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Source localization and quantification by an acoustic array of microphones depend to a great extent on an
accurate knowledge of the antenna position towards the radiating device. The present work details a
methodology to determine the location of the microphones in relation to an object of study, starting from
its geometric shape and that of the array, in order to reproduce an experimental configuration in any
retro-propagating method. A set of reference sources are placed on several prominent locations of the
device to estimate the times of flight (ToF) (and distances) between them and the microphones, connect-
ing the array and the object together. The overall geometric configuration is thus defined by an Euclidean
Distance Matrix (EDM), which is basically the matrix of squared distances between points. First,
MultiDimensional Unfolding (MDU) technique is used to reconstruct the point set from distances.
Second, this point set is then aligned with the device, using reference sources as anchor nodes. This
orthogonal Procustes problem is solved by the Kabsch algorithm to obtain the optimal rotation and trans-
lation matrices between the coordinate system of the array and that of the object of study. The method-
ology is detailed, validated first by a numerical simulation of a typical experimental set-up. An
experimental campaign is finally carried out to assess the robustness of the method in a typical test case.
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1. Introduction

The localization and quantification of acoustic sources radiated
by a device depend on numerous physical parameters as well as
the microphone array geometry or the chosen retro-propagating
method. As highlighted recently by Gilquin et al. [1] by means of
sentitivity analysis, deviations and uncertainties of the antenna
position and orientation in its experimental environment greatly
influence the sound source reconstruction, both with a classical
beamforming technique or an inverse matrix formulation.

Furthermore, the recent development of wireless acoustic sen-
sor on devices such as smartphones led to a great deal of efforts
to determine the true position of each sensor in a network, in order
to enhance speech processing and speaker localization. The self-
calibration of a microphone network has then become an active
research field, as shown by the review articles of Plinge et al. [2]
and Wang et al. [3]. Valente et al. [4] proposed a method to esti-
mate the position of one array with respect to another one.

The antenna positioning problem tackled in this paper is rather
different: one array of microphones is facing towards a radiating
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device to obtain a sound source map. The shapes of the antenna
and the device are assumed to be completely known in their
own coordinate system. A mesh of the surface of interest is built
to retro-propagate the acoustic field measured by the array on
the device. Finally, this study proposes a method to determine
the antenna position in relation to the device during an experimen-
tal campaign and collect all microphone coordinates in the mesh
coordinate system to perform the retro-propagation.

This application-oriented paper gathers different techniques
based on Euclidean distance geometry to develop a practical tool.
This paper is organized as follows. The theoretical elements are
first developped step by step. Section 2.1 details how to define
the overall geometric configuration, composed of the antenna
and a set of acoustic sources placed on the device, with an Eucli-
dean distance matrix (EDM). Taking the uncertainties of the
sources position into account, the EDM is then completed and its
related point set reconstructed from the distances with a
MultiDimensional Unfolding (MDU) technique, presented in Sec-
tion 2.2. The set is then aligned with the collection of sources,
defined as anchors, by a rigid transformation between the coordi-
nate system of the array and the device, provided by the Kabsch
algorithm (Section 2.3). The robustness of the method is illustrated
with numerical studies, whose configuration is representative of a
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typical experimental set-up (Section 3). Finally, an experimental
evaluation is carried out to assess the robustness of the method
in an industrial application (Section 4).

2. Methodology
2.1. Euclidean distance matrix

2.1.1. Properties

The principle of the proposed method can be summarized as
follows: there is a mathematical relationship between the position
of points in an Euclidean space and the distances between them.
This connection is performed by a mathematical tool called Eucli-
dean Distance Matrix (EDM).

Consider a d-dimensional Euclidean space, where a collection of
n points, representative of a network or the geometry of an object,
are set and described by the columns of the matrix
X € R™*" X = [Xq,Xa,- -, Xn],X; € R The terms d; of an Euclidean
distance matrix D € R™" are the squared distances between points
X; and X; :

dj = 1% = X3, (1)

where || - ||, is the Euclidean norm. The main use of this tool is to
reconstruct the initial configuration corresponding to this matrix,
which defines an inverse problem. An EDM fulfills the following
properties:

o Non-negativity (d; > 0,1+ j)
o Hollow matrix (dj = 0 <= i =)
o Symmetry: d; = dj;

Furthermore, as shown by Gower [5], the rank of an EDM D
related to the set of points X satisfies the inequality:

rank(D) > d + 2. (2)

The EDM is also invariant under orthogonal and rigid transfor-
mations (i.e. any rotation, reflection or translation). As a conse-
quence, the absolute position and orientation of a point set
cannot be reconstructed from its associated EDM. Each result is
then a rigid transformation of another one. For more details, Par-
hizkar [6] provides a complete description of the EDM properties.

2.1.2. Constituting the EDM

Fig. 1 illustrates the ground truth of the antenna positioning
problem, as met in an experimental campaign. The coordinates of
each microphone (dots) in the array reference system is known,
as the distances between them. Acoustic sources (squares) are
placed at some prominent locations of the device. They are gath-
ered in a group of four by a structural support (Fig. 2), whose ful-
crum is sequentially in contact with each prominent location of the
device (at least four, also, see Section 2.3). In that way, the position
of the fulcrum in the reference frame of the device is determined.
The geometry of this structural support and the position of the
sources in its coordinate system are set. Because of the experimen-
tal difficulties to align the support with the device, its true orienta-
tion (azimuthal and elevation angles) is considered unknown.

