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Extracting horizon surfaces from 3D seismic data using deep learning

Valentin Tschannen1, Matthias Delescluse2, Norman Ettrich3, and Janis Keuper4

ABSTRACT

Extracting horizon surfaces from key reflections in a seismic
image is an important step of the interpretation process. Inter-
preting a reflection surface in a geologically complex area is a
difficult and time-consuming task, and it requires an understand-
ing of the 3D subsurface geometry. Common methods to help
automate the process are based on tracking waveforms in a local
window around manual picks. Those approaches often fail when
the wavelet character lacks lateral continuity or when reflections
are truncated by faults. We have formulated horizon picking as a
multiclass segmentation problem and solved it by supervised
training of a 3D convolutional neural network. We design an
efficient architecture to analyze the data over multiple scales
while keeping memory and computational needs to a practical

level. To allow for uncertainties in the exact location of the
reflections, we use a probabilistic formulation to express the
horizons position. By using a masked loss function, we give
interpreters flexibility when picking the training data. Our
method allows experts to interactively improve the results of
the picking by fine training the network in the more complex
areas. We also determine how our algorithm can be used to ex-
tend horizons to the prestack domain by following reflections
across offsets planes, even in the presence of residual moveout.
We validate our approach on two field data sets and show that it
yields accurate results on nontrivial reflectivity while being
trained from a workable amount of manually picked data. Initial
training of the network takes approximately 1 h, and the fine
training and prediction on a large seismic volume take a minute
at most.

INTRODUCTION

A key step in seismic interpretation is the mapping of the main
horizons in the amplitude volume. Horizons are reflection surfaces
visible in the data that present a similar character in terms of wavelet
shape throughout the survey. Mapping the reflections enables us to
analyze the amplitudes to scan for potential fluid anomalies. High-
lighting the horizons is also essential to understand how and when
the observed geologic structures were formed. At later interpreta-
tion stages, surfaces are used to tie the seismic to well logs to relate
seismic reflections to actual geologic interfaces and to perform a
depth conversion for building geomodels. Dorn (1998) explains that

working with full 3D data, rather than with sparse 2D lines, is essen-
tial when dealing with complex geology. Typical surveys contain
hundreds of inlines and crosslines, which makes the manual interpre-
tation of these surfaces a time-consuming task. For this reason, au-
totracking tools were developed to help interpreters (Bacon et al.,
2003). Working with an autopicker is usually an iterative process
in which the interpreter starts by dropping seed points on the
desired reflection and gives some key information such as the wave-
form phase or the expected maximal vertical deviation between two
adjacent traces. The tracker uses those hints to extract a 2D surface
from the 3D data by finding related waveforms between traces using
similarity measures. More seeds are progressively added, and the
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completion usually requires the interpreter to finish the most difficult
portions manually. Although autopickers work well on high-ampli-
tude reflections with a consistent waveform across the data, in com-
plex structural areas, they usually fail to track across faults with a
large throw or to follow weak and chaotic reflections. Many authors
have proposed tracking algorithms that try to alleviate those limita-
tions. Gersztenkorn and Marfurt (1999) and Lomask and Guitton
(2007) suggest computing 3D structural attributes to highlight faults
and stratigraphic elements not readily apparent in the seismic data.
Aurnhammer and Toennies (2002) show how one could further con-
strain the autotracking by incorporating information of the main faults
in the area. Alternatively, Pauget et al. (2009) and Wu and Fomel
(2018) propose global approaches in which they treat the mapping
as an optimization problem and solve it for all the reflections at once.
In practice, local approaches often result in misties when the tracks
from independent seeds are merged, and global approaches suffer
from the curse of dimensionality and might require a lot of manual
interventions to constrain the problem in regions containing nonstra-
tified objects such as salt or gas chimneys and chaotic depositions
(Hoyes and Cheret, 2011). In addition, traditional similarity measures,
such as crosscorrelation, are sensitive to coherent noise in the data
(e.g., acquisition and migration artifacts or interference from multi-
ples) and perform poorly in regions with a low signal-to-noise ratio.
In recent years, there has been a big resurgence of interest around

