
HAL Id: hal-02560951
https://hal.science/hal-02560951

Submitted on 2 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time fractional derivative for frequency effect in
ferroelectrics

Benjamin Ducharne, G. Sebald, D. Guyomar

To cite this version:
Benjamin Ducharne, G. Sebald, D. Guyomar. Time fractional derivative for frequency effect in fer-
roelectrics. 2009 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF),
Aug 2009, Xian, China. �10.1109/ISAF.2009.5307619�. �hal-02560951�

https://hal.science/hal-02560951
https://hal.archives-ouvertes.fr


Time fractional derivative for frequency effect in ferroelectrics 
 

B. Ducharne, G. Sebald, D. Guyomar 
Laboratoire de Génie Electrique et Ferroélectricité – INSA de Lyon 

Bât. Gustave FERRIE, 8 rue de la physique, 69621 Villeurbanne cedex, FRANCE 
 
 
Abstract — The present article proposes a dynamical model 
to obtain ferroelectric hysteresis dynamics based on fractional 
derivatives (Polarization versus Electric field curves). The 
consideration of a fractional derivative term widely increases 
the frequency bandwidth of the accuracy of the traditional 
hysteresis models. For PZT bulk ceramics, the order of the 
fractional derivative has been found to be 0.5 using 
experimental data as 10-3Hz<ƒ<100Hz. For these excitation 
frequency levels, simulation tests provided good results 
regarding the comparison of the fractional model and 
experimental results. With the same set of parameters, it is  
possible to take into account the nonlinear behavior as ƒ → 0: 
creep phenomenon, ageing ... Next, the model was tested on 
large frequency bandwidths (>6 decades) and validated with 
success using the comparison between simulation tests and the 
only experimental results available in literature obtained in such 
conditions by Liu and al (J. Phys.:Condens. Matter., 2004, 
vol.16, pp.1189-1195) for BNT thin film samples. At such 
frequency levels (>102Hz), due to power limitations, no 
ceramic bulk’s experimental results were available.  
 

INTRODUCTION 
 

Ferroelectric materials are widely applied as actuators 
and sensors, as they exploit the intrinsic coupling 
between electro-mechanical, electro-optical, and thermo-
electrical properties [1]. When loaded with an electric 
field or a mechanical stress, ferroelectrics display time-
dependent strain and electric displacement behavior. 
Understanding this behavior is essential for the design of 
industrial applications. Nonlinear polarization leads to 
irreversible changes in the ultimate electromechanical 
properties, which, in turn, induce mismatches between 
transducers and their controlling system. In recent years, 
significant progress has been made with regard to 
modeling the material response of ferroelectrics and 
obtaining a comprehension of the underlying phenomena. 
Rate-independent approaches, such as Preisach models 
[2], micromechanical models [3], and phenomenological 
models, have been used to describe the ferroelectric 
hysteresis under a constant loading or over a limited 
frequency bandwidth [4]. However, a model that is 
accurate over a large frequency range (>10 decades) is 
still missing. The polarization response is dependent on 
the excitation frequency, ƒ. Nevertheless, the amplitude, 
E0, and the origin of excitation (electric field, mechanical 
stress, thermal variations, etc.) are also major parameters. 
Polarization phenomena represent complex and dynamic 
processes including the nucleation of domains, the 
forward and sideways growth of interacting domains, as 
well as domain coalescence. It is particularly interesting 

to study the response of the hysteresis when varying the 
frequency and the excitation amplitude. The hysteresis 
area, <A>, is related to the energy dissipation in one 
reversal cycle. Also, the remnant polarization, Pr, and the 
coercive field, Ec, which are determined from hysteresis 
loop, are two major parameters for advanced ferroelectric 
devices and depend strongly on the excitation frequency 
and amplitude. Consequently, the understanding and 
modeling of dynamic polarization behaviors could 
provide precious tools for the computation of dissipation 
losses and dielectric responses of ferroelectric devices 
(such as piezoelectric actuators).  

The present paper proposes a formulation based on 
non-entire derivatives for the modeling of the dynamic 
hysteresis over a large frequency bandwidth. As ƒ → 0, 
the model has been validated by carrying out a 
comparison between simulation and experimental data of 
mechanical creep. As ƒ → ∞, the model was tested and 
validated using the comparison between simulation tests 
and the only experimental results available in literature 
obtained in such conditions by Liu and al for BNT thin 
film samples [5]. 

The present paper first exposes the configuration of 
the two majors terms of the model: a quasi-static 
hysteresis contribution, with the form of a damping force 
(a negative first-order polarization time derivative 
corresponding to the poling current); and a time-
dependent loss term, corresponding to the product of a 
material constant, ρ, and a fractional polarization 
derivative term, dαP/dtα (α € R). Then the wide frequency 
bandwidth accuracy of the model is illustrated by testing 
its accuracy; when ƒ → 0, and when ƒ → ∞. 
 

