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Skew Killing spinors in four dimensions

Nicolas Ginoux∗, Georges Habib†, Ines Kath‡

July 23, 2020

Abstract. This paper is devoted to the classification of 4-dimensional Riemannian

spin manifolds carrying skew Killing spinors. A skew Killing spinor ψ is a spinor

that satisfies the equation ∇Xψ = AX · ψ with a skew-symmetric endomorphism

A. We consider the degenerate case, where the rank of A is at most two everywhere

and the non-degenerate case, where the rank of A is four everywhere. We prove

that in the degenerate case the manifold is locally isometric to the Riemannian

product R×N with N having a skew Killing spinor and we explain under which

conditions on the spinor the special case of a local isometry to S
2
×R

2 occurs. In

the non-degenerate case, the existence of skew Killing spinors is related to doubly

warped products whose defining data we will describe.

Mathematics Subject Classification (2010): 53C25, 53C27.

Keywords: Generalized Killing spinors, doubly warped product, Hodge operator.

1 Introduction

Let (Mn, g) be an n-dimensional Riemannian spin manifold. A generalised Killing spinor on M
is a section ψ of the spinor bundle ΣM of M satisfying the overdetermined differential equation
∇Xψ = AX · ψ for some symmetric endomorphism field A of TM . Here and as usual, “·” denotes
the Clifford multiplication on ΣM . Numerous papers have been devoted to the classification of
Riemannian spin manifolds carrying such spinors. Several results have been obtained for particular
A but it is still an open problem to get a complete classification for general A. Let us quote
some of these results. First, recall that when A is the zero tensor field, that is, the corresponding
spinor is parallel, then McK. Wang [23] showed that such manifolds can be characterised by their
holonomy groups which can be read off the Berger classification. The case where A is a nonzero
real multiple of the identity is that of classical real Killing spinors. It was shown by C. Bär [3] that
real Killing spinors correspond to parallel spinors on the (irreducible) cone over the manifold, to
which then McK.Wang’s result applies. Furthermore, in dimension n ≤ 8, there are several results
on a classification up to isometry [6, 17]. When the tensor A is parallel [19], or a Codazzi tensor
[5] or both A and g are analytic [2] (see also [9]), it is shown that the manifold M is isometrically
embedded into another spin manifold of dimension n + 1 carrying a parallel spinor and that the
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tensor A is the half of the second fundamental form of the immersion. We also cite the partial
classification of generalised Killing spinors on the round sphere [22, 20] and on 4-dimensional
Einstein manifolds of positive scalar curvature [21] where in some cases the generalised Killing
spinor turns out to be a Killing spinor.

In this paper, we are interested in an equation dual to the generalised Killing one, which we call
skew Killing spinor equation. More precisely, on a given Riemannian spin manifold (Mn, g), a
spinor field ψ is called a skew Killing spinor if it satisfies for some skew-symmetric endomorphism
field A of TM the differential equation

∇Xψ = AX · ψ (1)

for all X ∈ TM . This equation was originally defined in [15]. Each skew Killing spinor is a parallel
section with respect to the modified metric connection ∇ − A ⊗ Id, in particular it has constant
length. Moreover, for a given skew symmetric endomorphism field A of TM , the space of skew
Killing spinors is a complex vector space of dimension at most rkC(ΣM) = 2[n/2].

Very few examples of Riemannian spin manifolds (Mn, g) carrying skew Killing spinors are known
for which A 6= 0. For 2-dimensional manifolds, apart from R

2 or quotients thereof with trivial spin
structure, only the round sphere of constant curvature can carry such spinors and in that case they
correspond to restrictions of Killing spinors from S

3 onto totally geodesic S2 [15]. In that case, the
tensor A coincides with the standard complex structure J induced by the conformal class of S2

or with −J depending on the sign of the Killing constant chosen on S
3. Each skew Killing spinor

on S
2 immediately gives rise to a three-dimensional example, namely to a skew Killing spinor on

S
2 × R, where A = ±J on S

2 is trivially extended to the R-factor. More generally, for a manifold
of dimension n = 3 the following is known [15, Prop. 4.3]. If M3 admits a skew Killing spinor ψ,
then, locally, ψ can be transformed into a parallel spinor by a suitable conformal change of the
metric. In particular, M3 is locally conformally flat. If, in addition, M3 is simply-connected, then
this conformal change is defined globally. Conversely, if (M3, g) admits a nonzero parallel spinor,
then for any conformal change of g, there exists a skew Killing spinor with respect to the new
metric. See Section 4.1 for more detailed information.

In dimensions 6 and 7, there are lots of examples provided by SU(3)- resp. G2-structures on M ,
see e.g. types χ1, χ2, χ4 in [1, Lemma 3.5] and type W2,W4 in [1, Lemma 4.5] respectively.

Obvious examples in four dimensions can be obtained as products N × R, where N is a three-
dimensional manifold admitting a skew Killing spinor, see Example 4.1. A special case of this
construction is the product S2×R

2, see Example 4.2. For each of the endomorphisms A± := ±J⊕0,
this manifold admits the maximal number of skew Killing spinors.

The main purpose of this work is to establish a classification result when the dimension of M is
four. Note that the pointwise rank of A is either zero, two or four. We will split the classification
into two parts. In Section 4 we will study the degenerate case, where the rank of A is at most two
everywhere. In Section 5 we will consider the case where rk(A) = 4 on all ofM . Before we start the
classification, we determine the general integrability conditions in arbitrary dimensions arising from
the existence of a skew Killing spinor, see Section 2. In Sections 3 and 4, we specify these conditions
to four dimensions, especially to the degenerate case. We use that the spinor bundle ΣM splits into
the eigenspaces Σ+M and Σ−M of the volume form and the bundle of two-forms splits into those
of self-dual and of anti-self-dual forms, which act on Σ±M . We also adapt some techniques used
in [21] but for a skew-symmetric endomorphism A. We use the integrability conditions to achieve
the following classification result in case that the Killing map is degenerate everywhere.

Theorem A. Let (M4, g) be a connected Riemannian spin manifold carrying a skew Killing
spinor ψ, where the rank of the corresponding skew-symmetric tensor field A is at most two every-
where. Then either ψ is parallel on M or, around every point of M , we have a local Riemannian
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splitting R × N with N having a skew Killing spinor. If, in addition, the length of the summand
ψ+ in the decomposition ψ = ψ+ + ψ− ∈ Σ+M ⊕Σ−M is not constant, then we are in the second
case with N = R× S

2, that is, (M, g) is a local Riemannian product S2 × R
2 around every point.

For a more detailed formulation see Theorem 4.13, where we also discuss the global structure of
(M, g) if M is complete.

Let us turn to the case where the Killing map is non-degenerate everywhere. In Section 5.1 we
will prove that, essentially, the existence of a skew Killing spinor ψ with non-degenerate Killing
map A is equivalent to the existence of a Killing vector field η and an almost complex structure J
satisfying certain conditions, see Proposition 5.1 for a detailed formulation. The spinor ψ and the
data η and J are related by the equations J(X) · ψ− = iX · ψ− and g(η,X) = 〈X · ψ+, ψ−〉/|ψ|2

for all X ∈ TM .

In Section 5.2, we consider the special case where Aη is parallel to Jη. Then AJ = JA holds and
J is integrable, see Remark 5.3. Manifolds with skew Killing spinors satisfying these conditions are
related to doubly warped products. A doubly warped product is a Riemannian manifold (M, g) of
the form (I×M̂, dt2⊕ρ(t)2ĝη̂⊕σ(t)2ĝη̂⊥), where (M̂, ĝ) is a Riemannian manifold with unit Killing
vector field η̂, and ĝη̂, ĝη̂⊥ are the components of the metric ĝ along Rη̂ and η̂⊥, respectively, I ⊂ R

is an open interval and ρ, σ: I → R are smooth positive functions on I. Locally, doubly warped
products can be equivalently described as local DWP-structures, see the appendix. On M̂ , we
define a function τ̂ by ∇̂X η̂ = τ̂ · Ĵ(X) for X ∈ η̂⊥, where Ĵ is a fixed Hermitian structure on η⊥.
Locally, (M̂, ĝ) is a Riemannian submersion over a two-dimensional base manifold B. Let K̂ denote
the Gaussian curvature of B. We obtain the following result, see Theorem 5.5 and Corollary 5.8.

Theorem B. Let (M, g) admit a skew Killing spinor such that Aη||Jη and |η| 6∈ {0, 1/2} every-
where. Then M is locally isometric to a doubly warped product for which the data K̂ and τ̂ are
constant and ρ and σ satisfy the differential equations

(σ2)′ = −
2

√

1− 4ρ2
ρτ̂ , (σ2)′

ρ′

ρ
= K̂ − 2

ρ2

σ2
τ̂2.

Conversely, if M is isometric to a simply-connected doubly warped product for which the data K̂
and τ̂ are constant and ρ and σ satisfy the above differential equations, then (M, g) admits a skew
Killing spinor such that Aη||Jη.

The differential equations in Theorem B can be locally solved and one obtains explicit formulas for
the doubly warped product. Let us finally mention that the skew Killing spinors on M = I × M̂
are related to quasi Killing spinors in the sense of [11] on M̂ , see Remark 5.10.

Acknowledgement: The second named author would like to thank the Alexander von Humboldt
foundation and the DAAD for the financial support.

2 General integrability conditions for skew Killing spinors

In this section we give a few necessary conditions for the existence of nonzero skew Killing spinors.
Before we state the main result, we recall some facts from Riemannian and spin geometry, see e.g.
[6, Chap. 1] or [18, Chap. 2].

In all this paper we identify, on a Riemannian manifold (Mn, g), one-forms with vector fields via
the metric g. Recall that the Hodge star operator is defined by

ω ∧ ∗ω′ = 〈ω, ω′〉volg
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for all differential p-forms ω, ω′ on M , where volg is the volume form of M (giving its orientation).
The Hodge star operator satisfies ∗2 = (−1)p(n−p) on p-forms and has the following useful properties

X ∧ ∗ω = (−1)p+1 ∗ (Xyω) and Xy ∗ ω = (−1)p ∗ (X ∧ ω) (2)

for any vector field X . Recall also that the Clifford multiplication between a vector field X and a
differential p-form ω is defined as

X · ω = X ∧ ω −Xyω and ω ·X = ω ∧X + (−1)pXyω, (3)

from which the identity X · Y ·+Y ·X · = −2g(X,Y ) follows for any vector fields X and Y.

From now on, we assume M to be spin with fixed spin structure. In that case, there exists a
Hermitian vector bundle ΣM → M , called the spinor bundle, on which the tangent bundle TM
acts by Clifford multiplication, TM ⊗ ΣM → ΣM ;X ⊗ ψ 7→ X · ψ. We will write XY · ψ instead
of X · Y · ψ. Recall that a real p-form also acts by Clifford multiplication in a formally self- or
skew-adjoint way according to its degree: for any p-form ω and any spinors ϕ, ψ, we have

〈ω · ϕ, ψ〉 = (−1)
p(p+1)

2 · 〈ϕ, ω · ψ〉.

The Levi-Civita connection ∇ on M defines a metric connection, also denoted by ∇, on ΣM with
respect to the Hermitian product 〈· , ·〉 and that preserves Clifford multiplication. In other words,
for all X,Y ∈ Γ(TM), the rules

X(〈ψ, ϕ〉) = 〈∇Xψ, ϕ〉+ 〈ψ,∇Xϕ〉, ∇X(Y · ϕ) = ∇XY · ϕ+ Y · ∇Xϕ

are satisfied for all spinor fields ψ, ϕ. If we denote by RX,Y := [∇X ,∇Y ] − ∇[X,Y ] the curvature
tensor associated with the connection ∇, the spinorial Ricci identity states that, for all ψ and X ,

−
1

2
Ric(X) · ψ =

n∑

j=1

ej · RX,ejψ, (4)

see e.g. [6, Eq. 1.13].

In the following, we will assume the manifold M to carry a skew Killing spinor field ψ with
corresponding skew-symmetric endomorphism A. We make A into a 2-form via the metric g, that
is, we consider (X,Y ) 7→ g(AX, Y ), which we still denote by A. In a pointwise orthonormal basis
{ei}i=1,···,n of TM , we have A = 1

2

∑n
j=1 ej ∧ Aej (mind the factor 1

2 ). In particular, Clifford
multiplication of any spinor field ψ by A is given by

A · ψ = 1
2

n∑

j=1

ej ·Aej · ψ . (5)

In the next proposition, we compute the curvature data arising from the existence of such a spinor.
These integrability equations will play a crucial role for the classification in the 4-dimensional case.

Proposition 2.1 Let ψ be any solution of (1) on a spin manifold (Mn, g) for some skew-symmetric
endomorphism field A of TM . Then the following identities hold for X,Y ∈ Γ(TM)

1. RX,Y ψ = ((∇XA)(Y )− (∇YA)(X) + 2AY ∧ AX) · ψ.

2. − 1
2Ric(X) ·ψ =

(
∇XA+Xy dA+ (δA)(X) + 4A ∧ AX + 2A2X

)
·ψ, where d is the exterior

derivative and δ is the codifferential w.r.t. the metric g.

