by deconfine-
ment, without exceeding 10% of infection in the population. This strategy consists in alternating days of
strict lockdown and days of deconfinement according to a precise schedule calculated in advance and
dynamically readjustable. This alternation can be organised by week, month or by any other period other
period. In its intermediate stage, it can be periodic, with every other day of lockdown, or every other week,
etc.

Schematically, this strategy consists in zigzagging between the different lanes mentioned above (see dia-
grams 21 and 22). It can be applied at local, regional, or national scales, without being invasive (as it does
not require the use of personal data). This strategy is easily adaptable in the case of France, where the number
of ICU occupied beds is an important factor in decision-making. Nevertheless, since the epidemic in France
shows strong regional disparities, it could rather be applied at the local level.

It should be noted that regular surveys to measure the infection rate could greatly enhance this strategy by
giving it real-time flexibility. It should also be noted that the model introduced here is based on average
quantities and makes no distinction between infected persons who are detected and those who are not (only
mortality plays an important role). This distinction is beyond the scope of this paper. Similarly, age is a
risk factor influencing hospitalization and death figures and, consequently, the behaviour of individuals. Age
structuring of the model and integration of confirmed and unreported cases will be the subject of a future
work.

Finally, it should be pointed out that in the case of France, this model reveals that when the strict lockdown is
lifted, scheduled for May 11th 2020, the situation will be comparable in terms of the number of active cases
to that of March 3rd 2020. By this date, according to scenario 0, strict lockdown will have saved France
around 21,700 deaths. The continuation of strict lockdown will lead to a significant drop in the number of
deaths and the number of beds occupied in intensive care before the end of June. At the end of the summer, if
strict lockdown is maintained, the number of deaths in hospital will be between 22240 and 23025 (depending
on the IFR value). The study also revealed that if average interventions had been applied instead of strict
lockdown (after March 17th 2020), the number of ICU beds required would have been around 30,000 at the
beginning of June. By mid-June, the number of deaths in hospital in this case would be around 100,000.

A. Appendices

A.1. Formal justification of the model

The purpose of this annex is to set out the main ideas that led to the above model. It can be based on two
very simple observations. The first is that at the time of a Covid 19 type crisis, most epidemiological data
are communicated on a daily basis. The second observation is that, in general, particular attention is paid
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to the mortality figures caused by the epidemic. This is a universal marker in all countries of the world,
often measured accurately (unlike the number of infected people, which is more difficult to quantify). It is
therefore natural to consider a discrete model with the unit of time as the day, and which takes into account
the evolution of mortality (and not only the number of infected persons).

We use notations introduced in section 2.

Suppose an infected individual becomes contagious a few days after becoming infected and remains conta-
gious for ` successive days. Thus, an individual infected on day Jk becomes contagious from day Jk+m and
will remain so, at most, until day Jk+m+`−1. It will cease to be contagious from day Jk+m+`. If we now
assume that this infected individual is in contact with N susceptible (or healthy) individuals during these
days of contagiousness, we can assume that he will infect p0N persons on the first day, p1N on the second
to p`−1N on the last day, where p0, · · · , p`−1 are probabilities of transmission of the disease.

In the absence of isolation measures, these pi parameters depend on the evolution of the viral load during
the period of contagiousness; they are not necessarily equal. We will not fix these coefficients in advance. It
is preferable to estimate them from actual data. Note, however, that they can be subject to additional con-
straints. We will come back to the profile of the parameters during their calculation, in paragraph A.
Note θn−1 the proportion of susceptible (uninfected) individuals at the end of the (n− 1)-day:

θn−1 =
Sn−1

P −Dn−1
, (A.1)

where P −Dn−1 is the population size after the (n− 1)-day. Using the identity

Sn−1 + In−1 = P,

we can write
θn−1 =

P − In−1

P −Dn−1
≈ P − In−1

P
, (A.2)

where we used the fact that Dn−1 remains small with respect to P .
Now, let us note the average number of people (susceptible or not) with whom an infected individual has
contaminating contact during the successive days of his or her contagiousness. If we place ourselves at
one day Jn, n > 1, of this period, only the θnχ part is susceptible, and therefore can be infected by this
individual.