At the initializing step of the method, the EDM of the antenna
(D,) and the one formed by the acoustic sources set on one support
D, are already known, contrary to the distances between the
sources and the microphones, gathered in the off-diagonal subma-
trice Dg. The lack of knowledge due to the orientation of the sup-
port can be integrated in the proposed method. The EDM D; of all
the sources placed on the device is composed of diagonal block
submatrices related to the sources of one support, sequentially
moved to several locations. If the geometry of the support is
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Fig. 1. Ground truth of the antenna positioning problem. Microphones are
represented by dots while squares depict acoustic sources.
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Fig. 2. (a): Structural support of the four acoustic sources (dots) in its coordinate
system. At the origin is a fulcrum (tip down triangle), in contact with a prominent
location of the device. (b): Unknown angular orientation of the sources. « and p are
the azimuthal and elevation angles, respectively. (c): CAD illustration of the
experimental structural support.

unchanged between two measurement points, those submatrices
are identical. Off-diagonal submatrices of all zeros represent the
unknown distances between sources put on supports located at
different places of the device.
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Denote by n the number of measurement points on the device
and s the number of acoustic sources on a support, the number
of missing entries is equal to (n* — n) x s2. For instance, for a group
of four sources set on a support and four measurement points
(theoretical minimum to solve the problem, see Section 2.3), the
number of unknowns due to the orientation of sources is 192.
The known and unknown data in the EDM related to sources (black
and white, respectively) are displayed within a logical matrix in
Fig. 3-a.

Considering the antenna, a logical matrix of the global configu-
ration can be defined, represented in Fig. 3-b, composed of the
diagonal block submatrices related to microphones (top-left block)
and to sources (bottom-right block). The size of each block is
defined by the number of microphones or sources, respectively.
The distances between microphones and sources, represented by
the blank off-diagonal submatrices remain unknown.

The distance between a source and microphone is determined
by a Time of Flight (ToF) measurement. It is obtained by cross-
correlating the microphone signal with the sound emitted by the
synchronized reference source. The benefit of the synchronization
is the possibility to select the first peak of cross-correlation related
to the straight path, avoiding reflection issues due to the proximity
between the array and the device. An evaluation of the speed of
sound is finally needed to calculate the distance from the time of
flight. The sound of reference sources is chosen according to the
quality of the cross-correlation measurements. Each source placed
on one support can simultaneously emits uncorrelated white noise
or modulated sweep signals. As the peak detection depends on the
length of the time sample, the sampling frequency is an essential
parameter. At a fixed sampling frequency f,, the maximum error
on distance Ad induced by the time sampling is Ad = co/f,. At

Euclidean Distance Matrix D,

(a)

Euclidean Distance Matrix D

Fig. 3. Logical matrices of the sources (a) and the global configuration (b). The black
diagonal submatrices represent the observed entries while blank off-diagonal
submatrices illustrate the unknowns.

Euclidean Distance Matrix D

Fig. 4. Logical matrix of the global configuration after the determination of the
source - microphone distances. Black and white submatrices represent the
observed and missing entries, respectively.

fs =50 kHz, Ad is theoretically smaller than 7 mm (+3.5 mm).
Fig. 4 represents the obtained EDM at the end of this step, where
only the distances between sources on structural supports placed
at different locations are missing.

2.2. Multidimensional Unfolding

Once the EDM is set, the second step is to reconstruct the over-
all geometry, gathering the antenna and the acoustic sources from
the distances between points. MultiDimensional Scaling (MDS)
refers to a collection of techniques for the analysis of similarity
or dissimilarity in a dataset. Initially developped in psychometrics
[7], MDS allows to model a wide range of data as distances and
visualize them as points in a geometric space. The classical MDS,
also known as Torgerson-Gower scaling [8], finds a coordinate

matrix X starting from an EDM D and the embedded dimension
d. The mathematical developments are detailed by Borg and Groe-
nen [8] and summarized by Dokmanic et al. [9].

The method is based on an eigendecomposition of the Gram

matrix (G = XX = UAU”, where ()" denotes the transpose opera-
tor). According to Gower [10], this matrix can be computed with a
double centering, using the geometric centering matrix J:

G=-(1/2)JD), J(n)=1- %llT, (4)

where 1 is a column vector filled with ones. The eigenvalues /; are
sorted in order of decreasing amplitude and only the first d values

are selected. Thus, the point set X = [diag(v74, -+ V7, de(,,,d))}UT
is embedded in a d-dimensional space.