4



3. S ·ψ = 4
(
2dA+ δA+ 4A ∧ A+ |A|2

)
·ψ, where S denotes the scalar curvature of (M, g) and

|A|2 :=
∑n

j=1 |Aej |
2 written in any pointwise orthonormal basis (ej)1≤j≤n of TM .

Proof: We derive (1) and take suitable traces of the identities obtained. First, if x ∈ M and
X,Y ∈ Γ(TM) such that ∇X = ∇Y = 0 at x, then

∇X∇Y ψ = ∇X(AY · ψ) = (∇XA)(Y ) · ψ +AY · ∇Xψ

= (∇XA)(Y ) · ψ +AY ·AX · ψ

at x. Thus, with the help of Equations (3), we write

RX,Y ψ = ∇X∇Y ψ −∇Y ∇Xψ

=
(
(∇XA)(Y )− (∇Y A)(X) +AY · AX −AX ·AY

)
· ψ

=
(
(∇XA)(Y )− (∇Y A)(X) + 2AY ∧AX − g(AY,AX) + g(AX,AY )

)
· ψ

=
(
(∇XA)(Y )− (∇Y A)(X) + 2AY ∧AX

)
· ψ,

which is the first identity.

Next we fix a local orthonormal basis of TM , which we denote by (ej)1≤j≤n. Using the spinorial
Ricci formula (4) and the identities (3), we compute

−
1

2
Ric(X) · ψ =

n∑

j=1

ej · RX,ejψ =
n∑

j=1

ej ·
(
(∇XA)(ej)− (∇ejA)(X) + 2Aej ∧ AX

)
· ψ

=
( n∑

j=1

ej · (∇XA)(ej)−
n∑

j=1

ej ∧ (∇ejA)(X) +

n∑

j=1

ejy(∇ejA)(X)

+ 2

n∑

j=1

ej · (Aej ∧AX)
)

· ψ.

Now we compute each term separately. First,
∑n

j=1 ej · (∇XA)(ej) · ψ = 2∇XA · ψ by (5), where
we see ∇XA as a 2-form on M . The second sum can be computed in terms of the exterior and the
covariant derivatives of A. Namely

−
n∑

j=1

ej ∧ (∇ejA)(X) =
( n∑

j=1

ej ∧ ∇ejA
)

(X)−
n∑

j=1

g(X, ej)∇ejA = Xy dA−∇XA.

The third sum can be expressed in terms of the codifferential of A:

n∑

j=1

ejy(∇ejA)(X) =
n∑

j=1

(∇ejA)(X, ej) = −
n∑

j=1

(∇ejA)(ej , X) = (δA)(X).

It remains to notice that, by Equations (3), we have

n∑

j=1

ej · (Aej ∧AX) · ψ =

n∑

j=1

ej ·Aej ·AX · ψ +

n∑

j=1

g(Aej , AX)ej · ψ

= (2A · AX −A2X) · ψ = (2A ∧AX +A2X) · ψ.

This shows the second equation.
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To obtain the scalar curvature, we trace the spinorial Ricci identity. Given a local orthonormal
basis (ej)1≤j≤n of TM , we write

S

2
ψ = −

1

2

n∑

j=1

ej ·Ric(ej) · ψ

=

n∑

j=1

ej ·
(
∇ejA+ ejy dA+ (δA)(ej) + 4A ∧ Aej + 2A2ej

)
· ψ

(3)
=

n∑

j=1

(

ej ∧∇ejA− ejy∇ejA
)

· ψ +

n∑

j=1

(

ej ∧ (ejy dA)− ejy(ejy dA)
︸ ︷︷ ︸

0

)

· ψ

+

n∑

j=1

(δA)(ej)ej · ψ + 4

n∑

j=1

(

ej ∧ A ∧ Aej − ejy(A ∧ Aej)
︸ ︷︷ ︸

0

)

· ψ

+2

n∑

j=1

(

ej ∧ A
2ej

︸ ︷︷ ︸

0

−g(A2ej , ej)
)

· ψ

=
(
dA+ δA+ 3dA+ δA+ 8A ∧ A+ 2|A|2

)
· ψ

=
(
4dA+ 2δA+ 8A ∧ A+ 2|A|2

)
· ψ,

which is the last identity. Here, we use the the identity
∑n

j=1 ej ∧ (ejyω) = pω, which holds for
any p-form ω. �

3 The vector fields η and ξ in four dimensions

In this section, we consider a 4-dimensional spin manifold (M, g) that carries a skew Killing spinor.
On spin manifolds of even dimension 2m, the complex volume form (volg)C := ime1 · e2 . . . · e2m,
where (ej)j=1,···,2m is an arbitrary orthonormal frame, splits the spinor bundle into two orthogo-
nal subbundles that correspond to the eigenvalues ±1 of (volg)C. Hence, on our four-dimensional
manifold (M, g), we have ΣM = Σ+M ⊕ Σ−M , where

Σ±M := {ψ ∈ ΣM | (volg)C · ψ = ±ψ}.

The spaces Σ±M are preserved by the connection ∇ of the spinor bundle and are interchanged by
Clifford multiplication by tangent vectors. According to this decomposition, we write any spinor
field ψ as ψ = ψ+ + ψ− and we set ψ̄ := ψ+ − ψ−. Recall now that differential forms act on the
spinor bundle ΣM as follows: for any differential p-form ω on M and ψ ∈ Γ(ΣM)

ω · ψ = ∗ω · ψ̄ for p = 1, 2 and ω · ψ = −(∗ω) · ψ̄ for p = 3, 4. (6)

Let
∧2

±M = {ω ∈
∧2M | ∗ω = ±ω} be the spaces of self-dual and anti-self-dual forms on M . For

ω ∈
∧2

M we denote by ω± the projections of ω to these spaces. Then, one can easily see from

Equations (6) that
∧2

±M acts trivially on Σ∓M and that the maps

∧2
−M −→ Σ−M ∩ (ψ−)⊥, ω− 7−→ ω− · ψ−,

∧2
+M −→ Σ+M ∩ (ψ+)⊥, ω+ 7−→ ω+ · ψ+ (7)

are isomorphisms if ψ+ 6= 0 and ψ− 6= 0.
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Now assume that ψ is a skew Killing spinor of norm one. By decomposing ψ into ψ+ and ψ− as
we said before, we obtain isomorphisms (7) on the open set M ′ :=M0 ∩M1, with

M0 := {x ∈M | ψ−(x) 6= 0} and M1 := {x ∈M | ψ+(x) 6= 0}.

Equation (1) can be written as ∇Xψ
± = AX · ψ∓. We define a vector field η on M and a vector

field ξ on M0 by
g(η,X) := 〈X · ψ+, ψ−〉, ψ+ =: ξ · ψ−, (8)

where the definition of ξ uses that the map TpM → Σ+
p M , X 7→ X ·ψ− is bijective at each p ∈M0.

Then, clearly η = −|ψ−|2ξ holds on M0 and 1 = |ψ+|2 + |ψ−|2 = |ψ−|2(1 + |ξ|2). We define

f := 1− 2|ψ−|2, ρ := |η| ≤ 1/2.

Then

ρ =
|ξ|

1 + |ξ|2
, f =

|ξ|2 − 1

|ξ|2 + 1
, f2 = 1− 4ρ2, η =

1

2
(f − 1)ξ (9)

holds, where these functions are defined.

We collect some properties of η and ξ that will be used later on.

Lemma 3.1 On M , we have

1. df = 4Aη

2. ∇Xη = fAX

3. dη = 2fA, δη = 0

4. fdA = −4Aη ∧ A .

Proof: Differentiating the function |ψ−|2 along any vector field X ∈ TM gives

X(|ψ−|2) = 2〈∇Xψ
−, ψ−〉 = 2〈AX · ψ+, ψ−〉 = 2g(η,AX) = −2g(Aη,X).

This proves 1. To prove 2, we consider two vector fields X and Y that can be assumed to be parallel
at some point x ∈M to compute

g(∇Xη, Y ) = X(g(η, Y )) = X(〈Y · ψ+, ψ−〉)

= 〈Y ·AX · ψ−, ψ−〉+ 〈Y · ψ+, AX · ψ+〉

= −g(Y,AX)|ψ−|2 + g(Y,AX)|ψ+|2

= (1 − 2|ψ−|2)g(AX, Y )

at x, which is 2. Moreover,

dη(X,Y ) = (∇Xη)(Y )− (∇Y η)(X) = 2fA(X,Y ),

which yields the first part of 3. The divergence of η is clearly zero by 2 and the fact that A is
skew-symmetric. Finally,

0 = ddη = 2fdA+ 2df ∧ A,

which together with 1 gives 4. �
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Remark 3.2 It follows from Lemma 3.1 that ∇η is skew-symmetric on M which means that η is
a Killing vector field on M .

The open sets M0 and M1 are dense in {p ∈ M | Ap 6= 0}. Indeed, if, e.g., ψ− vanishes on some
open set U ⊂ {p ∈ M | Ap 6= 0}, then so does its covariant derivative and therefore AX · ψ+ = 0
on U . Hence A = 0 on U , which contradicts the assumption on A.

With the notation introduced above, we have M0 = {x ∈ M | f(x) 6= 1} and M1 = {x ∈ M |
f(x) 6= −1}. Then M ′ = M0 ∩M1 = {x ∈ M | f(x) 6= ±1} = {x ∈ M | ρ(x) 6= 0}. We define also
the set

M ′′ :=
{
x ∈M | ρ(x) 6∈ {0, 12}

}
=M ′ ∩

{
x ∈M | ρ(x) 6= 1

2

}
= {x ∈M | f(x) 6∈ {0,±1}}.

By Lemma 3.1, 1., the open set M ′′ is dense in {p ∈ M | Ap(η) 6= 0}. In particular, M ′′ ⊂ M is
dense if A is non-degenerate everywhere. The case where ρ = 1/2 on an open set will be treated
in Proposition 4.3.

Remark 3.3 Let us change the orientation of M and denote by Σ̂M the spinor bundle with respect
to the new orientation. Then we can identify Σ̂M with ΣM via Σ̂+M = Σ−M and Σ̂+M = Σ−M
Accordingly, we define a section ψ̂ of Σ̂M by ψ̂+ = ψ−, ψ̂− = ψ+. With ψ also ψ̂ is a skew
Killing spinor and the vector fields ξ̂ and η̂ associated with ψ̂ are equal to ξ̂ = −ξ/|ξ|2 and η̂ = −η,
respectively.

On M ′′, we have |ξ| 6= 1. Hence, if there exists a skew Killing spinor on M and if M = M ′′,
then we always may assume that |ξ| > 1 up to a possible change of orientation on each connected

component of M . If |ξ| > 1, then f is positive, thus f =
√

1− 4ρ2.

4 The degenerate case

In this section, we assume that rk(A) ≤ 2 everywhere on M4, which is equivalent to suppose that
the kernel of A is at every point either 4- or 2-dimensional. Then AX ∧A = 0 for all X ∈ TM . In
particular, dA = 0 on M ′′ by Lemma 3.1.

4.1 Examples

Example 4.1 If N is a 3-dimensional spin manifold with a skew Killing spinor ϕ, then N × R

admits a skew Killing spinor ψ 6= 0 for which |ψ+| = |ψ−| holds.

Let us prove the above statement. Recall that the spinor bundle of M = N × R is given by
ΣM = ΣN ⊕ ΣN and the Clifford multiplication on M is related to the one on N by [4]

(X ·N ⊕−X ·N)ψ = X · ∂t · ψ.

where ∂t is the unit vector field on R and X ∈ TN . Now we set ψ := ϕ + ∂t · ϕ according to the
above decomposition. Let A denote the Killing map associated with ψ. Then we can easily check
that ∇∂tψ = 0 and, for X ∈ TN ,

∇Xψ = ∇Xϕ+ ∂t · ∇Xϕ

= AX ·N ϕ+ ∂t · (AX ·N ϕ)

= AX · ∂t · ϕ+ ∂t ·AX · ∂t · ϕ

= AX · ψ.
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Hence ψ is a skew Killing spinor on M . The vector field ξ in this example is just −∂t which is
parallel. Since |∂t| = 1, we have |ψ+| = |ψ−|.

Let us recall at this point, what is known about three-dimensional manifolds with skew Killing
spinors. As already mentioned in the introduction, each skew Killing spinor on S

2 immediately
gives rise to a three-dimensional example, namely to a skew Killing spinor on S

2×R. Furthermore,
if dimN = 3 and if (N, g) admits a skew Killing spinor ψ, then N is locally conformally flat
[15, Prop. 4.3]. Indeed, locally, there exists a function u such that ψ transforms into a parallel
spinor ψ̄ with respect to the metric ḡ := e2ug and three-dimensional Riemannian manifolds with a
non-trivial parallel spinor field are flat. If N is simply-connected, then u is globally defined. In the
latter case the metric ḡ is not necessarily complete even if (N, g) is.

