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Skew Killing spinors in four dimensions

Nicolas Ginoux! Georges Habib! Ines Kath?

July 23, 2020

Abstract. This paper is devoted to the classification of 4-dimensional Riemannian
spin manifolds carrying skew Killing spinors. A skew Killing spinor v is a spinor
that satisfies the equation Vx1¢ = AX - with a skew-symmetric endomorphism
A. We consider the degenerate case, where the rank of A is at most two everywhere
and the non-degenerate case, where the rank of A is four everywhere. We prove
that in the degenerate case the manifold is locally isometric to the Riemannian
product R x N with N having a skew Killing spinor and we explain under which
conditions on the spinor the special case of a local isometry to S? x R? occurs. In
the non-degenerate case, the existence of skew Killing spinors is related to doubly
warped products whose defining data we will describe.

Mathematics Subject Classification (2010): 53C25, 53C27.

Keywords: Generalized Killing spinors, doubly warped product, Hodge operator.

1 Introduction

Let (M™,g) be an n-dimensional Riemannian spin manifold. A generalised Killing spinor on M
is a section ¥ of the spinor bundle XM of M satisfying the overdetermined differential equation
Vxt = AX -1 for some symmetric endomorphism field A of T'M. Here and as usual, “-” denotes
the Clifford multiplication on XM. Numerous papers have been devoted to the classification of
Riemannian spin manifolds carrying such spinors. Several results have been obtained for particular
A but it is still an open problem to get a complete classification for general A. Let us quote
some of these results. First, recall that when A is the zero tensor field, that is, the corresponding
spinor is parallel, then McK. Wang [23] showed that such manifolds can be characterised by their
holonomy groups which can be read off the Berger classification. The case where A is a nonzero
real multiple of the identity is that of classical real Killing spinors. It was shown by C. Bér [3] that
real Killing spinors correspond to parallel spinors on the (irreducible) cone over the manifold, to
which then McK. Wang’s result applies. Furthermore, in dimension n < 8, there are several results
on a classification up to isometry [6 [I7]. When the tensor A is parallel [19], or a Codazzi tensor
[5] or both A and g are analytic [2] (see also [9]), it is shown that the manifold M is isometrically
embedded into another spin manifold of dimension n + 1 carrying a parallel spinor and that the
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tensor A is the half of the second fundamental form of the immersion. We also cite the partial
classification of generalised Killing spinors on the round sphere [22] 20] and on 4-dimensional
Einstein manifolds of positive scalar curvature [2I] where in some cases the generalised Killing
spinor turns out to be a Killing spinor.

In this paper, we are interested in an equation dual to the generalised Killing one, which we call
skew Killing spinor equation. More precisely, on a given Riemannian spin manifold (M™,g), a
spinor field 1 is called a skew Killing spinor if it satisfies for some skew-symmetric endomorphism
field A of T M the differential equation

Vxt = AX -9 (1)

for all X € TM. This equation was originally defined in [15]. Each skew Killing spinor is a parallel
section with respect to the modified metric connection V — A ® Id, in particular it has constant
length. Moreover, for a given skew symmetric endomorphism field A of T'M, the space of skew
Killing spinors is a complex vector space of dimension at most rke (M) = 2[7/2),

Very few examples of Riemannian spin manifolds (M™, g) carrying skew Killing spinors are known
for which A # 0. For 2-dimensional manifolds, apart from R? or quotients thereof with trivial spin
structure, only the round sphere of constant curvature can carry such spinors and in that case they
correspond to restrictions of Killing spinors from S? onto totally geodesic S? [15]. In that case, the
tensor A coincides with the standard complex structure J induced by the conformal class of S?
or with —J depending on the sign of the Killing constant chosen on S?. Each skew Killing spinor
on S? immediately gives rise to a three-dimensional example, namely to a skew Killing spinor on
S? x R, where A = +.J on S? is trivially extended to the R-factor. More generally, for a manifold
of dimension n = 3 the following is known [I5, Prop. 4.3]. If M3 admits a skew Killing spinor ),
then, locally, v can be transformed into a parallel spinor by a suitable conformal change of the
metric. In particular, M3 is locally conformally flat. If, in addition, M3 is simply-connected, then
this conformal change is defined globally. Conversely, if (M3, g) admits a nonzero parallel spinor,
then for any conformal change of g, there exists a skew Killing spinor with respect to the new
metric. See Section [£.1] for more detailed information.

In dimensions 6 and 7, there are lots of examples provided by SU(3)- resp. Ga-structures on M,
see e.g. types X1, X2, X4 in [IL Lemma 3.5] and type Wa, W in [I Lemma 4.5] respectively.

Obvious examples in four dimensions can be obtained as products N x R, where N is a three-
dimensional manifold admitting a skew Killing spinor, see Example Il A special case of this
construction is the product S? x R?, see Example[d2l For each of the endomorphisms A* := £J @0,
this manifold admits the maximal number of skew Killing spinors.

The main purpose of this work is to establish a classification result when the dimension of M is
four. Note that the pointwise rank of A is either zero, two or four. We will split the classification
into two parts. In Section [4] we will study the degenerate case, where the rank of A is at most two
everywhere. In Section Bl we will consider the case where rk(A) = 4 on all of M. Before we start the
classification, we determine the general integrability conditions in arbitrary dimensions arising from
the existence of a skew Killing spinor, see Section 2l In Sections[Band [ we specify these conditions
to four dimensions, especially to the degenerate case. We use that the spinor bundle XM splits into
the eigenspaces T M and ¥~ M of the volume form and the bundle of two-forms splits into those
of self-dual and of anti-self-dual forms, which act on £+ M. We also adapt some techniques used
in [21I] but for a skew-symmetric endomorphism A. We use the integrability conditions to achieve
the following classification result in case that the Killing map is degenerate everywhere.

Theorem A. Let (M* g) be a connected Riemannian spin manifold carrying a skew Killing
spinor 1, where the rank of the corresponding skew-symmetric tensor field A is at most two every-
where. Then either 1 is parallel on M or, around every point of M, we have a local Riemannian



splitting R x N with N having a skew Killing spinor. If, in addition, the length of the summand
YT in the decomposition ¥ = T+~ € T M © X~ M is not constant, then we are in the second
case with N = R x S?, that is, (M, g) is a local Riemannian product S* x R? around every point.