This algorithm is well-suited when the EDM is complete, which
is not the case of this study. However, the EDM is a highly struc-
tured matrix, whose properties are largely used in completion
algorithms from the literature. The particular configuration of this
study reduces to a simplified case of completion by MultiDimen-
sional Unfolding (MDU). Introduced by Schénemann [11], MDU
was developped to solve algebraically the problem of locating
two sets of points in a joint space, given the Euclidean distances
between elements from distincts sets. In this classical exemple,
only the distances between microphones and sources are known,
while the true geometries of the antenna and the sources are
missing. The EDM reduces to off-diagonal block submatrices. In
our particular configuration, the EDM of the antenna and the
sources placed on a support are considered as input data and the
distances between microphones and sources are experimentally
determined.

After Schonemann [11], several methods have been recently
proposed to tackle this completion problem (see e.g. Crocco et al.
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[12]). In their review article, Dokmanic et al. [9] detailed some
algorithms and compared their performance on MDU. One of them,
developped by Parhizkar [6] is thereafter used in the methodology
to perform this step.

2.2.1. Reconstructing the geometry with incomplete EDM

Consider a set of n points X embedded in a d-dimensional space
and its corresponding EDM D. As seen in the previous section, the
observed EDM D can be noisy (sampling issue (see subSec-
tion 3.3.1), measurement uncertainty) and incomplete:

D=WoD+N, (5)

where o is the Hadamard product, N is a symmetric noise matrix
and W a logical (or mask) matrix:

1, (,j)€E
wpe {1 e

otherwise.
The set E gathers the indices of observed distances of the matrix

(6)

D. The aim of the method here is to find an estimated point set X so

that its corresponding EDM D is close to the observed EDM D. The
algorithm is based on the minimization of the dissimilarity metric
called s-stress criterion, introduced by Takane et al. [13]:

minimise » (edm ()A(y) - J,j)z. 7)

XeRM  (if)eE
This cost function is the Frobenius norm of the differences

between the estimated and the observed EDM: || (ﬁ - f)) ||2. Since

the s-stress criterion is separable across points and coordinates, Par-
hizkar [6] proposed a distributed algorithm called alternating coor-
dinate descent method. For each point, the derivative of the cost
function with respect to each coordinate consists in a polynomial
whose roots can be analytically calculated. Their coordinates are
updated at a time and the process is repeated for each point of
the set until convergence.

2.3. Optimal orientation and position of the array

As explained in Section 2.1.1, the EDM is invariant under
orthogonal and rigid transformations. Therefore, the absolute ori-
entation and position of the point set cannot be derived from the
multidimensional unfolding. A new step is needed to find the opti-
mal rotation/reflection and translation matrices which align the
point set in the reference frame of the device. This is performed
with a selection of ng points, denoted as anchors, whose positions
X, in this particular coordinate system are known. This step is usu-
ally called orthogonal Procustes analysis [14]. One solution,
stemmed from crystallography, is the Kabsch algorithm [15,16],
which computes the optimal rotation matrix R between two sets
of points by minimizing the root mean square deviation (least
RMSD, Eq. (8)).

ns
IRMSD = argmin lz | RX; — X[ 8)

ReRdxd S

First of all, the two sets of anchors in both reference frames (f(s
obtained by MDU and X, related to the device) must be translated

to align their centroid ()A(S_C and X ) with the origin of the coordi-
nate system, providing the sets )A(S_,o and X;,.

S 1 & 1&
Xse=— Xsi, X = Xsi, 9
n}; i X "Z: 9)

)A(s.o = )A(s - Xs.clT = )A(s.](ns)a and  Xo = XJ(ns). (10)

The Kabsch algorithm is then based on a singular-value decom-
position (SVD) of the cross-covariance matrix f(&oxgo :

U[SIVT = X oX{,, 1)

where [e] denotes a diagonal matrix. The optimal rotation matrix
reads:
1 0 0
R=V|0 1 0 |U", d e{-1,1}. (12)
0 0 d

)

The translation vector is then T = X, — R)A(S,C. If d. =1, the two

matrices )A(SR + T and X, are identical whereas one of the matrices
is the reflection of the other if d. = —1.

The Kabsch algorithm is carried out to find the optimal rotation
matrix between the position of anchors obtained by the MDU and
their exact position in the device coordinate system. As explained
in Section 2.1.2, four sources are set on a structural support, whose
fulcrum is sequentially in contact with at least four prominent
locations of the device, so that the position of the fulcrum in the
reference frame of the device is determined. A minimum number
of contact points is required to solve the symmetry issues involved
in the EDM. Indeed, in order to represent the absolute orientation
of an object in a unique three-dimensional space, this one must be
at least formed by four points. Consider a three-dimensional space
and a collection of points randomly set in an arbitrary coordinate
system. If the position of one of these points (defined as anchors)
is known in another reference frame, the solutions of the Kabsch
algorithm consist in an infinite number of rotation matrices. In this
case, the possible point sets form a sphere whose center is the
anchor. If two points are defined as anchors, the possible points
sets form a cylinder whose symmetric axis is defined by the seg-
ment between the two anchors. Three anchors then constitute a
symmetric plane and each one of the two possible points set is
the reflection of the other one. Four distinct anchors allow the
determination of the true orientation without ambiguity.

