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ABSTRACT
Existing systems dealing with the increasing volume of data
series cannot guarantee interactive response times, even for
fundamental tasks such as similarity search. Therefore, it is
necessary to develop analytic approaches that support explo-
ration and decision making by providing progressive results,
before the final and exact ones have been computed. Prior
works lack both efficiency and accuracy when applied to
large-scale data series collections.We present and experimen-
tally evaluate a new probabilistic learning-based method that
provides quality guarantees for progressive Nearest Neigh-
bor (NN) query answering. We provide both initial and pro-
gressive estimates of the final answer that are getting better
during the similarity search, as well suitable stopping crite-
ria for the progressive queries. Experiments with synthetic
and diverse real datasets demonstrate that our prediction
methods constitute the first practical solution to the problem,
significantly outperforming competing approaches.
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1 INTRODUCTION
Data Series. Data series are ordered sequences of values
measured and recorded from a wide range of human activi-
ties and natural processes [66], such as seismic activity, or
electroencephalography (EEG) signal recordings. The analy-
sis of such sequences1 is becoming increasingly challenging
as their sizes often grow to multiple terabytes [7, 64].
Data series analysis involves pattern matching [54, 91],

anomaly detection [10, 11, 17, 24], frequent pattern min-
ing [56, 72], clustering [48, 73, 74, 86], and classification [19].
These tasks rely on data series similarity. The data-mining
community has proposed several techniques, includingmany
similarity measures (or distance measure algorithms), for cal-
culating the distance between two data series [26, 60], as well
as corresponding indexing techniques and algorithms [30,
65], in order to address scalability challenges.
Data Series Similarity.We observe that data series similar-
ity is often domain- and visualization-dependent [8, 37], and
in many situations, analysts depend on time-consumingman-
ual analysis processes. For example, neuroscientists manually
inspect the EEG data of their patients, using visual analysis
tools, so as to identify patterns of interest [37, 45]. In such
cases, it is important to have techniques that operate within
interactive response times [63], in order to enable analysts
to complete their tasks easily and quickly.
In the past years, several visual analysis tools have com-

bined visualizations with advanced data management and
analytics techniques (e.g., [51, 71]), albeit not targeted to
data series similarity search. Moreover, we note that even
1If the dimension that imposes the ordering of the sequence is time then
we talk about time series. Though, a series can also be defined over other
measures (angle in radial profiles, frequency in infrared spectroscopy, etc.).
We use the terms time series, data series, and sequence interchangeably.
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Figure 1: Progression of 1-NN distance error (Eu-
clidean dist.) for 4 example queries (seismic dataset),
using iSAX2+ [15]. The points in each curve represent
approximate (intermediate points) or exact answers
(last point) given by the algorithm. Lines end when
similarity search ends. Thick grey line represents av-
erage trend over a random sample of 100 queries.

though the data series management community is focusing
on scalability issues, the state-of-the-art indexes currently
used for scalable data series processing [15, 50, 54, 85, 92] are
still far from achieving interactive response times [29, 30].
ProgressiveResults.To allow for interactive response times
when users analyze large data series collections, we need
to consider progressive and iterative visual analytics ap-
proaches [6, 38, 79, 89]. Such approaches provide progressive
answers to users’ requests [35, 61, 77], sometimes based on
algorithms that return quick approximate answers [25, 34].
Their goal is to support exploration and decision making by
providing progressive (i.e., intermediate) results, before the
final and exact ones have been computed.

Most of the above techniques consider approximations of
aggregate queries on relational databases, with the excep-
tion of Ciaccia et al. [20, 21], who provide a probabilistic
method for assessing how far an approximate answer is from
the exact answer. Nevertheless, these works do not consider
data series that are high-dimensional: their dimensionality
(i.e., number of points in the series [30]) ranges from several
hundreds to several thousands. We note that the framework
of Ciaccia et al. [20, 21] does not explicitly target progressive
similarity search. Furthermore, the approach has only been
tested on datasets with up to 275K vectors with dimensional-
ity of a few dozen, while we are targeting data series vectors
in the order of hundreds of millions with dimensionality in
the order of hundreds. Our experiments show that the prob-
abilistic estimates that their methods [20, 21] provide are
inaccurate and cannot support progressive similarity search.

In this study, we demonstrate the importance of providing
progressive similarity search results on large time series
collections. Our results show that there is a gap between
the time the 1st Nearest Neighbour (1-NN) is found and the
time when the search algorithm terminates. In other words,
users often wait without any improvement in their answers.

We further show that high-quality approximate answers are
found very early, e.g., in less than one second, so they can
support highly interactive visual analysis tasks.
Figure 1 presents the approximate results of the iSAX2+

index [15] for four example queries on a 100M data series col-
lection with seismic data [36], where we show the evolution
of the approximation error as a percentage of the exact 1-NN
distance. We observe that the algorithm provides approxi-
mate answers within a few milliseconds, and those answers
gradually converge to the exact answer, which is the distance
of the query from the 1-NN. Interestingly, the 1-NN is often
found in less than 1 sec (e.g., see yellow line), but it takes
the search algorithm much longer to verify that there is no
better answer and terminate. This finding is consistent with
previously reported results [21, 38].
Several similarity-search algorithms, such as the iSAX2+

index [15] and the DSTree [85] (the two top performers in
terms of data series similarity search [30]), provide very quick
approximate answers. In this paper, we argue that such algo-
rithms can be used as the basis for supporting progressive
similarity search. Unfortunately, these algorithms do not pro-
vide any guarantees about the quality of their approximate
answers, while our goal is to provide such guarantees.
Proposed Approach.We develop the first progressive ap-
proaches for data series similarity search with probabilistic
quality guarantees, which are scalable to very large data
series collections. Our goal is to predict how much improve-
ment is expected when the search algorithm is still running.
Communicating this information to users will allow them to
terminate a progressive search early and save time.
The challenge is how to derive such predictions. If we

further inspect Figure 1, we see that answers progressively
improve, but improvements are not radical. The error of
the first approximate answer (when compared to the final
exact answer) is on average 16%, which implies that approxi-
mate answers are generally not very far from the 1-NN. We
show that this behavior is more general and can be observed
across different datasets and different similarity search al-
gorithms [85, 92]. We further show that the distance of ap-
proximate answers can help us predict the time that it takes
to find the exact answer. Our approach consists in describ-
ing these behaviors through statistical models. We then use
these models to estimate the error of a progressive answer,
assess the probability of an early exact answer, and provide
upper bounds for the time needed to find the k-NN. We also
explore query-sensitive models that predict a probable range
of the k-NN distance before the search algorithm starts, and
then is progressively improved as new answers arrive. We
further provide reliable stopping criteria for terminating
searches with probabilistic guarantees about the distance
error or the number of exact answers. We note that earlier
approaches [20, 21] do not solve the problem, since they



support bounds only for distance errors, they do not update
their estimates during the course of query answering, and
they do not scale with the data size.
Contributions. Our key contributions are as follows:
•We formulate the problem of progressive data series simi-
larity search, and provide definitions specific to the context
of data series.
• We investigate statistical methods, based on regression
(linear, quantile, and logistic) and multivariate kernel den-
sity estimation, for supporting progressive similarity search
based on a small number of training queries (e.g., 50 or 100).
We show how to apply them to derive estimates for the NN
distance (distance error), the time to find the NN, and the
probability that the progressive NN answer is correct.
•We further develop stopping criteria that can be used to
stop the search long before the normal query execution ends.
These criteria make use of distance error estimates, proba-
bilities of exact answers, and time bounds for exact answers.
• We perform an extensive experimental evaluation with
both synthetic and real datasets. The results demonstrate
that our solutions dominate the previous approaches, pro-
vide accurate probabilistic bounds, and lead to significant
time improvements with well-behaved guarantees for errors.
Source code and datasets are in [1].

2 RELATEDWORK
Similarity Search. Several measures have been proposed
for computing similarity between data series [26, 60]. Among
them, Euclidean Distance (ED) [33], which performs a point-
by-point value comparison between two time series, is one
of the most popular. ED can be combined with data normal-
ization (often z-normalization [39]), in order to consider as
similar patterns that may vary in amplitude or value offset.
Ding et al. [26] conducted an analysis of different measures
(including elastic ones such as Dynamic Time Warping [9]
and threshold based ones such as TQuEST [4]) and concluded
that there is no superior measure. In our work, we focus on
ED because [26, 30] it is effective, it leads to efficient solutions
for large datasets, and is very commonly used.

The human-computer interaction community has focused
on the interactive visual exploration and querying of data
series. These querying approaches are visual, often on top
of line chart visualizations [78], and rely either on the inter-
active selection of part of an existing series (e.g., [13]), or
on sketching patterns to search for (e.g., [23, 58]). This line
of work is orthogonal to our approach, which considers ap-
proximate and progressive results from these queries when
interactive search times are not possible.
Optimized andApproximate Similarity Search.The data-
base community has optimized similarity search methods
by using index structures [14, 22, 33, 50, 54, 55, 65, 67–69, 85,
88, 92], or fast sequential scans [72]. Recently, Echihabi et

al. [30, 31] compared the efficiency of these methods under
a unified experimental framework, showing that there is
no single best method that outperforms all the rest. In this
study, we focus on the popular centralized solutions, though,
our results naturally extend to parallel and distributed solu-
tions [67–69, 88], since these solutions are based on the same
principles and mechanisms as their centralized counterparts.
Moreover, we focus on (progressive answers for) exact query
answering. Given enough time, all answers we produce are
exact, which is important for several applications [66]. In this
context, progressive answers help to speed-up exact queries
by stopping execution early, when it is highly probable that
the current progressive answer is the exact one.
In parallel to our work, Li et al. [52] proposed a machine

learning method, developed on top of inverted-file (IVF [43]
and IMI [5]) and k-NN graph (HNSW [57]) similarity search
techniques, that solves the problem of early termination
of approximate NN queries, while achieving a target recall.
In contrast, our approach employs similarity search tech-
niques based on data series indices [31], and with a very
small training set (up to 200 training queries in our exper-
iments), provides guarantees with per-query probabilistic
bounds along different dimensions: on the distance error, on
whether the current answer is the exact one, and on the time
needed to find the exact answer.
Progressive Visual Analytics. Fekete and Primet [34] pro-
vide a summary of the features of a progressive system;
three of them are particularly relevant to progressive data se-
ries search: (i) progressively improved answers; (ii) feedback
about the computation state and costs; and (iii) guarantees
of time and error bounds for progressive and final results.
Systems that support big data visual exploration include Zen-
visage [76] that provides incremental results of aggregation
queries, Falcon [62] that prefetches data for brushing and
linking actions, and IncVisage [71] that progressively reveals
salient features in heatmap and trendline visualizations.
Systems that provide progressive results are appreciated

by users due to their quick feedback [6, 89]. Nevertheless,
there are some caveats. Users can be mislead into believing
false patterns [61, 79] with early progressive results. It is thus
important to communicate the progress of ongoing compu-
tations [2, 75], including the uncertainty and convergence
of results [2] and guarantees on time and error bounds [34].
Previous work provides such uncertainty and guarantees in
relational databases and aggregation type queries [41, 44, 87].