For a more detailed formulation see Theorem [.13] where we also discuss the global structure of
(M, g) if M is complete.

Let us turn to the case where the Killing map is non-degenerate everywhere. In Section 5.1l we
will prove that, essentially, the existence of a skew Killing spinor ¢ with non-degenerate Killing
map A is equivalent to the existence of a Killing vector field  and an almost complex structure J
satisfying certain conditions, see Proposition [5.1] for a detailed formulation. The spinor ¢ and the
data n and J are related by the equations J(X) -4~ =iX -9~ and g(n, X) = (X -F 7) /]2
forall X € TM.

In Section [5.2] we consider the special case where An is parallel to Jrn. Then AJ = JA holds and
J is integrable, see Remark Manifolds with skew Killing spinors satisfying these conditions are
related to doubly warped products. A doubly warped product is a Riemannian manifold (M, g) of
the form (I x M, dt2 ®p(t)*g;®0(t)*gse ), where (M, §) is a Riemannian manifold with unit Killing
vector field 7, and g, g;+ are the components of the metric g along R7) and f*, respectively, I C R
is an open interval and p,o:I — R are smooth positive functions on I. Locally, doubly warped
products can be equivalently described as local DWP-structures, see the appendix. On M , wWe
define a function 7 by \Y xN="7-" J (X) for X € 71, where J is a fixed Hermitian structure on nt.
Locally, (M ,§) is a Riemannian submersion over a two-dimensional base manifold B. Let K denote
the Gaussian curvature of B. We obtain the following result, see Theorem and Corollary

Theorem B. Let (M, g) admit a skew Killing spinor such that Anl||Jn and |n| ¢ {0,1/2} every-
where. Then M is locally isometric to a doubly warped product for which the data K and 7 are
constant and p and o satisfy the differential equations

/
(02 = ——2 _pp (YLKl
p

=

Conversely, if M is isometric to a simply-connected doubly warped product for which the data K
and 7 are constant and p and o satisfy the above differential equations, then (M, g) admits a skew
Killing spinor such that An||Jn.

The differential equations in Theorem B can be locally solved and one obtains explicit formulas for
the doubly warped product. Let us finally mention that the skew Killing spinors on M = I x M
are related to quasi Killing spinors in the sense of [I1] on M, see Remark .10

Acknowledgement: The second named author would like to thank the Alexander von Humboldt
foundation and the DAAD for the financial support.

2 General integrability conditions for skew Killing spinors

In this section we give a few necessary conditions for the existence of nonzero skew Killing spinors.
Before we state the main result, we recall some facts from Riemannian and spin geometry, see e.g.
[6, Chap. 1] or [I8] Chap. 2].

In all this paper we identify, on a Riemannian manifold (M™, g), one-forms with vector fields via
the metric g. Recall that the Hodge star operator is defined by

w A *xw' = (w,w)vol,



for all differential p-forms w,w’ on M, where vol, is the volume form of M (giving its orientation).
The Hodge star operator satisfies 2 = (fl)p(”*p) on p-forms and has the following useful properties

X Asw= (1P % (XLow) and Xixw=(-1)* (X Aw) (2)

for any vector field X. Recall also that the Clifford multiplication between a vector field X and a
differential p-form w is defined as

X w=XAw—-—Xiw and w- X=wAX+(-1)’Xlw, (3)

from which the identity X - Y - +Y - X- = —2¢(X,Y) follows for any vector fields X and Y.

From now on, we assume M to be spin with fixed spin structure. In that case, there exists a
Hermitian vector bundle ¥M — M, called the spinor bundle, on which the tangent bundle T'M
acts by Clifford multiplication, TM ® XM — YXM; X @ ¢ — X - . We will write XY - ¢ instead
of X -Y -4. Recall that a real p-form also acts by Clifford multiplication in a formally self- or
skew-adjoint way according to its degree: for any p-form w and any spinors ¢, v, we have

p(p+1)

w-p, ) =(=1) 2 {p,w-1).

The Levi-Civita connection V on M defines a metric connection, also denoted by V, on ¥ M with
respect to the Hermitian product (-,-) and that preserves Clifford multiplication. In other words,
for all X,Y € I'(TM), the rules

X((,0) =(Vxv,0) + (¥, Vxe), Vx(Y 9)=VxY p+Y Vxep
are satisfied for all spinor fields 9, . If we denote by Rxy := [Vx,Vy] — V|x y] the curvature
tensor associated with the connection V, the spinorial Ricci identity states that, for all ¢ and X,

n

1.
0 6= D R 0
see e.g. [6, Eq. 1.13].

In the following, we will assume the manifold M to carry a skew Killing spinor field ¢ with
corresponding skew-symmetric endomorphism A. We make A into a 2-form via the metric g, that
is, we consider (X,Y) — ¢g(AX,Y), which we still denote by A. In a pointwise orthonormal basis
{ei}i=1,...,. of TM, we have A = %2?21 e;j A Ae; (mind the factor 1). In particular, Clifford
multiplication of any spinor field ¢ by A is given by

A-’L/J:%Zej'Aej"l/J. (5)
7j=1

In the next proposition, we compute the curvature data arising from the existence of such a spinor.
These integrability equations will play a crucial role for the classification in the 4-dimensional case.

Proposition 2.1 Let vy be any solution of (Il) on a spin manifold (M™, g) for some skew-symmetric
endomorphism field A of TM. Then the following identities hold for X, Y € T'(T'M)

1. Rxyt = (VxA)(Y) = (Vy A)(X) + 24Y A AX) - ¢,

2. —iRic(X) ¢ = (VxA+ XsdA+ (0A)(X) +4ANAX + 2A%X) -4, where d is the exterior
derivative and 6 is the codifferential w.r.t. the metric g.



3. S =4(2dA+0A+4ANA+ |AJ]*) -9, where S denotes the scalar curvature of (M, g) and
|A|? = > i1 |Ae;|? written in any pointwise orthonormal basis (ej)1<j<n of TM.