the field of deep learning, and in particular, convolutional neural
networks (CNNs), to tackle computer vision and waveform analysis
problems. Those methods have proven to outperform traditional
signal processing and other machine-learning techniques on a large
panel of applications (LeCun et al., 2015). Several authors use neu-
ral networks for tracking horizons (Harrigan et al., 1992; Kusuma
and Fish, 1993; Veezhinathan et al., 1993; Alberts et al., 2000;
Leggett et al., 2003), but modern computing power and the accu-
mulation of empirical findings have permitted the emergence of
deep neural networks that possess greater potential. Recent appli-
cations of deep learning to seismic interpretation include salt clas-
sification (Waldeland et al., 2018; Shi et al., 2019), fault detection
(Huang et al., 2017; Xiong et al., 2018; Wu et al., 2019; Zheng et al.,
2019), diffraction picking (Tschannen et al., 2019), and seismic lith-
ofacies classification (Liu et al., 2019).
Horizon picking is a typical pattern recognition problem, and

deep learning is therefore a logical choice to approach it. Peters et al.
(2019) use a 2D CNN to track horizons using only a few manual
picks to train the algorithm and show that the network can accu-
rately predict the position of the surfaces in field data. In this work,
we use a similar approach, but we propose a more in-depth study of
the problem and aim to provide a practical methodology for inter-
preters. We work with a 3D CNN and propose two detailed and
challenging case studies, in which we identify the strengths and lim-
itations associated with the use of neural networks to pick horizons.
We present a practical and robust workflow to segment several hori-
zons at once in a large seismic volume. Our method does not require
any special assumption on the character of the seismic wavelet nor on
the spatial continuity of the horizons. We design a 3D-CNN archi-
tecture inspired by Ronneberger et al. (2015), which processes data
over multiple scales and yields a high-resolution prediction. Because
we treat the spatial and temporal dimensions differently, our network
provides a stable interpretation while keeping the memory and com-
putational requirements to a workable level. We express the initial
manual picks provided by the interpreter as probabilities, and we use

the cross-entropy loss to train the network in a supervised manner.
The probabilistic formulation allows for uncertainties in the exact lo-
cation of the predicted horizons. Given a simple masking of the loss
function, interpreters have the freedom to label the training data using
either seed points or 1D- and 2D-line interpretations. By keeping the
total number of free parameters of the CNN small and by using regu-
larization and data augmentation, we show that our method requires
only reasonable manual work to prepare the training data. The initial
network training time is approximately 1 h, and the prediction on a
large seismic survey takes only seconds. We also show how the in-
terpreter can interactively fine train the network by picking a few
additional examples in the most complex areas. Finally, we show that
our method can be used to extend horizons to the prestack domain to
perform higher-quality amplitude analysis. We verify the validity of
our approach on two marine data sets that exhibit challenges because
of the presence of faults and weak reflections.

METHODS

Semantic segmentation

After prestack time (depth) migration, seismic data are repre-
sented as a multidimensional array over a regular grid of inline,
crossline, and time (or depth) coordinates. Every element of the ar-
ray is called a voxel and holds the value of the wavefield amplitude
at this position. In the image processing community, given a set of
preestablished categories or labels, classification refers to the asso-
ciation of an image with one label. Segmentation goes beyond clas-
sification and refers to the association of every pixel of an image
with a category. By analogy, with seismic data, we refer to one sam-
ple as a patch (i.e., a small cube) extracted from the global volume.
Classification aims to associate one class to the entire sample. This
is, for instance, the approach taken by Waldeland et al. (2018) to
pick salt bodies. To obtain the final prediction on the entire seismic
data, Waldeland et al. (2018) assume that the label corresponds to
the central voxel of the patch and apply the network on overlapping
patches extracted around every voxel of the volume. In segmenta-
tion, we also use patches for training, but the network associates one
class to every voxel of each patch. This is similar to the approach
taken in Wu et al. (2019) and Tschannen et al. (2019) to pick faults
and diffracting objects.
Supervised deep learning is now established as the reference

method to tackle such problems because it leads to the best results
on a wide variety of applications (LeCun et al., 2015). The field of
deep learning is almost entirely focused around neural networks,
which are a set of algorithms expressed as a computational graph
built from a sequence of layers performing simple operations.
Rather than being manually engineered, the parameters of the trans-
formations are initially chosen at random and given the freedom to
adapt to the data and problem at hand. Chaining several layers is a
key feature of these algorithms because this architectural design al-
lows the algorithm to learn a hierarchical representation of the data.
The deeper layers build upon the work of the previous layers and are
sensitive to progressively more abstract and complex features, ex-
pressed as a composition of the simpler features learned by the shal-
lower layers (LeCun et al., 2015). When the data exhibit a spatial
structure and the surrounding information is relevant to understand
the local context, a suitable choice for the linear transformations is
convolutions, and the family of algorithms based on them is called
CNNs (LeCun et al., 1998).