QUASI-STATIC MODEL 
 

A static contribution signifies observing a loop-like 
hysteresis when plotting the spontaneous polarization, P, 
against E for very low frequencies (ƒ<<1Hz). At such 
frequency levels, wall movements are assumed to 
undergo a mechanical-like dry friction. A static equation 
based on its mechanical dry-friction counterpart has been 
established in order to account for this property. The 
generation of a major P(E) hysteresis loop was observed 
with a good approximation by the translation of an 
anhysteretic curve; the loop also depended on the sign of 
the time derivative of the polarization. This translation is 
equal to the coercive field, Ec. A correct description of 
the major hysteresis loops observed during steady state of 
the ceramic under a high-amplitude electric field 
(E0>>Ec) can be obtained with the equation related to a 



single domain wall model. But as illustrated in [6], the 
polarization remains null until a value of the electric field 
becomes equal to the coercive field. This signifies that 
the first polarization curve cannot be correctly 
reproduced by only one equation, which is true for all 
simulated minor loops. A good global ferroelectric 
material model needs to take into account the set of 
similar behaviors of each domain wall and is 
characterized by its own coercive field. More realistic 
cycles are obtained by introducing a distribution of a 
basic element (spectrum), characterized by its own 
coercive fields in addition to its own weight:  
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Here, ƒ(E) (reciprocally ƒ-1(P)) represents the 

behavior of a non-linear dielectric (without hysteresis), 
and together with the parameters (γ,σ), the function can 
be obtained by fitting these parameters to the anhysteretic 
curve of a perfect dielectric given function, for example: 
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 (2) 
Spectrum(i) represents the distribution of elementary 

loops [6]. 

 

 
Fig. 1. Comparison simulation (grey)/measure (black) for 

unsymmetrical static excitation. 

 

DYNAMICAL MODEL 
 

The dynamical effect is usually represented by adding 
the product of a resistive term ρ and the derivative 
polarization to the static contribution (α=0 in equations 
n°3) [6]:  
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Experimental data shows that this dynamical 

modelling is accurate for a restrained frequency 
bandwidth [7]. The dynamical contribution ρ.dP/dt leads 
to an overestimation of the high frequency component, as 
illustrated in the loop area versus frequency curve (figure 
n°4) obtained for a given E0. This overestimation is 
corrected by defining an operator that balances the low 
and high frequency components in a different way than a 
linear time derivative. Such operators exist in the 
framework of fractional calculus: the so-called non-entire 
or fractional derivatives. Fractional derivatives involve 
raising derivatives to non-integer orders. This means that 
the order of the derivative can be either a real or complex 
number. In general, the fractional derivative of a function 
f(t) is the convolution of the f(t) function and tnH(t)/Γ(1- 
n), where Γ(n) is the gamma function and α the order of 
the fractional derivative. From a spectral point of view, 
this formulation means that the frequency spectrum f(ω) 
of f(t) will be multiplied by (jω)n, instead of jω, for first 
order derivatives. Other definitions of fractionnal 
derivatives exist, and among these, the Grunwald 
derivative is well suited for numerical implementation; it 
will be used in this paper.  

The Grunwald derivative is: 
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Here, h is the sampling time period, and n is the order 
of the fractional derivative.  



Dynamical unsymmetrical hysteresis loops are 
obtained by introducing the fractional operator into 
system n°3 ( 0<α<1). 

 
Fig. 2. Comparison simulation (grey)/measure (black) for 
dynamical high amplitude excitation (f=1,10,102,103Hz). 

 
EXPERIMENTAL PROCEDURE 

 
A typical industrial soft PZT composition (P188 

obtained from Quartz & Silice, France, Navy type II) was 
the object of the present study, and the main 
characteristics of the material are given in Table 1.  

 
Tab. 1. The main characteristics of a standard P188 ceramic. 

 
Cylindrical specimens (diameter 6.35mm, height: 

2mm), electroded with fire-on paste were subjected to a-
high amplitude excitation in an electric field by an 
Optilas Trek 10-kV high voltage supply. Constant 
temperature conditions and free mechanical properties of 
the sample were assumed. To avoid thermal drifts and 
dielectric breakdown, the samples were placed in an oil 
bath at room temperature. Electric displacements were 
calculated by current measurements (Keithley amplifier 
5011), and the polarization fields were computed by 
integrating the currents. For the mechanical creep 
measurements, the field-induced thickness strain was 
measured using a double beam laser interferometer 
(Agilent 10889B), with a precision of 10 nm. The sample 
was placed on a horizontal brass disc in order to ensure a 
good mechanical base. A second brass disc was placed 
on the upper side of the film, permitting the application 
of a bipolar electric field. 
 