Proof: We derive ([Il) and take suitable traces of the identities obtained. First, if z € M and
X,Y e I'(TM) such that VX = VY =0 at z, then
VxVyt¢ = Vx(AY -¢) = (VxA)(Y) ¢+ AY - Vxo
= (VxA)Y) v +AY - AX - ¢

at . Thus, with the help of Equations (), we write
Rxyv = VxVyyp—VyVxy
((VXA)(Y) —(VyA)(X)+ AY - AX — AX - AY) X
(VxA)(Y) = (Vy A)(X) +24Y A AX — g(AY, AX) + g(AX, AY)) -
= ((VXA)(Y) —(VyA)(X) 4+ 24Y A AX) -,

which is the first identity.

Next we fix a local orthonormal basis of T'M, which we denote by (e;)i1<j<n. Using the spinorial
Ricci formula (@) and the identities (B)), we compute

—%Ric(X)-w = Zej-RX,ej Ze]- (VxA)(ej) — (Ve, A)(X) + 24e; N AX) - ¢

= (Ze] VXA e] Ze] Ve]A +Zeg )

j=1
+23 ¢ - (Ae /\AX)) )
j=1

Now we compute each term separately. First, 2?21 ej - (VxA)(ej) - =2VxA-1 by @), where
we see Vx A as a 2-form on M. The second sum can be computed in terms of the exterior and the
covariant derivatives of A. Namely

_Zej (Ve, A)(X (Ze]/\ve]A) X) - Z (X,e;)Ve, A = X1dA—VxA.

j=1

The third sum can be expressed in terms of the codifferential of A:

ie]J (Ve, A)(X) =

n
j=1 =

(Ve, A)(X,e5) = =D (Ve A)(ej, X) = (5A)(X).
j=1

1

It remains to notice that, by Equations (3)), we have

Z@j'(A@j/\AX)-’L/J Zej-Aej-AX-w—f—Zg(Aej,AX)ej-z/J
Jj=1 j=1 j=1

= (2A4-AX — A%2X)-¢p = (2ANAX 4+ A%X) -4

This shows the second equation.

ot



To obtain the scalar curvature, we trace the spinorial Ricci identity. Given a local orthonormal
basis (e;)1<j<n of TM, we write

S n
Sy = 5 e Ricley) ¢
=1

[
3=

ej - (Ve,A+ejadA+ (6A)(ej) + 4A N Ae; + 24%;) - ¢
1

<.
Il

n

(ej AV A— €ijejA) S+ Z (ej A (ejadA) —ej(ej dA)) -1

g
NE

j=1 j=1 v
+ 3764 (eg)e; - 1/1+4Z(ej/\A/\Ae] ¢j (AN Acy) ) -1

+2 ; (ej /\OAer —g(Aer, ej)) X

= (dA+0A+3dA+A+8ANA+2/A]P) 4
= (4dA+25A+8ANA+2[APP) -9

which is the last identity. Here, we use the the identity 2?21 ej A (ejuw) = pw, which holds for
any p-form w. O

3 The vector fields n and ¢ in four dimensions

In this section, we consider a 4-dimensional spin manifold (M, g) that carries a skew Killing spinor.
On spin manifolds of even dimension 2m, the complex volume form (VOlg)(c =1y - eq... - Eom,
where (e;);=1,....2m is an arbitrary orthonormal frame, splits the spinor bundle into two orthogo-
nal subbundles that correspond to the eigenvalues £1 of (voly)c. Hence, on our four-dimensional
manifold (M, g), we have XM = X7 M @& X~ M, where

YEM = {¢p € XM | (voly)c - ¥ = £}

The spaces ¥ M are preserved by the connection V of the spinor bundle and are interchanged by
Clifford multiplication by tangent vectors. According to this decomposition, we write any spinor
field ¢ as 1 = 1t + 4~ and we set 1) := ¢ —9)~. Recall now that differential forms act on the
spinor bundle XM as follows: for any differential p-form w on M and ¢ € T'(XM)

w-p=xw-1¢ for p=1,2 and w-¢=—(xw) ¢ for p=3,4. (6)

Let A2 M = {w € A’ M | xw = +w} be the spaces of self-dual and anti-self-dual forms on M. For

w € /\2 M we denote by w+ the projections of w to these spaces. Then, one can easily see from
Equations (@) that /\2i M acts trivially on ©F M and that the maps

N M — S MA@ oo w7, ALM — SEMO W)Y, oy —wp 0t (7)

are isomorphisms if ¢ # 0 and ¢~ # 0.



Now assume that 1) is a skew Killing spinor of norm one. By decomposing 1 into ¥ and 1~ as
we said before, we obtain isomorphisms () on the open set M’ := My N M7, with

My:={zx e M|y (z) #0} and M :={x e M |4 (x)#0}.

Equation () can be written as Vx¢® = AX - ¢T. We define a vector field  on M and a vector
field £ on My by

9(77,X) = <X'w+aw_>a 1/1+ 215'1/1_; (8)
where the definition of ¢ uses that the map T, M — E;{M, X — X -9~ is bijective at each p € M.
Then, clearly n = —|¢~|2¢ holds on My and 1 = [+ ]2 + |9~ |2 = [~ |2(1 + |£]?). We define
f=1=2[71% p:=In <1/2.

Then )
_ _ kPt
1+ g2 g2+ 17

holds, where these functions are defined.

p ; P=1-4g% m=o(f -1 )

We collect some properties of n and £ that will be used later on.
Lemma 3.1 On M, we have

1. df = 4An
2. Vyn = fAX

3. dp=2fA, on=0
4. fdA=—4AnAA.

Proof: Differentiating the function |1/~ |? along any vector field X € TM gives

X([0™P)=2(Vxy~,07) =2(AX -9, ¢7) = 29(n, AX) = —2g(An, X).