The MDU allows the reconstruction of the point set from dis-
tances. However, instead of the sources, the fulcrums are not con-
sidered in the EDM. Thus, their positions are not included in the
reconstructed point set. The first step of the orthogonal Procustes
analysis is then to determine their coordinates in the reference
frame provided by the MDU. In that way, the Kabsch algorithm is
performed for each support, considering the sources as anchors.
The sources must be at least four, as explained in the previous
paragraph. The positions of the sources and the fulcrum are known
in the coordinate system of the support (Fig. 2-a). The Kabsch algo-
rithm is then applied to find the optimal rotation and translation
matrices that best map the sources coordinates in the support sys-
tem onto those in the MDU reference frame. The position of each
fulcrum in the MDU coordinate system is then determined.

Once more, the Kabsch algorithm is carried out to align the
coordinates of the whole point set in the device reference frame.
The fulcrums are defined as anchors, as their coordinates are
known both in the MDU and in the device coordinate systems.
Finally, the Kabsch algorithm can be performed a last time, taking
the position of the microphones in the array and device coordinate
systems as inputs. This provides directly the rigid transformation
between the coordinate systems of the array and the device.

3. Numerical validation
3.1. Configuration

The numerical configuration is illustrated in Fig. 1. The antenna
is a 50 cm diameter plane array composed of 36 microphones.
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Those are arranged in three rings of 7, 11 and 18 microphones
(Fig. 5), whose center is located at the origin of the coordinate sys-
tem (x = y = 0). The array is facing towards a simplified full-scale
model of a car engine with dimensions of 470 mm width,
380 mm depth and 500 mm height. The change of basis from the
array to the device coordinate systems is represented by rigid
transformation matrices, including a rotation/reflection (R) matrix
and a translation vector (T). In this simulation, these matrices are:

T =[-0.25;0.25;0.5](m), R=R;R/R,, (13)
1 0 0 cosp 0 sinp

Ri() =10 cosae —sina |, Ry(p)= 0 1 0 |,
0 sina cosa —sing 0 cosp

cosy —siny O
R,(y)= ] siny cosy O [,
0 0 1

with the Euler angles o = 57/3,8 = 0,7 = 0. The geometry of the
structural support of the sources is illustrated in Fig. 2-a. The four
acoustic sources form a trirectangular tetrahedron (a cube corner)
whose edges are 5 cm long. The distance between the source at
the center of the support and its fulcrum is equal to 5 cm too. Four
supports are placed at the corners of the device in such a way that
they form a three-dimensional space, as illustrated in Fig. 1.

First, the Euclidean distance matrices of the array and the
acoustic sources placed on one structural support are computed,
as shown in Fig. 6. The top-left diagonal block submatrix repre-
sents distances between microphones. The figure clearly reveals
three fringes which are directly related to the three rings of micro-
phones. The EDM of the sources is composed of four diagonal block
submatrices while off-diagonal submatrices remain unknown. The
diagonal blocks are the repeted EDM of the four sources placed on
one strucural support. The distances between microphones and
sources are not determined yet, then the off-diagonal submatrices
of the global EDM are left blank.

3.2. EDM completion

As seen in Section 2.1.2, the off-diagonal block submatrices are
obtained by cross-correlating the microphones signals with sound
emitted by the synchronized reference sources. In the numerical
simulation, the same linear chirp is sequentially emitted by each
source. The frequency increases from O to 10 kHz. Three sampling

[ L ]
L]
0.2 ® .
Y [ ]
e L ]
0.1 ® [ ] L]
—~~ L . L
o .
o of o o e o °
= . ¢ o
L4 °
01 . .
* L[]
. . .
02 . .
[} L ]
0.3
03 02 01 0 01 02
x (m)

Fig. 5. Arrangement of the plane array centered at the origin of its coordinate
system (white circle). The 36 microphones (black dots) are gathered in three rings
of 7, 11 and 18 elements.

Euclidean Distance Matrix D

40

45

5 10 15 20 25 30 35 40 45 50

Fig. 6. Overall Euclidean distance matrix of the initial configuration. The particular
EDM of the array and the acoustic sources are displayed as diagonal block
submatrices.

frequencies (f; € {25,50,100} kHz) are considered to quantify its
influence on overall results. The speed of sound is set at 343 m/s.
The reconstruction error Ad on the distance between sources and
microphones directly depends on the sampling frequency. Indeed,
the temporal position of the maximum cross-correlation peak
depends on the length of a sample. The Table (1) summarizes the
reconstruction errors on the distance between sources and micro-
phones due to this sampling issue:

Finally, Fig. 7-a illustrates the obtained EDM which remains
uncomplete and becomes noisy.

The completion algorithm called Alternating coordinate descent
method (described in Section 2.2.1) is applied to this particular
matrix, denoted D. This method allows the determination of both
a complete EDM D, close to the observed EDM D, and its corre-
sponding estimated point set X. Fig. 7-b represents the completed

Euclidean distance matrix D.
Two reconstruction errors can be considered, based on the dis-

crepancies between the estimated EDM D and the observed EDM D

on the one hand, and between D and the ground truth EDM D on
the other hand. These two indicators are denoted & and ¢ and read:

ledm(X) ~D|; ~[ledm(X) ~DJ

&= A L e=
(D[] DIl

(14)

The reconstruction errors & and ¢ are calculated for different
sampling frequencies (f; € {25,50,100} kHz) and gathered in the
Table (2).