Closer to the context of data series, Ciaccia and Patella [21]
studied similarity search queries over generalmulti-dimensional
spaces and proposed a probabilistic approach for comput-
ing the uncertainty of partial similarity search results. We
discuss their approach in the following section.



3 PRELIMINARIES AND BACKGROUND
A data series S (p1,p2, ...,pℓ ) is an ordered sequence of points
with length n. A data series of length ℓ can also be repre-
sented as a single point in an ℓ-dimensional space. For this
reason, the values of a data series are often called dimensions,
and its length ℓ is called dimensionality. We use S to denote a
data series collection (or dataset). We refer to the size n = |S|
of a data series collection as cardinality. In this paper, we
focus on datasets with very large numbers of data series.
Distance Measures. A data series distance d (S1, S2) is a
function that measures the dissimilarity of two data series S1
and S2, or alternatively, the dissimilarity of two data series
subsequences. As mentioned in Sec 2, we chose Euclidean
Distance (ED) as a measure due to its popularity and effi-
ciency [26].
Similarity Search Queries. Given a dataset S, a query se-
ries Q , and a distance function d (·, ·), a k-Nearest-Neighbor
(k-NN) query identifies the k series in the dataset with the
smallest distances to Q . The 1st Nearest Neighbor (1-NN) is
the series in the dataset with the smallest distance to Q .

Similarity search can be exact, when it produces answers
that are always correct, or approximate, when there is no such
strict guarantee. A δ -ϵ-approximate algorithm guarantees
that its distance results will have a relative error no more
than ϵ with a probability of at least δ [30]. We note that
only a couple of approaches [3, 21] provide such guarantees.
Yet, their accuracy has never been tested on the range of
dimensions and dataset sizes that we examine here.
Similarity Search Methods. Most data series similarity
search techniques [14, 22, 33, 50, 54, 68, 85, 88, 92] use an
index, which enables scalability. The index can offer quick
approximate answers by traversing a single path of the index
structure to visit the single most promising leaf, from where
we select the best-so-far (bsf) answer: this is the candidate
answer in the leaf that best matches (has the smallest distance
to) the query. The bsf may, or may not be the final, exact
answer: in order to verify, we need to either prune, or visit
all the other leaves of the index. Having a good first bsf (i.e.,
close to the exact answer) leads to efficient pruning.
In the general case, approximate data series similarity

search algorithms do not provide guarantees about the qual-
ity of their answers. In our work, we illustrate how we can ef-
ficiently provide such guarantees, with probabilistic bounds.
We focus on index-based approaches that support both

quick approximate, and slower but exact, similarity search
results. In this work, we adapt the state-of-the-art data se-
ries indexes iSAX2+ [15] and DSTree [85], which have been
shown to outperform the other data series methods in query
answering [30], and we demonstrate that our techniques
are applicable to both indexes. We provide below a succinct
description of the iSAX2+ and DSTree approaches.

The iSAX2+ [15] index organizes the data in a tree struc-
ture, where the leaf nodes contain the raw data and each
internal node summarizes the data series that belong to its
subtree using a representation called Symbolic Aggregate Ap-
proximation (SAX) [53]. SAX transforms a data series using
Piecewise Aggregate Approximation (PAA) [47] into equi-
length segments, where each segment is associated with the
mean value of its points, then represents the mean values
using a discrete set of symbols for a smaller footprint.

DSTree [85] is also a tree-based index that stores raw data
in the leaves and summaries in internal nodes. Contrary to
iSAX2+, DSTree does not support bulkloading, intertwines
data segmentation with indexing and uses Extended Adaptive
Piecewise Approximation (EAPCA) [85] instead of SAX. With
EAPCA, a data series is segmented using APCA [16] into
varying-length segments, then each segment is represented
with its mean and standard deviation values.

Since the query answering time depends on the data dis-
tribution [93], and both iSAX2+ and DSTree can produce
unbalanced index trees, we provide below an index-invariant
asymptotic analysis on the lower/upper bounds of the query
runtime. As we consider large on-disk datasets, the query
runtime is I/O bound; thus we express complexity in terms of
I/O [42, 46], using the dataset size N , the index leaf threshold
th and the disk block size B. Consider an index over a dataset
of size N such that each index leaf contains at most th series
(th ≪ N ). We count one disk page access of size B as one
I/O operation (for simplicity, we use B to denote the number
of series that fit in one disk page). Note that both the iSAX2+
and DSTree indexes fit the entire index tree in-memory; the
leaves point to the raw data on-disk.

Best Case. The best case scenario occurs when one of the
children of the index root is a leaf, containing one data se-
ries. In this case, the approximate search will incur Θ(1) I/O
operation. In the best case, exact search will prune all other
nodes of the index and thus will also incur Θ(1) disk access.

Worst Case. Approximate search always visits one leaf.
Therefore, the worst case occurs when the leaf is the largest
possible, i.e., it contains th series, in which case approximate
search incurs Θ(th/B) I/O operations. For exact search, the
worst case occurs when the algorithm needs to visit every
single leaf of the index. This can happen when the index tree
has N − th + 1 leaves (i.e., each leaf contains only one series,
except for one leaf with th series), as a result of each new
series insertion causing a leaf split where only one series
ends up in one of the children. Therefore, the exact search
algorithm will access all the leaves, and will incur Θ(N ) I/O
operations. (Note that this is a pathological case that would
happen when all series are almost identical: in this case,
indexing and similarity search are not useful anyways.)
Baseline Approach. We briefly describe here the proba-
bilistic approach of Ciaccia et al. [20–22]. Based on Ciaccia



et al. [22], a dataset S (a data series collection in our case) can
be seen as a random sample drawn from a large population
U of points in a high-dimensional space. Being a random
sample, a large dataset is expected to be representative of the
original population. Given a queryQ , let fQ (x ) be the proba-
bility density function that gives the relative likelihood that
Q ’s distance from a random series drawn fromU is equal to
x . Likewise, let FQ (·) be its cumulative probability function.
Based on FQ (·), we can derive the cumulative probability
function GQ,n (·) for Q’s k-NN distances in a dataset of size
n = |S|. For 1-NN similarity search, we have:

GQ,n (x ) = 1 − (1 − FQ (x ))n (1)

Wenowhave away to construct estimates for 1-NN distances.
Unfortunately, fQ (·), and thus FQ (·), are not known. The
challenge is how to approximate them from a given dataset.
We discuss two approximation methods:

1.Query-Agnostic Approximation. For high-dimensional spaces,
a large enough sample from the overall distribution f (·) of
pairwise distances in a dataset provides a reasonable ap-
proximation for fQ (·) [22]. This approximation can then be
used to evaluate probabilistic stopping-conditions by taking
sampling sizes between 10% and 1% (for larger datasets) [21].

2. Query-Sensitive Approximation. The previous method does
not take the query into account. A query-sensitive approach
is based on a training set of reference queries, called wit-
nesses. Witnesses can be randomly drawn from the dataset,
or selected with the GNAT algorithm [12], which identifies
the nw points that best cover a multidimensional (metric)
space based on an initial random sample of 3nw points. Given
that close objects have similar distance distributions, Ciaccia
et al. [20] approximate fQ (·) by using a weighted average of
the distance distributions of all the witnesses.

The above methods have major limitations. First, since
their 1-NN distance estimates are static, they are less ap-
propriate for progressive similarity search. Second, a good
approximation of FQ (·) does not necessarily lead to a good
approximation of GQ,n (·). This is especially true for large
datasets, as the exponent term n in Equation 1 will inflate
even tiny approximation errors. Note that GQ,n (·) can be
thought of as a scaled version of FQ (·) that zooms in on the
range of the lowest distance values. If this narrow range of
distances is not accurately approximated, the approximation
of GQ,n (·) will also fail. Our own evaluation demonstrates
this problem. Third, they require the calculation of a large
number of distances. Since the approximation of GQ,n (·)
is sensitive to errors in large datasets (see above), a rather
large number of samples is required in order to capture the
frequency of the very small distances.

Table 1: Table of symbols
Symbol Description

S , Q data series, query series
ℓ length of a data series
S data series collection (or dataset)

n = |S| number of series in S
R (t ) progressive answer at time t

k-NN, knn(Q ) kth Nearest Neighbor of Q
dQ,R (t ), d (Q,R (t )) distance between Q and R (t )

dQ,knn , d (Q,knn(Q )) distance between Q and its k-NN
ϵQ (t ) relative distance error of R (t ) from k-NN
pQ (t ) probability that R (t ) is exact (i.e., the k-NN )

tQ time to find the k-NN
τQ,ϕ time to find the k-NN with probability 1 − ϕ

τQ,θ,ϵ time for which ϵQ (t ) < ϵ with confidence 1 − θ
•̂ estimate of •

IQ (t ) information at time t
hQ,t (x ) probability density function of Q’s distance

from its k-NN, given information IQ (t )
HQ,t (x ) cumulative distribution function of Q’s

distance from its k-NN, given IQ (t )
fQ (x ) probability density function of Q’s distance

from a random series in S
FQ (x ) cumulative distribution function of Q’s

distance from a random series in S
GQ,n (x ) cumulative distribution function of Q’s

distance from its k-NN
W set of witness series

nw = |W| number of witnesses in |W|

4 PROGRESSIVE SIMILARITY SEARCH
We define progressive similarity search for k-NN queries2.
(Table 1 summarizes the symbols we use in this paper.)