Conversely, if (N, g) admits a nonzero parallel spinor, then for any conformal change of the metric
on the manifold N there exists a skew Killing spinor with respect to the new metric. We conclude
this overview with the flat case N = R

3. If ψ 6= 0 is a solution of (1) on N = R
3 endowed with the

flat metric, then A = 0 and ψ is a parallel spinor field. Indeed, as mentioned above, there exists a
globally defined function u on R

3 such that the metric ḡ := e2ug admits a parallel spinor. Hence, ḡ is
also flat. In particular, the scalar curvature S̄ vanishes. On the other hand, S̄ = 8e−2ue−u/2∆eu/2

since ḡ arises by conformal change from the flat metric g. Thus ∆(eu/2) = 0, that is, eu/2 is a
harmonic function on R

3. But since eu/2 ≥ 0, Liouville’s theorem implies that eu/2 – and so u itself
– is constant. This shows A = 0.

Example 4.2 We consider M = S
2×R

2. Let J denote the standard complex structure on S
2. We

define endomorphisms A± := ±J ⊕ 0 on TM = TS2⊕TR2. For each of these endomorphisms, the
space of skew Killing spinors is four-dimensional. It can be spanned by elements with non-vanishing
Aη and it also can be spanned by elements for which Aη = 0 holds.

Let us prove this statement. The spinor bundle of S2 × R
2 is pointwise given by Σ(S2 × R

2) =
ΣS2 ⊗ ΣR2 and the Clifford multiplication on S

2 × R
2 is [4]

X · (ϕ⊗ σ) = (X ·S2 ϕ) ⊗ σ̄, Y · (ϕ ⊗ σ) = ϕ⊗ (Y ·R2 σ),

for X ∈ TS2 and Y ∈ TR2. Now, we consider on S
2 a skew Killing spinor ϕ, corresponding to

the standard complex structure J , and a parallel spinor σ in Σ+(R2) of norm 1. The spinor field
ψ := ϕ⊗ σ is clearly a skew Killing spinor, since in the S

2-direction we have

∇Xψ = (∇Xϕ)⊗ σ = (JX ·S2 ϕ)⊗ σ = JX · (ϕ⊗ σ) = JX · ψ

and ∇Y ψ = 0 in the R
2-direction. The same computation holds when replacing J by −J and

choosing σ ∈ Σ−(R2). As the spaces of skew Killing spinors ϕ corresponding to the standard
complex structure J or its opposite on S

2 are each complex 2-dimensional, we deduce that the space
of skew Killing spinors with Killing map A+ is at least – and therefore exactly – 4-dimensional.
The same holds for A−. In particular, each skew Killing spinor on S

2 ×R
2 is a linear combination

with constant coefficients of skew Killing spinors for A+ and also one of skew Killing spinors for
A−. Note that the vector field ξ, associated to the above-defined skew Killing spinor ψ, is the one
coming from the spinor ϕ on S

2, since TS2 ≃ Σ+
S
2 and

ψ+ = ϕ+ ⊗ σ = (ξS2 · ϕ
−)⊗ σ = ξS2 · (ϕ

− ⊗ σ) = ξS2 · ψ
−.

Therefore, ξ = ξS2 and A2ξ = J2ξS2 = −ξS2 , which cannot vanish on the sphere. Thus Aη 6= 0. If
we consider instead of the above constructed ψ the spinor ψ + Y · ψ̄ for a parallel vector field Y
on R

2 with |Y | = 1, we obtain a skew Killing spinor with ξ = −Y , hence Aη = 0.
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4.2 Classification

Let us first assume that ρ = 1/2 on an open set. By definition of ρ, this condition is equivalent
to |ψ+| = |ψ−|. We prove that, under this assumption, the manifold is locally isometric to that in
Example 4.1.

Proposition 4.3 Let ψ be a nonzero skew Killing spinor on M4 and assume that |ψ+| = |ψ−| on
an open set U . Then U is a local Riemannian product of a line by a 3-dimensional Riemannian
manifold carrying a skew Killing spinor.

Proof: Let ψ be a skew Killing spinor of norm one such that |ψ+| = |ψ−|. Then f = 0 by definition
of f . Thus η is parallel by Lemma 3.1. In this case η⊥ is integrable and the spinor ψ restricts to a
skew Killing spinor on the integral manifolds. In fact, for any given integral manifold N , its spinor
bundle is identified with Σ+M , so the spinor ϕ = ψ+ restricts to a skew Killing spinor on N .
Indeed,

∇N
Xϕ = ∇M

X ψ
+ = AX · ψ− = −AX · ξ · ψ+ = −AX ·N ϕ,

which proves the assertion. �

In the next part of the section, we want to exclude the case ρ = 1/2 and make the stronger
assumption

(M4, g) is a Riemannian spin manifold carrying a skew Killing
spinor such that M =M ′′ and rk(A) = 2 everywhere.

(GA)

Due to the orthogonal splitting of the spinor bundle ΣM = Σ+M ⊕ Σ−M we can decompose
further the equations in Proposition 2.1 in order to get more integrability conditions. Namely,

Lemma 4.4 Under the assumption (GA), we have

0 = 1
2Ric(X) + 2A2X + ∗(ξ ∧∇XA) + ξy∇XA+ (δA)(X)ξ (10)

0 =
(

1
2Ric(X) ∧ ξ + 2A2X ∧ ξ +∇XA

)

−
(11)

0 = 1
2Ric(ξ) + 2A2ξ − δA (12)

0 = δA+ (|A|2 − 1
4S)ξ (13)

0 =
(

ξ ∧ δA
)

−
(14)

0 = −(δA)(ξ) + |A|2 − 1
4S (15)

for any vector field X.

Proof: We take the orthogonal projection of the formulas in Proposition 2.1 to Σ+M and Σ−M .
This gives, after using ψ+ = ξ · ψ−, dA = 0 and A ∧ AX = 0 that

0 =
(
1
2Ric(X) + 2A2X

)
· ψ− + (∇XA+ (δA)(X)) ξ · ψ− (16)

0 =
(
1
2Ric(X) + 2A2X

)
· ξ · ψ− + (∇XA+ (δA)(X)) · ψ− (17)

and

0 =
(
|A|2 − 1

4S
)
· ξ · ψ− + (δA) · ψ− (18)

0 =
(
|A|2 − 1

4S
)
· ψ− + (δA) · ξ · ψ−, (19)
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respectively. Equation (16) gives

0 =
(
1
2Ric(X) + 2A2X + ξ ∧ ∇XA+ ξy∇XA+ (δA)(X)ξ

)
· ψ−.

Hence, by formula (6), we obtain (10). Equation (17) yields

0 =
(
1
2Ric(X) ∧ ξ − 1

2Ric(X, ξ) + 2A2X ∧ ξ − 2g(A2X, ξ) +∇XA+ (δA)(X)
)
· ψ−.

Now, by taking the scalar product with ψ− and identifying the real part, the 0-th order term must
vanish. This is Equation (12). Also, we have

(
1
2Ric(X) ∧ ξ + 2A2X ∧ ξ +∇XA

)
· ψ− = 0.

The isomorphism from
∧2

−M to the orthogonal complement (ψ−)⊥ yields Equality (11) from the
above identity. Equation (18) gives (13). Finally, Equation (19) yields

0 =
(
|A|2 − 1

4S− (δA)(ξ) − ξ ∧ δA
)
· ψ−.

Taking the Hermitian product with ψ−, we obtain Equations (14) and (15) after identifying the
real parts. �

In the following, we will further simplify the equations in Lemma 4.4.

Proposition 4.5 Under the assumption (GA), we have

δA = 0 (20)

S = 4|A|2 (21)

Ric(η) = −4A2η (22)

∇ηA = 0 (23)

(∇XA)(η) = −f
(
1
4Ric(X) +A2X

)
(24)

∇X(Aη) = −
f

4
Ric(X), (25)

ηy∇X(∗A) = ∇X((∗A)η) =
1

4
Ric(X) +A2X (26)

for every X ∈ TM .

Proof: By (14), we have

ξ ∧ δA = ∗(ξ ∧ δA) = −ξy ∗ δA.

Hence, the interior product with ξ yields 0 = ξy(ξ ∧ δA) = |ξ|2δA − (δA)(ξ) · ξ. Now, applying
Equation (13) to ξ gives

0 = (δA)(ξ) +
(
|A|2 − 1

4S
)
|ξ|2,

which, after combining with (15), leads to 0 = (1 + |ξ|2)(δA)(ξ), which gives (20). Now (13) yields
(21). Equation (22) now follows from (12) and (20).

From (11), we get

∗
(

1
2Ric(X) ∧ ξ + 2A2X ∧ ξ +∇XA

)

= 1
2Ric(X) ∧ ξ + 2A2X ∧ ξ +∇XA,
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which, by Equation (2), is equivalent to

1
2ξy ∗ (Ric(X)) + 2ξy ∗ (A2X) + ∗∇XA = 1

2Ric(X) ∧ ξ + 2A2X ∧ ξ +∇XA.

Taking the interior product by ξ, this gives

ξy ∗ ∇XA = ξy
((

1
2Ric(X) + 2A2X

)
∧ ξ

)
+ ξy∇XA,

thus
∗(ξ ∧ ∇XA) =

(
− 1

2Ric(X)− 2A2X
)
|ξ|2 + ξy∇XA

by Equations (2) and (22). On the other hand, Equations (10) and (20) give

∗(ξ ∧ ∇XA) = − 1
2Ric(X)− 2A2X − ξy∇XA.

Substracting and adding the latter two equations and replacing ξ by −(1 + |ξ|2)η yields (24) and
the identity ηy∇X(∗A) = 1

4Ric(X) +A2X for all X ∈ Γ(TM). The last equation yields (26) since
(∗A)(∇Xη) = f(∗A)(AX) = ∗fAX∧A = 0. Furthermore, Equation (24) shows that the expression
(∇XA)(η, Y ) is symmetric in X and Y . Thus

0 = (∇XA)(η, Y )− (∇Y A)(η,X) = −dA(X,Y, η) + (∇ηA)(X,Y ) = (∇ηA)(X,Y )

by dA = 0. This proves (23). Equation (25) follows from (24) together with ∇Xη = fAX . �

Remark 4.6 We can prove integrability conditions analogous to those in Lemma 4.4 and Propo-
sition 4.5 also for arbitrary rank of A. These general conditions are more involved. Since we will
not use them in the present paper, we do not state them here.

Lemma 4.7 Under the assumption (GA), the set {p ∈M | Aη|p 6= 0} is dense in M .

Proof: Assume that Aη = 0 on an open set U . We know that η is a Killing vector field on M .
Moreover, by Lemma 3.1, the vector field η has constant length on U . Indeed, for every X ∈ TM ,

X
(
|η|2

)
= 2g (∇Xη, η) = 2fg(AX, η) = −2fg(Aη,X) = 0.

By [7, Thm. 4], since (22) implies Ric(η) = 0, we can conclude that η is parallel on U . But this
contradicts item 2 of Lemma 3.1 since f 6= 0 and A 6= 0 everywhere by assumption. �

In the following, we will often assume assume that Aη 6= 0 on all of M . If Aη 6= 0, then we have

A2η 6= 0 everywhere, thus the vectors Aη
|Aη| and

A2η
|A2η| form an orthonormal basis of the image of A.

As A is of rank 2, we obtain

A =
1

|Aη|2
· Aη ∧A2η. (27)

Furthermore, note that (27) already implies

A3η = −
|A2η|2

|Aη|2
Aη = −

S

8
Aη, (28)

where the last equality comes from the identity (21). Obviously, A3η = −S
8Aη holds also if Aη = 0.

Since df = 4Aη by Lemma 3.1, (25) implies

∇df = −f · Ric. (29)

This equation has been extensively studied in [13]. Using this formula, we now express the Ricci
tensor of the vector field Aη.
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Lemma 4.8 If (GA) holds, then the Ricci tensor satisfies

Ric(Aη) =
S

2
·Aη +

f

16
· dS, Ric((∗A)η) =

1

16
dS. (30)

In particular, we have
(Aη)(S) = f((∗A)η)(S). (31)

Proof: By Bochner’s formula for 1-forms, ∆(df) − Ric(df) = ∇∗∇(df) holds. Since ∇df = −fRic
is symmetric and since ∇∗ = δ on symmetric (0, 2)-tensors, this gives

∆(df)− Ric(df) = δ∇df = δ(−fRic) = Ric(df)− fδ(Ric) = Ric(df) +
f

2
dS,

where we used the well-known identity dS = −2δRic. Hence, we deduce

∆(df) = 2Ric(df) +
f

2
dS.

But (29) also gives ∆f = −trg (∇df) = f · S, so that ∆(df) = d(∆f) = d(f · S). Therefore

Ric(df) =
1

2
S · df +

f

4
· dS.