N18 Tschannen et al.

D
ow

nl
oa

de
d 

04
/0

8/
20

 to
 7

7.
21

.2
51

.2
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



In this work, we aim to segment a set ofK horizons in a 3D seismic
stack. Let hðil; xl; tÞ be a seismic sample expressed in the 3D coor-
dinate system ðil; xl; tÞ, where il and xl are the spatial coordinates in
the inline and crossline directions and t is the vertical temporal co-
ordinate. We express the labels as a 4D hypercube pðil; xl; t; K þ 1Þ
representing the probable locations of theK target reflectors. For every
voxel, p holds the discrete probability density func-
tion ðpk≥0Þk¼1::Kþ1, such that

PKþ1
k¼1 pk¼1. The

terms p1 to pK are the probabilities of each hori-
zon, whereas pKþ1 is the probability of not being
any of the desired reflectors.
A neural network depending on the parameters

w ∈ Rm, where m is the number of free dimen-
sions, takes as an input the seismic data h and
outputs a pseudoprobability density function
p̂wðil; xl; t; K þ 1Þ defined at every voxel. Train-
ing the network consists of optimizing the values
of its parameters to increase its prediction perfor-
mance so that p̂w approaches p. A standard pseu-
dodistance measure between two probability
distributions is cross entropy, which measures
how close the computed distribution is to re-
present the true distribution. In its discrete form,
the cross entropy between p and p̂w, summed
over space and time, is

lðw;p; p̂wÞ ¼ −
X

il;xl;t

XKþ1

k¼1

pðil; xl; t; kÞ

× log½p̂wðil; xl; t; kÞ�: (1)

For a training data setD composed of N pairs of samples (hðiÞ, pðiÞ),
the training loss is defined as the average over all samples of the loss
computed in equation 1:

Lðw;DÞ ¼ 1

N

XN

i¼1

lðw;pðiÞ; p̂ðiÞ
w Þ: (2)

The most commonly chosen approach to minimize the loss function
of equation 2 is to resort to an optimizer belonging to the minibatch
stochastic gradient-descent family (Robbins and Monro, 1951; Le-
Cun et al., 2015). In this iterative procedure, a random subset of the
training data set (called a minibatch) is chosen at every iteration, and
the local steepest-descent direction is found by computing the gra-
dients of the loss function with respect to the network’s parameters
using the back-propagation algorithm (Werbos, 1974). The param-
eters are updated by taking a step toward this direction, and a new
minibatch is selected for the next iteration. The learning rate is an
important hyperparameter that defines the step size used for the up-
date. When all minibatches have been seen once by the network, we
say that it has been trained for one epoch.

Network architecture

Figure 1 and Table 1 present the architecture of our network. It is a
traditional feed-forward convolutional network inspired by Ronne-
berger et al. (2015). The trainable parameters are contained in the
convolutional layers, which transform the data by convolving the
input with kernels and adding bias coefficients. Convolving with a

single kernel yields a 3D feature map. Because every layer contains
several kernels, the output of each layer is 4D with the fourth dimen-
sion corresponding to the number of channels (i.e., the number of
kernels in the layer). We use rectified linear units (maxð0; :Þ) as ac-
tivation functions for the output of the convolutional layers. To learn
abstract concepts, the network should see the data at different scales.

Figure 1. Simplified overview of the 3D CNN used in this work. The data flow is from
left to right during the forward pass as indicated by the black arrows. The boxes re-
present multichannel 4D feature maps (here drawn in 3D for simplicity) color coded
by layer type. In this example, the input data h are interpreted along their central cross-
line and the mask m contains ones at the location of the picks along the crossline slice
and zeros elsewhere. For simplicity, the output hypercube is represented as a histogram
counting the number of voxels associated with each horizon. The exact architecture of
the CNN is described in Table 1.