Definition 4.1. Given a k-NN query Q , a data series col-
lection S, and a time quantum q, a progressive similarity-
search algorithm produces results R (t1),R (t2), ...,R (tz ) at
time points t1, t2, ..., tz , where ti+1 − ti ≤ q, such that
d (Q,R (ti+1)) ≤ d (Q,R (ti )).

We borrow the quantum q parameter from Fekete and
Primet [34]. It is a user-defined parameter that determines
how frequently users require updates about the progress of
their search. Although there is no guarantee that distance re-
sults will improve at every step of the progressive algorithm,
the above definition states that a progressive distance will
never deteriorate. This is an important difference of progres-
sive similarity search compared to other progressive compu-
tation mechanisms, where results may fluctuate before they
eventually converge, which may lead users to making wrong
decisions based on intermediate results [18, 34, 40].

Clearly, progressive similarity search can be based on ap-
proximate similarity search algorithms – a progressive result
is simply an approximate (best-so-far) answer that is updated

2We define the problem using k -NN, but for simplicity use k = 1 in the rest
of this paper. We defer the discussion of the general case to future work.



over time. A progressive similarity search algorithm is also
exact if the following condition holds:

lim
t→∞

d (Q,R (t )) = d (Q,knn(Q )) (2)

where knn(Q ) represents the k-NN of the query series Q .
According to the above condition, the progressive algo-

rithm will always find an exact answer. However, there are
generally no strong guarantees about how long this can take.
Ideally, a progressive similarity search algorithm will find
good answers very fast, e.g., within interactive times, and
will also converge to the exact answer without long delays.
Even so, in the absence of information, users may not be
able to trust a progressive result, no matter how close it is to
the exact answer. In this paper, we investigate exactly this
problem. Specifically, we seek to provide guarantees about:
(i) How close is the progressive answer to the exact answer?
(ii) What is the probability that the current progressive an-
swer is the exact answer? (iii) When is the search algorithm
expected to find the exact answer?

4.1 Progressive Distance Estimates
Given a progressive answerR (t ) to ak-NN query at time t , we
are interested in knowing how far from the k-NN this answer
is. For simplicity, we will denote the k-NN distance to the
query as dQ,knn ≡ d (Q,knn(Q )) and the distance between
R (t ) and the query asdQ,R (t ) ≡ d (Q,R (t )). Then, the relative
distance error is ϵQ (t ), where dQ,R (t ) = dQ,knn (1 + ϵQ (t )).
Given that this error is not known, our goal is to find an
estimate ϵ̂Q (t ). However, finding an estimate for the relative
error is not any simpler than finding an estimate d̂Q,knn (t )
of the actual k-NN distance. We concentrate on this latter
quantity for our analysis below. Though, since dQ,R (t ) is
known, deriving the distance error estimate ϵ̂Q (t ) from the
k-NN distance estimate d̂Q,knn (t ) is straightforward:

ϵ̂Q (t ) =
dQ,R (t )

d̂Q,knn (t )
− 1 (3)

We represent progressive similarity-search estimates as
probability distribution functions.

Definition 4.2. Given a k-NN query Q , a data series col-
lection S, and a progressive similarity-search algorithm, a
progressive k-NN distance estimate d̂Q,knn (t ) of the k-NN
distance at time t is a probability density function:

hQ,t (x ) = Pr {dQ,knn = x | IQ (t )} (4)

This equation gives the conditional probability that dQ,knn
is equal to x , given information IQ (t ).

We expect that progressive estimates will converge to
dQ,knn (i.e., ϵ̂Q (t ) will converge to zero). Evidently, the qual-
ity of an estimate at time t largely depends on the informa-
tion IQ (t ) that is available at this moment. In Section 5, we
investigate different types of information we can use for this.
Given the probability density function in Equation 4, we

can derive a point estimate that gives the expected k-NN
distance, or an interval estimate in the form of a prediction
interval (PI). Like a confidence interval, a prediction interval
is associated with a confidence level. Given a confidence
level 1 − θ , we expect that approximately (1 − θ ) × 100% of
the prediction intervals we construct will include the true
k-NN distance. Note that although a confidence level can be
informally assumed as a probability (i.e., what is the likeli-
hood that the interval contains the true k-NN distance?), this
assumption may or may not be strictly correct. Our experi-
ments evaluate the frequentist behavior of such intervals.
To construct a prediction interval with confidence level

1 − θ over a density distribution function hQ,t (·), we derive
the cumulative distribution function:

HQ,t (x ) = Pr {dQ,knn ≤ x | IQ (t )} (5)

From this, we take the θ/2 and (1−θ/2) quantiles that define
the limits of the interval.

4.2 Guarantees for Exact Answers
Users may also need guarantees about the exact k-NN. We
investigate two types of probabilistic guarantees for exact
answers. First, at any moment t of the progressive search,
we assess the probability pQ (t ) that the exact answer has
been found, given information IQ (t ):

pQ (t ) = Pr {dQ,R (t ) = dQ,knn | IQ (t )} (6)

Second, we estimate the time tQ it takes to find the exact
k-NN. As we already discussed, this time can be significantly
faster than the time needed to complete the search. Let t̂Q be
its estimate. We express it as a probability density function:

rQ,t (x ) = Pr {tQ = x | IQ (t )} (7)

which expresses the conditional probability that tQ is equal
to x , given information IQ (t ). From this, we derive its cumu-
lative distribution function RQ (·). Then, given a confidence
level 1 − ϕ, we can find a probabilistic upper bound τQ,ϕ
such that RQ (τQ,ϕ ) = 1−ϕ; ϕ represents the probability that
the progressive answer at time τQ,ϕ is not the exact, i.e., the
proportion of bounds that fail to include the exact answer.

4.3 Stopping Criteria
Based on the provided estimates, users may decide to trust
the current progressive result and possibly stop their search.
Which stopping criterion to use is not straightforward and de-
pends onwhether users prioritize guarantees about thek-NN



Table 2: Experimental datasets

name description number of series series length
synthetic random walks 100M 256

seismic [36] seismic records 100M 256
SALD [80] MRI data 200M 128
deep1B [81] image descriptors 267M 96

distance, about the relative error of the current progressive
result, or about the exact answer itself.
An analyst may choose to stop query execution as soon

as the prediction interval of the k-NN distance lies above a
low threshold value. Unfortunately, this strategy raises some
concerns. Recent work on progressive visualization [59] dis-
cusses the problem of confirmation bias, where an analyst
may use incomplete results to confirm a “preferred hypothe-
sis”. This is a well-studied problem in sequential analysis [82].
It relates to the multiple-comparisons problem [90] and is
known to increase the probability of a Type I error (false
positives). We evaluate how such multiple sequential tests
affect the accuracy of our methods, but discourage their use
as stopping criteria, and instead propose the following three.

A sensible approach is to make use of the relative distance
error estimate ϵ̂Q (t ) (see Eq. 3). For instance, the analyst
may decide to stop the search when the upper bound of the
error’s interval is below a threshold ϵ = 1%. An error-based
stopping criterion offers several benefits: (i) the choice of a
threshold does not depend on the dataset, so its interpretation
is easier; (ii) this criterion does not inflate Type I errors as
long as the threshold ϵ is fixed in advance; (iii) the error
ϵQ (t ) monotonically converges to zero (the same holds for
the bounds of its estimates), thus there is a unique point in
time τQ,θ,ϵ at which the bound of the estimated error reaches
ϵ , where 1−θ is our confidence level (here, θ determines the
proportion of times for which the relative distance error of
our result will be greater than ϵ).
A second approach is to use the τQ,ϕ bound (see Sec-

tion 4.2) to stop the search, which provides guarantees about
the proportion of exact answers, rather than the distance
error. It also depends on a single parameter, rather than two.
To avoid the multiple-comparisons problem, we provide a
single estimate of this bound at the very beginning of the
search, allowing users to plan ahead their stopping strategy.

A third approach is to bound the probability pQ (t ). Specifi-
cally, we stop the search when this probability exceeds a level
1 − ϕ, where ϕ here represents the probability that the cur-
rent progressive answer is not the exact. We experimentally
assess the tradeoffs of these three stopping criteria.

5 PREDICTION METHODS
We now present our solutions. We use the 4 datasets shown
in Table 2 to showcase our methods. We further explain and
use these datasets in Section 6 to evaluate our methods.

Our goal is to support reliable prediction with small train-
ing sets of queries. We are also interested in expressing the
uncertainty of our predictions with well-controlled bounds,
as discussed in the previous section. We thus focus on sta-
tistical models that capture a small number of generic rela-
tionships in the data. We first examine methods that assume
constant information (IQ (t ) = IQ ). They are useful for provid-
ing an initial estimate before the search starts. We distinguish
between query-sensitive methods, which take into account
the query series Q, and query-agnostic methods, which pro-
vide a common estimate irrespective of Q (IQ = I ). Inspired
by Ciacca et al. [20, 22], these methods serve as baselines to
compare to a new set of progressive methods. Our progres-
sive methods update information during the execution of a
search, resulting in considerably improved predictions.
To simplify our analysis, we focus on 1-NN similarity

search. Our analysis naturally extends to k-NN search; a
detailed study of this case is part of our future work.