The first equation in (30) now follows from the equality df = 4Aη.

In the following, we will compute the Ricci curvature of the vector field (∗A)η. Notice first that
(∗A)η = ηy(∗A) = ∗(η ∧ A). Hence, this vector field belongs to the kernel of A as

g(AX, (∗A)η)volg = AX ∧ ∗2(η ∧ A) = −AX ∧ η ∧ A = 0

for any X ∈ TM . Based on the fact Aηy(∗A) = ∗(Aη ∧ A) = 0, we first compute

Aηy∇X(∗A) = −(∗A)(∇XAη) =
f

4
(∗A)(Ric(X)) = ∗

f

4
(Ric(X) ∧ A). (32)

This gives

ηy(Aηy∇X(∗A)) = − ∗
f

4
(η ∧ Ric(X) ∧ A) = −

f

4
Ric(X)y ∗ (η ∧ A) = −

f

4
Ric((∗A)η,X).

On the other hand, by (26) and (28), we have

Aηy(ηy∇X(∗A)) = Aηy
(1

4
Ric(X) +A2X

)
= g

(1

4
Ric(Aη) +A3η,X

)
=

f

64
g(dS, X).

Comparing the two identities gives the second equation in (30). Equation (31) can be deduced
from computing Ric(Aη, (∗A)η)) in two ways from (30) taking the scalar product by (∗A)η in the
first formula and by Aη in the second one. Remember that (∗A)η lies in the kernel of A. �

In the following, we will establish and prove three technical lemmas (Lemmas 4.9, 4.10 and 4.11),
which will show that the kernel and the image of the endomorphism A are integrable and totally
geodesic. Then the proof of Theorem A will follow from the de Rham theorem.

Lemma 4.9 Assume that (GA) holds. Then we have the identity

∇AηA
2η = −

f

4
Ric(A2η)−

f2

32
A(dS). (33)
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Proof: By continuity, it suffices to prove the assertion on the set {p ∈M | Aη|p 6= 0} since this set
is dense in M by Lemma 4.7. Thus we may assume that Aη 6= 0 everywhere. For any X ∈ TM ,
we have

d(|Aη|2) = 2g(∇(Aη), Aη) = −
f

2
Ric(Aη), (34)

where we use Equation (25) in the last equality. Thus, from Lemma 4.8, we find

d

(
1

|Aη|2

)

=
f

2|Aη|4
Ric(Aη) =

f

4|Aη|4
(
S · Aη +

f

8
dS

)
.

Moreover, δ(A2η) = 0. Indeed, for any two-form ω in four dimensions and any vector X , the
formula δ(Xyω) = ∗(dX ∧ ∗ω)− δω(X) holds. Using δA = 0 and 4d(Aη) = ddf = 0, this yields

δ(A2η) = δ(AηyA) = ∗(d(Aη) ∧ ∗A)− (δA)(Aη) = 0.

Now, by taking the divergence of both sides of (27), we compute

0 = δA = δ

(
1

|Aη|2
Aη ∧ A2η

)

= −d

(
1

|Aη|2

)

y(Aη ∧A2η) +
1

|Aη|2
δ(Aη ∧ A2η)

= −
f

4|Aη|2
(SAη +

f

8
dS)yA+

1

|Aη|2
(
δ(Aη)A2η +∇A2ηAη −∇AηA

2η − δ(A2η)Aη
)
,

where we use the formula δ(X ∧ Y ) = (δX)Y +∇YX −∇XY − (δY )X, valid for any X,Y ∈ TM .
Furthermore, the divergence of Aη is equal to fS/4 as an easy consequence from tracing Equation
(25). This finally gives (33). �

The following technical lemma expresses a partial trace of the Ricci tensor.

Lemma 4.10 Assume that (GA) holds and that Aη 6= 0 everywhere. Then the following identity
holds:

1

|Aη|2
Ric(Aη,Aη) +

1

|A2η|2
Ric(A2η,A2η) = S−

2

fS
Aη(S).

Proof: The proof relies on taking the scalar product of Ric(A2η) in Lemma 4.9 with the vector
field A2η. Indeed, we have

Ric(A2η,A2η) = −
4

f

(

g(∇AηA
2η +

f2

32
A(dS), A2η)

)

= −
2

f
Aη(|A2η|2) +

f

8
g(dS, A3η)

(28)
= −

2

f
Aη

(S

8
|Aη|2

)

−
fS

64
Aη(S)

(34)
=

S

8
Ric(Aη,Aη) −

( |Aη|2

4f
+
fS

64

)

Aη(S).

Hence, again by (28), we find

Ric(A2η,A2η)

|A2η|2
=

Ric(Aη,Aη)

|Aη|2
−

(
2

fS
+

f

8|Aη|2

)

Aη(S).

Finally, the identity
Ric(Aη,Aη)

|Aη|2
=

S

2
+

f

16|Aη|2
Aη(S),
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which follows from Lemma 4.8, leads to the required equality. �

Lemma 4.11 If (GA) holds, then the scalar curvature is constant and Ric + 4A2 = 0.

Proof: As in the proof of Lemma 4.9, we may assume that Aη 6= 0 everywhere. By Lemma 4.8 we
know that

Ric(Aη) −
S

2
Aη = f · Ric((∗A)η).

We take the divergence of both sides. We start with the left hand side. Note that for any vector field
X ∈ Γ(TM) the formula δ(Ric(X)) = g(δRic, X)−

∑n
i=1 g(Ric(ei),∇eiX) holds, where e1, . . . , en

is any pointwise orthonormal basis. Using this and δ(Aη) = fS
4 , we compute

δ(Ric(Aη) −
S

2
Aη) = g(δRic, Aη)−

4∑

i=1

g(Ric(ei),∇eiAη)−
1

2

(
− g(dS, Aη) + S δ(Aη)

)

= −
1

2
g(dS, Aη) +

f

4

4∑

i=1

g(Ric(ei),Ric(ei)) +
1

2
g(dS, Aη) −

f

8
S2

=
f

4
|Ric|2 −

f

8
S2. (35)

To get the divergence of the right hand side, we first compute that of the vector field Ric((∗A)η).
For this, we use the same formula as above and again dS = −2δRic to write

δ(Ric((∗A)η)) = −
1

2
((∗A)η)(S) −

4∑

i=1

g(Ric(ei),∇ei((∗A)η))

= −
1

2f
(Aη)(S) −

4∑

i=1

g(Ric(ei),∇ei ((∗A)η)). (36)

In the last equality, we used (31). Inserting (26) into (36), we find

δ(Ric((∗A)η)) = −
1

2f
(Aη)(S) −

1

4
|Ric|2 −

4∑

i=1

g(Ric(ei), A
2ei),

which in turn gives

δ(f · Ric((∗A)η)) = −g(df,Ric((∗A)η)) + f · δ(Ric((∗A)η)))

= −
3

4
(Aη)(S) −

f

4
|Ric|2 − f

4∑

i=1

g(Ric(ei), A
2ei) (37)

by (30). Comparing Equations (35) and (37), we obtain

4∑

i=1

g(Ric(ei), A
2ei) = −

3

4f
(Aη)(S) −

1

2
|Ric|2 +

1

8
S2.

On the other hand, this sum can be computed on the particular orthonormal frame Aη
|Aη| ,

A2η
|A2η| , e3, e4

with e3, e4 in the kernel of A as follows: using Lemma 4.10, we write

4∑

i=1

g(Ric(ei), A
2ei) =

1

|Aη|2
Ric(Aη,A3η) +

1

|A2η|2
Ric(A2η,A4η)
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(28)
= −

S

8

(
1

|Aη|2
Ric(Aη,Aη) +

1

|A2η|2
Ric(A2η,A2η)

)

= −
S2

8
+

1

4f
Aη(S). (38)

Comparing these two computations yields

4Aη(S) = f(S2 − 2|Ric|2). (39)

The Cauchy-Schwarz Inequality gives

4∑

i=1

g(Ric(ei), A
2ei) ≤ |Ric||A2|. (40)

We take the square of this inequality. Then we use (38) and (39) to express the left and the right
hand side, respectively. We obtain

(

−
S2

8
+

1

4f
Aη(S)

)2

≤
(S2

2
−

2

f
Aη(S)

)

·
S2

32
=

S4

64
−

S2

16f
Aη(S),

where besides (21), which says that S = 4|A|2, we used |A2|2 = (|A|2)2/2, which follows from the
fact that A is skew-symmetric of rank two. This inequality is only true if Aη(S) = 0. But then
(40) is an equality. Hence, Ric is a multiple of A2 at every point of M4. Since TrRic = S and
TrA2 = −|A|2 = −S/4, we obtain Ric = −4A2. As the vector field (∗A)η lies in the kernel of A,
the second equation in (30) implies that the scalar curvature is constant. This ends the proof. �

Lemma 4.12 If (GA) is satisfied, then (M, g) is locally isometric to R
2 × S

2.

Proof: We show that the two orthogonal distributions Im(A) and Ker(A) – which are both of rank
two by assumption – are parallel. If this is proved to be true, then we get a local Riemannian
product by the de Rham decomposition theorem. Clearly, it suffices to show that Im(A) is parallel
since Ker(A) = Im(A)⊥. Let us first consider the open subset V := {p ∈M | Aη|p 6= 0}. On V , the
image of A is spanned by Aη and A2η. Note that ∇XAη = fA2X by (25) and Lemma 4.11. Thus
∇XAη is contained in Im(A) for all X ∈ TM . Furthermore, by Equation (32) and Lemma 4.11, we
have Aηy∇X(∗A) = 0 for all X ∈ TM . Equation (11) now gives Aηy∇XA = 0. Thus ∇XA

2η =
A(∇X(Aη)) = fA3(X). In particular, also ∇XA

2η is contained in Im(A) for all X ∈ TM4. This
proves that Im(A) is parallel.

We want to extend this splitting of TM into two parallel distributions to all of M . To this end, we
observe that, on V , the Ricci map has constant eigenvalues 0, 0, S/2, S/2 > 0 and Ker(A) and Im(A)
are the eigendistributions. Since V ⊂ M is dense by Lemma 4.7, these are also the eigenvalues of
Ric on all of M and the two-dimensional eigendistributions of Ric are parallel on all of M . We
deduce that (M, g) is locally isometric to the Riemannian product R2 × S

2. �

Now we can prove the main result of this section. In particular, it says that, in the degenerate case,
the skew Killing spinor is parallel or (M, g) is locally isometric to one of the examples discussed in
Section 4.1.

Theorem 4.13 Let (M4, g) be a connected Riemannian spin manifold carrying a skew Killing
spinor ψ, where the rank of the corresponding skew-symmetric tensor field A is ≤ 2 everywhere.
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Then either ψ is parallel (i.e., A = 0) on M or, around every point of M , we have a local Rie-
mannian splitting R×N with N having a skew Killing spinor. If, moreover, |ψ+| (thus also |ψ−|)
is not constant, then (M, g) is a local Riemannian product S

2 × R
2 around every point and the

Killing map equals ±J ⊕ 0.

If, in addition, (M, g) is complete, then (M, g) is globally isometric to the Riemannian product
S
2 ×Σ2, where Σ2 is either flat R2, a flat cylinder with trivial spin structure or a flat 2-torus with

trivial spin structure.

Proof: We define U := {p | Ap 6= 0} and U ′ := U ∩M ′, U ′′ := U ∩M ′′. Recall that U ′ ⊂ U is
dense. We know that Equation (29) holds on the open set U ′′. We claim that it holds on all of
M . Obviously, it is true on the closure U ′′ of U ′′. It also holds on U ′ \ U ′′ since this set is open
with f ≡ 0. Consequently, it holds on U ′, thus on U since U ′ ⊂ U dense. Hence it is true on
supp(A) = U . Furthermore, on the complement of supp(A), we have df = 0 and Ric = 0, thus
(29) holds on M . Now we can apply Prop. 1.2 in [16], which shows that either f ≡ 0 on M or
supp(f) = M . If f ≡ 0, then Proposition 4.3 applies. Assume now that supp(f) = M . Then M ′′

is dense in M . Let U and U ′′ be defined as above. On U ′′, the assumption (GA) is satisfied. As
we have seen, the eigenvalues of Ric are 0 and S/2 and the eigendistributions of Ric on U ′′ are

parallel. Thus this holds also on U
′′
= U . If U = M , then we are done by Lemma 4.12. If U = ∅,

then ψ is parallel. Assume that U were non-empty and not equal to M . Then the complement W
of U is open and not empty with A = 0. Thus ψ is parallel onW , hence Ric = 0 onW , thus also on
W . Since M is connected, U ∩W is non-empty. Hence we can chose a point p in this intersection.
But then p ∈ U would imply that S/2 > 0 is an eigenvalue of Ricp and p ∈ W would imply that
Ricp = 0, a contradiction.