We will now count the number in of individuals infected on day n. On that day, the contagious individual
are those who are infected on days k where k satisfies

k +m 6 n < k +m+ `,

that is n− (m+ `) < k 6 n−m. Thus,

in =

n−m∑
k=n+1−(`+m)

pn−m−kθn−1χnik,

where χn is the average number of individuals encountered by an infected individual on the nth day. We can
write

in = χn
P − In−1

P

n−m∑
k=n+1−(`+m)

pn−m−kik for n > m.

Thus

in = χn
P − In−1

P
.

`−1∑
k=0

pkin−m−k for n > m. (A.3)



A discrete epidemic model and a zigzag strategy for Covid-19 Tahar Z. Boulmezaoud

We set

p̄ =
1
`

`−1∑
k=0

pk, λk =
pk∑`−1
k=0 pk

for 0 6 k 6 `− 1. (A.4)

Hence,
n−1∑
k=0

λk = 1. (A.5)

We call the daily reproduction number on the n-th day the nonnegative parameter

Cn = χn(

`−1∑
k=0

pk) = χn`p̄. (A.6)

This parameter Cn is proportional to the average number of people who had contagious contact with an
infected individual on the nth day, the duration of the contagiousness period and the average probability of
transmission (this is similar to the law governing the basic reproduction rate R0). This coefficient Cn is a
marker of the interventions in effect.
If we now go back to the model of the evolution of the size of the infected population in we can rewrite the
equation (A.3) as follows:

in = Cn(1−
In−1

P
)

`−1∑
k=0

λkin−m−k for n > m+ r, (A.7)

We now look at the evolution of the number of deaths. Here, we will assume that this number responds to
a fundamental hypothesis for the following: the number of deaths caused by the epidemic before the nth
day Jn is (uniformly) proportional to the number of individuals infected before (n− r)day, where r is is the
average life span of an individual who died between the time of infection and death. This assumption will
be considered true regardless of how this death figure is established (this number may represent in-hospital
deaths). From a mathematical point of view, it means that there is a real α > 0 factor such that

Dn = αIn−r for all n > 0, (A.8)

or, equivalently,
in = α−1dn+r, for all n > 0. (A.9)

Combining with (A.10) we deduce the following model

dn = Cn−r(1−
Dn−1

αP
)

`−1∑
k=0

λkdn−m−k for n > m+ r. (A.10)

This model aims to describe the evolution of mortality due to the spread of a Covid-19 type epidemic,
provided that the coefficients λ0, · · · , λk are available. In the relation (A.4), we see that these coefficients
are related to the parameters (or probabilities) of contagiousness p0, · · · , pk that we could suppose to depend
on the viral load of the individual during his period of contagiousness, LA POLI DE MAS JE SUIS ICI.
We do not have a priori a measure of these data. Nevertheless, we choose here not to make any hypothesis
to impose values of them, but to use an inverse least squares method to calibrate them with fatality data. The
objective is obviously to make this model as close as possible to reality.

When the size of the population is large, it can be considered that in the early stages of the epidemic, the
number of infected individuals remains small with respect to the size of the population and one can write

In � P,

or, equivalently,
Dn � αP.



A discrete epidemic model and a zigzag strategy for Covid-19 Tahar Z. Boulmezaoud

One can thus approach at the beginning of the epidemic the model above by the simplified linearized mode dn ≈ Cn−r

`−1∑
k=0

λkdn−m−k for n > m+ r,

dn = 0 for n < r.

(A.11)

This linear model can be used in the early stages of the epidemic, when the number of infected individuals is
still small relative to the size of the population.
Let us now estime the number recoveries. Note s the average recovery time. It can be estimated at 22 days
(see, e. g., [57], [49]). Thus the number of individuals healed after the nth day is

Rn = In−s −Dn−s+r = (
1
α
− 1)Dn+r−s.

We are now looking at the number of people in intensive care units. The number of people admitted on
n-day is an = An − An−1. If we consider that on average an individual having developed a severe form
of Covid-19 stays p days in ICU, we can deduce that at the end of n-day, the number of individuals in ICU
varied from an − an−p. Thus, at the end of the n-day the number of individuals in ICU is

A?n = A?n−1 + (an − an−p).

Thus,

A?n =

n∑
k=0

(an − an−p) = An −An−p.