5.1 Initial 1-NN Distance Estimates
We first concentrate on how to approximate the distribution
function hQ,0 (x ) (see Equation 4), thus provide estimates
before similarity search starts.
As Ciaccia et al. [20], we rely on witnesses, which are

“training” query series that are randomly sampled from a
dataset. Unlike their approach, however, we do not use the
distribution of raw pairwise distances FQ (·). Instead, for each
witness, we execute 1-NN similarity queries with a fast state-
of-the-art algorithm, such as iSAX2+ [15], or DSTree [85].
This allows us to derive directly the distribution of 1-NN
distances and predict the 1-NN distance of new queries.
This approach has two main benefits. First, we use the

tree structure of the above algorithms to prune the search
space and reduce pre-calculation costs. Rather than calculat-
ing a large number of pairwise distances, we focus on the
distribution of 1-NN distances with fewer distance calcula-
tions. Second, we achieve reliable and high-quality approx-
imation with a relatively small number of training queries
(≈ 100 − 200) independently of the dataset size (we report
and discuss these results in Section 6).

Query-Agnostic Model (Baseline). Let W = {Wj |j =
1..nw } be a set of nw = |W| witnesses randomly drawn
from the dataset. We execute a 1-NN similarity search for
each witness and build their 1-NN distance distribution. We
then use this distribution to approximate the overall (query-
independent) distribution of 1-NN distances дn (·) and its
cumulative probability function Gn (·). This method is com-
parable to Ciaccia et al. [22] query-agnostic approximation
method and serves as a baseline.

Query-Sensitive Model. Intuitively, the smaller the dis-
tance between the query and a witness, the better the 1-NN
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Figure 2: Linear models (red lines) predicting the real
1-NN distance dQ,1nn based on the weighted witness 1-
NN distance dwQ for exp = 5. All models are based
on nw = 200 random witnesses and nr = 100 queries,
and tested on 500 queries (in orange). The blue dashed
lines show the range of their 95% prediction intervals.

of this witness predicts the 1-NN of the query. We capture
this relationship through a random variable that expresses
the weighted sum of the 1-NN distance of all nw witnesses:

dwQ =

nw∑
j=1

(aQ, j · dWi ,1nn ) (8)

The weights aQ, j are derived as follows:

aQ, j =
d (Q,Wj )

−exp

nw∑
i=1

d (Q,Wi )−exp
(9)

Our tests have shown optimal results for exponents exp that
are close to 5. For simplicity, we use exp = 5 for all our
analyses. Additional tests have shown that the fit of the
model becomes consistently worse if witnesses are selected
with the GNAT algorithm [12, 20] (we omit these results for
brevity). Therefore, we only examine random witnesses here.

We use dwQ as predictor of the query’s real 1-NN distance
dQ,1nn and base our analysis on the following linear model:

dQ,1nn = β · dwQ + c (10)

Figure 2 shows the parameters of instances of this model
for the four datasets of Table 2. We conduct linear regres-
sions by assuming that the distribution of residuals is normal
(Gaussian) and has equal variance.

Since the model parameters (β and c) and the variance are
dataset specific, they have to be trained for each individual
dataset. To train the model, we use an additional random
sample of nr training queries that is different from the sample
of witnesses. Based on the distance of each training queryQi
from the witnesses, we calculate dwQi (see Equation 8). We
also run similarity search to find its 1-NN distance dQi ,1nn .
We then use all pairs (dwQi ,dQi ,1nn ), where i = 1..nr , to
build the model. The approach allows us to construct both
point estimates (see Equation 8) and prediction intervals
(see Figure 2) that provide probabilistic guarantees about the
range of the 1-NN distance.
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Figure 3: Linear models (red solid lines) predicting the
real 1-NN distance dQ,1nn based on iSAX2+ first ap-
proximate answer distance. All models trained with
200 queries. The 500 (orange) points in each plot are
queries out of the training set. Green (solid) lines (y =
x) are hard upper bounds, set by the approximate an-
swer. Blue lines show the range of one-sided 95% pre-
diction intervals that formprobabilistic lower bounds.

5.2 Progressive 1-NN Distance Estimates
So far, we have focused on initial 1-NN distance estimates.
Those do not consider any information about the partial
results of a progressive similarity-search algorithm. Now,
given Definition 4.1, the distance of a progressive result
dQ,R (ti ) will never deteriorate and thus can act as an upper
bound for the real 1-NN distance. The challenge is how to
provide a probabilistic lower bound that is larger than zero.
Our approach relies on the observation that the approxi-

mate answers of index-based algorithms are generally close
to the exact answers. Figure 3 illustrates the relationship
between the true 1-NN distance and the distance of the first
progressive (approximate) answer returned by iSAX2+ [15].
(The results for the DSTree index [85] that follows a com-
pletely different design from iSAX2+ are very similar; we
omit them for brevity). We observe a strong linear relation-
ship for both algorithms, especially for the DSTree index.
We can express it with a linear model and then derive proba-
bilistic bounds in the form of prediction intervals. As shown
in Figure 3, the approach is particularly useful for construct-
ing lower bounds. Those are clearly greater than zero and
provide valuable information about the extent to which a
progressive answer can be improved or not.

Since progressive answers improve over time and tend to
converge to the 1-NN distance, we could take such informa-
tion into account to provide tighter estimates as similarity
search progresses. To this end, we examine different progres-
sive prediction methods. They are all based on the use of a
dataset ofnr training queries that includes information about
all progressive answers of a similarity search algorithm to
each query, including a timestamp and its distance.

Linear Regression. Let t1, t2, ..., tm be specific moments of
interest (e.g., 100ms, 1s, 3s, and 5s). Given ti , we can build a
time-specific linear model:

dQ,1nn = βti · dQ,R (ti ) + cti (11)



wheredQ,R (ti ) is Q’s distance from the progressive answer at
time ti . As an advantage, this method produces models that
are well adapted to each time of interest. On the downside, it
requires the pre-specification of a discrete set of time points,
which may not be desirable for certain application scenarios.
However, building such models from an existing training
dataset is inexpensive, so reconfiguring the moments of in-
terest at use time is not a problem.
The above model can be enhanced with an additional

term β ·dwQ (see Equation 8) that takes witness information
into account. However, this term results in no measurable
improvements in practice, so we do not discuss it further.

Kernel Density Estimation. A main strength of the previ-
ous method is its simplicity. However, linearity is a strong
assumption that may not always hold. Other assumption
violations, such as heteroscedasticity, can limit the accuracy
of linear regression models. As alternatives, we investigate
non-parametric methods that approximate the density distri-
bution function hQ,t (·) based on multivariate kernel density
estimation [27, 83].
As for linear models, we rely on the functional relation-

ship between progressive and final answers. We represent
this relationship as a 3-dimensional density probability func-
tion kQ (x ,y, t ) that expresses the probability that the 1-NN
distance from Q is x , given that Q’s distance from the pro-
gressive answer at time t is y. From this function, we derive
hQ,t (x ) by setting y = dQ,R (t ).

We examine two approaches for constructing the function
kQ (·, ·, ·). As for linear models, we specify discrete moments
of interest ti and then use bivariate kernel density estima-
tion [84] to construct an individual density probability func-
tionkQ (·, ·, ti ). Alternatively, we construct a common density
probability function by using 3-variate kernel density esti-
mation. The advantage of this method is that it can predict
the 1-NN distance at any point in time. Nevertheless, this
comes with a cost in terms of precision (see Section 6).

The accuracy of kernel density estimation highly depends
on the method that one uses to smooth out the contribution
of points (2D or 3D) in a training sample.We use gaussian ker-
nels, but for each estimation approach, we select bandwidths
with a different technique. We found that the plug-in selector
ofWand and Jones [84] works best for our bivariate approach,
while the smoothed cross-validation technique [27] works
best for our 3-variate approach.

Measuring Time. So far, we have based our analysis on
time. Nevertheless, time (expressed in seconds) is not a reli-
able measure for training and applying models in practice.
The reason is that time largely depends on the available
computation power, which can vary greatly across different
hardware settings. Our solution is to use alternative mea-
sures that capture the progress of computation without being
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Figure 4: Estimating the probability of exact answers
with 100 training queries based on the current pro-
gressive answer (seismic dataset). We show the logis-
tic curves (in green) at different points in time (64, 256,
1024, and 4096 leaves) and 200 test queries (in orange).
affected by hardware and computation loads. One can use
either the number of series comparisons (i.e., the number
of distance calculations), or the number of visited leaves.
Both measures can be easily extracted from the iSAX2+ [15],
the DSTree [85], or other tree-based similarity-search algo-
rithms. Our analyses in this paper are based on the number
of visited leaves (Leaves Visited). We should note that for a
given number of visited leaves, we only consider a single
approximate answer, which is the best-so-far answer after
traversing the last leaf.

5.3 Estimates for Exact Answers
We investigate two types of estimates for exact answers
(see Section 4.2): (i) progressive estimates of the probability
pQ (t ) that the 1-NN has been found; and (ii) query-sensitive
estimates of the time tQ that it takes to find the exact answer.
We base our estimations on the observation that queries with
larger 1-NN distances tend to be harder, i.e., it takes longer to
find their 1-NN. Now, since approximate distances are good
predictors of their exact answers (see previous subsection),
we can also use them as predictors of pQ (t ) and tQ .
Probability Estimation. Let t1, t2, ..., tm be moments of in-
terest, and let dQ,R (ti ) be the distance of the progressive
result at time ti . We use logistic regression to model the
probability pQ (ti ) as follows:

ln
pQ (ti )

1 − pQ (ti )
= βti · dQ,R (ti ) + cti (12)

Again, we can use the number of visited leaves to represent
time. Figure 4 presents an example for the seismic dataset,
where we model the probability of exact answers for four
points in time (when 64, 256, 1024, and 4096 leaves are vis-
ited). We observe that over time, the curve moves to the right
range of distances, and thus, probabilities increase.
Note that we have considered other predictors as well

(such as the time passed since the last progressive answer),
but they did not offer any predictive value.