Table 1. Architecture of our CNN, designed after Ronneberger
et al. (2015)5.

5Conv stands for convolution, upsampling is performed by nearest neighbor
interpolation, BN stands for batch normalization (Ioffe and Szegedy, 2015), ReLU
for rectified linear unit, and Maxpool for max-pooling. The size and number of
convolutional kernels in each layer are indicated in parentheses. The down and
upsampling factors are indicated in parentheses next to the corresponding
operations. The blue arrows indicate the skip connections that concatenate the
activation maps, along the fourth dimension, which consists of a shallow
convolution with its symmetric upsampled counterpart.

Deep learning for horizon picking N19
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The receptive field refers to the effective window size that a convolu-
tional layer is accessing from the original data. For the first layer, the
receptive field is equal to the spatial size of the kernels. We use a
constant kernel size of 5 × 5 × 5 over the network, and we
use max-pooling operations to progressively downsample the data.
Max pooling is a sliding window operation that keeps the largest
value inside the window and drops the others. A pooling window of
1 × 1 × 2 keeps the inline and crossline dimensions unchanged and
downsamples the time dimension by a factor of two. Accordingly, the
effective receptive field of the next convolutional layer is twice as
large in the vertical direction as in the horizontal ones. Because
we aim to classify every voxel of the input data, the network must
yield an output that has the same spatial shape as the input. The first
half of the network is downsampling the data by a desired rate, and
the second half is a symmetric counterpart that progressively trans-
forms the data back to their original spatial shape (see Figure 1). We
use nearest neighbor interpolation to perform the upsampling. To
compensate for the loss of information caused by the successive pool-
ing layers, we use skip connections (Ronneberger et al., 2015) to in-
ject data from shallow layers to deeper ones (see Table 1).
To choose the number of layers, there is a trade-off between the

largest data scale accessible to the network and the memory and com-
putational costs. We consider that for the horizon picking problem, it
is more important to access low-frequency information along time
than along the inline and crossline dimensions. For this reason, as
detailed in Table 1, we alternate between 1 × 1 × 2 and 2 × 2 × 2

downsampling factors. The three pooling layers yield to a total down-
sampling of 2 × 2 × 8. To regularize the training, we apply batch nor-
malization (Ioffe and Szegedy, 2015) and dropout (Srivastava et al.,
2014) and learn the parameters with the Adam optimizer (Kingma
and Ba, 2014) using the library TensorFlow (Abadi et al., 2016).

Training data and prediction

When picking horizons, the interpreter needs to build an under-
standing of the geometry of the area by establishing fault patterns
and inferring the depositional and tectonic history of the site. Once
the reflectors of interest have been identified, they need to be picked
in a dense 3D grid. Most workstations allow this process to be par-
tially automated by letting the interpreter provide information to the
tracking algorithm of the reflections that should be followed and
iteratively refining the results by making manual adjustments and
adding constraints in the mispicked areas. The quality of the auto-
matic tracking will have a big impact on the time needed to com-

plete the task. For our supervised deep-learning approach, we use
the picks of the interpreter to create the training labels. As explained
in the previous section, the labels should be provided as a hypercube
in which the fourth dimension holds the reflector probabilities. For
every manually picked horizon, we set the probability of the cor-
responding voxels to one in the label’s hypercube.
To introduce uncertainty in the exact position of the reflectors, we

convolve the labels with a normalized 1D Gaussian kernel in the
vertical direction (see Figure 2). A difficulty of this approach is
that one needs to label every voxel of the training data, which is
a tedious task when working with 3D seismic. However, a common
solution is to use a masked loss that allows labeling only a subset of
the voxels without affecting the training quality (Xu et al., 2015;
Peters et al., 2019). In addition to providing the labels, one also
defines a binary mask mðil; xl; tÞ containing ones for the voxels
that are explicitly marked by the interpreter and zeros elsewhere.
For instance, if one decides to label an entire inline section, the
mask would be a cube of zeros for every inline except for the hori-
zons interpreted on the single inline section in which the mask
would contain ones for these voxels (looking at Figure 2, we set
to one every voxel of the mask that corresponds to a nonzero prob-
ability for at least one of the horizons). If one wishes to highlight
horizons with seed points, the mask would contain ones only at the
seed locations. Because we incorporate uncertainties in the exact
position of the picks by convolving with a Gaussian kernel, we also
convolve the binary mask with the same kernel and set to one all
voxels whose value is greater than 0.1. The loss function of equa-
tion 1 is then modified by masking the cross entropy by an element-
wise multiplication:

lðw;p; p̂wÞ ¼ −
X

il;xl;t

mðil; xl; tÞ

×
XKþ1

k¼1

pðil; xl; t; kÞ log½p̂wðil; xl; t; kÞ�: (3)