This proves[l To prove[2 we consider two vector fields X and Y that can be assumed to be parallel
at some point x € M to compute

9(Vxn,Y) = X(g(n,Y)) = XY -¢*,97))

(Y -AX -7, 07) + (Y -9+, AX -9T)
—g(V,AX)|™ P 4 g(Y, AX) [ *

= (1-2v7|*)g(4AX,Y)

at x, which is[2 Moreover,
dn(X,Y) = (Vxn)(Y) = (Vyn)(X) = 2fA(X,Y),

which yields the first part of [ The divergence of 7 is clearly zero by [d and the fact that A is
skew-symmetric. Finally,
0 =ddn=2fdA+ 2df N A,

which together with [0 gives O



Remark 3.2 It follows from Lemmal3dl that V1 is skew-symmetric on M which means that n is
a Killing vector field on M.

The open sets My and M; are dense in {p € M | A, # 0}. Indeed, if, e.g., ¥~ vanishes on some
open set U C {p € M | A, # 0}, then so does its covariant derivative and therefore AX - ™ =0
on U. Hence A = 0 on U, which contradicts the assumption on A.

With the notation introduced above, we have My = {z € M | f(x) # 1} and My = {z € M |
f(x) #—1}. Then M' = MoN My ={z € M | f(z) # £1} = {z € M | p(z) # 0}. We define also
the set

M" = {z e M| p() £ {0.4}} = M' A {w e M| p(e) £ L} = {w € M| f(x) ¢ {0.£1}}.

By Lemma ] 1., the open set M" is dense in {p € M | Ay(n) # 0}. In particular, M"” C M is
dense if A is non-degenerate everywhere. The case where p = 1/2 on an open set will be treated
in Proposition [4.3]

Remark 3.3 Let us change the orientation of M and denote by SM the spinor bundle with respect
to the new orientation. Then we can identify SM with SM via XYM =S~ M and StTM =S~ M
Accordingly, we define a section 1/; of SM by 1/A)+ =Y, 1/;7 = . With ¢ also 1[) is a skew
Killing spinor and the vector fields é and 7 associated with 1/; are equal to é = —¢/I¢)? and h = —n,
respectively.

On M"”, we have |§| # 1. Hence, if there exists a skew Killing spinor on M and if M = M",
then we always may assume that |£] > 1 up to a possible change of orientation on each connected

component of M. If || > 1, then f is positive, thus f = /1 — 4p?.

4 The degenerate case

In this section, we assume that tk(A) < 2 everywhere on M*, which is equivalent to suppose that
the kernel of A is at every point either 4- or 2-dimensional. Then AX AA =0 for all X € TM. In
particular, dA = 0 on M" by Lemma Bl

4.1 Examples

Example 4.1 If N is a 3-dimensional spin manifold with o skew Killing spinor ¢, then N x R
admits a skew Killing spinor ¢ # 0 for which |4™| = |¢~| holds.

Let us prove the above statement. Recall that the spinor bundle of M = N x R is given by
XM = 3N @ XN and the Clifford multiplication on M is related to the one on N by [4]
X vod—-Xy=X 0.

where 0; is the unit vector field on R and X € T'N. Now we set ¢ := ¢ + 0; - ¢ according to the
above decomposition. Let A denote the Killing map associated with 1. Then we can easily check
that Vg9 =0 and, for X € TN,

Vxy = Vxp+0 Vxop

= AX v o+ 0 (AX -y v)
AX 8o +0-AX -0, ¢
— AX -y



Hence 9 is a skew Killing spinor on M. The vector field £ in this example is just —d; which is
parallel. Since |9;| = 1, we have |[¢F] = [¢p7].

Let us recall at this point, what is known about three-dimensional manifolds with skew Killing
spinors. As already mentioned in the introduction, each skew Killing spinor on S? immediately
gives rise to a three-dimensional example, namely to a skew Killing spinor on S? x R. Furthermore,
if dimN = 3 and if (V,g) admits a skew Killing spinor ¢, then N is locally conformally flat
[15, Prop. 4.3]. Indeed, locally, there exists a function u such that ¢ transforms into a parallel
spinor 1) with respect to the metric § := e?*g and three-dimensional Riemannian manifolds with a
non-trivial parallel spinor field are flat. If N is simply-connected, then u is globally defined. In the
latter case the metric g is not necessarily complete even if (N, g) is.

Conversely, if (N, g) admits a nonzero parallel spinor, then for any conformal change of the metric
on the manifold IV there exists a skew Killing spinor with respect to the new metric. We conclude
this overview with the flat case N = R3. If ¢ # 0 is a solution of ({]) on N = R3 endowed with the
flat metric, then A = 0 and ¢ is a parallel spinor field. Indeed, as mentioned above, there exists a
globally defined function v on R? such that the metric g := e2*g admits a parallel spinor. Hence, g is
also flat. In particular, the scalar curvature S vanishes. On the other hand, S = 8¢~ 2%e~%/2Ae%/2
since g arises by conformal change from the flat metric g. Thus A(e*/?) = 0, that is, e*/? is a
harmonic function on R?. But since e*/2 > 0, Liouville’s theorem implies that e*/? — and so u itself
— is constant. This shows A = 0.

Example 4.2 We consider M = S? x R2. Let J denote the standard complex structure on S?. We
define endomorphisms A* := £J®0 on TM = TS?> ® TR?. For each of these endomorphisms, the
space of skew Killing spinors is four-dimensional. It can be spanned by elements with non-vanishing
An and it also can be spanned by elements for which An =0 holds.

Let us prove this statement. The spinor bundle of S? x R? is pointwise given by %(S? x R?) =
$S? ® ¥R? and the Clifford multiplication on S? x R? is [4]

X -(pRo)=(X ¢ eoa, Y -(p®0)=p (Y g20),

for X € TS? and Y € TR2. Now, we consider on S? a skew Killing spinor ¢, corresponding to
the standard complex structure .J, and a parallel spinor o in $+(R?) of norm 1. The spinor field
1 = ¢ ® o is clearly a skew Killing spinor, since in the S?-direction we have

Vxip=(Vxp)@o=(JX e p)®0=JX (p®0)=JX 9

and Vyv = 0 in the R2-direction. The same computation holds when replacing J by —J and
choosing ¢ € ¥~ (R?). As the spaces of skew Killing spinors ¢ corresponding to the standard
complex structure J or its opposite on S? are each complex 2-dimensional, we deduce that the space
of skew Killing spinors with Killing map A™ is at least — and therefore exactly — 4-dimensional.
The same holds for A~. In particular, each skew Killing spinor on S? x R? is a linear combination
with constant coefficients of skew Killing spinors for AT and also one of skew Killing spinors for
A~ . Note that the vector field &, associated to the above-defined skew Killing spinor v, is the one
coming from the spinor ¢ on S2, since T'S? ~ ©*S? and

YPr=pt Ro=((e ¢ )Ro=E(e (¢~ ®0) =& Y.