Time Bound Estimation. As we explained in Section 4.3,
we provide a single estimate for tQ at the very beginning
of the search. Figure 5 illustrates the relationship between
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Figure 5: Upper time bounds for exact answers (ϕ =
.05). Bounds (in blue) are constructed from 100 queries
through quantile regression, where we estimate the
95% quantile of the logarithm of leaf visits as a func-
tion of the distance of the 1st approximate answer.

the distance of the first approximate answer and the number
of leaves (in logarithmic scale) at which the exact answer is
found. We observe that the correlation between the two vari-
ables is ratherweak. However, we can still extractmeaningful
query-sensitive upper bounds, shown in blue (dashed lines).
To construct such bounds, we use quantile regression [49].
This method allows us to directly estimate the 1−ϕ quantile
of the time needed to find the exact answer, i.e., derive the
upper bound τQ,ϕ . As a shortcoming, the accuracy of quan-
tile regression is sensitive in small samples. Nevertheless,
we show that 100 training queries are generally enough to
ensure high-quality results.

5.4 Visualization Example
Figure 6 presents an example that illustrates how the above
methods can help users assess how far from the 1-NN their
current answers are. We use a variation of pirate plots [70]
to visualize the 1-NN distance estimate d̂Q,1nn (t ) and the
relative error estimate ϵ̂Q (t ) by showing their probability
density distribution and their 95% prediction interval. We
also communicate the probability pQ (ti ) and a probabilistic
bound τQ,ϕ (ϕ = .05) after the first visited leaf.

Observe that the initial distance estimate is rather uncer-
tain, but estimates become precise at the early stages of the
search. The upper bound of the error estimate drops below
10% within 1.1sec, while the probability that the current an-
swer is exact is estimated as 98% after 15.7sec (total query
execution time for this query is 75.2sec). Such estimates can
give confidence to the user that the current answer is very
close to the 1-NN. In this example, the 1-NN is found in
3.8sec.

6 EXPERIMENTAL EVALUATION
Environment. All experiments were run on a Dell T630
rack server with two Intel Xeon E5-2643 v4 3.4Ghz CPUs,
512GB of RAM, and 3.6TB (2 x 1.8TB) HDD in RAID0.
Implementation.Our estimationmethodswere implemented
in R. We use R’s lm function to carry our linear regression,
the ks library [28] for multivariate kernel density estimation,
and the quantreg library [32] for quantile regression. We use

a grid of 200 × 200 points to approximate a 2D density distri-
bution and a grid of 60 × 180 × 180 points to approximate a
3D density distribution. Source code and datasets are in [1].
Datasets. We used 1 synthetic and 3 real datasets from past
studies [30, 92]. All are 100GB in size with cardinalities and
lengths reported in Table 2. Synthetic data series were gener-
ated as random walks (cumulative sums) of steps that follow
aGaussian distribution (0,1). This type of data has been exten-
sively used in the past [15, 33, 93] andmodels the distribution
of stock market prices [33]. The IRIS seismic dataset [36] is
a collection of seismic instrument recordings from several
stations worldwide (100M series of length 256). The SALD
neuroscience dataset [80] contains MRI data (200M series of
length 128). The image processing dataset, deep1B [81], con-
tains vectors extracted from the last layers of a convolutional
neural network (267M series of length 96).
Measures. We use the following measures to assess the
estimation quality of each method and compare their results:
Coverage Probability: It measures the proportion of the time
that the prediction intervals contain the true 1-NN distance.
If the confidence level of the intervals is 1 − θ , the coverage
probability should be close to 1 − θ . A low coverage proba-
bility is problematic. In contrast, a coverage probability that
is higher than its nominal value (i.e., its confidence level) is
acceptable but can hurt the intervals’ precision. In particu-
lar, a very wide interval that always includes the true 1-NN
distance (100% coverage) can be useless.
Prediction Intervals Width: It measures the size of prediction
intervals that a method constructs. Tighter intervals are
better. However, this is only true if the coverage probability
of the tighter intervals is close to or higher than their nominal
confidence level. Note that for progressive distance estimates,
we construct one-sided intervals. Their width is defined with
respect to the upper distance bound dQ,R (t ).
Root-Mean-Squared Error (RMSE): It evaluates the quality
of point (rather than interval) estimates by measuring the
standard deviation of the true 1-NN distance values from
their expected (mean) values.
To evaluate the performance of our stopping criteria, we

further report on the following measures:
Exact Answers: It measures the number of exact answers as a
percentage of the total number of queries.
Time Savings:Given a load of queries and a stopping criterion,
it measures the time saved as a percentage of the total time
needed to complete the search without early stopping.
Validation Methodology. To evaluate the different meth-
ods, we use a Monte Carlo cross-validation approach that
consists of the following steps. For each dataset, we randomly
draw two disjoint sets of data seriesWpool and Tpool and pre-
calculate all distances between the series of these two sets.
The first set serves as a pool for drawing random sets of wit-
nesses (if applicable), while the second set serves as a pool for
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Figure 6: A query example from the seismic dataset showing the evolution of estimates based on our methods.
The thick black lines show the distance of the current approximate answer. The red error bars represent 95%
prediction intervals. The green line over the predicted distribution of distance errors shows the real error – it is
unknown during the search and is shown here for illustration purposes. Estimates are based on a training set of
100 queries, as well as 100 random witnesses for initial estimates. We use the iSAX2+ index.
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Figure 7: Distribution (over 100 queries) of the number
of leaves visited (in loд2 scale) until finding the 1-NN
(light blue) and completing the search (yellow). The
thick black lines represent medians.

randomly drawing training (if applicable) and testing queries.
At each iteration, we draw nw witnesses (nw = 50, 100, 200,
or 500) and/or nr training queries (nr = 50, 100, or 200) from
Wpool and Tpool , respectively. We also draw nt = 200 testing
queries from Tpool such that they do not overlap with the
training queries. We train and test the evaluated methods
and then repeat the same procedure N = 100 times, where
each time, we draw a new set of witnesses, training, and
testing queries. Thus, for each method and condition, our
results are based on a total of N × nt = 20K measurements.

For all progressive methods, we test the accuracy of their
estimates after the similarity search algorithm has visited
1 (20), 4 (22), 16 (24), 64 (26), 256 (28), and 1024 (210) leaves.
Figure 7 shows the distributions of visited leaves for 100
random queries for all four datasets.

6.1 Results on Prediction Quality
PreviousApproaches.Wefirst evaluate the query-agnostic
and query-sensitive approximation methods of Ciaccia et
al. [20, 21]. To assess how the two methods scale with and
without sampling, we examine smaller datasets with cardi-
nalities of up to 1M data series (up to 100K for the query-
agnostic approach). Those datasets are derived from the ini-
tial datasets presented in Table 2 through random sampling.
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Figure 8: Coverage probabilities of query-agnostic
(left) and query-sensitive (right) methods of Ciaccia
et al. [20, 21] for 95% confidence level. We use 500 wit-
nesses for the query-sensitive methods.We show best-
case results (with the best exp: 3, 5, 12, or adaptive).

Such smaller dataset sizes allow us to derive the full distri-
bution of distances without sampling errors, while they are
sufficient for demonstrating the behavior of the approxima-
tion methods as datasets grow.

Figure 8 presents the coverage probabilities of themethods.
The behavior of query-agnostic approximation is especially
poor. Even when the full dataset is used to derive the distri-
bution of distances, the coverage tends to drop below 10% for
larger datasets (95% confidence level). This demonstrates that
the approximated distribution of 1-NN distances completely
fails to capture the real one.

Results for the query-sensitive method are better, but cov-
erage is still below acceptable levels. Figure 8 presents results
for nw = 500 witnesses. Note that our further tests have
shown that larger numbers of witnesses result in no or very
little improvement, while Ciacca et al. [20] had tested a max-
imum of 200 witnesses. To weight distances (see Equation 9),
we tested the exponent values exp = 3, 5, and 12, where
the first two were also tested by Ciacca et al. [20], while
we found that the third one gave better results for some
datasets. We also tested the authors’ adaptive technique. Fig-
ure 8 presents the best result for each dataset, most often
given by the adaptive technique.
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Figure 9: Coverage probabilities of our estimation methods for 95% and 99% confidence levels. We show averages
for the four datasets (synthetic, seismic, SALD, deep1B) and for 25, 50, 100, and 200 training queries.
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Figure 10: The mean width of the 95% PI for the
witness-based query-sensitive method in relation to
the number of witnesses and training queries.

Weobserve that the GNATmethod results in clearly higher
coverage probabilities than the fully random method. This
result is somehow surprising because Ciacca et al. [20] report
that the GNAT method tends to become less accurate than
the random method in high-dimensional spaces with more
than eight dimensions. Even so, the coverage probability of
the GNAT method is largely below its nominal level. In all
cases, it tends to become less than 50% as the cardinality of
the datasets increases beyond 100K, while in some cases, it
drops below 20% (synthetic and seismic).