In this way, during training, the gradients used to update the param-
eters will be nonzero only in the picked areas.
Once the network is trained, we run a prediction on the entire seis-

mic stack to obtain a hypercube containing the probability density
function for the presence of the horizons at every voxel. Because con-
volutions and other transformations of our network do not depend on
the input data size, we can evaluate the network on data of arbitrary
dimensions (Long et al., 2014). Because the entire 3D stack may not

Figure 2. Preparation of the labels for training. The left image shows the picks performed on a 2D section for the different horizons that we
want to map. The images on the right are three of the probability slices obtained by convolving in the vertical dimension the picks of individual
horizons with a 1D Gaussian kernel. The final labels are created by concatenating every probability slices along an extra dimension. The last
slice of the labels corresponds to the “other” class, and its values are chosen such that the total distribution sums to one.
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fit in memory, we perform the evaluation in chunks. We split the vol-
ume into subcubes, run the segmentation iteratively, and merge the
probabilities at the end. To extract an actual 2D horizon surface sk
from the hypercube, we take the position of the maximum probability
along the vertical dimension as indicated in equation 4 (see Figure 3):

skðil; xlÞ ¼ argmax
t

½p̂wðil; xl; t; kÞ�: (4)

Because storing the full 4D probability cube can
occupy an excessive amount of disk space, one
may instead extract the surfaces during the itera-
tive segmentation and only store the horizons. The
final horizons are obtained after despiking and
smoothing postprocessing procedures.

RESULTS

We evaluate our method on two marine surveys
and compare the results of the machine with the
interpretations proposed by experts. We create the
training data sets by selecting several interpreted
lines. We could use seed points instead of full 2D
interpretations, but in this way we get more train-
ing examples at a minimum extra of manual effort.
Seed points may also not be enough to guide the
algorithm for difficult reflections that have a low
signal-to-noise ratio and that may have a fairly
heterogeneous character over the survey. For such
reflections, interpreters use their experience and
intuition to draw the lines. We also select one in-
terpreted line in a different region for the valida-
tion set of each survey. We normalize the seismic
volume to the amplitude range ½−1; 1�, and we
extract samples around the training and validation
lines with a shape of ½Δil;Δxl;Δt� ¼ ½32; 32; 96�.
For both experiments, we use a learning rate of
5 × 10−4 and reduce its value by 33% every 10
epochs. We train the network for 25 epochs with
a batch size of 12 samples. To artificially increase
the size of the training data sets, we perform a sim-
ple data augmentation (Simard et al., 2003) by
flipping the inline and crossline directions and by
adding white noise with a standard deviation of
0.025 to the input seismic image.

Faults and fine training

The first data set is a stack of 301 inlines × 201
crosslines × 301 time samples with a discretiza-
tion of 25 m × 25 m × 4 ms. It contains six hori-
zons of interest in a faulted area, and a manual
interpretation serves as a reference. We use four
inlines to create the training data set. The training
takes 47 min on a TITAN X GPU. The final pre-
diction takes less than a minute by splitting the
stack in overlapping chunks of 32 inlines. Fig-
ure 3 shows the results on two cross sections (not
used to prepare the training data) for the top res-
ervoir. The probability attribute can be used to
determine areas where the network’s prediction

is uncertain. The bottom section, for instance, shows that on the
other side of the tectonic event (for crosslines less than 1020) is a
region of low certainty, although the network is nevertheless able to
find the reflection. Figure 4 displays all of the horizons on a cross-
line section. Although the extracted surfaces do not exactly match
the original interpretation, we deem them to be of good quality for a

Figure 3. The 2D sections at (a) crossline 1200 and (c) inline 500 through the data and
their corresponding probability cube for the top reservoir in (b and d). The interpretation
and the machine’s prediction are displayed, and we also show the prediction before
despiking in semitransparency.