These indicators clearly show the weight of the sampling fre-
quency in the accuracy of the method. The distance measurements
between sources and microphones is therefore a crucial step in the
global methodology. Fig. 8 shows a multidimensional unfolding of
the numerical set-up. As it can be seen, the position and orienta-
tion of the overall geometric configuration are completely arbi-
trary, and more, the MDU result is actually a reflection of the

Table 1

Reconstruction error Ad for different sampling frequencies f,.
fs 25 kHz 50 kHz 100 kHz
Ad (x1073 m) +7 +3.5 +1.7
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Euclidean Distance Matrix D

(b)

Fig. 7. Global Euclidean distance matrices. (a): Uncompleted EDM obtained after
the source-microphone distances estimations. (b): Completed EDM obtained as a
result of the alternating coordinate descent method.

Table 2

Reconstruction errors & and ¢ for different sampling frequencies f.
fs 25 kHz 50 kHz 100 kHz
£ (%) 1.15 0.56 035
& (%) 0.59 0.35 0.16

true set-up. The antenna (dots) and the acoustic sources (squares)
are clustered in subsets.

Each group of four acoustic sources corresponding to a particu-
lar location of the device are gathered in a specific subset. As the
EDM refers to distances between points in a network, it involves
geometric informations about the acoustic sources and micro-
phones. This configuration does not include information about
the points of contact between the structural support and the
device. In order to align the point set obtained with the MDU algo-
rithm with the ground truth configuration, the orthogonal Pro-
custes analysis is carried in a two-step approach, as explained in
Section 2.3. First, the coordinates of the fulcrum of each structural
support has to be determined in the MDU coordinate system with
the Kabsch algorithm.

Fig. 9 illustrates the alignment of each structural support
(squares) with the acoustic sources positions found with the
MDU technique (filled squares). The fulcrum of each support is rep-
resented by isolated squares. Then, these fulcrums become
anchors, as their coordinates are known both in the MDU and in
the device coordinate systems. The Kabsch algorithm is once more
applied to find the coordinates of the point set in the device coor-
dinate system. Fig. 10 shows the final result of the overall method-
ology, from a qualitatively standpoint. The filled markers represent

MDU
02+ -,
..0. [N ] LI
0.1 4 (4 (] LA ]
— L4
g .
o0+ . L4 am
LIS al'm
kN L4 *
Se, o
0.1 4 *
. ®
o o
>
02+ el O
\r\'\r.\.. [
02 _,————v“——'__—_——::_
% o2 05 0 02 ’
y (m) z (m)

Fig. 8. Multidimensional unfolding of the numerical set-up in a arbitrary position
and orientation. The dots depict the microphone array while the squares represent
the acoustic sources.

[ m
Li_IE
] Om
C.
0.1
/é\ 0
ey
02 02

0

y (m)

-0.1

Fig. 9. Estimation of the fulcrum’s position of each structural support (isolated
squares).

z (m)

Fig. 10. Final result of the overall methodology. The ground truth positions of the
microphone array and the acoustic sources are represented by the dots and filled
squares, respectively, while the circles and hollow squares embody their estimated
positions.

the ground truth position of the point set while the circles denotes
the microphones and the squares the acoustic sources.

3.3. Parametric studies

As the overall methodology is qualitatively evaluated, two para-
metric studies are detailed in this section to assess the robustness
of the positioning technique to sampling issues and to the number
of measurement points required to perform an accurate array
localization.
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3.3.1. Impact of the sampling frequency on the reconstructed geometry

The agreement between the ground truth and the estimated
positions of both sources and microphones is studied for the three
sampling frequencies f; € {25,50,100} kHz. A criterion based on
the distance between each couple of points is defined as follows:

Ags = | Xas — Xas|3- (15)

Fig. 11 show the values of the criterion for each source (A;) and
for each microphone (A,). At a fixed sampling frequency, it can be
seen that the errors vary according to the reconstruction error Ad,
from one point of the set to another. Therefore, the range of errors
on the criterion A,; and the magnitude of the criterion itself
decrease as the sampling frequency increases. For any sampling
frequency, the maximum positioning error is reached by a source,
which expresses the lack of information due to the support disori-
entation. Concerning the position of the microphones, the maxi-
mum positioning error are 0.43 cm at f, =25 kHz, 0.36 cm at
fs =50 kHz, and 0.20 cm at f, = 100 kHz, which clearly shows
the sampling influence.