For much larger datasets (e.g., 100M data series), we expect
the accuracy of the above methods to become even worse.
We conclude that they are not appropriate for our purposes,
thus we do not study them further.
Quality of Distance Estimates. We evaluate the coverage
probability of 1-NN distance estimation methods for con-
fidence levels 95% (θ = .05) and 99% (θ = .01). Figure 9
presents our results. The coverage of the Baseline method
reaches its nominal confidence level for nw = 200 to 500
witnesses. In contrast, the Query-Sensitive method demon-
strates a very good coverage even for small numbers of wit-
nesses (nw = 50) and training queries (nr = 25). However,
as Figure 10 shows, more witnesses increase the precision
of prediction intervals, i.e., intervals become tighter while

they still cover the same proportion of true 1-NN distances.
Larger numbers of training queries also help.
The coverage probabilities of progressive estimates (Fig-

ure 9-Right) are best for the 2D kernel density approach,
very close to their nominal levels. Linear regression leads to
lower coverage, while the coverage of the 3D kernel density
approach is more unstable. We observe that although the
accuracy of the models drops in smaller training sets, cov-
erage levels can still be considered as acceptable even if the
number of training queries is as low as nr = 25.
Figure 11 compares the quality of initial and early (i.e.,

based on first approximate answer) estimates provided by dif-
ferent techniques: (i) Baseline, (ii) Query-Sensitive method,
(iii) 2D kernel density estimate for iSAX2+, and (iii) 2D ker-
nel density estimate for DSTree. For all comparisons, we set
nw = 500 and nr = 100. For these parameters, the cover-
age probability of all methods is close to 95%. We evaluate
the width of their 95% prediction intervals and RMSE. We
observe similar trends for both measures, where the query-
sensitive method outperforms the baseline. We also observe
that estimation based on the first approximate answer (at the
first leaf) leads to radical improvements for all datasets. Over-
all, the DSTree index gives better estimates than iSAX2+.
As shown in Figure 12, progressive answers lead to fur-

ther improvements. The RMSE is very similar for all three
estimation methods, which means that their point estimates
are equally good. Linear regression results in the narrowest
intervals, which explains the lower coverage probability of
this method. Overall, 2D kernel density estimation provides
the best balance between coverage and interval width.
Sequential Tests.We assess how multiple sequential tests
(refer to Section 4) affect the coverage probability of 1-NN
distance prediction intervals. We focus on 2D kernel density
estimation (nr = 100), which gives the best coverage (see
Figure 9). We examine the effect of (i) three sequential tests
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Figure 12: Progressive models: Mean width of 95% pre-
diction intervals of 1-NNdistance estimates andRMSE.
Results are based on nr = 100 training queries.

when visiting 1, 512, and 1024 leaves, and (ii) five sequential
tests when visiting 1, 256, 512, 768, and 1014 leaves. We
count an error if at least one of the three, or five progressive
prediction intervals do not include the true 1-NN distance.
As results for DSTree and iSAX2+ were very close, we

report on their means (see Figure 13(a)). The coverage of 95%
prediction intervals drops from over 95% to about 90% for
five tests (higher for seismic and lower for deep1B). Like-
wise, the coverage of their 99% prediction intervals drops to
around 95%. These results provide rules of thumb on how to
correct for multiple sequential tests, e.g., use a 95% level in
order to guarantee a 90% coverage in 5 sequential tests. No-
tice, however, that such rules may depend on the estimation
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Figure 13: (a) Effect of 3 and 5 sequential tests on the
coverage of 95% and 99% prediction intervals. We use
2D kernels with nr = 100. (b) Coverage of exact an-
swers for time upper bounds (95% and 99% conf. levels).
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Figure 14: Evaluation of the stopping criterion that
bounds the distance error (ϵQ < ϵ). We use 95% predic-
tion intervals (θ = .05) and nr = 100 training queries.

method and the time steps at which comparisons are made.
An in-depth study of this topic is part of our future work.
Time Bounds for Exact Answers.We are also interested
in the quality of time guarantees for exact answers (refer to
Section 4.2). We evaluate the coverage of our time bounds
for 50, 100, and 200 training queries for confidence levels
95% (ϕ = .05) and 99% (ϕ = .01). Figure 13(b) summarizes
our results. We observe that coverage is good for training
samples of nr ≥ 100, but drops for nr = 50.

6.2 Results on Time Savings
We compare our stopping criteria (see Section 4.3) and assess
the time savings they offer. Figure 14 shows results for our
first criterion that bounds the distance error. We consider 16
discrete and uniform moments ti , where t16 is chosen to be
equal to the maximum time it takes to find an exact answer
in the training sample. For each ti , we train an individual 2D
kernel density and use 95% prediction intervals (θ = .05) for
estimation. The coverage (ratio of queries for which ϵQ < ϵ)
exceeds its nominal level (95%) for all datasets, which sug-
gests that results might be conservative. The reason is that
stopping could only occur at certain moments. For higher
granularity, one can use a larger number of discrete moments.
The ratio of exact answers is close to 95% for ϵ = .01 but
becomes unstable for ϵ = .05, dropping to as low as 70%
for the seismic dataset. On the other hand, this results in
considerable time savings, especially for DSTree: higher than
90% for the synthetic, SALD, and deep1B datasets.



iSAX2+ DSTree

.01 .05 .10 .01 .05 .10
85

90

95

100

E
xa

ct
 A

ns
w

er
s 

(%
)

iSAX2+ DSTree

.01 .05 .10 .01 .05 .10
85

90

95

100
iSAX2+ DSTree

.01 .05 .10 .01 .05 .10

40

60

80

100

Ti
m

e 
S

av
in

gs
 (%

) iSAX2+ DSTree

.01 .05 .10 .01 .05 .10

40

60

80

100

φ φ φ φdeep1BSALDseismicsynthetic

   time-bound criterion    probability criterion    time-bound criterion    probability criterion

Figure 15: Evaluation of stopping criteria that bound (ϕ) the probability/ratio of non-exact answers. We measure
their ratio of exact answers and their time savings (%). For all conditions, we use nr = 100 training queries.

0

20

40

60

80

0 200 400 600
Queries

Ti
m

e 
(h

ou
rs

)

ϵ

no stopping

n  = 100 n  = 50

distance-error criterion (θ = .05)

ϵ = .05ϵ = .01

0

20

40

60

80

0 200 400 600
Queries

Ti
m

e 
(h

ou
rs

)

no stoppingφ = .05φ = .01

0 200 400 600
Queries

no stopping

  time-bound   probability  time-bound  probability

φ = .05φ = .01

n  = 100 n  = 50r r r r

Q
<

(%
)

E
xa

ct
 A

ns
w

er
s 

(%
)

94

96

98

100

.01 .05

94

96

98

100

.01 .05

nominal

ϵ φ φ
94

96

98

100

.01 .05 .01 .05

E
xa

ct
 A

ns
w

er
s 

(%
)

nom
inal

nom
inal
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We draw nr = 50 or 100 random queries for training. We then apply a criterion to the remaining queries. Answers
with ϵQ < ϵ and exact ones (%) are measured for those “testing” queries. (We report means over 100 repetitions.)

Figure 15 compares the two stopping criteria (time bound
and probability) that control the ratio of exact answers. For
the probability criterion, we consider again 16 discrete mo-
ments to stop the search, as above. The time-bound criterion
results in mean exact answer ratios that are very close to
nominal levels, while the probability criterion is rather con-
servative. However, the time gains of the two techniques are
comparable. For iSAX2+, the probability criterion achieves
both a higher accuracy and higher time savings than the
probability criterion. In contrast, both criteria lead to similar
time savings for DSTree, reducing query times by up to 95%.
Training Costs vs. Gains. Training linear models with 100
queries is instantaneous, while learning 16− 20 density func-
tions with 2D kernel density estimation takes no more than
4-6 seconds on a regular laptop. Of course, our approach
requires the full execution of the training queries. For a de-
tailed analysis of the costs of exact similarity search with
iSAX2+ and DSTree, we refer the reader to the results of
Echihabi et al. [30]. Depending on the size and type of the
dataset, processing 100 queries can take some dozens of min-
utes (50 GB datasets), or several hours (250 GB datasets).
Nevertheless, the higher this initial training cost, the higher
the benefit is when users later execute their queries.
Figure 16 shows the results for the first 600 queries ex-

tracted from a real query workload that comes with the
deep1B dataset. (Experiment conducted on a server with two
Intel Xeon E5-2650 v4 2.2GHz CPUs, 75GB of RAM.) Results

are based on 100 repetitions; each time we draw at random
50, or 100 queries for training. We then apply our stopping
criteria to accelerate the remaining queries.
The results show that our approach leads to significant

performance improvements, while coverage (exact answers,
or answers with ϵQ < ϵ) is very close to, or higher than the
nominal levels, even with training sizes of only 50 queries.
For example, this workload of 600 queries would normally
take 76 hours to execute with the DSTree index, but we can
execute it in less than 20 hours (probability criterion; includ-
ing training time), while achieving an average coverage of
more than 95% exact answers. Finally, we note that, as the
trends in the graphs show, the time savings and speedup
offered by our progressive similarity search techniques will
increase as the size of the query workload increases.

7 CONCLUSIONS
Providing progressive answers for data series similarity search
along with probabilistic quality guarantees is an important
problem.We describe the first scalable and effective solutions
to this problem, and demonstrate their applicability using
synthetic and real datasets from diverse domains.

Acknowledgments. Work partially supported by program
Investir l’Avenir and Univ. of Paris IDEX Emergence en
Recherche ANR-18-IDEX-0001, EU project NESTOR (MSCA
#748945), and FMJH Program PGMO with EDF-THALES.



REFERENCES
[1] 2020. Suplmentary Material. http://helios.mi.parisdescartes.fr/

~themisp/progrss/
[2] Marco Angelini, Giuseppe Santucci, Heidrun Schumann, and Hans-

Jörg Schulz. 2018. A Review and Characterization of Progressive Visual
Analytics. Informatics 5 (2018), 31.

[3] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman,
and Angela Y. Wu. 1998. An Optimal Algorithm for Approximate
Nearest Neighbor Searching Fixed Dimensions. J. ACM 45, 6 (Nov.
1998), 891–923. https://doi.org/10.1145/293347.293348

[4] Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath,
Alexey Pryakhin, and Matthias Renz. 2006. Similarity Search on Time
Series Based on Threshold Queries. In Advances in Database Technol-
ogy - EDBT 2006, 10th International Conference on Extending Database
Technology, Munich, Germany, March 26-31, 2006, Proceedings. 276–294.
https://doi.org/10.1007/11687238_19

[5] Artem Babenko and Victor S. Lempitsky. 2015. The Inverted Multi-
Index. IEEE Trans. Pattern Anal. Mach. Intell. 37, 6 (2015), 1247–1260.

[6] Sriram Karthik Badam, Niklas Elmqvist, and Jean-Daniel Fekete. 2017.
Steering the Craft: UI Elements and Visualizations for Supporting
Progressive Visual Analytics. Comput. Graph. Forum 36, 3 (June 2017),
491–502. https://doi.org/10.1111/cgf.13205

[7] Anthony J. Bagnall, Richard L. Cole, Themis Palpanas, and Konstanti-
nos Zoumpatianos. 2019. Data Series Management (Dagstuhl Seminar
19282). Dagstuhl Reports 9, 7 (2019).