Note that, as we already noticed in [13, Theorem 2.4], the manifold (M, g) must be globally isomet-
ric to the product S2 × Σ2, where Σ2 is a quotient of flat R2. The reason is that the fundamental
group ofM can act on the S2-factor only in a trivial way. It remains to recall that a parallel spinor
descends from R

2 to a nontrivial quotient (flat cylinder or torus) if and only if the fundamental
group acts on the spin structure of R2 in a trivial way, that is, the quotient Σ2 carries the trivial
spin structure. �

We end this section with the question – asked by Ilka Agricola – whether skew Killing spinors
can be seen as parallel spinors w.r.t. a covariant derivative induced by some metric connection on
(TM, g).

Proposition 4.14 Let (M4, g) be any Riemannian spin manifold and ψ be any nonzero skew
Killing spinor on M . Assume that, w.r.t. the splitting ψ = ψ+ + ψ−, both ψ± do not vanish on
M . Assume the existence of a metric connection ∇′ on (TM, g) such that ψ is parallel w.r.t the
covariant derivative induced by ∇′ on ΣM .

Then Aξ = 0, in particular |ψ+| = |ψ−|. Moreover, ∇′
X = ∇X + 2

(

(AX ∧ ξ
|ξ|2 )+ − (AX ∧ ξ)−

)

for all X ∈ TM .

Proof: Write ∇′ = ∇− B for some unknown B ∈ T ∗M ⊗ Λ2T ∗M . Recall that, for any X ∈ TM ,
BX ∈ End(TM) must be skew-symmetric because of both ∇,∇′ being metric. Then for any section
ϕ ∈ ΣM and any X ∈ TM ,

∇′
Xϕ = ∇Xϕ−

1

2
BX · ϕ,

where we see BX as a two-form acting by Clifford multiplication on ΣM . Since by assumption
ψ+ does not vanish anywhere, ξ is a nowhere vanishing vector field on M . The question is now
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whether B exists such that

1

2
BX · ψ = AX · ψ

holds for all X ∈ TM . Using the splitting ψ = ψ++ψ−, we obtain the following equivalent systems:







1
2BX · ψ+ = AX · ψ−

1
2BX · ψ− = AX · ψ+

⇐⇒







1
2BX · ψ+ = −AX · ξ

|ξ|2 · ψ+

1
2BX · ψ− = AX · ξ · ψ−

⇐⇒







1
2BX · ψ+ = −(AX ∧ ξ

|ξ|2 ) · ψ
+ + 〈AX, ξ

|ξ|2 〉ψ
+

1
2BX · ψ− = (AX ∧ ξ) · ψ− − 〈AX, ξ〉ψ−

⇐⇒







(
1
2BX + (AX ∧ ξ

|ξ|2 )
)

· ψ+ = 〈AX, ξ
|ξ|2 〉ψ

+

(
1
2BX − (AX ∧ ξ)

)
· ψ− = −〈AX, ξ〉ψ−.

Recall that a real 2-form acts in a skew-Hermitian way on ΣM , therefore we obtain 〈AX, ξ〉 = 0
for all X ∈ TM and thus Aξ = 0. Moreover, since self-dual resp. anti-self-dual 2-forms kill negative
resp. positive half spinors, the preceding systems gets equivalent to







(
1
2BX + (AX ∧ ξ

|ξ|2 )
)

+
· ψ+ = 0

(
1
2BX − (AX ∧ ξ)

)

−
· ψ− = 0 .

On the other hand, as we have seen above, the maps
∧2

−M −→ Σ−M ∩ (ψ−)⊥, ω− 7−→ ω− · ψ−

and
∧2

+M −→ Σ+M ∩ (ψ+)⊥, ω+ 7−→ ω+ · ψ+ are isomorphisms if ψ+ 6= 0 and ψ− 6= 0. There-

fore we can deduce that
(

1
2BX + (AX ∧ ξ

|ξ|2 )
)

+
= 0 and

(
1
2BX − (AX ∧ ξ)

)

−
= 0, which yields

BX = −2
(

(AX ∧ ξ
|ξ|2 )+ − (AX ∧ ξ)−

)

and concludes the proof of Proposition 4.14. �

With other words, only a special subcase of the degenerate case can be considered with that
ansatz, namely that considered in Proposition 4.3. As a consequence, the general classification of
4-dimensional Riemannian spin manifolds with skew Killing spinors cannot be obtained that way.

5 Skew Killing spinors with non-degenerate Killing map A

This section is devoted to the case where we have a skew Killing spinor ψ whose Killing map A is
non-degenerate everywhere. Recall that ψ defines a vector field η by (8). As above, we put ρ := |η|.
Here, we want to assume that M ′′ = {x ∈M | ρ(x) 6∈ {0, 1/2}} = {x ∈ M | f(x) 6∈ {0,±1}} is
equal toM . This is a sensible restriction sinceM ′′ is dense inM if A is non-degenerate everywhere,
see Section 3. Working on M ′′ has the advantage that we do not have to care about the sign of
f . Indeed, as explained in Remark 3.3, up to a possible change of orientation on each connected
component we may assume that f > 0. In particular, f is defined by ρ = |η| via f =

√

1− 4ρ2,
which will be important for the reverse direction of Proposition 5.1.
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5.1 Equivalent description by complex structures

Let M be a manifold and A be a skew-symmetric endomorphism field on M . Define a tensor field
CA on M by CA(X,Y ) := (∇XA)(Y )− (∇Y A)(X).

Proposition 5.1 Let M be a four-dimensional spin manifold and A be a skew-symmetric endo-
morphism field on M . Put C := CA.

If (M, g) admits a skew Killing spinor ψ associated with A such that M =M ′′, then there exist an
almost Hermitian structure J and a nowhere vanishing vector field η of length |η| =: ρ < 1/2 such
that

(∇Y J)(X) =
4

f − 1
Xy

(
Jη ∧ AY + η ∧ JAY

)
, (41)

∇η = fA, (42)

g(C(η,X), Jη) = ρ2f · g(CP , X) (43)

g(C(Jη, Z), Jη) = ∗(CP ∧ Z ∧ η ∧ Jη), Z ∈ P := {η, Jη}⊥, (44)

where f :=
√

1− 4ρ2 and CP := C(s, Js) for any unit vector s ∈ P , and such that the sectional
curvature KP in direction P satisfies

KP = −ρ−2g(CP , Jη) + 4A2
P , (45)

where AP := g(As, Js) for any unit vector s ∈ P .

If M is simply-connected, then also the converse statement is true.

Lemma 5.2 Assume that J , A and η satisfy Equations (41) and (42). Then

g(C(X,Y ), η) = 0, (46)

R(X,Y )η = fC(X,Y )− 4ηy(AX ∧ AY ), (47)

R(X,Y )Jη = −JC(X,Y ) +
4

f − 1
g(C(X,Y ), Jη)η − 4J(η)y(AX ∧ AY ). (48)

Proof: Note first that X(f2) = X(1− 4|η|2) = −8g(∇Xη, η) = −8fg(AX, η). This implies X(f) =
−4g(AX, η), which we will use in the following. Let X and Y be vector fields on M and assume
that ∇X = ∇Y = 0 holds at a point p ∈M . At p, we have

∇X∇Y η = ∇X (fAY ) = −4g(AX, η)AY + f(∇XA)Y.

Thus
R(X,Y )η = −4

(
g(AX, η)AY − g(AY, η)AX

)
+ fC(X,Y ),

which gives Eq. (47). In particular, this yields 0 = R(X,Y, η, η) = g(C(X,Y ), η), which proves (46)
since f 6= 0 everywhere.

In the following computation, the sign ‘≡’ means equality up to a term S(X,Y ) for some symmetric
bilinear map S. We compute

∇X∇Y (Jη) = ∇X

(
(∇Y J)(η) + J(∇Y η)

)

= ∇X

( 4

f − 1

(
− g(η,AY )Jη + ρ2JAY − g(η, JAY )η

)
+ J(∇Y η)

)
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≡
16

(f − 1)2
g(AX, η)

(
ρ2JAY − g(η, JAY )η

)

+
4

f − 1

(

− g(η, (∇XA)Y )Jη − g(η,AY )(∇XJ)η − fg(η,AY )JAX + 2fg(AX, η)JAY

+ρ2(∇XJ)(AY ) + ρ2J(∇XA)Y − fg(AX, JAY )η − g(η, (∇XJ)AY )η

−g(η, J(∇XA)Y )η − fg(η, JAY )AX
)

+f(∇XJ)(AY ) + J(∇X∇Y η)

≡
16

(f − 1)2
g(AX, η)

(
ρ2JAY − g(η, JAY )η

)

+
4

f − 1

(

− g(η, (∇XA)Y )Jη − g(η,AY )(∇XJ)η + 2fg(AX, η)JAY + ρ2(∇XJ)AY

+ρ2J(∇XA)Y − g(η, (∇XJ)AY )η − g(η, J(∇XA)Y )η − 2fg(η, JAY )AX
)

+J(∇X∇Y η)

≡
16ρ2

(f − 1)2
(
g(AX, η)JAY + g(Jη,AY )AX

)

+
4

f − 1

(

− g(η, (∇XA)Y )Jη + 2fg(AX, η)JAY + ρ2J(∇XA)Y

−g(η, J(∇XA)Y )η − 2fg(η, JAY )AX
)

+J(∇X∇Y η)

= 4g(AX, η)JAY + 4g(AY, Jη)AX −
4

f − 1

(
g(η, (∇XA)Y )Jη + g(η, J(∇XA)Y )η

)

−(f + 1)J(∇XA)Y + J(∇X∇Y η).

This implies

R(X,Y )Jη = 4g(AX, η)JAY − 4g(AY, η)JAX + 4g(AY, Jη)AX − 4g(AX, Jη)AY

−
4

f − 1

(
g(η, C(X,Y ))Jη − g(Jη, C(X,Y ))η

)
− (f + 1)JC(X,Y ) + J(R(X,Y )η).

Using Equations (46) and (47) we obtain (48). �

Proof of Prop.5.1: Before we start the proof of the two directions of the assertion, let us first
suppose that, on M , we are given a Hermitian structure J and a nowhere vanishing vector field η
of length ρ < 1/2. We want to define a vector field ξ such that the identities ξ = −(|ξ|/ρ) · η and
ρ = |ξ|/(1+ |ξ|2) hold according to Equation (9). Since this leads to a quadratic equation, we have

to choose one of the solutions. Here we use our assumptionM =M ′′ and define f =
√

1− 4ρ2 and
ξ = 2(f − 1)−1η, compare Remark 3.3, which motivates this choice. Assume that the orientation
on M is such that orthonormal bases of the form s1, Js1, s2, Js2 are negatively oriented. We define
a one-dimensional subbundle E of ΣM by

E := {ϕ | J(X) · ϕ− = iX · ϕ−, ϕ+ = ξ · ϕ−}. (49)

We want to show that E is parallel with respect to ∇̂ defined by ∇̂Xϕ := ∇Xϕ − AX · ϕ if and
only if J and η satisfy (41) and (42). Let X and Y be vector fields satisfying ∇X = ∇Y = 0 at
p ∈M . Then we have at p ∈M

J(X) · (∇̂Y ϕ)
− = J(X) · (∇Y ϕ−AY · ϕ)−
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= J(X) · (∇Y ϕ
− −AY · ϕ+)

= ∇Y (J(X) · ϕ−)− (∇Y J)(X) · ϕ− − J(X)A(Y ) · ϕ+

= ∇Y (iX · ϕ−)− (∇Y J)(X) · ϕ− +A(Y )J(X)ξ · ϕ− + 2g(JX,AY )ϕ+

= iX · ∇Y ϕ
− − (∇Y J)(X) · ϕ− − iA(Y )ξX · ϕ− − 2g(JX, ξ)AY · ϕ− + 2g(JX,AY )ϕ+

= iX · ∇Y ϕ
− − (∇Y J)(X) · ϕ− − iXA(Y )ξ · ϕ− + 2ig(ξ,X)AY · ϕ−

−2ig(AY,X)ξ · ϕ− − 2g(JX, ξ)AY · ϕ− + 2g(JX,AY )ξ · ϕ−

= iX · ∇Y ϕ
− − (∇Y J)(X) · ϕ− − iXA(Y ) · ϕ+ + 2g(ξ,X)JA(Y ) · ϕ−

−2g(AY,X)J(ξ) · ϕ− − 2g(JX, ξ)AY · ϕ− + 2g(JX,AY )ξ · ϕ−.

This equals iX · (∇̂Y ϕ)
− if and only if (∇Y J)(X) = 2Xy

(
Jξ ∧ AY + ξ ∧ JAY

)
holds, which is

equivalent to Equation (41). Furthermore,

(∇̂Xϕ)
+ = ∇Xϕ

+ −AX · ϕ− = ∇X(ξ · ϕ−)−AX · ϕ−

= (∇Xξ) · ϕ
− + ξ · ∇Xϕ

− −AX · ϕ−

= (∇Xξ) · ϕ
− + ξA(X) · ϕ+ + ξ · (∇̂Xϕ)

− −AX · ϕ−

=
(
∇Xξ − (1− |ξ|2)AX + 2g(Aξ,X)ξ

)
· ϕ− + ξ · (∇̂Xϕ)

−.