Figure 4. The 2D section at crossline 1200 shows (a) the interpretation and (b) the
machine prediction for the six horizons.
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first training pass. Even the relatively weak reflectors, such as the
reflection highlighted by the orange horizon (the fifth deepest), are
picked. Figure 5 shows the top reservoir. Regions of low values in
the probability surface highlight the faults and the tectonic folding.
By construction of the neural network, we do not impose special
assumptions on the lateral continuity of the reflectors and, in par-
ticular, fault discontinuities are, in theory, not a problem for the pre-
diction. We see that the faults are better defined on the expert’s
interpretation. This might be explained by the fact that it was done
by hand and that the interpreter picked the reflection from both sides
of the discontinuity and filled the gap by linear interpolation, lead-
ing to a sharp transition.
If one is not completely satisfied by the results of the first training

pass, one can fine-tune the network training. Figures 6 and 7 show
the effect of such fine training. In the area marked by the red rec-
tangle in Figure 6a, we place 10 seed points to extract additional
training examples. We create a new training data set composed of
10 samples extracted around the seed points, as well as 50 samples
randomly chosen from the original training set. We further train the

network for approximately 2 min with a learning rate 10 times
smaller than the original one. We use a much smaller learning rate
because the network is already trained, and we only want to fine
tune its weights. We also incorporate samples from the original data
set to limit overfitting. This phenomenon happens when the training
set is too small and the network becomes overly specialized at rec-
ognizing the training data and performs poorly in other areas of the
survey. For this reason, we also only reevaluate the fine-trained net-
work in a small region around the seed points. After rerunning the
segmentation, we observe that the prediction follows the interpre-
tation more closely.

Extension to prestack seismic data

The second data set consists of prestack angle gathers of dimen-
sion 999 inlines × 699 crosslines × 30 angles × 241 time samples
with a discretization of 12.5 m × 12.5 m × 2° × 4 ms. It contains
six horizons of interest, around a reservoir, interpreted with a com-
bination of handpicking and crosscorrelation-based autotracking.
We use one inline and one crossline from a 2° to 12° near-angle
stack to create the training data set, and we train the network for
1.03 h. The evaluation runs in less than a minute by splitting the
volume in overlapping chunks of 32 inlines. Figures 8 and 9 show
the results, obtained by predicting on the near stack, on a crossline
section away from the training lines. The autopicking results are
similar to the reference baseline, and differences observed on the
weaker reflectors are subject to discussion with experts.
In addition, we study how sensitive the network is to changes in

the wavelet in the prestack domain. We apply the trained network
iteratively on all angle planes from 2° to 60°. Each angle plane is a
3D volumewith the same dimensions as the near stack, and the final
prediction yields 3D prestack horizons that depend on the incidence
angle. We focus on the top of the reservoir shown in Figure 10 and
display the corresponding horizon in Figures 11 and 12. We see that
the network is correctly picking the horizon up to a certain angle
before losing it once the waveform becomes too different from
the one observed in the near stack. Extending horizons to the prestack
domain is useful to perform an improved amplitude versus angle
analysis because the gradient is strongly sensitive to moveout effects.

DISCUSSION

CNNs present several advantages to tackle the horizon picking
problem. They do not require strong prior information to operate,
and they can adapt to any seismic data. For instance because they
work by scanning the entire volume and do not expect a reflection to
be found within a certain vertical distance between two neighboring
traces, they are appropriate to follow a signal in a faulted area or
across a steeply dipping event. In Figure 5d, we observe that the
confidence of the network is low at the faults because the reflection
at these exact locations is not well-defined, but it nevertheless fol-
lows the horizon across the fault blocks. CNNs also have good scal-
ability with respect to the number of reflections to be predicted.
When increasing the number of horizons, one only needs to increase
the number of channels in the last convolutional layer by the same
amount, which results in a minor growth in computational cost.
The fact that our network performs a segmentation, instead of a

classification, of the input data is also an advantage. Indeed, whereas
segmentation networks need to see each voxel only once, classifica-
tion networks associate one label to the center of a fixed-size input