[8] Gustavo E. Batista, Eamonn J. Keogh, Oben Moses Tataw, and Viní-
cius M. Souza. 2014. CID: An Efficient Complexity-invariant Distance
for Time Series. Data Min. Knowl. Discov. 28, 3 (2014).

[9] Donald J Berndt and James Clifford. 1994. Using Dynamic Time Warp-
ing to Find Patterns in Time Series. In AAAIWS. 359–370.

[10] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas.
2020. Automated Anomaly Detection in Large Sequences. In ICDE.

[11] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based
Subsequence Anomaly Detection for Time Series. PVLDB (2020).

[12] Sergey Brin. 1995. Near Neighbor Search in Large Metric Spaces. In
Proceedings of the 21th International Conference on Very Large Data
Bases (VLDB ’95). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 574–584. http://dl.acm.org/citation.cfm?id=645921.673006

[13] Paolo Buono and Adalberto Lafcadio Simeone. 2008. Interactive Shape
Specification for Pattern Search in Time Series. In AVI.

[14] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh.
2010. iSAX 2.0: Indexing and Mining One Billion Time Series. In ICDM.
IEEE Computer Society, 58–67.

[15] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthan-
manon, and Eamonn J. Keogh. 2014. Beyond One Billion Time Series:
Indexing and Mining Very Large Time Series Collections with iSAX2+.
Knowl. Inf. Syst. 39, 1 (2014), 123–151.

[16] Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael
Pazzani. 2002. Locally Adaptive Dimensionality Reduction for Indexing
Large Time Series Databases. ACM Trans. Database Syst. 27, 2 (June
2002), 188–228. https://doi.org/10.1145/568518.568520

[17] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly
Detection: A Survey. ACM Computing Surveys (CSUR) 41, 3 (2009), 15.

[18] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approxi-
mate Query Processing: No Silver Bullet. In SIGMOD.

[19] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Caz-
zanti. 2009. Similarity-based Classification: Concepts and Algorithms.
J. Mach. Learn. Res. 10 (June 2009), 747–776. http://dl.acm.org/citation.
cfm?id=1577069.1577096

[20] Paolo Ciaccia, Alessandro Nanni, and Marco Patella. 1999. A Query-
sensitive Cost Model for Similarity Queries with M-tree. In In Proc. of

the 10th ADC. Springer Verlag, 65–76.
[21] Paolo Ciaccia and Marco Patella. 2000. PAC Nearest Neighbor Queries:

Approximate and Controlled Search in High-Dimensional and Metric
Spaces. In ICDE. 244–255.

[22] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1998. A Cost Model for
Similarity Queries in Metric Spaces. In Proceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS ’98). ACM, New York, NY, USA, 59–68. https://doi.org/
10.1145/275487.275495

[23] Michael Correll and Michael Gleicher. 2016. The Semantics of Sketch:
Flexibility in Visual Query Systems for Time Series Data. In VAST.

[24] Michele Dallachiesa, Themis Palpanas, and Ihab F. Ilyas. 2014. Top-k
Nearest Neighbor Search in Uncertain Data Series. Proc. VLDB Endow.
8, 1 (Sept. 2014), 13–24. https://doi.org/10.14778/2735461.2735463

[25] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and
Chi Wang. 2016. Sample + Seek: Approximating Aggregates with
Distribution Precision Guarantee. In SIGMOD.

[26] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and
Eamonn Keogh. 2008. Querying and Mining of Time Series Data:
Experimental Comparison of Representations and Distance Measures.
Proceedings of the VLDB Endowment 1, 2 (2008), 1542–1552.

[27] Tarn Duong andMartin L. Hazelton. 2005. Cross-validation Bandwidth
Matrices for Multivariate Kernel Density Estimation. Scandinavian
Journal of Statistics 32, 3 (2005), 485–506. https://doi.org/10.1111/j.
1467-9469.2005.00445.x

[28] Tarn Duong, Matt Wand, Jose Chacon, and Artur Gramacki. 2019. ks:
Kernel Smoothing. https://cran.r-project.org/web/packages/ks/.

[29] Karima Echihabi. 2019. Truly Scalable Data Series Similarity Search.
In VLDB PhD Workshop.

[30] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda
Benbrahim. 2018. The Lernaean Hydra of Data Series Similarity Search:
An Experimental Evaluation of the State of the Art. PVLDB 12, 2 (2018),
112–127.

[31] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda
Benbrahim. 2019. Return of the Lernaean Hydra: Experimental Eval-
uation of Data Series Approximate Similarity Search. PVLDB 13, 3
(2019), 402–419.

[32] Roger Koenker et al. 2019. quantreg: Quantile Regression. https:
//cran.r-project.org/web/packages/quantreg.

[33] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994.
Fast Subsequence Matching in Time-Series Databases. In SIGMOD.
ACM, New York, NY, USA, 419–429. https://doi.org/10.1145/191839.
191925

[34] Jean-Daniel Fekete and Romain Primet. 2016. Progressive Analyt-
ics: A Computation Paradigm for Exploratory Data Analysis. CoRR
abs/1607.05162 (2016). http://arxiv.org/abs/1607.05162

[35] Danyel Fisher, Steven M. Drucker, and A. Christian König. 2012. Ex-
ploratory Visualization Involving Incremental, Approximate Database
Queries and Uncertainty. IEEE CG&A 32 (2012).

[36] Incorporated Research Institutions for Seismology. 2014. IRIS Seismic
Data Access. http://ds.iris.edu/data/access/.

[37] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia
Bezerianos. 2018. Comparing Similarity Perception in Time Series
Visualizations. IEEE TVCG 25 (2018).

[38] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia
Bezerianos. 2019. Progressive Similarity Search on Time Series Data.
In Proceedings of theWorkshops of the EDBT/ICDT 2019 Joint Conference,
EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019. http://ceur-ws.org/
Vol-2322/BigVis_5.pdf

[39] Dina Q. Goldin and Paris C. Kanellakis. 1995. On Similarity Queries
for Time-Series Data: Constraint Specification and Implementation. In
CP.

http://helios.mi.parisdescartes.fr/~themisp/progrss/
http://helios.mi.parisdescartes.fr/~themisp/progrss/
https://doi.org/10.1145/293347.293348
https://doi.org/10.1007/11687238_19
https://doi.org/10.1111/cgf.13205
http://dl.acm.org/citation.cfm?id=645921.673006
https://doi.org/10.1145/568518.568520
http://dl.acm.org/citation.cfm?id=1577069.1577096
http://dl.acm.org/citation.cfm?id=1577069.1577096
https://doi.org/10.1145/275487.275495
https://doi.org/10.1145/275487.275495
https://doi.org/10.14778/2735461.2735463
https://doi.org/10.1111/j.1467-9469.2005.00445.x
https://doi.org/10.1111/j.1467-9469.2005.00445.x
https://cran.r-project.org/web/packages/ks/
https://cran.r-project.org/web/packages/quantreg
https://cran.r-project.org/web/packages/quantreg
https://doi.org/10.1145/191839.191925
https://doi.org/10.1145/191839.191925
http://arxiv.org/abs/1607.05162
http://ds.iris.edu/data/access/
http://ceur-ws.org/Vol-2322/BigVis_5.pdf
http://ceur-ws.org/Vol-2322/BigVis_5.pdf


[40] Yue Guo, Carsten Binnig, and Tim Kraska. 2017. What you see is
not what you get!: Detecting Simpson’s Paradoxes during Data Explo-
ration. In Proceedings of the 2nd Workshop on Human-In-the-Loop Data
Analytics, HILDA@SIGMOD.

[41] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online
Aggregation. In SIGMOD.

[42] Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadim-
itriou. 1997. On the Analysis of Indexing Schemes. In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS ’97). Association for Computing Machinery,
New York, NY, USA, 249–256. https://doi.org/10.1145/263661.263688

[43] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product
Quantization for Nearest Neighbor Search. IEEE Trans. Pattern Anal.
Mach. Intell. 33, 1 (2011), 117–128.

[44] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra.
2008. Scalable approximate query processing with the DBO engine.
ACM Trans. Database Syst. 33, 4 (2008), 23:1–23:54.

[45] J. Jing, J. Dauwels, T. Rakthanmanon, E. Keogh, S.S. Cash, and M.B.
Westover. 2016. Rapid Annotation of Interictal EpileptiformDischarges
via Template Matching under Dynamic Time Warping. Journal of
Neuroscience Methods 274 (2016).

[46] Paris C. Kanellakis, Sridhar Ramaswamy, Darren E. Vengroff, and
Jeffrey S. Vitter. 1993. Indexing for Data Models with Constraints
and Classes (Extended Abstract). In Proceedings of the Twelfth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS ’93). Association for Computing Machinery, New York, NY, USA,
233–243. https://doi.org/10.1145/153850.153884

[47] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad
Mehrotra. 2001. Dimensionality Reduction for Fast Similarity Search
in Large Time Series Databases. Knowledge and Information Systems 3,
3 (2001), 263–286. https://doi.org/10.1007/PL00011669

[48] Eamonn Keogh and M. Pazzani. 1998. An Enhanced Representation of
Time Series which Allows Fast and Accurate Classification, Clustering
and Relevance Feedback. In Fourth International Conference on Knowl-
edge Discovery and Data Mining (KDD’98). ACM Press, New York City,
NY, 239–241.

[49] Roger Koenker. 2005. Quantile Regression. Cambridge University Press.
https://doi.org/10.1017/CBO9780511754098

[50] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis
Palpanas. 2018. Coconut: A Scalable Bottom-Up Approach for Building
Data Series Indexes. PVLDB 11, 6 (2018), 677–690. https://doi.org/10.
14778/3184470.3184472

[51] Tim Kraska. 2018. Northstar: An Interactive Data Science System.
PVLDB 11, 12 (2018), 2150–2164.

[52] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020.
Improving Approximate Nearest Neighbor Search through Learned
Adaptive Early Termination. In SIGMOD.