EXPERIMENTAL RESULTS 
 

Dynamic result as f → 0 
 

For varying loading rates or when accuracy over 
long time periods is required, it is important not to 
neglect rate effects and creep in remnant strain and 

polarization. Creep phenomena represent major 
limitations in numerous applications of PZT actuators 
(micro-positioning, surface measurements, etc.), and can 
be described as a picture of the dynamical behavior for f 
→ 0. By successfully modeling the mechanical creep, 
one can admit and validate the model accuracy for long 
time variations. Modeling of the creep behavior is also a 
challenging means of validating the proposed model. 
Experimental measurements on PZT ferroelectric 
ceramics demonstrate how the polarization falls under 
compressive stress. As a consequence of this decrease in 
polarization, degradations of the piezoelectric properties 
(caused by rearrangements of the ferroelectric domain) 
can be observed. Similarly to the electric field, 
mechanical stresses also induce ΔP variations; however, 
such ΔP variations demonstrate an opposite polarization 
sign. A mechanical stress, T, can be introduced in the 
model as an equivalent to the electric field (F = applied 
force = E = h(P).T). Here, h(P) is a specific function 
permitting a modification of the symmetry described 
above. Moreover, h(P) must be an odd function: h(P)= 
P can be used, where the value of  is a fit based on 
experimental measurements. Then the following equation 
linking strain S and polarization P is used. 
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Eq. (5), describing the relation between the 
mechanical strain and the electrical excitation, has been 
established and validated in [9]. It is valid for large and 
straight excitation amplitudes. By assuming the 
reversibility of the converse and direct piezoelectric 
effect (∂P/∂T=∂S/∂E), and by further substituting the 
partial derivative ∂P/∂T by -P∂P/∂E, the strain 
expression can be given as: 
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The strain can finally be obtained as a function of P2, 
and a combination of previous equation gives the strain 
creep in simulation. Here, the shape of the creep answer 
is directly dependent on the non-entire derivative 
coefficient α, as illustrated in Figure 3. As for §1 the best 
results are obtained by fixing α to 0.5. 

 

Fig. 3: The comparison between measured (α = 5) and 

Parameters Symbol Units Typical values

Density  103 kg.m-3 7.7 

Poisson’s constant    0.3 

Curie point Tc °C 340 

Dielectric permittivity   
    1850 

Piezoelectric 
coefficient d33 pC/N 425 



simulated strain data for long times (mechanical creep). 
 
Dynamic result as f → ∞ 

 
As a final validation of the model, a comparison has 

been done between the experimental results obtained by 
Liu and al. [10] and the fractional model for large electric 
field dielectric behavior (with E>Ec). These experimental 
results were obtained for a large frequency bandwidth (1 
to 106Hz) for Nd-substituted Bi4Ti3O12 thin films. The 
electrical field E0 range is 100-400kV/cm. The 
characterization of the samples has been done using 
Sawyer-Tower circuit. As the shapes of the hysteresis 
loops and the physical behaviors are different to the 
ceramic sample P188 previously used to define the model, 
a new set of parameters is necessary. In the case of 
Bi3.15Nd0.85Ti3O12, Liu and al thin film samples, the best 
results were obtained with α = 0.4, ρ = 7.105. 

 

 

Fig. 4: Comparion simulations(α=0.5, α=1) /measures 
<A>(freq) curves for large frequency bandwidth 

excitation. 

As it has already been observed as ƒ→ 0 and → ∞, we 
notice good fitting between the fractional model and the 
measures for large frequency bandwidth type excitation. 
It is particularly interesting to conclude that a single set 
of parameters allows to perfectly reproduce the 
characteristics tendencies of the <A>(freq) curves 
(increasing rates, peak position and decreasing last part 
…), we prove here that only fractional operator can take 
into account with success all the dynamical behaviors of 
a ferroelectric material (ƒ є [10-3;106] Hz).   

 
CONCLUSION 

 
Frequency effects in ferroelectric materials may be a 

major limitation for high accuracy piezoactuators, 
Ferroelectric RAMS for example. From a more 
fundamental point of view, it is a challenging question: 
How to model losses that are obviously neither viscous 
nor static. Indeed, we demonstrate here via experimental 
on a soft PZT that static and/or viscous losses associated 
to a hysteretic model are completely unable to model 

frequency effect of  ferroelectric Polarization – Electric 
field hysteresis curve (PE cycle).  

Scaling laws were developed as a first attempt to 
tackle investigations on those behaviors, and frequency 
exponent of 0.3 up to 0.6 were found. It is an interesting 
way to understand losses in ferroelectrics, but this 
doesn’t constitute a model suitable for simulating 
ferroelectric behavior. In this work, we aim at showing 
the effectiveness of a non-integer time derivation of the 
polarization in association to a hysteretic model (which is 
based on a dry friction mechanism). Such a model give 
an outstanding accuracy compared to experiments over 6 
decades of frequencies – and probably more if we could 
overcome experimental constraints of power limitation. It 
can then be compared of course with scaling laws, but 
such a model is accurate also for frequencies ranges were 
scaling laws are totally ineffective (in the vicinity of the 
peaks of Fig. 4)  

Time fractional derivative not only gives excellent 
results for PE cycles for different frequencies, is can also 
explain creep behavior as shown in the second part of 
this work. 
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