This equals ξ · (∇̂Xϕ)
− if and only if ∇Xξ = (1− |ξ|2)AX − 2g(Aξ,X)ξ holds, which is equivalent

to (42). Consequently, E is parallel with respect to ∇̂ if and only if J and η satisfy (41) and (42).

Assume that ∇̂ reduces to a connection ∇̂E on E. Then Equations (41) and (42), and therefore
also (46), (47) and (48) hold. We will show that the curvature R̂ of ∇̂E vanishes if and only if the
Riemannian curvature R of M equals the tensor B defined by

B(X,Y ) := ρ−2
(
∗ (C(X,Y ) ∧ η)− fC(X,Y ) ∧ η

)
− 4AX ∧ AY (50)

for all vector fields X and Y on M . By an easy calculation similar to that in the proof of Propo-
sition 2.1, we get

R̂X,Y ϕ = 1
2R(X,Y ) · ϕ− C(X,Y ) · ϕ+ 2

(
AX ∧AY

)
· ϕ.

This shows that R̂ vanishes if and only if

R(X,Y ) · ϕ = 2C(X,Y ) · ϕ− 4
(
AX ∧ AY

)
· ϕ (51)

for all vector fields X and Y and all sections ϕ of E. In the following, we will use that
∧2

±M acts
trivially on Σ∓M and that, for any nowhere vanishing section ϕ± of Σ±M , the maps defined by
(7) are isomorphisms. Let ϕ be a section of E such that ϕ+(x) 6= 0, ϕ−(x) 6= 0 for all x ∈M (here
we use that ξ does not vanish). Then

2C(X,Y ) · ϕ = 2C(X,Y ) ·
(
ξ · ϕ− − |ξ|−2ξ · ϕ+

)

(46)
= 2(C(X,Y ) ∧ ξ) · ϕ− − 2|ξ|−2(C(X,Y ) ∧ ξ) · ϕ+

= 2(C(X,Y ) ∧ ξ)− · ϕ− 2|ξ|−2(C(X,Y ) ∧ ξ)+ · ϕ

=
4

f − 1
(C(X,Y ) ∧ η)− · ϕ−

f − 1

ρ2
(C(X,Y ) ∧ η)+ · ϕ

= ρ−2
(
∗ (C(X,Y ) ∧ η)− fC(X,Y ) ∧ η

)
· ϕ.

Thus (50) and (51) show that R̂ vanishes if and only if R = B. The latter condition is equivalent
to the system of equations

R(X,Y )η = B(X,Y )η (52)
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R(X,Y )Jη = B(X,Y )Jη (53)

R(s, Js, s, Js) = g(B(s, Js)s, Js) (54)

g(B(η,X)s, Js) = g(B(s, Js)η,X) (55)

g(B(Jη, Z)s, Js) = g(B(s, Js)Jη, Z) (56)

for all X,Y ∈ X(M) and all Z ∈ Γ(P ). Recall that (46) holds in our situation, which we will use
in the following computations. Equations (55) and (56) are equivalent to the two equations

g
(
sy
(
∗ (C(η,X) ∧ η)− fC(η,X) ∧ η

)
, Js

)
= g

(
ηy

(
∗ (CP ∧ η)− fCP ∧ η

)
, X

)
,

g
(
sy
(
∗ (C(Jη, Z) ∧ η)− fC(Jη, Z) ∧ η

)
, Js

)
= g

(
Jηy

(
∗ (CP ∧ η)− fCP ∧ η

)
, Z

)
,

which are equivalent to (43) and (44), respectively. Because of

ηy
(
∗ (C(X,Y ) ∧ η)− fC(X,Y ) ∧ η

)
= fρ2C(X,Y ),

and

J(η)y
(
∗ (C(X,Y ) ∧ η)− fC(X,Y ) ∧ η

)
= ∗(C(X,Y ) ∧ η ∧ Jη)− fg(C(X,Y ), Jη)η

= −ρ2g(C(X,Y ), s)Js+ ρ2g(C(X,Y ), Js)s− fg(C(X,Y ), Jη)η

= −ρ2
(
g(JC(X,Y ), Js)Js+ g(JC(X,Y ), s)s

)
− fg(C(X,Y ), Jη)η

= −ρ2JC(X,Y )− (f + 1)g(C(X,Y ), Jη)η

= −ρ2JC(X,Y ) +
4ρ2

f − 1
g(C(X,Y ), Jη)η,

Lemma 5.2 shows that Equation (52) is equivalent to (47) and (53) is equivalent to (48). Recall
that (47) and (48) are satisfied in our situation. Finally,

g
(
sy
(
∗ (CP ∧ η)− fCP ∧ η

)
, Js

)
= g

(
∗ (s ∧CP ∧ η), Js

)
= g(CP , Jη),

which implies that (54) is equivalent to (45). Consequently, the curvature R̂ of ∇̂ vanishes if and
only if the Equations (43), (44) and (45) hold.

Now we can prove both directions of the proposition. Suppose that there exists a spinor field ψ on
M satisfying ∇Xψ = AX ·ψ for all X ∈ TM such that M =M ′′. The latter condition means that
the vector field η defined in (8) satisfies 0 < ρ = |η| < 1/2. In particular, ψ− 6= 0 everywhere and
we can define an almost Hermitian structure J by J(X) · ψ− = iX · ψ−. Thus we may apply our
above considerations. If we define E ⊂ ΣM and ∇̂ as above, then ψ is a ∇̂-parallel section of E. In
particular, ∇̂ reduces to a connection ∇̂E and the curvature of ∇̂E vanishes thus (41) – (45) hold.

Conversely, if we are given an almost Hermitian structure J and a nowhere vanishing vector field
η of length 0 < ρ = |η| < 1/2 such that (41) – (45) are satisfied. Then we can define a one-
dimensional subbundle E ⊂ ΣM by (49) together with a flat covariant derivative ∇̂ on E. If M is
simply-connected, then E admits a parallel section, which is a skew Killing spinor. �

Remark 5.3 Let J be an almost Hermitian structure on a four-dimensional manifold M such
that (41) and (42) hold for a skew-symmetric endomorphism field A and a vector field E. Then J
defines a reduction of the SO(4)-bundle SO(M) to U(2). Here we want to give the intrinsic torsion
of this bundle in the special case where A and J commute. The two components of the intrinsic
torsion of this bundle are the Nijenhuis tensor N of J and the differential dΩ of the Kähler form
Ω := g(J ·, ·). A direct calculation using (41) and (42) shows that under the assumption AJ = JA
these components are given by N = 0 and dΩ = −2A ∧ (ξyΩ).
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5.2 The case where Aη is parallel to Jη

Let us assume again that the Killing map A is non-degenerate everywhere. We want to consider
the case where Aη is parallel to Jη in more detail. We will see that, in this situation, the existence
of skew Killing spinors is related to doubly warped products and to local DWP-structures. These
notions and their basic properties are explained in the appendix.

Lemma 5.4 Assume that M admits a skew Killing spinor with nowhere vanishing Killing map A
that satisfies Aη = uJη for some function u. Then A2η = −u2η. In particular, AJ = JA.

Proof. Note first that Lemma 3.1, 4 and Eq. (46) give

0 = f(dA)(X,Y, η) = f
(
g((∇XA)Y, η)− g((∇Y A)X, η) + g((∇ηA)X,Y )

)

= fg(C(X,Y ), η) + fg((∇ηA)X,Y ) = fg((∇ηA)X,Y )

for all X,Y ∈ TM . Consequently, f∇ηA = 0. Because of

ηy(Jη ∧ Aη + η ∧ JAη) = |η|2JAη − g(η, JAη)η = −u|η|2η + u|η|2η = 0,

Eq. (41) gives (∇ηJ)η = 0. Now, by differentiating the equality Aη = uJη in the direction of η,
we get

∇ηAη = (∇ηA)η +A(∇ηη) = η(u)Jη + u(∇ηJ)η + uJ(∇ηη) = η(u)Jη + uJ(∇ηη).

Finally, using the fact that ∇ηη = fAη and f∇ηA = 0, we get that η(u) = 0 and f2A2η = −u2f2η.
The latter equation implies A2η = −u2η since supp(f) =M . �

Let (M̂3, ĝ, η̂) be a minimal Riemannian flow, i.e., an orientable three-dimensional Riemannian
manifold together with a unit Killing vector field η̂. Then, locally, (M̂, ĝ) is a Riemannian submer-
sion over a two-dimensional base manifold B. Let us fix a Hermitian structure Ĵ on η̂⊥ and put
ω := ĝ(·, Ĵ ·). We define a function τ̂ on M̂ which is constant along the fibres by ∇̂X η̂ = τ̂ · Ĵ(X)
for X ∈ η̂⊥. Furthermore, let K̂ denote the Gaussian curvature of B. Now consider the metric
grs = r2ĝη̂ ⊕ s2ĝη̂⊥ on M̂ , where ĝη̂, ĝη̂⊥ are the components of the metric ĝ along Rη̂ and η̂⊥,

respectively. Then (M̂, grs, r
−1η̂) is again a minimal Riemannian flow and we obtain new functions

τ̂ and K̂, say τ̂rs and K̂rs. These functions satisfy

τ̂rs = rs−2τ̂ , K̂rs = s−2K̂. (57)

If our four-dimensional manifoldM is endowed with a DWP-structure, then every three-dimensional
leaf associated with this structure can be understood as a minimal Riemannian flow. In this way,
we obtain functions τ and K on M .

Theorem 5.5 Assume that M admits a skew Killing spinor such that Aη||Jη and that ρ = |η| 6∈
{0, 1/2} everywhere. Then (ν := −ρ−1Jη, η) is a local DWP-structure on M such that

f · µ = τ, K = 2µλ+ 2τ2, (58)

for f :=
√

1− 4ρ2, where λ and µ are the eigenvalues of the Weingarten map W = −∇ν on Rη
and η⊥ ∩ ν⊥, respectively.

Conversely, suppose that M is simply-connected and admits a local DWP-structure (ν, η) on M
such that the length ρ of η satisfies 0 < ρ < 1/2. Moreover, assume that K and τ satisfy (58) for

f :=
√

1− 4ρ2. Then M admits a skew Killing spinor such that η is associated with ψ according
to (8) and such that Aη||Jη.
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Proof: Assume first that M admits a skew Killing spinor such that Aη||Jη and 0 < ρ < 1/2
everywhere. We define a vector field ν and functions AE and AP by

ν = −ρ−1Jη, AJη = −AEη, AJZ = −APZ, Z ∈ {η, ν}⊥.

Then η is a Killing vector field, see Remark 3.2. Equation (42) yields

ν(ρ) = fAE . (59)

We want to show that (ν, η) is a DWP-structure. The next Lemma will prove all properties of such
a structure except the conditions for the Weingarten map W = −∇ν and its eigenvalues.

Lemma 5.6 Assume that M admits a skew Killing spinor such that Aη||Jη and |η| 6∈ {0, 1/2}
everywhere. Then

1. ν⊥ is integrable,

2. the vector field η has constant length on the integral manifolds of ν⊥,

3. the unit vector field ν is geodesic.

Proof: Take X,Y ⊥ Jη. Using JA = AJ we obtain

g([X,Y ], Jη) = g(∇XY, Jη)− g(∇YX, Jη) = −g(Y,∇X(Jη)) + g(X,∇Y (Jη))

= −g(Y, (∇XJ)η)− g(Y, J(∇Xη)) + g(X, (∇Y J)η) + g(X, J(∇Y η))

= −4(f − 1)−1g
(
Y, ηy

(
Jη ∧ AX + η ∧ JAX

))
− fg(Y, JAX)

+4(f − 1)−1g
(
X, ηy

(
Jη ∧ AY + η ∧ JAY

))
+ fg(X, JAY )

= 4(f − 1)−1
(
−g

(
Y, ρ2JAX − g(η, JAX)η

)
+ g

(
X, ρ2JA(Y )− g(η, JAY )η

))

= 0

since JAη is a multiple of η. This proves the first claim. For X ⊥ Jη, we have

Xg(η, η) = 2g(∇Xη, η) = 2fg(AX, η) = 0

since Aη||Jη. This shows the second assertion. The third one follows from (41), (42) and (59). �

We compute the eigenvalues of the Weingarten map −∇ν, where we use that ρ = |η| is constant
on the integral manifolds of ν⊥:

−∇ην = ρ−1∇η(Jη) = ρ−1(∇ηJ)(η) + ρ−1J(∇ηη)

= 4(f − 1)−1ρ−1 · ηy(Jη ∧Aη + η ∧ JAη) + fρ−1JAη

= −fρ−1AE · η, (60)

−∇Zν = ρ−1∇Z(Jη) = ρ−1(∇ZJ)(η) + ρ−1J(∇Zη)

= 4(f − 1)−1ρ−1 · ηy(Jη ∧AZ + η ∧ JAZ) + fρ−1JAZ

= ρ−1AP · Z (61)

for Z ∈ ν⊥ ∩ η⊥. Thus
λ = −fρ−1AE , µ = ρ−1AP (62)
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are the eigenvalues of −∇ν. We fix a local section s in P = {η, ν}⊥ and put

s1 := −η/ρ, s2 := Js1 = ν, s3 := s, s4 := Js. (63)

Let s1, . . . , s4 denote the dual local basis of T ∗M . By (42), (60) and (61), the coefficients θij :=
g(∇si, sj) of the Levi Civita connection satisfy

θ12 = −fρ−1AE s
1, θ13 = fρ−1AP s

4, θ14 = −fρ−1AP s
3,

θ23 = −ρ−1AP s
3, θ24 = −ρ−1AP s

4 .
(64)

This gives
CP = −2ρ−1

(
A2

P + fAPAE

)
s2 − s3(AP ) · s3 − s4(AP ) · s4.