Finally get the relation

A?n =
β

α
(Dn+r−t −Dn+r−(t+p))

A.2. Identification of transmission coefficients by a least squares method

Here we explain the least-squares technique used to identify the transmission coefficients (λ0, · · · , λ`−1).
So let us assume that we have the fatality figures within a time window ofK+(`+m)+1 days {JL+2−(`+m), · · · , JL+K},
where K > 1 is fixed.
In practice, this window is chosen so that the mortality figures are significant, i.e. not in the days when the
epidemic begins to claim the first victims. Furthermore, it will be assumed that over the sub-window of time
{JL+1, · · · , JL+K} the interventions to contain the epidemic have varied little, i.e. the daily reproduction
number remains essentially constant over this small period equal to an unknown C value. In the Table 3
below in the appendix, the selected window was indicated for some countries. The coefficients λ0, · · · , λ`−1
are estimated so that the values predicted by the model (d?j )L+2−(`+m)6j6L+K−m are as close as possible
to the figures actually observed (d?j )L+16j6L+K . Specifically, we willl look for C, λ0, · · · , λ`−1 in the form
C = µ̄ and (λ0, · · · , λ`−1) = (µ0

µ̄ ,
µ2
µ̄ , · · · ,

µ`−1
µ̄ ) with µ̄ = 1

`

∑`−1
k=0 µk and µ0, · · · , µ`−1 solutions to the

constrained least squares minimizatio problem

min
µ0,··· ,µk

L+K∑
n=L+1

(d?n −
`−1∑
k=0

µkd
?
n−m−k)

2, µ0 > 0, · · · , µ`−1 > 0, (A.12)

This problem can be written into the form

min
U

1
2
U tAtAU −ATBTU, under the constraint U > 0, (A.13)

whereU = (µ0, · · · , µ`−1)
T contains all the unknow coefficients,A ∈ RK×` is the rectangular matrix whose

coefficients are
(A)i,j = d?L+1+i−m−j for 1 6 i 6 K, 1 6 j 6 `.
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and B = (d?L+1, · · · , d?L+K)T . This is a quadratic programming problem whose matrix is AtA which is
positive semidefinite, but not generally positive definite. It will be replaced by the slightly perturbed problem

min
U∈R`

1
2
U tQεU −ATBTU, under the constraint U > 0, (A.14)

where
Qε = AtA+ εI`, (A.15)

where ε > 0 is a sufficiently small parameter and I` is the identity matrix of size ` × ` (we will choose
ε = 0.001 in practice). The matrix Qε is clearly defined positive and the problem (A.14) admits a unique
solutionUε = (µε0, · · · , µεk). Other constraints to this quadratic programming problem may be added, such as
if we want to take into account the evolution of an infected person’s contagiousness. Indeed, contagiousness
generally depends on the evolution of the viral load over the period of transmission. For example, it increases
up to a maximum value and then decreases until the end of the contagiousness period. We choose to translate
this into a constraint of the convexity type:

µi >
µi−1 + µi+1

2
, for 1 6 i 6 `− 2,

which we can rewrite as follows

µi−1 − 2µi + µi+1 6 0, for 1 6 i 6 `− 2. (A.16)

In addition, in order to avoid profiles with increasing coefficients, it is possible, for example, to indicate that
the person is, on average, more contagious over the entire period than at the end, that is,

µ`−1 6
1
`

`−1∑
k=0

µk =
1
`
. (A.17)

Simple software was used to solve this optimization problem. Since the number of unknowns is very low
in practice (` = 17), the cost of the calculation is negligible. The values obtained for some countries are
summarized in Table 3.

A.3. Appendix 3: Coefficients of transmission by country (calibrated). Pandemic Covid-19.
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FR IT ESP USA UK GER KOR BEL CHINA WORLD
Period of 23/3/2020 27/3/2020 18/3/2020 17/3/2020 23/3/2020 8/4/2020 19/3/2020 22/3/2020 15/2/2020 31/3/2020