3.3.2. Number of structural support

As detailed in Section 2.3, the orthogonal Procustes analysis
needs at least four anchors to completely solve the positioning
problem in a three-dimensional configuration. However, adding
more measurement points also increases the number of unknowns
in the completion problem and the number of noisy source-
microphone distances to estimate. Fig. 12 displays a configuration
with only three structural supports placed on the device. Both pic-
tures (a) and (b) are valid solutions of the positioning problem and
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Fig. 11. Distances A (m) between the estimated and the ground truth positions of
each point of the set, according to the sampling frequency (f € {25,50,100}kHz).
(a): Value of the criterion A; for each source. (b): Value of the criterion A, for each
microphone.

z (m)

07,

05
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z (m)

02

0.1

z (m)

(b)

Fig. 12. Valid solutions of the positioning problem with three measurement points.
(a): Result with an arbitrary value d., € {—1, 1}, where the obtained array position
is a mirror solution. (b): Result with the opposite value d., = —d,,, close to the
ground truth position of the array.

are equivalent in terms of their Euclidean distance matrices. The
fulcrums of the three structural supports form a plane of symmetry
which create an equivocal situation.

As expressed by Eq. (12), the value of d. € {—1,1} allows the
distinction of one solution from the other one. It is therefore pos-
sible to compute the solution in a two-step process. First, the
whole methodology is carried out. If the obtained result is a mirror
solution, the positioning algorithm is computed a second time with
the opposite value of d.. Fig. 13 displays the values of the residual
criterion for each source and microphone at different sampling fre-
quencies. For the microphones position, the maximum values of
the criterion are 0.75 cm at f; = 25 kHz, 0.36 cm at f, = 50 kHz,
and 0.38 cm at f, = 100 kHz. From a qualitative standpoint, the dis-
crepancies become significant at the sampling frequency f; = 25
kHz as the efficiency of the modified method declines. In this situ-
ation, the maximum positiong error increases from the four mea-
surement points configuration by 0.3 cm while the mean value
increases from 0.36 to 0.43 cm. At f, = 50 kHz, the maximum posi-
tiong error remains the same and the mean value decreases from
0.26 cm to 0.17 cm. For a sampling frequency f, = 100 kHz, the
maximum positioning error has nearly doubled while its mean
value increases from 0.13 cm to 0.26 cm. This shows that a low
sampling frequency brings significant discrepancies. Besides, the
most accurate solution is found when four measurement points
are considered and when the highest sampling frequency is used.
Nevertheless, a three anchor configuration is found enough to solve
the positioning problem and reduces the number of measurements
points, while it slightly modifies the accuracy of the method by
about a millimeter.
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Fig. 13. Distances A (m) between the estimated and the ground truth positions of
each point of the set, according to the sampling frequency (f € {25,50,100}kHz),
for a three measurement point configuration. (a): Value of the criterion A, for each
source. (b): Value of the criterion A, for each microphone.

4. Experimental validation

As the numerical computations established the accuracy of the
proposed algorithm, an experimental validation is therefore per-
formed to assess its robustness in an industrial application.

4.1. Test-case configuration

Fig. 14-a displays the general test-case configuration. A full-
scale mock-up of a car engine is employed to embody a radiating
object, of the same dimensions as in the numerical parametric
studies. Similarly, the same 36-microphone array (MicrodB HDcam
36) is facing towards its front face. A 3D optical scanner (Faro
FocusM 70) is set in order to survey both the positions of the
mock-up and the antenna and whose measurements are consid-
ered as the reference of the experiment. The distance accuracy of
the scanner is up to =3 mm. Fig. 14-b shows a prototype of struc-
tural support, gathering in one object four acoustic sources, a ful-
crum and a handle.

Acoustic loudspeakers are embedded in a three-dimensional
printed piece with specific horns to adapt the impedance between
their diaphragm and the propagation medium as well as to reduce
the radius of the physical acoustic sources. The four sources are
located in such a way that they form a regular tetrahedron. As
the position of the loudspeaker and the one considered as the
source location at the extremity of the horn do not coincide, an
additional delay occurs in the source-microphone time of flight
and must be assessed. A geometrical calibration of the horn is then
performed by comparing the distance d between the edge of the
horn and one particular microphone, measured with a mechani-
chal calibration bench and considered as a ground truth, and the

Fig. 14. Experimental test-case configuration. (a): A 36-microphone plane array is
facing a full-scale car engine mock-up. A 3D optical scanner is set on the left to
survey both the positions of the antenna and the device. (b): Structural support,
gathering the four acoustic sources, a handle and a rod whose extremity form a
fulcrum in contact with prominent locations of the device.

distance d. related to the time delay estimated by cross-
correlating the microphone signal with the one emitted by the
loudspeaker. The calibration distance d. = d.o;r —d includes the
acoustic propagation through the horn as well as electronic delays
brougth by the whole set-up. Divided by the speed of sound, it
therefore become a time delay to substract to the generic cross-
correlation signal. The calibration microphone is located on the
central source axis and is successively shifted from the edge of
the horn, from 0.1 to 0.9 m. For each distance, the measurement
is repeated five times. Fig. 15 reports the mean distances associ-
ated to the estimated time delays according to the selected gaps
between the edge of the horn and the calibration microphone.
Although the calibration distance slightly increases with the dis-
tance, the mean values spread over only one millimeter with a
standard deviation lesser than the millimeter. A classical increase
of the discrepancies with the distance can be related to a miscalcu-
lation of the speed of sound. As explained before, the mean calibra-
tion distance (d. = 0.1092 m) does not perfectly equal the length of
the horn (0.102 m), because of time delays brought by the elec-
tronic  instrumentation.  Finally, a  calibration delay

t. =3.18 x 10~* s must be subtracted to all cross-correlation sig-
nals to recover the distance between the edge of a horn and a
microphone.