Therefore, £ = &2 and A%¢ = J?&g = —&s2, which cannot vanish on the sphere. Thus An # 0. If
we consider instead of the above constructed v the spinor v + Y - ¢ for a parallel vector field Y
on R? with |Y| = 1, we obtain a skew Killing spinor with £ = —Y, hence An = 0.



4.2 Classification

Let us first assume that p = 1/2 on an open set. By definition of p, this condition is equivalent

to [¢pF| = |p~|. We prove that, under this assumption, the manifold is locally isometric to that in
Example 411
Proposition 4.3 Let ¢ be a nonzero skew Killing spinor on M* and assume that || = [1p~| on

an open set U. Then U is a local Riemannian product of a line by a 3-dimensional Riemannian
manifold carrying a skew Killing spinor.

Proof: Let 1) be a skew Killing spinor of norm one such that |[1)™| = |[¢)~|. Then f = 0 by definition
of f. Thus 7 is parallel by Lemma [3.1l In this case n' is integrable and the spinor 1) restricts to a
skew Killing spinor on the integral manifolds. In fact, for any given integral manifold IV, its spinor
bundle is identified with XM, so the spinor ¢ = %™ restricts to a skew Killing spinor on N.
Indeed,

V¥ =VNoT = AX -y~ = —AX {97 = —AX -y ¢,

which proves the assertion. O

In the next part of the section, we want to exclude the case p = 1/2 and make the stronger
assumption

(M*%,g) is a Riemannian spin manifold carrying a skew Killing (GA)
spinor such that M = M" and rk(A) = 2 everywhere.

Due to the orthogonal splitting of the spinor bundle XM = ™M & X~ M we can decompose
further the equations in Proposition 2.Ilin order to get more integrability conditions. Namely,

Lemma 4.4 Under the assumption (GA), we have
0 = 2iRic(X)+ 242X +#(EAVxA) +EVxA+ (SA)(X)E (10)
0 = ($Ric(X)AE+242X A€+ VxA) (11)
= IRic(§) +24%¢ — A
0 = JA+(JA? - 19)¢
0 = (5 A 6A)
0 = —(6A)(&) +|A]? - 3S

for any vector field X .

Proof. We take the orthogonal projection of the formulas in Proposition 2l to X7 M and ¥~ M.
This gives, after using v* =¢-¢~, dA =0 and AN AX = 0 that

= (3Ric(X)+24%X) -y~ + (VxA+ (A)(X)) -y~ (16)
= (3Ric(X) +24%2X) - &9 + (VxA+ (64)(X)) - v~ (17)
and
0 = (JA=48)-€- ¢~ +(64) -y~ (18)
0 = (AP —48) v~ +(64)-¢-v7, (19)

10



respectively. Equation (I6) gives
0 = (3Ric(X)+24°X + EAVxA+EVxA+ (BA)(X)E) 4.
Hence, by formula (@), we obtain (I0)). Equation (I7) yields
0 = (ZRic(X)A&— LRic(X,&) + 242X NE—29(A%X, &) + Vx A+ (64)(X)) - ¥~

Now, by taking the scalar product with ¢~ and identifying the real part, the 0-th order term must
vanish. This is Equation (I2)). Also, we have

(ARic(X) A€+ 242X NE+VxA) -9~ =0.

The isomorphism from A2 M to the orthogonal complement ()" yields Equality (1) from the
above identity. Equation (I8)) gives (I3)). Finally, Equation (I9)) yields

0= (JA® —3S— (6A)(&) —EASA) .

Taking the Hermitian product with ¢~, we obtain Equations (Id]) and (I3 after identifying the
real parts. (|

In the following, we will further simplify the equations in Lemma 4]

Proposition 4.5 Under the assumption (GA), we have

SA = 0 (20)

S = 4/4) (21)

Ric(n) = —44% (22)
V,A = 0 (23)
(VxA)(n) = —f(§Ric(X)+ A2X) (24)
Vx(An) = ~TRie(x) (25)
naVx(*4) = Vx((xA)n) = iRiC(X)+A2X (26)

for every X € TM.

Proof: By ([Id), we have
ENOA=x%(ENOA) = —EuxA.

Hence, the interior product with ¢ yields 0 = £4(6 A JA) = |£25A4 — (§A)(€) - €. Now, applying
Equation ([I3) to & gives
0= (54)(€) + (|AP - £8) €%,

which, after combining with (I5)), leads to 0 = (1 + |£[*)(6A)(€), which gives 20). Now (I3)) yields
I). Equation 22) now follows from (I2)) and (20)).
From (III), we get

*(%Ric(X) ANEF2A2X AE+ VXA) = LRic(X) A&+ 242X A&+ VA,

11



which, by Equation (@), is equivalent to
10 (Rie(X)) 4 260 (A2X) + «Vx A = 1Ric(X) A€+ 242X N+ Vx A
Taking the interior product by &, this gives
Eax VxA =& ((FRic(X) +24%X) AE) + €0V A,

thus
#(EANVxA) = (—3Ric(X) — 24%2X) [¢* + £V x A

by Equations (@) and 22). On the other hand, Equations (I0) and 20) give
(€ ANVxA) = —LRic(X) — 242X — £,V x A,

Substracting and adding the latter two equations and replacing & by —(1 + |£]?)n yields (24) and
the identity 7V (xA) = TRic(X) + A2X for all X € I'(T'M). The last equation yields (26) since
(x*A)(Vxn) = f(xA)(AX) = xfAX ANA = 0. Furthermore, Equation (24]) shows that the expression
(VxA)(n,Y) is symmetric in X and Y. Thus

0= (VxA)(n,Y) = (VyA)(n,X) = —dA(X,Y,n) + (V,A)(X,Y) = (Vy4)(X,Y)
by dA = 0. This proves (23]). Equation (25) follows from (24]) together with Vxn = fAX. O

Remark 4.6 We can prove integrability conditions analogous to those in Lemmal[{.4] and Propo-
sition [{-3] also for arbitrary rank of A. These general conditions are more involved. Since we will
not use them in the present paper, we do not state them here.