calibration - 2/4/2020 - 6/4/2020 - 28/3/2020 - 27/3/2020 - 2/4/2020 - 17/4/2020 - 29/3/2020 - 31/3/2020 15/2/2020 - 9/4/2020
λ0 0.1176 0.1176 0.1176 0.1176 0 0.1176 0 0.1176 0.1176 0.1176
λ1 0.1103 0.1103 0.1103 0.1103 0.0617 0.1103 0.0173 0.1103 0.1103 0.1103
λ2 0.1029 0.1029 0.1029 0.1029 0.1233 0.1029 0.0346 0.1029 0.1029 0.1029
λ3 0.0956 0.0956 0.0956 0.0956 0.1147 0.0956 0.0518 0.0956 0.0956 0.0956
λ4 0.0882 0.0882 0.0882 0.0882 0.106 0.0882 0.0691 0.0882 0.0882 0.0882
λ5 0.0809 0.0809 0.0809 0.0809 0.0973 0.0809 0.0864 0.0809 0.0809 0.0882
λ6 0.0735 0.0735 0.0735 0.0735 0.0887 0.0735 0.1037 0.0735 0.0735 0.0735
λ7 0.0662 0.0662 0.0662 0.0662 0.08 0.0662 0.1104 0.0662 0.0662 0.0662
λ8 0.0588 0.0588 0.0588 0.0588 0.0714 0.0588 0.1171 0.0588 0.0588 0.0588
λ9 0.0515 0.0515 0.0515 0.0515 0.0627 0.0515 0.1024 0.0515 0.0515 0.0515
λ10 0.0441 0.0441 0.0441 0.0441 0.054 0.0441 0.0878 0.0441 0.0441 0.0441
λ11 0.0368 0.0368 0.0368 0.0368 0.0454 0.0368 0.0732 0.0368 0.0368 0.0368
λ12 0.0294 0.0294 0.0294 0.0294 0.0367 0.0294 0.0585 0.0294 0.0294 0.0294
λ13 0.0221 0.0221 0.0221 0.0221 0.0281 0.0221 0.0439 0.0221 0.0221 0.0221
λ14 0.0147 0.0147 0.0147 0.0147 0.0194 0.0147 0.0293 0.0147 0.0147 0.0147
λ15 0.0074 0.0074 0.0074 0.0074 0.0107 0.0074 0.0146 0.0074 0.0074 0.0074
λ16 0 0 0 0 0 0 0 0 0 0

Table 3: Coefficients of coronavirus transmission Sars-2019 by country (calibrated) (FR: France, IT: Italy,
ESP: Spain, USA: United States of America, UK: United Kingdom, GER: Germany, KOR: South Korea,
BEL: Belgium, CHN: China, WR: World.
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Some public data sources:

• Germany: Robert Koch Institut. SARS-CoV-2 in Germany
https://www.rki.de/EN/Home/homepage_node.html

• South Korea: Coronavirus information, South Korea
http://ncov.mohw.go.kr/en/

• Spain: Rtve. Coronavirus España :
https://www.rtve.es/noticias/20200415/curva-contagios-muertes-coronavirus-espana-dia-dia/2010514.shtml

• France: Santé Publique France Géodes: geodes.santepubliquefrance.fr
Covid-19 en France: https://dashboard.covid19.data.gouv.fr/

• Italy: Ministero della Salute: http://www.salute.gov.it.

https://hal-pasteur.archives-ouvertes.fr/pasteur-02548181
https://www.rki.de/EN/Home/homepage_node.html
http://ncov.mohw.go.kr/en/
https://www.rtve.es/noticias/20200415/curva-contagios-muertes-coronavirus-espana-dia-dia/2010514.shtml
geodes.santepubliquefrance.fr
https://dashboard.covid19.data.gouv.fr/
http://www.salute.gov.it/
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• World : COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University (JHU)

• United Kingdom: Coronavirus (COVID-19) cases in the UK:https://coronavirus.data.gov.uk/

• USA: Johns Hopkins Coronavirus Resource Center: https://coronavirus.jhu.edu/map.html
CDC: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

https://www.arcgis.com/apps/opsdashboard/index.html?fbclid=IwAR2XAv-rtLPjPwJAh99WDQNXD2f0FUj4fmyJx5Mgtj_AA5cZd62jeVHV0iY#/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/opsdashboard/index.html?fbclid=IwAR2XAv-rtLPjPwJAh99WDQNXD2f0FUj4fmyJx5Mgtj_AA5cZd62jeVHV0iY#/bda7594740fd40299423467b48e9ecf6
https://coronavirus.data.gov.uk/
https://coronavirus.jhu.edu/map.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
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