Indeed, (46) shows that g(CP , s1) = 0. Furthermore,

g(CP , s2) = g((∇s3A)(s4)− (∇s4A)(s3), s2)

= s3
(
g(As4, s2)

)
− g(A(∇s3s4), s2)− g(As4,∇s3s2)

−s4
(
g(As3, s2)

)
+ g(A(∇s4s3), s2) + g(As3,∇s4s2)

= g(∇s3s4, As2)− g(As4,∇s3s2)− g(∇s4s3, As2) + g(As3,∇s4s2)

= AE

(
θ14(s3)− θ13(s4)

)
+AP

(
θ23(s3) + θ24(s4)

)
,

g(CP , s3) = g((∇s3A)(s4)− (∇s4A)(s3), s3) = g((∇s3A)(s4), s3)

= g(∇s3(As4)−A(∇s3s4), s3)

= −g(∇s3(AP s3), s3) + g(∇s3s4, AP s4)

= −s3(AP ).

Analogously, g(CP , s4) = −s4(AP ). Equations (64) imply

g(C(Jη, Z), Jη) = ρ2g(C(s2, Z), s2) = ρ2
(
s2(g(AZ, s2))− g(A(∇s2Z), s2)− g(AZ,∇s2s2)

)
= 0

for Z ∈ {s3, s4} and, similarly,

g(C(η,X), Jη) = ρ2
(
s1(AEg(X, s1))−AEg(∇s1X, s1)− g(AX,∇s1s2)−X(AE)

)

= ρ2
(
s1(AE)g(X, s1) +AEg(X,∇s1s1) + g(X,A(∇s1s2))−X(AE)

)

= ρ2
(
s1(AE)g(X, s1)−

fA2
E

ρ
g(X, s2) +

fA2
E

ρ
g(X, s2)−X(AE)

)

= −ρ2X(AE)

for X ∈ {s2, s3, s4}. Furthermore, g(C(η, s1), Jη) = 0 since C is antisymmetric. Hence, under the
assumption that (64) holds, Eqs. (43), (44) and (45) are equivalent to the system of equations

s2(AE) = 2fρ−1A2
P + 2f2ρ−1AEAP (65)

sj(AP ) = sj(AE) = 0, j = 3, 4, (66)

KP = −2fρ−2AEAP − 2(ρ−2 − 2)A2
P . (67)

We also have
s1(AE) = s1(AP ) = 0.

Indeed, (46) implies g
(
C(s1, s2), η

)
= 0, thus we obtain

0 = g
(
(∇s1A)s2 − (∇s2A)s1, η

)
= g

(
(∇s1A)s2, η

)
= g

(
∇s1(As2), η

)
= ρs1(AE),
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which gives s1(AE) = 0. Using (65) and taking into account that [s1, s2] is a multiple of s1, we get

0 = s1(s2(AE)) = 2s1
(
fρ−1A2

P + f2ρ−1AEAP

)
= 2fρ−1

(
2AP + fAE

)
s1(AP ).

Assume that s1(AP )(x) 6= 0 at x ∈ M . Then s1(AP ) 6= 0 in an open neighbourhood U of x. But
then 2AP = −fAE on U , which would imply s1(AP ) = 0, a contradiction.

Hence we proved that besides ρ also AE and AP are constant on the integral manifolds of ν⊥.
Thus also µ and λ are constant along these leaves. Consequently, (ν, η) is a local DWP-structure
on M . By (62), the associated function τ satisfies

τ = ρ−1g(∇sη, Js) = ρ−1g(fAs, Js) = fµ,

where s ∈ {η, ν}⊥ is of length one. This proves the first equation in (58).

It remains to prove that also the second equation in (58) is true. Let N be an integral manifold
of ν⊥. Then, locally, N is a Riemannian submersion over a base manifold B. The following lemma
will relate the sectional curvature KP in direction of P = span{s3, s4} to the Gaussian curvature
K of B, which will almost finish the proof of the forward direction of Theorem 5.5.

Lemma 5.7 Let (ν, η) be a local DWP-structure such that the coefficients of the Levi-Civita con-
nection satisfy (64) with respect to an orthonormal frame s1 = −η/ρ, s2 = ν, s3, s4. Then the
Gaussian curvature K of B equals

K = KP + (1 + 3f2)ρ−2A2
P .

Proof: The second fundamental form α of N ⊂M satisfies

α(s3, s3) = α(s4, s4) = ρ−1AP s2, α(s3, s4) = 0,

which follows from (64). Hence the Gauss equation gives

KP = R(s3, s4, s4, s3) = RN (s3, s4, s4, s3)− g
(
α(s3, s3), α(s4, s4)

)

= RN(s3, s4, s4, s3)− ρ−2A2
P . (68)

Let A denote the fundamental tensor used in O’Neill’s formulas. We have

Asjsj = g(∇sjsj, s1)s1 = 0, j = 3, 4

and
As3s4 = −As4s3 = g(∇s3s4, s1)s1 = −θ14(s3)s1 = fρ−1AP s1.

The O’Neill formula for RN now gives

RN (s3, s4, s4, s3) = K − 3|As3s4|
2 = K − 3f2ρ−2A2

P ,

which combined with (68) implies the assertion. �

Lemma 5.7 together with (62) and (67) finally shows that B has constant curvature

K = −2fρ−2AEAP + 2f2ρ−2A2
P = 2µλ+ 2τ2.

Now let M be simply-connected and let (ν, η) be a local DWP-structure on M such that 0 <

|η| < 1/2 and such that (58) holds. Note that f =
√

1− 4ρ2 is smooth since ρ = |η| < 1/2. By
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assumption, ρ is constant on the integral leaves of ν⊥. We write ∂t for the derivative in direction
ν. By (74), we have ρ′ = −λρ, which implies

f ′ = 4λρ2/f = λ(−f + 1/f). (69)

We define functions
AE := −λρf−1, AP := µρ, (70)

which are all constant along the integral leaves of ν⊥. We consider a local orthonormal frame

s1 := −η/ρ, s2 = ν, s3, s4

such that s3, s4 is a positively oriented basis of {η, ν}⊥. The assumption that (ν, η) is a local
DWP-structure with eigenvalues λ and µ together with the assumption τ = fµ implies that the
local coefficients of the Levi-Civita connection satisfy Equations (64). Indeed,

∇s2s2 = 0, ∇s1s2 = −λs1, ∇sjs2 = −µsj , j = 3, 4

implies

θ12 = −g(∇s2, s1) = −g(∇s1s2, s1)s
1 = λs1,

θ23 = g(∇s2, s3) = g(∇s3s2, s3)s
3 = −µs3,

and (70) gives the formulas for θ12 and θ23. Similarly, we get θ24. On span{s3, s4}, we fix the
Hermitian structure J that maps s3 to s4. Recall that τ is defined by ∇Xη = τJX for all X ∈
span{s3, s4}. Since η is a Killing vector field and ρ is constant along the integrals leaves, we obtain

θ13 = g(∇s1s1, s3)s
1 + . . .+ g(∇s4s1, s3)s

4

= −ρ−1
(
g(∇s1η, s3)s

1 + g(∇s2η, s3)s
2 + g(∇s4η, s3)s

4
)

= −ρ−1
(
− g(s1,∇s3η)s

1 − g(s2,∇s3η)s
2 + g(∇s4η, s3)s

4
)

= −g(s1,∇s3s1)s
1 − g(s2,∇s3s1)s

2 + τs4

= fµs4 = fρ−1AP s
4,

where we used the already proven equation θ12(s3) = 0. Analogously, we obtain θ14. Now we define
skew-symmetric maps A and J by

A(s1) = AEs2, A(s2) = −AEs1, A(s3) = AP s4, A(s4) = −AP s3,

J(s1) = s2, J(s2) = −s1, J(s3) = s4, J(s4) = −s3.

Note that J extends the above defined map J on span{s3, s4}. A few lines above, we proved that
(64) holds in our situation. Using this equation, we obtain

∇s1η = −ρ∇s1s1 = fAEs2 = fA(s1),

∇s2η = −ρ′s1 − ρ∇s2s1 = λρs1 = −fAEs1 = fA(s2),

∇s3η = −ρ∇s3s1 = fAP s4 = fA(s3),

∇s4η = −ρ∇s4s1 = −fAP s3 = fA(s4).

Hence, η satisfies (42). By definition of J and A, Eq. (41) is equivalent to the system of equations

∇ηJ = ∇JηJ = 0,

(∇sJ)(η) = (f + 1)AP s, (∇sJ)(Jη) = −(f + 1)APJ(s),

(∇sJ)(s) = 4(f − 1)−1AP η, (∇sJ)(Js) = −4(f − 1)−1APJ(η),
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for all s ∈ {η, Jη}⊥, |s| = 1, which indeed can be verified using (64). Finally, we prove that (43),
(44) and (45) hold. We already have seen that these equations are equivalent to (65), (66) and
(67). Now we use Lemma 5.7. Together with our assumption (58) and Equation (70), it implies

KP = 2µλ+ 2τ2 − ρ−2(1 + 3f2)A2
P = −2fρ−2APAE − ρ−2(1 + f2)A2

P ,

which is equivalent to (67). Also (66) holds since ρ, λ and µ are constant on the leaves by as-
sumption. It remains to prove (65). Locally, (M, g) is isometric to a doubly warped product
(I × M̂, ρ(t)2ĝη̂ ⊕ σ(t)2ĝη̂⊥). In particular, σ′ = −µσ by (74). Furthermore, τ = τ̂ ρσ−2 and

K = K̂σ−2 by (57) for some constants τ̂ and K̂. Thus, by assumption (58),

µf = ρσ−2τ̂ .

Taking the absolute value and then the logarithm on both sides and differentiating, we obtain

µ′

µ
+
f ′

f
=
ρ′

ρ
− 2

σ′

σ
= −λ+ 2µ

and therefore, by (69),

µ′ = (1 − f−2)λµ − λµ+ 2µ2 = −f−2λµ+ 2µ2

holds (globally) on M . By assumption,

K̂ = Kσ2 = (2µλ+ 2τ2)σ2 = 2µ(λ+ µf2)σ2.

Differentiating, using σ′ = −µσ and dividing by 2µσ2 yields

0 =
µ′

µ
(λ + µf2) + λ′ + µ′f2 + 2µff ′ − 2µλ− 2µ2f2

= (−λf−2 + 2µ)(λ+ µf2) + λ′ + (−λµf−2 + 2µ2)f2 + 2(1− f2)λµ− 2µλ− 2µ2f2,

thus λ′ = λ2f−2 − 2f2(µ2 − λµ), which gives (65) by Equations (69) and (70). Consequently, we
proved that Equations (41) – (45) hold. Now Proposition 5.1 shows the existence of a skew Killing
spinor. �

Corollary 5.8 Let (M, g) admit a skew Killing spinor such that Aη||Jη and |η| 6∈ {0, 1/2} every-
where. Then M is locally isometric to a doubly warped product (I × M̂, dt2 ⊕ ρ(t)2ĝη̂ ⊕ σ(t)2ĝη̂⊥)

for which the data K̂ and τ̂ are constant and ρ and σ satisfy the differential equations

(σ2)′ = −
2

√

1− 4ρ2
ρτ̂ (71)

(σ2)′
ρ′

ρ
= K̂ − 2

ρ2

σ2
τ̂2. (72)

Conversely, if M is isometric to a doubly warped product (I × M̂, dt2 ⊕ ρ(t)2ĝη̂ ⊕ σ(t)2 ĝη̂⊥) for

which the data K̂ and τ̂ are constant and ρ and σ satisfy the differential equations (71) and (72)
and if M̂ is simply-connected, then (M, g) admits a skew Killing spinor such that Aη||Jη.