Lemma 4.7 Under the assumption (GA), the set {p € M | An|, # 0} is dense in M.

Proof: Assume that An = 0 on an open set U. We know that 7 is a Killing vector field on M.
Moreover, by Lemma 3.1l the vector field n has constant length on U. Indeed, for every X € T M,

X (Inl*) =29 (Vxn,n) =2fg(AX,n) = —2fg(An, X) = 0.

By [7, Thm. 4], since (22) implies Ric(n) = 0, we can conclude that 5 is parallel on U. But this
contradicts item 2 of Lemma B since f # 0 and A # 0 everywhere by assumption. O

In the following, we will often assume assume that An # 0 on all of M. If An # 0, then we have

A2n # 0 everywhere, thus the vectors A and A—z" form an orthonormal basis of the image of A.
A A ¢ ok 2 b [An]| [A2n]
s A is of rank 2, we obtain
1
A= T - An A A%y, (27)

Furthermore, note that (27) already implies

2,12

3, _ | A% _ S

where the last equality comes from the identity (21I). Obviously, A%n = —%An holds also if An = 0.
Since df = 4An by Lemma Bl (23] implies
Vdf = —f - Ric. (29)

This equation has been extensively studied in [I3]. Using this formula, we now express the Ricci
tensor of the vector field An.

12



Lemma 4.8 If (GA) holds, then the Ricci tensor satisfies

Ric(An) = % - An+ 1—f6 -dS, Ric((xA)n) = %dS. (30)
In particular, we have
(An)(S) = f((xA)n)(S). (31)

Proof: By Bochner’s formula for 1-forms, A(df) — Ric(df) = V*V(df) holds. Since Vdf = — fRic
is symmetric and since V* = § on symmetric (0, 2)-tensors, this gives

A(df) — Ric(df) = 6Vdf = 6(—fRic) = Ric(df) — £5(Ric) = Ric(df) + gds,

where we used the well-known identity dS = —2dRic. Hence, we deduce
A(df) = 2Ric(df) + gdS.

But (29) also gives Af = —tr, (Vdf) = f - S, so that A(df) = d(Af) = d(f - S). Therefore
Ric(df) = %S df + g -dS.

The first equation in (B0) now follows from the equality df = 4An.

In the following, we will compute the Ricci curvature of the vector field (xA)n. Notice first that
(xA)n = nu(xA) = x(n A A). Hence, this vector field belongs to the kernel of A as

g(AX, (xA)n)vol, = AX Ax*(nNA) = —AX AnANA=0

for any X € TM. Based on the fact Ana(xA) = x(An A A) = 0, we first compute
AnaVx(xA) = —(xA)(Vx An) = %(*A)(Ric(X)) = *%(Ric(X) A A). (32)
This gives
na(AnaVx (xA)) = — x {(n ARic(X)ANA) = —%Ric(X)J x (NN A) = —{Ric((*A)n,X).

On the other hand, by (26) and (28]), we have

f

1 1
Ana(naVx (xA)) = AnJ(ZRic(X) + A’X) = g(ZRic(An) + A%n, X) =
Comparing the two identities gives the second equation in (B0). Equation [BI]) can be deduced
from computing Ric(An, (x*A)n)) in two ways from (B0 taking the scalar product by (xA)n in the
first formula and by An in the second one. Remember that (xA)n lies in the kernel of A. O

In the following, we will establish and prove three technical lemmas (Lemmas [L9] T0l and [ATT]),
which will show that the kernel and the image of the endomorphism A are integrable and totally
geodesic. Then the proof of Theorem A will follow from the de Rham theorem.

Lemma 4.9 Assume that (GA) holds. Then we have the identity

f

VanA?n = —ZRic(AQU) — —2A(dS). (33)
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Proof: By continuity, it suffices to prove the assertion on the set {p € M | An|, # 0} since this set
is dense in M by Lemma 7l Thus we may assume that An # 0 everywhere. For any X € TM,
we have

.
d(|An|*) = 2g(V (An), An) = —ZRic(An), (34)
where we use Equation (23] in the last equality. Thus, from Lemma [ we find

1\ S / f
d(|An|2)‘2|An|4Rm<A”) a8 ATt

Moreover, §(A%n) = 0. Indeed, for any two-form w in four dimensions and any vector X, the
formula §(X w) = *(dX A *w) — dw(X) holds. Using A = 0 and 4d(An) = ddf = 0, this yields

§(A%n) = §(AnaA) = *(d(An) A xA) — (4)(An) = 0.

Las).

Now, by taking the divergence of both sides of ([27]), we compute

1 1 1

Y / 1
= (S A0+ 594+ s

T 4An? (6(An)A%n + V 42 An — V 4y A%y — 6(A%n) An),

where we use the formula (X AY) = (0X)Y + VyX — VxY — (6Y)X, valid for any X,Y € TM.
Furthermore, the divergence of An is equal to fS/4 as an easy consequence from tracing Equation
@8). This finally gives [33)). O

The following technical lemma expresses a partial trace of the Ricci tensor.

Lemma 4.10 Assume that (GA) holds and that An # 0 everywhere. Then the following identity
holds:

——Ric(An, An) + ———=Ric(A?n, A*n) =S — — An(S).

fS

Proof: The proof relies on taking the scalar product of Ric(A%n) in Lemma with the vector
field A%7. Indeed, we have

IA 2 IA2 2

Ric(A277, AQn)

2
(0T + L aGas), 47)

7
~ZAn( A% + Lotas, a%)
S S
B Zan(Glane) - Lans
BdH S,. |A 77|2
= ng(An,An)—( m +a)An(S).