Figure 5. Map views of the top reservoir. (a) Solution provided by
the interpreters; the training lines are shown in red. (b) Horizon pre-
dicted by our neural network. (c) Difference between the interpre-
tation and the prediction. We also report the root-mean-square error
(rms error) and mean absolute error (MAE). (d) Probability asso-
ciated with the picks.
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patch, and obtaining a prediction over the entire volume requires us to
evaluate the network on a few overlapping patches equal to the num-
ber of voxels in the data. For standard seismic stacks containing
106–109 voxels, this induces a considerable overhead that can lead to
an evaluation time much greater than the training time itself. Because
the evaluation time of our segmentation approach is small, it is suit-
able to run many successive segmentation on offset or angle planes to
follow a reflection in the prestack domain, as shown in Figure 11.
The multidimensional and multiscale nature of CNNs also make

them robust classifiers. In Figure 13, we experiment with a 1D net-

work that only analyzes traces along time and observe that, given
the same training data, the performance is worse than with the cor-
responding 3D version. The limited resolution of seismic data, and
the various sources of noise, often lead to uncertainties in the in-
terpretation. As such, we believe that exploiting deep learning in an
interactive manner, by giving the interpreter the possibility to refine
the results by progressively adding new examples to the training
data set, is an important part of the presented workflow. By using
a masked loss, we give flexibility to the interpreter to pick examples
using either seed points or line interpretations, without worrying

about the 3D aspects of the algorithm.
However, there are also challenges in applying

deep learning to the horizon interpretation prob-
lem. Neural networks are dependent on the quan-
tity and quality of the training data (LeCun et al.,
2015). They can adapt to any data set and do not
suffer from prior-induced limitations, but they
need to be given enough examples before cor-
rectly generalizing. Although we show that our
method only requires a reasonable amount of
training labels, the approach still strongly relies
on manual interpretation by an expert. For a seis-
mic volume containing many horizons, provid-
ing the initial training samples is an obstacle to
overcome. The workflow is also penalized by a
slow start because the neural network needs to be
trained to convergence before obtaining the firsts
results. In Wu et al. (2019) and Tschannen et al.
(2019), the authors use synthetic modeling to
create large training data sets and train networks
that can generalize to real data. However, in this
application we aim to pick specific reflections

Figure 6. Map views of the top reservoir. (a) Ground truth provided by the interpreters.
(b) Horizon picked by our neural network after the first pass of training. (c) Prediction,
updated only inside of the red square, after fine-tuning the network. The rms error, com-
puted inside the red square between the interpretation and the prediction, decreased from
36.9 to 15.5 and the MAE from 18.8 to 9.7. The 10 seed points used to fine-train the
network are shown by the red dots.

Figure 7. The 2D section at inline 646. We plot the interpretation,
as well as the original and refined predictions are shown in Figure 6.
The seed points used for fine-training are displayed as red dots.

Figure 8. The 2D section at crossline 16301 of (a) the near-angle
stack and (b) the probability cube for the top reservoir. The interpre-
tation and the machine’s prediction are displayed.
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and we cannot rely on the exploitation of more
abstract and generalizable concepts such as faults
or diffractions. By borrowing elements from
state-of-the-art architectures (Ioffe and Szegedy,
2015; Ronneberger et al., 2015) and designing
the network to have a smaller reach in the inline
and crossline directions than in the time direc-
tion, we keep the computational and memory
requirements low.
Another difficulty lies in the empirical nature of

deep learning. Training a CNN requires the tuning
of several hyperparameters. To find these param-
eters, practitioners usually rely on a performance
metric evaluated on a validation data set. However
in geosciences, labeled data are scarce and some-
times noisy. In our experiments, monitoring the
training process using a single test line is not al-
ways very informative, and we also find it helpful
to use a more qualitative assessment by carefully
visualizing the predicted horizons together with
the seismic data. We show in Figure 14 the evo-
lution of the training and validation errors with the
number of epochs for the first data set. We see that
the validation error decreases with the number of
epochs in a similar fashion as the training error.
This behavior is a good sign that indicates low
overfitting and is in accordance with the good
quality, on average, of the prediction shown in Fig-
ure 5b. However, horizon interpretation is a task
that requires precision, and the geology may rap-
idly change over a data set. The average value of
the validation loss does not inform us directly on
how the network is performing in the different
areas of the data set. For example, in Figure 7,
the prediction (in green) is very close to the inter-
pretation except in the steeply dipping area, be-
tween crosslines 1000 and 1140. We also see
that the validation error is more volatile and on
average a bit larger than the training error, which
indicates that the network does not perfectly gen-
eralize to the entire survey. Using larger training
and validation sets would certainly improve the
prediction’s quality, but a trade-off must be found
because increasing the amount of manual labeling
is in contradiction to the automatization that is the
purpose of the algorithm. Overall, we find that our
architecture is not overly sensitive to key hyper-
parameters such as the learning rate, the number
of kernels per layer, and the number of epochs,
and we obtain good results on two different data
sets with the same parameterization. As stated
above, our solution depends on the training data,
and we see for instance in Figure 12 that the pre-
diction does not work when the waveform is too
different from the one observed in the training
data. In this case, to successfully recognize the re-
flection beyond the polarity reversal angle, one
would need to repeat the training procedure using
examples picked on a far stack.