Proof: The condition µ · f = τ is equivalent to −σ′

σ · f = ρ
σ2 τ̂ , thus to (71), and K = 2µλ+ 2τ2 is

equivalent to K̂
σ2 = 2 ρ′

ρ
σ′

σ + 2
(

ρ
σ2 τ̂

)2
, thus to (72). �
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Note 5.9 Locally, Equations (71) and (72) can be solved explicitly to get solutions σ and ρ.

Note 5.10 Let us study the restriction of a skew Killing spinor ψ to N . The restriction (ΣM)|N
can be understood using an isomorphism

φ : (ΣM)|N −→ ΣN ⊕ ΣN = φ((Σ+M)|N )⊕ φ((Σ−M)|N )

which is compatible with the Clifford multiplication in the following sense. If φ(ϕ) = (u, v), then

φ(ν · ϕ) = (−v, u), φ(ν ·X · ϕ) = (−X ·N u,X ·N v),

where ν = s2 is a normal vector of N , X is a tangent vector of N and ‘ ·N ’ denotes the Clifford
multiplication on ΣN . In particular, s1s3s4 ·N u = u for all u ∈ ΣN . By the spinorial O’Neill
formulas, we obtain

∇N
η φ(ψ

±) = −
λ

2f
η ·N φ(ψ

±), ∇N
Z φ(ψ

±) = −
µf

2
Z ·N φ(ψ

±) (73)

for all Z ∈ TN ∩ η⊥. Up to rescaling, these are Sasakian quasi-Killing spinors on N , which we
will explain in the following.

Up to rescaling of the metric, each integral manifold N in our construction has a Sasakian structure,
see [8] for a definition of such structures. Indeed, η restricted to N is a Killing vector field of
constant length and ∇η restricted to η⊥ equals |η|τJ |η⊥ , where also τ is constant. The Nijenhuis

tensor of J |η⊥ vanishes since η⊥ is two-dimensional. Consequently, ξ̃ := η/(τ |η|) is the Reeb vector
field of a Sasakian structure on (N, g̃ := τ2g). The scalar curvature of (N, g̃) equals S = 4λ/(fτ)+2.

A spinor field ψ on a Sasakian manifold (M̃, ξ̃, g̃) with Reeb vector field ξ̃ is called a Sasakian
quasi-Killing spinor of type (a, b) if it satisfies ∇Xψ = aX · ψ for X ∈ ξ̃⊥ and ∇ξ̃ψ = (a+ b)ξ̃ · ψ

for a, b ∈ R. If (M̃, ξ̃, g̃) admits a Sasakian quasi-Killing spinors of type (a, b), then the scalar
curvature S is constant and given by S = 8m(2m + 1)a2 + 16mab, see [11], Lemma 6.4. In the
following sense, in three dimensions, the converse is true. Let (M̃, g̃, ξ̃) be a simply-connected
three-dimensional Sasakian spin manifold with constant scalar curvature S. Then there exist two
linear independent Sasakian quasi-Killing spinors of type (−1/2, 3/4−S/8), see [11], Theorem 8.4.

We identify the spinor bundle Σ̃N of (N, g̃) with ΣN by ΣN → Σ̃N , ϕ 7→ ϕ̃ such that a section ϕ
in ΣN satisfies

(X ·N ϕ)
∼ = X̃ ·N ϕ̃, (∇N

Xϕ)
∼ = ∇̃N

X ϕ̃,

where X̃ := X/|τ | and ∇̃N denotes the Levi-Civita connection on Σ̃N . Now we consider the
restriction of the skew Killing spinor ψ = ψ+ + ψ− to N . We will write ψ± instead of φ(ψ±).
Then, by (73),

∇̃N
η ψ̃

± = (∇N
η ψ̃

±)∼ = (−
λ

2f
η ·N ψ

±)∼ = −
λ

2f |τ |
η ·N (ψ±)∼,

∇̃N
Z ψ̃

± = (∇N
Z ψ̃

±)∼ = (−
µf

2
Z ·N ψ

±)∼ = −
µf

2|τ |
Z ·N (ψ±)∼ = −

sgn(τ)

2
Z ·N (ψ±)∼

for Z ∈ η⊥. Hence, ψ̃± is a Sasakian quasi-Killing spinor with a = −sgn(τ)/2 and

b = −
λ

2f |τ |
+

sgn(τ)

2
= sgn(τ)

(

−
λ

2fτ
+

1

2

)

= sgn(τ)
(3

4
−

S

8

)

.

Thus we are up to a change of orientation exactly in the situation described above.
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In dimension three Sasakian quasi-Killing spinors of type can also be understood as transversal
Killing spinors, see [12] for a definition. If we return to our original metric g on N , this means
that the restrictions of ψ± to N are transversal Killing spinors. Indeed,

∇̄ηψ
± = ∇N

η ψ
± −

1

2
τ |η|s3s4 ·N ψ

± = ∇N
η ψ

± +
1

2
τ |η|s1 ·N ψ

± =
(

−
λ

2f
−

1

2
τ
)

η ·N ψ
±,

∇̄Zψ
± = ∇N

Z ψ
± −

1

2
τs1J(Z) ·N ψ

± = −
µf

2
Z ·N ψ

± +
τ

2
Z ·N ψ

± = 0

holds for the transversal covariant derivative ∇̄ on N .

Appendix: Doubly warped products

Definition 5.11 A doubly warped product is a Riemannian manifold (M, g) of the form

(I × M̂, dt2 ⊕ ρ(t)2ĝη̂ ⊕ σ(t)2 ĝη̂⊥),

where (M̂, ĝ) is a Riemannian manifold with unit Killing vector field η̂ and ĝη̂, ĝη̂⊥ are the com-
ponents of the metric ĝ along Rη̂ and η̂⊥, respectively, I ⊂ R is an open interval and ρ, σ: I → R

are smooth positive functions on I.

Definition 5.12 Let (M, g) be a Riemannian manifold. A local DWP-structure (ν, η̂) on (M, g)
consists of

1. a unit geodesic vector field ν whose orthogonal complement distribution is integrable,

2. a nontrivial Killing vector field η̂ on (M, g) that is pointwise orthogonal to ν and whose length
is constant along any integral leaf of ν⊥

with the property that the Weingarten map W := −∇ν of each integral leaf of ν⊥ has two
eigenspaces, Rη̂ and η̂⊥ ∩ ν⊥ and the corresponding eigenvalues λ and µ are constant along the
leaf.

Proposition 5.13 If (M, g) is isometric to a doubly warped product, then (M, g) admits a local
DWP-structure. Conversely, if (M, g) has a local DWP-structure, then it is locally isometric to a
doubly-warped product.

Proof: First assume that (M, g) is isometric to a doubly warped product, thus (M, g) = (I×M̂, dt2⊕
ρ(t)2ĝη̂ ⊕ σ(t)2ĝη̂⊥). Then we have the following expressions for the Levi-Civita connection ∇ of

(M, g), see e.g. [14, Sec. 3] (mind that our η̂ here corresponds to ξ̂ in [14] and that our ρ and σ
correspond to ρσ and ρ, respectively). For all sections X,Y of π∗

2Q, where Q := η̂⊥ → M̂ ,

∇∂t
∂t = 0, ∇∂t

η̂ =
ρ′

ρ
η̂, ∇∂tX =

∂X

∂t
+
σ′

σ
X,

∇η̂∂t =
ρ′

ρ
η̂, ∇η̂ η̂ = −ρρ′∂t, ∇η̂X = ∇̂η̂X +

ρ2

σ2
ĥX,

∇X∂t =
σ′

σ
X, ∇X η̂ =

ρ2

σ2
ĥX, ∇XY = ∇̂XY −

1

σ2
g(ĥX, Y )ξ − σ′g(X,Y )∂t,

(74)
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where ĥ := ∇M̂ η̂ ∈ Γ(End(Q)). It is straightforward to see that ν := ∂t is a geodesic vector field
with ν⊥ = TM̂ , the vector field η̂ (seen as a section of π∗

2TM̂ ⊂ TM) is Killing on (M, g) with

constant length along each {t} × M̂ and that W := −∇∂t = − ρ′

ρ IdRη̂ ⊕−σ′

σ IdQ.

Conversely, let (ν, η̂) be a local DWP-structure on (M, g). Let p be a point in M . Then we find
a local leaf M̂ of ν⊥ such that the integral curves of ν starting from M̂ are defined at least on
an interval (−t0, t0). We denote by ĝ the induced metric on M̂ . Up to rescaling η̂ by a nonzero
constant, we may assume that ĝ(η̂, η̂) = 1 along M̂ . Consider the map F : (−t0, t0) × M̂ → M
given by F (t, x) := Ft(x), where (Ft)t is the flow of the vector field ν. The map F is clearly a
local diffeomorphism. Next we identify the pull-back metric F ∗g on (−t0, t0) × M̂ . For any given
(t, x) ∈ (−t0, t0)× M̂ and X ∈ TxM̂ , we have

(F ∗g)(t,x)(∂t, X) = gF (t,x)(ν, dxFt(X)) = gF (t,x)(dxFt(ν), dxFt(X)) = (F ∗
t g)x(ν,X).

Since ν is geodesic of constant length, (Lνg)(ν, Y ) = g(∇νν, Y ) + g(∇Y ν, ν) = 0 holds for all
Y ∈ TM . Consequently, the derivative

∂

∂t
(F ∗

t g)x(ν,X) =
∂

∂s
(F ∗

t+sg)x(ν,X)
∣
∣
s=0

= (Lνg)F (t,x)((Ft)∗ν, (Ft)∗X) = (Lνg)F (t,x)(ν, (Ft)∗X)

vanishes, thus (F ∗
t g)x(ν,X) = (F ∗

0 g)x(ν,X) = gx(ν,X) = 0 for all (t, x) ∈ (−t0, t0) × M̂ . This
proves the splitting F ∗g = dt2 ⊕ gt, where gt := (F ∗

t g)|TM̂×TM̂ . As a next step, we compute gt

more precisely along each of the distributions Rη̂ and Q of TM̂ . We first notice that η̂ is invariant
under the flow of ν. Namely, we write W = λIdRη ⊕ µIdQ for functions λ, µ: R → R, which are
constant along each integral leaf of ν⊥ by assumption. Since η̂ is Killing, we have g(∇ν η̂, ν) = 0.
Moreover, because of η̂ ⊥ ν,

g(∇ν η̂, η̂) = −g(∇η̂η̂, ν) = g(∇η̂ν, η̂) = −g(Wη̂, η̂) = −λg(η̂, η̂).

Note that this proves in particular that, if η̂ vanishes at a point, then it must vanish on the
corresponding integral leaf of ν⊥ and therefore identically on the image of F since g(η̂, η̂) satisfies
the ODE ν(g(η̂, η̂)) = −2λg(η̂, η̂). Furthermore, for every X ∈ Q,

g(∇ν η̂, X) = −g(∇X η̂, ν) = g(∇Xν, η̂) = −µg(η̂, X) = 0.

As a first consequence, ∇ν η̂ = −λη̂. This implies Lν η̂ = [ν, η̂] = ∇ν η̂−∇η̂ν = 0, so that (Ft)∗η̂ = η̂
for every t ∈ R. For any X,Y ∈ ν⊥, we have

(Lνg)(X,Y ) = g(∇Xν, Y ) + g(∇Y ν,X) = −2g(WX,Y ).

Thus, in particular,

∂

∂s
(F ∗

s g)(η̂, Y )
∣
∣
s=t

= (Lνg)F (t,x)((Ft)∗η̂, (Ft)∗Y ) = (Lνg)F (t,x)(η̂, (Ft)∗Y )

= −2g(Wη̂, (Ft)∗Y ) = −2(λ ◦ F ) · g(η̂, (Ft)∗Y ) (75)

= −2(λ ◦ F )(F ∗
t g)(η̂, Y ).

Consequently, for fixed Y ∈ TxM̂ ∩ ν⊥, the function ϕ(t) := (Ft)
∗g(η̂, Y ) satisfies the differential

equation
ϕ′(t) = −2λ(F (t, x)) · ϕ(t).

For Y ∈ Q, we have ϕ(0) = 0, thus ϕ = 0. This means that the flow of ν preserves the distribu-
tion η̂⊥. For Y = η̂, we have ϕ(0) = 1, thus

(Ft)
∗g(η̂, η̂) = ϕ(t) = exp(−2

∫ t

0

λ ◦ Fsds) =: ρ(t)2.
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Finally, for X,Y ∈ Q, a computation analogous to (75) shows that

∂

∂s
(F ∗

s g)(X,Y )
∣
∣
∣
s=t

= −2(µ ◦ F )(F ∗
t g)(X,Y ),

which yields

(F ∗
t g)(X,Y ) = exp(−2

∫ t

0

µ ◦ Fsds) · ĝ(X,Y ) =: σ(t)2ĝ(X,Y ).

It remains to notice that η̂ must be a Killing vector field along (M̂, ĝ) since it is already Killing
on (M, g) and is tangent to M̂ . On the whole, we obtain the doubly warped product metric as
required. �
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