Hence, again by (28], we find

Ric(A%y, A*n) _ Ric(An, An) <3 . L) (S)
FEvE AP SAn )

Finally, the identity
Ric(An, An) _ S
[An[z 2



which follows from Lemma [£8] leads to the required equality. ]

Lemma 4.11 If (GA) holds, then the scalar curvature is constant and Ric + 4A% = 0.

Proof: As in the proof of Lemma [£.9] we may assume that An # 0 everywhere. By Lemma [4.§ we
know that

Ric(An) — ;An = f - Ric((xA4)n).

We take the divergence of both sides. We start with the left hand side. Note that for any vector field
X € I'(T'M) the formula §(Ric(X)) = g(6Ric, X) — .7, g(Ric(e;), Ve, X) holds, where e1,. .., e,

f

is any pointwise orthonormal basis. Using this and §(An) = L2, we compute

d(Ric(An) — %An) = g(dRic, An) — Zg(RiC(ei), Ve, An) — %( — g(dS, An) + S 6(An))

_ AN o) 1 L /g2
= g (ds, An) + 1 g g(Ric(e;), Ric(e;)) + 2g(clS,A77) 8S

_ fin /
= Z|R1c|2—§s2 (35)

To get the divergence of the right hand side, we first compute that of the vector field Ric((xA)n).
For this, we use the same formula as above and again dS = —2JRic to write

S(Ric((xA)) = —é )= 3 g(Ric(e.), Ve ((eA))

57 Zg (Ric(ei), Ve, ((xA)n))- (36)

In the last equality, we used [BI)). Inserting (26]) into (36]), we find

5(Ric((xA)n)) = ——f(An)( )= qIRiel? = 3 gRic(er), 4%),

which in turn gives

6(f - Ric((xA)n)) = —g(df, Ric((xA)n)) + f - 6(Ric((xA)n)))

4

= —2(an)(®) - LRic? - 1Y g(Ricen), %) (37)

i=1
by B0). Comparing Equations (35) and (37), we obtain

1 1.,
2 (an)(s ) — 5 Ricl” 4 5>

4
;g(Ric(ei),AQei) =17

2
On the other hand, this sum can be computed on the particular orthonormal frame I%Z_I’ IQ_ZZ_I’ es3, €4

with es, e4 in the kernel of A as follows: using Lemma [L.10 we write

4
C N A2, _ 2. 44
;g(Rlc(ei),A €;) A |2R1C(A77,A n) + Az, |2R1C(A n, A%n)



@ 72 <|A§7|2R10(A77,A77) + |A21n|2Ric(A2n,A2n))
= 7%2 + %AU(S). (38)
Comparing these two computations yields
4An(S) = f(S* — 2|Ric|?). (39)
The Cauchy-Schwarz Inequality gives
4
> g(Ric(e;), A%;) < [Ric||A|. (40)

i=1

We take the square of this inequality. Then we use (38)) and ([B9) to express the left and the right
hand side, respectively. We obtain

q2 1 2 q2 2 S2 St s?
(— T —An(S)) < (5 - ?AU(S)) iy WA”(S)’

where besides (21]), which says that S = 4| A|?, we used |A?|? = (|A4|?)?/2, which follows from the
fact that A is skew-symmetric of rank two. This inequality is only true if An(S) = 0. But then
@) is an equality. Hence, Ric is a multiple of A% at every point of M?. Since TrRic = S and
TrA%? = —|AJ]? = —S/4, we obtain Ric = —4A?. As the vector field (xA)n lies in the kernel of A,
the second equation in ([B0) implies that the scalar curvature is constant. This ends the proof. O

Lemma 4.12 If (GA) is satisfied, then (M, g) is locally isometric to R? x S2.

Proof: We show that the two orthogonal distributions Im(A) and Ker(A) — which are both of rank
two by assumption — are parallel. If this is proved to be true, then we get a local Riemannian
product by the de Rham decomposition theorem. Clearly, it suffices to show that Im(A) is parallel
since Ker(A) = Im(A)~. Let us first consider the open subset V := {p € M | A, # 0}. On V, the
image of A is spanned by An and A?7. Note that Vx An = fA%2X by 25) and Lemma LTIl Thus
V x An is contained in Im(A) for all X € T M. Furthermore, by Equation (82]) and Lemma [LTT] we
have An_Vx(*A) = 0 for all X € TM. Equation () now gives An.VxA = 0. Thus Vx A%y =
A(Vx(An)) = fA3(X). In particular, also VxA%n is contained in Im(A) for all X € TM*. This
proves that Im(A) is parallel.

We want to extend this splitting of 7'M into two parallel distributions to all of M. To this end, we
observe that, on V, the Ricci map has constant eigenvalues 0,0,S5/2,S/2 > 0 and Ker(A) and Im(A)
are the eigendistributions. Since V' C M is dense by Lemma [£.7] these are also the eigenvalues of
Ric on all of M and the two-dimensional eigendistributions of Ric are parallel on all of M. We
deduce that (M, g) is locally isometric to the Riemannian product R? x S2. O

Now we can prove the main result of this section. In particular, it says that, in the degenerate case,
the skew Killing spinor is parallel or (M, g) is locally isometric to one of the examples discussed in

Section 11

Theorem 4.13 Let (M*,g) be a connected Riemannian spin manifold carrying a skew Killing
spinor ¢, where the rank of the corresponding skew-symmetric tensor field A is < 2 everywhere.
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Then either ¢ is parallel (i.e., A =0) on M or, around every point of M, we have a local Rie-
mannian splitting R x N with N having a skew Killing spinor. If, moreover, || (thus also |¢~|)
is not constant, then (M,g) is a local Riemannian product S* x R? around every point and the
Killing map equals £J @ 0.

If, in addition, (M, g) is complete, then (M,g) is globally isometric to the Riemannian product
S? x 22, where 32 is either flat R?, a flat cylinder with trivial spin structure or a flat 2-torus with
trivial spin structure.