Figure 9. The 2D section at crossline 16301 of the near-angle stack shows (a) the in-
terpretation and (b) the machine prediction for the six horizons.

Figure 10. Map views of the top reservoir for the near stack. (a) Solution provided by
the interpreters; the training lines are shown in red. (b) Horizon predicted by our neural
network. (c) Difference between the interpretation and the prediction. (d) Probability
associated with the picks.

N24 Tschannen et al.

D
ow

nl
oa

de
d 

04
/0

8/
20

 to
 7

7.
21

.2
51

.2
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

https://library.seg.org/action/showImage?doi=10.1190/geo2019-0569.1&iName=master.img-008.jpg&w=311&h=149
https://library.seg.org/action/showImage?doi=10.1190/geo2019-0569.1&iName=master.img-009.jpg&w=311&h=416


Figure 11. Prediction of the top reservoir across the prestack do-
main. (a) Angle gather at inline 27208 and crossline 16022; the pre-
dicted horizon is drawn in red. The prediction is following the
moveout of the reflector up to 40°, and it fails to recognize the event
once the waveform becomes too different from the reference near
stack, in particular because of stretching. (b) Prediction probability.

Figure 12. Prediction of the top reservoir across the prestack domain.
The setting is similar to Figure 11, for a gather at inline 27600 and
crossline 16402. The network correctly picks the reflection until 34°,
and it fails to recognize the event once the waveform becomes too dif-
ferent from the reference near the stack because of a polarity reversal.

Figure 13. Results obtained for the same horizon as shown in
Figure 5 but with a 1D CNN. The architecture of the CNN is the
same as the one presented in Table 1, but 3D kernels are replaced by
1 × 1 × 5 kernels. We use training samples of size 1 × 1 × 96 in the
inline, crossline, and time dimensions, and we train the network for
40 epochs with the same parameters as for Figure 5.

Figure 14. Training and validation errors, for the first data set, moni-
tored over the training epochs.
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In addition, CNNs may also suffer from boundary condition ar-
tifacts. In Figure 5b, some outliers are visible in the upper part of the
predicted surface (at large inlines). Because the network is based on
convolutions, performing a prediction on the edge of the volume
requires artificially extending the data, using for instance a mirror-
ing condition, which may affect the quality of the output. Finally,
although here we treat the multihorizon picking problem, we do not
explicitly enforce an ordering of the predictions, and crossings may
occur. Because the network is trained using patches, it does not have
knowledge of the global coordinate system, and it is nontrivial to
make it aware of the relative position of the different samples. We
do not address this issue here, and we enforce ordering of the hori-
zons as a postprocessing operation.

CONCLUSION

We have discussed a practical approach to efficiently and simul-
taneously pick several horizons in a 3D seismic image. We formu-
late the problem as a segmentation task, in which the position of the
reflectors is expressed as a probability distribution, and we use su-
pervised deep learning to solve it. We design an efficient architec-
ture for a 3D CNN that allows us to analyze the data over multiple
scales while keeping the memory and computational requirements
low. We use a masked loss function to give flexibility to the inter-
preters in the way they pick the training data. The method requires
us to label only a few lines through the survey to yield good initial
results, and we show how interpreters can progressively improve the
predictions by fine-tuning the network training. Validation on field
data shows the potential of the method, and in future work we plan
to integrate, within the same end-to-end workflow, the interpretation
of other structural features such as faults or salt bodies.
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