The fulcrum of the structural support is placed at three promi-
nent locations of the mock-up (some corners), without knowing its
true orientation. All the acoustic sources emit at once one particu-
lar uncorrelated broadband noise, allowing the distance estimation
by cross-correlating the microphones signals with each referenced
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Fig. 15. Mean calibration distance according to the selected gaps between the edge
of the horn of the central source and the calibration microphone (squares). Error
bars represent the standard deviations based on five measurements for each gap.
The dashed line embodies the overall mean calibration distance, as selected in the
algorithm.

noise. The sampling frequency is set at 102400 Hz to reduce its
influence on the positioning errors. A special care should be taken
to select the first peak of the cross-correlation function, represen-
tative of the direct path between the source and the microphone.
In the designed algorithm, the first peak might not be the maxi-
mum of the cross-correlation function, due to strong reflection of
the mock-up. Besides, if this function is too noisy, the first detected
peak and the direct path can be unrelated.

To deal with this, the maximum of the cross-correlating func-
tion is first evaluated. A threshold is defined to select all the peaks
which are related to the direct path or the possible reflections and
remove the noisy fluctuations of the function. This threshold is half
of the maximum in the present study. Finally, the sample corre-
sponding to the earliest of this peak selection is considered to
assess the distance between the source and the microphone. The
whole algorithm is included in an executable Matlab code, working
on any laptop computer. Its calculation time depends of the sam-
pling frequency and the number of microphone channels and
ranges from a few secondes to less than half a minute.

4.2. Positioning results

Three positions have been tested, representative of typical con-
figurations encountered in acoustic imaging. A first position (con-
figuration A) is set with an array 20 cm away from the mock-up
to assess the robustness of the method to the near-field effects
such as the diffraction of the object itself and the radiating pattern
of the sources. Two other positions at 50 and 100 cm (configura-
tions B and C) are defined to evaluate the possible deviations due
to the ground reflections and the inaccuracy of the speed of sound,
estimated according to Cramer [17] with a measurement of both
the temperature and the humidity rate in the room. As in the
numerical studies, a positioning error A, is defined as the distance
between the microphone positions as found by the algorithm and
by the optical scanner, considered as the reference. More precisely,
the algorithm outputs are a rotation matrix and a translation vec-
tor. The microphone positions are then the rigid transformation of
the known positions of the microphones in the array coordinate
system, calculated with the output matrices. To prevent a misesti-
mation of the microphone positions with the optical scanner, the
Kabsch algorithm is performed to find the rigid transformation
which corresponds at most to this obtained array position. In both
cases, the arrays of microphones are identical to the original one,
but have been modified by different rigid transformations. An esti-
mation of the antenna positioning errors is displayed in Fig. 16,
representing the three configurations (dot markers: 20 cm, square

11

Ay (m)

Microphone index

Fig. 16. Distances A, (m) between the estimated and the reference positions of each
microphone of the array, according to the configuration (A (dots): 20cm, B
(squares): 50 cm, C (diamonds): 100 cm).

markers: 50 cm and diamond markers: 100 cm). The characteristic
positioning errors follow two distinguishable patterns. At 50 and
100 cm, the pattern expresses an increasing periodic curve whose
mean equals 8.5 mm in both cases. The maximum errors are
9mm and 10 mm for the B and C configurations, respectively,
and they do not correspond to the same microphone. For the con-
figuration A, the positioning errors can be gathered in three groups,
corresponding to the first six microphones, the following eleven
and the last eighteen ones. These collections are clearly related
to the three rings of microphones the array is made of. In this case,
the maximum positioning error does not exceed 7.5 mm. Those
two patterns can be explained with the analysis of the rotation
and translation errors, defined as the differences between the rigid
transformations determined with the proposed positioning
method and with the optical scanner (Tables (3) and (4)).

The translation errors of the rigid transformation range from
0.7 mm to 8 mm. In configuration A, the errors are maximum
and similar in the x and y directions (—4.11 mm and —4.21 mm,
respectively), in the plane of the array. For the B and the C config-
urations, the maximum errors occur in the x direction (—7.70 mm)
and the y direction (—6.65 mm), respectively. As shown in Table (4),
the angular discrepancies stay below a half degree, except for the
angular error on the z-axis in the configuration A (0.71 degree).
The latter dominant value explains the two patterns in the antenna

Table 3
Discrepancies between the translation vector of the estimated and the reference
positions of the array (m).

Translation errors (m)

Configuration & &y &

A —4.11e-03 —4.21e-03 —1.07e-03

B —7.06e-04 —6.65e-03 4.73e-03

C —7.70e-03 —3.26e-03 1.31e-03
Table 4

Discrepancies between the Euler angles of the estimated and the reference positions
of the array (degrees).

Angular errors (degrees)

Configuration A©y AOy A®,

A —1.19e-01 —3.48e-01 7.13e-01
B 2.40e-02 —1.25e-01 —3.40e-01
C 2.49e-01 —3.54e-01 —2.57e-02




10 S. Bouley et al./Applied Acoustics 167 (2020) 107377

positioning errors in Fig. 16. This underlying analysis is illustrated
in Fig. 17.