[53] Jessica Lin, Eamonn J. Keogh, Stefano Lonardi, and Bill Yuan-chi Chiu.
2003. A Symbolic Representation of Time Series, with Implications
for Streaming Algorithms. In Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery,
DMKD 2003, San Diego, California, USA, June 13, 2003. 2–11. https:
//doi.org/10.1145/882082.882086

[54] Michele Linardi and Themis Palpanas. 2019. Scalable, Variable-Length
Similarity Search in Data Series: The ULISSE Approach. PVLDB (2019).

[55] Michele Linardi and Themis Palpanas. 2020. Scalable Data Series
Subsequence Matching with ULISSE. VLDBJ (2020).

[56] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh.
2018. Matrix Profile X: VALMOD - Scalable Discovery of Variable-
Length Motifs in Data Series. SIGMOD.

[57] Yury A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approx-
imate Nearest Neighbor Search Using Hierarchical Navigable Small

World Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (2020),
824–836.

[58] Miro Mannino and Azza Abouzied. 2018. Expressive Time Series
Querying with Hand-Drawn Scale-Free Sketches. In CHI.

[59] Luana Micallef, Hans-Jörg Schulz, Marco Angelini, Michaël Aupetit,
Remco Chang, Jörn Kohlhammer, Adam Perer, and Giuseppe Santucci.
2019. The Human User in Progressive Visual Analytics. In Short Paper
Proceedings of EuroVis’19. Eurographics Association, 19–23. https:
//doi.org/10.2312/evs.20191164

[60] KatsiarynaMirylenka, Michele Dallachiesa, and Themis Palpanas. 2017.
Data Series Similarity Using Correlation-Aware Measures. In SSDBM.

[61] Dominik Moritz, Danyel Fisher, Bolin Ding, and ChiWang. 2017. Trust,
but Verify: Optimistic Visualizations of Approximate Queries for Ex-
ploring Big Data. In CHI.

[62] Dominik Moritz, Bill Howe, and Jeffrey Heer. 2019. Falcon: Balancing
Interactive Latency and Resolution Sensitivity for Scalable Linked
Visualizations. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). ACM, New York, NY, USA,
Article 694, 11 pages. https://doi.org/10.1145/3290605.3300924

[63] J. Nielsen. [n.d.]. Response times: The 3 important limits. https:
//www.nngroup.com/articles/response-times-3-important-limits/.

[64] Themis Palpanas. 2015. Data Series Management: The Road to Big
Sequence Analytics. SIGMOD Record 44, 2 (2015), 47–52. https:
//doi.org/10.1145/2814710.2814719

[65] Themis Palpanas. 2020. Evolution of a Data Series Index - The iSAX
Family of Data Series Indexes. Communications in Computer and
Information Science (CCIS) (2020).

[66] Themis Palpanas and Volker Beckmann. 2019. Report on the First
and Second Interdisciplinary Time Series Analysis Workshop (ITISA).
SIGMOD Rec. 48, 3 (2019).

[67] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. MESSI:
In-Memory Data Series Indexing. In ICDE.

[68] Botao Peng, Themis Palpanas, and Panagiota Fatourou. 2018. ParIS:
The Next Destination for Fast Data Series Indexing and Query An-
swering. IEEE BigData (2018).

[69] Botao Peng, Themis Palpanas, and Panagiota Fatourou. 2020. ParIS+:
Data Series Indexing on Multi-core Architectures. TKDE (2020).

[70] Nathaniel Phillips. 2017. A Companion to the e-Book “YaRrr!: The
Pirate’s Guide to R”. https://github.com/ndphillips/yarrr.

[71] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais,
Karrie Karahalios, Aditya Parameswaran, and Ronitt Rubinfield. 2017.
I’Ve Seen "Enough": Incrementally Improving Visualizations to Support
Rapid Decision Making. Proc. VLDB Endow. 10, 11 (Aug. 2017), 1262–
1273. https://doi.org/10.14778/3137628.3137637

[72] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen,
Gustavo E. A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin
Zakaria, and Eamonn J. Keogh. 2012. Searching and Mining Trillions
of Time Series Subsequences under Dynamic Time Warping. In KDD.
ACM, 262–270.

[73] Thanawin Rakthanmanon, Eamonn J Keogh, Stefano Lonardi, and
Scott Evans. 2011. Time Series Epenthesis: Clustering Time Series
Streams requires Ignoring Some Data. In Data Mining (ICDM), 2011
IEEE 11th International Conference on. IEEE, 547–556.

[74] Pedro Pereira Rodrigues, João Gama, and João Pedro Pedroso. 2006.
ODAC: Hierarchical Clustering of Time Series Data Streams. In SDM.
SIAM, 499–503.

[75] Hans-Jörg Schulz, Marco Angelini, Giuseppe Santucci, and H Schu-
mann. 2016. An Enhanced Visualization Process Model for Incremen-
tal Visualization. IEEE Transactions on Visualization and Computer
Graphics 22 (07 2016), 1830–1842. https://doi.org/10.1109/TVCG.2015.
2462356

https://doi.org/10.1145/263661.263688
https://doi.org/10.1145/153850.153884
https://doi.org/10.1007/PL00011669
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.14778/3184470.3184472
https://doi.org/10.14778/3184470.3184472
https://doi.org/10.1145/882082.882086
https://doi.org/10.1145/882082.882086
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.1145/3290605.3300924
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.1145/2814710.2814719
https://doi.org/10.1145/2814710.2814719
https://github.com/ndphillips/yarrr
https://doi.org/10.14778/3137628.3137637
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356


[76] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless Data Exploration with Zenvisage: An
Expressive and Interactive Visual Analytics System. Proc. VLDB Endow.
10, 4 (Nov. 2016), 457–468. https://doi.org/10.14778/3025111.3025126

[77] Charles D. Stolper, Adam Perer, and David Gotz. 2014. Progressive
Visual Analytics: User-Driven Visual Exploration of In-Progress Ana-
lytics. IEEE TVCG 20 (2014).

[78] Edward R. Tufte. 1986. The Visual Display of Quantitative Information.
[79] Cagatay Turkay, Erdem Kaya, Selim Balcisoy, and Helwig Hauser. 2017.

Designing Progressive and Interactive Analytics Processes for High-
Dimensional Data Analysis. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (Jan. 2017), 131–140. https://doi.org/10.1109/
TVCG.2016.2598470

[80] Southwest University. 2017. Southwest University Adult Lifespan
Dataset (SALD). http://fcon_1000.projects.nitrc.org/indi/retro/sald.
html.

[81] Skoltech Computer Vision. 2018. Deep billion-scale indexing. http:
//sites.skoltech.ru/compvision/noimi.

[82] Abraham Wald. 1945. Sequential Tests of Statistical Hypotheses. The
Annals of Mathematical Statistics 16, 2 (06 1945), 117–186. https:
//doi.org/10.1214/aoms/1177731118

[83] Matt P. Wand and Michael C. Jones. 1993. Comparison of Smoothing
Parameterizations in Bivariate Kernel Density Estimation. J. Amer.
Statist. Assoc. 88, 422 (1993), 520–528. https://doi.org/10.1080/01621459.
1993.10476303

[84] Matt P. Wand and Michael C. Jones. 1994. Multivariate plug-in
bandwidth selection. Computational Statistics 9, 2 (1994), 97–116.
http://oro.open.ac.uk/28244/

[85] YangWang, PengWang, Jian Pei, WeiWang, and Sheng Huang. 2013. A
Data-adaptive and Dynamic Segmentation Index for Whole Matching
on Time Series. PVLDB 6, 10 (2013), 793–804.

[86] T. Warren Liao. 2005. Clustering of Time Series Data — A Survey.
Pattern Recognition 38, 11 (2005), 1857–1874.

[87] Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. 2013. Online Aggregation.
In Advanced Query Processing, Volume 1: Issues and Trends. 187–210.

[88] Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis
Palpanas. 2020. Massively Distributed Time Series Indexing and Query-
ing. TKDE 32, 1 (2020).

[89] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. 2017.
How Progressive Visualizations Affect Exploratory Analysis. IEEE
Transactions on Visualization and Computer Graphics 23, 8 (Aug 2017),
1977–1987. https://doi.org/10.1109/TVCG.2016.2607714

[90] Emanuel Zgraggen, Zheguang Zhao, Robert C. Zeleznik, and Tim
Kraska. 2018. Investigating the Effect of the Multiple Comparisons
Problem in Visual Analysis. In CHI.

[91] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2015.
RINSE: Interactive Data Series Exploration with ADS+. PVLDB 8,
12 (2015), 1912–1915. https://doi.org/10.14778/2824032.2824099

[92] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS:
The Adaptive Data Series Index. VLDB J. 25, 6 (2016), 843–866. https:
//doi.org/10.1007/s00778-016-0442-5

[93] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke.
2015. Query Workloads for Data Series Indexes. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Sydney, NSW, Australia, August 10-13, 2015. 1603–
1612. https://doi.org/10.1145/2783258.2783382

https://doi.org/10.14778/3025111.3025126
https://doi.org/10.1109/TVCG.2016.2598470
https://doi.org/10.1109/TVCG.2016.2598470
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
http://sites.skoltech.ru/compvision/noimi
http://sites.skoltech.ru/compvision/noimi
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1080/01621459.1993.10476303
https://doi.org/10.1080/01621459.1993.10476303
http://oro.open.ac.uk/28244/
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.14778/2824032.2824099
https://doi.org/10.1007/s00778-016-0442-5
https://doi.org/10.1007/s00778-016-0442-5
https://doi.org/10.1145/2783258.2783382

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Background
	4 Progressive Similarity Search
	4.1 Progressive Distance Estimates
	4.2 Guarantees for Exact Answers
	4.3 Stopping Criteria

	5 Prediction Methods
	5.1 Initial 1-NN Distance Estimates
	5.2 Progressive 1-NN Distance Estimates
	5.3 Estimates for Exact Answers
	5.4 Visualization Example

	6 Experimental Evaluation
	6.1 Results on Prediction Quality
	6.2 Results on Time Savings

	7 Conclusions
	References