Fig. 17-a represents the configurations B and C, as a typical dis-
oriention of the array. The diagram amplifies the real discrepancies
and simplifies the positioning errors such as only a translation
error in the z-direction and an angular error according to the x axis
occur. In this case, the combination of the translation and the
angular deviations reduce the errors on one side of the array while
they are increased on the other side. In this way, the deviations
from the reference indeed show a increasing oscillating function
according to the index of the microphones and to the radius of
the rings. The configuration A is illustrated by the Fig. 17-b. Here,
the angular deviation on the z-axis, normal to the array plane,
dominates the others. A rotation of the array around its axis of
symmetry occurs in such a way that the positioning errors of each
microphone depend mostly of their ring. On the Fig. 16, the dis-
crepancies are clearly gathered in three groups, representing the
three sets of microphones. The similar translation errors in the x
and y directions add a mild oscillating form to the deviations.

Fig. 16 shows that the maximum positioning error stays below
one centimeter, which assesses the reliability of the proposed algo-
rithm. The mean discrepancies remain equivalent for both the con-
figurations B and C, implying an accurate speed of sound
estimation. Among the other sources of uncertainty, the main

z
A
e v
AO,
T
(a)
z
A
e v
/ A,
X

Fig. 17. Physical interpretation of the two main patterns encountered in the array
positioning problem. Dark grey ellipses depict the three rings of the reference array
while light gray ellipses represent the array obtained with the proposed algorithm.
(a): The combination of a translation in the z-direction and a rotation around the x-
axis reduces the deviations on one side of the array while they are increased on the
other side. (b): A dominating rotation around the z-axis, normal to the array plane,
implies that the positioning discrepancies of each microphone depend mostly of
their ring.

parameters are the distance accuracy of the optical scanner, the
estimation of the calibration distance of the sources and the ability
to make the measurement points of the physical object and its rep-
resentation in the numerical mesh coincide. A special care must
then be taken during the experimental campaign to carry out the
measurement, since the numerical studies show that a very small
part of the discrepancies comes from the algorithm itself.

5. Conclusion

The accuracy of acoustic retro-propagating methods are directly
related to the precise estimation of the microphone array arrange-
ment and its position and orientation in the experimental environ-
ment, in relation to the radiating device. Thus, this application-
oriented paper aimed to propose an array localization methodol-
ogy for acoustic imaging, gathering a collection of techniques
based on the Euclidean distance geometry. The antenna position-
ing problem is tackled with the help of the Euclidean distance
matrix, which reports on the complete geometric configuration of
a set-up. This set-up is here composed of the microphone array,
some prominent locations of the device plus acoustic sources
employed to link them together. Each feature geometry is initially
known in its own coordinate system and this paper detailed a prac-
tical tool to collect each microphone coordinates in the device
mesh coordinate system to perform accurately the retro-
propagation method onto it. The complete theoretical methodol-
ogy is first presented to detail the underlying principles of the algo-
rithms involved and the benefits of their application to find the
optimal rotation and translation matrices to align the array with
its ground truth position. A numerical validation is conducted to
assess the proposed algorithm in a typical experimental configura-
tion encountered in acoustic imaging. As the distance between
acoustic sources and microphones is determined by cross-
correlating the received signals with the referenced ones, the sam-
pling frequency is found as a decisive parameter of the method, the
higher being the more accurate. Also, the methodology requires at
least three measurement points to achieve the antenna positioning
problem. With a 100 kHz sampling frequency, the reconstruction
error of the antenna brought by the algorithm itself is 0.35 %,
and the distances between the obtained and the ground truth posi-
tions of the microphones stay below 3 mm. Finally, an experimen-
tal validation with an 3D optical scanner has been performed to
test the robustness of the method in an industrial application.
Three configurations have been selected with an array 20, 50 and
100 cm away from the device and the largest discrepancy equals
one centimeter, which illustrates that experimental misestima-
tions greatly affect the accuracy of the method. The most decisives
factors are the determination of the in situ speed of sound, the cal-
ibration distance of the acoustic sources and the coincidence of the
measurement points and their representation in the numerical
mesh.

Instead of 3D optical scanners, the proposed methodology
forms an industrial tool which can be quickly deployed in an
experimental campaign with space constraints. It automatically
exploits the temporal signals measured by the microphones to find
directly their position toward the device, instead of extracting
manually the orientation of the array in the mesh one would obtain
with an optical scanner, also dependant on its refinement. At last,
from an industrial point of view, the use of the microphones them-
selves to find their own position limits the need of both external
hardware and software, and drastically reduces the costs.

Beyond its simplicity, one of the main advantages of the pro-
posed method is that it can benefit from extensions provided by
the EDM literature to tackle many issues faced in domains of
source localization and acoustic array processing, such as array cal-
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ibration in wind tunnel, multiple array localization or the measure-
ment of experimental transfer functions between the sources and
the microphones to assess the diffraction due to the device.
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