Proof: We define U := {p | Ay, # 0} and U’ := UNM', U" := UNM". Recall that U’ C U is
dense. We know that Equation (29) holds on the open set U”. We claim that it holds on all of
M. Obviously, it is true on the closure U” of U”. It also holds on U’ \ U” since this set is open
with f = 0. Consequently, it holds on U’, thus on U since U’ C U dense. Hence it is true on
supp(A) = U. Furthermore, on the complement of supp(A), we have df = 0 and Ric = 0, thus
29) holds on M. Now we can apply Prop.1.2 in [16], which shows that either f = 0 on M or
supp(f) = M. If f =0, then Proposition 3] applies. Assume now that supp(f) = M. Then M"”
is dense in M. Let U and U” be defined as above. On U”, the assumption (GA) is satisfied. As
we have seen, the eigenvalues of Ric are 0 and S/2 and the eigendistributions of Ric on U” are
parallel. Thus this holds also on U =U.140=M , then we are done by Lemma @12 If U = 0,
then 1 is parallel. Assume that U were non-empty and not equal to M. Then the complement W
of U is open and not empty with A = 0. Thus v is parallel on W, hence Ric = 0 on W, thus also on
W. Since M is connected, U N W is non-empty. Hence we can chose a point p in this intersection.
But then p € U would imply that S/2 > 0 is an eigenvalue of Ric, and p € W would imply that
Ric, = 0, a contradiction.

Note that, as we already noticed in [13], Theorem 2.4], the manifold (M, g) must be globally isomet-
ric to the product S? x X2, where X2 is a quotient of flat R%. The reason is that the fundamental
group of M can act on the S2-factor only in a trivial way. It remains to recall that a parallel spinor
descends from R? to a nontrivial quotient (flat cylinder or torus) if and only if the fundamental
group acts on the spin structure of R? in a trivial way, that is, the quotient %2 carries the trivial
spin structure. O

We end this section with the question — asked by Ilka Agricola — whether skew Killing spinors
can be seen as parallel spinors w.r.t. a covariant derivative induced by some metric connection on

(TM,qg).

Proposition 4.14 Let (M*,g) be any Riemannian spin manifold and 1) be any nonzero skew
Killing spinor on M. Assume that, w.r.t. the splitting 1 = ¥+ + =, both ¥* do not vanish on
M. Assume the existence of a metric connection V' on (T'M, g) such that v is parallel w.r.t the
covariant derivative induced by V' on X M.

Then A¢ = 0, in particular || = [~ |. Moreover, V'y = Vx + 2 ((AX A W)Jr — (AX /\f),)
forall X e TM.

Proof: Write V' = V — B for some unknown B € T*M ® A2T*M. Recall that, for any X € TM,
BX € End(T' M) must be skew-symmetric because of both V, V' being metric. Then for any section
p € XM and any X € TM,

1
Ve =Vxp— 3BX -,

where we see BX as a two-form acting by Clifford multiplication on ¥ M. Since by assumption
1T does not vanish anywhere, ¢ is a nowhere vanishing vector field on M. The question is now
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whether B exists such that

%BX-Q/J:AX-w

holds for all X € T'M. Using the splitting 1) = ¥+ +1~, we obtain the following equivalent systems:

IBX gt = AX -4~ IBX 4t = —AX -yt
—
iBX ¢~ =AX -yt iBX -7 =AX- £y
$BX -4t = —(AX A fp) - 9" + (AX, m)ot
<

IBX -4~ = (AX A€) -9~ — (AX, )¢~
(3BX +(AX A &) vt = (AX, fp)ut

(3BX — (AX N Q) -9

Il
o

—(AX, &Y.

Recall that a real 2-form acts in a skew-Hermitian way on XM, therefore we obtain (AX,£) =0
for all X € TM and thus A¢ = 0. Moreover, since self-dual resp. anti-self-dual 2-forms kill negative
resp. positive half spinors, the preceding systems gets equivalent to

(3BX +(AX A W))+ St =0
(5BX —(AX N€))_ -~ =0.

On the other hand, as we have seen above, the maps /\3 M— X" M0 )Y, wo s w -~

and /\i M — XTM N (T, wy — wy -t are isomorphisms if ¢ # 0 and 1~ # 0. There-

fore we can deduce that (%BX + (AX A #)) =0 and (3BX — (AX A¢))_ = 0, which yields
Jr

BX = -2 ((AX A W)Jr —(AX A f)_) and concludes the proof of Proposition .14 O

With other words, only a special subcase of the degenerate case can be considered with that
ansatz, namely that considered in Proposition As a consequence, the general classification of
4-dimensional Riemannian spin manifolds with skew Killing spinors cannot be obtained that way.

5 Skew Killing spinors with non-degenerate Killing map A

This section is devoted to the case where we have a skew Killing spinor ¢ whose Killing map A is
non-degenerate everywhere. Recall that ¢ defines a vector field n by ([®]). As above, we put p := |n|.
Here, we want to assume that M” = {x € M | p(x) € {0,1/2}} = {x € M | f(z) ¢ {0,£1}} is
equal to M. This is a sensible restriction since M" is dense in M if A is non-degenerate everywhere,
see Section [l Working on M"” has the advantage that we do not have to care about the sign of
f. Indeed, as explained in Remark B3l up to a possible change of orientation on each connected
component we may assume that f > 0. In particular, f is defined by p = |n| via f = /1 — 4p?,
which will be important for the reverse direction of Proposition [B.11
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5.1 Equivalent description by complex structures

Let M be a manifold and A be a skew-symmetric endomorphism field on M. Define a tensor field
Caon M by Cy(X,Y) :=(VxA)(Y)— (VyA)(X).

Proposition 5.1 Let M be a four-dimensional spin manifold and A be a skew-symmetric endo-
morphism field on M. Put C := Cly.

If (M, g) admits a skew Killing spinor v associated with A such that M = M", then there exist an

almost Hermitian structure J and a nowhere vanishing vector field n of length |n| =: p < 1/2 such
that
4
(VYJ>(X>:ﬁXJ (Jn/\AY+77/\JAY), (41)
Vn = fA, (42)
9(C(n, X),Jn) = p°f - g(Cp, X) (43)
9(C(In, Z),Jn) =+(Cp NZ AN Jy),  Z € P:={n,Jn}", (44)

where f:= /1 —4p? and Cp := C(s,Js) for any unit vector s € P, and such that the sectional

curvature Kp in direction P satisfies
Kp=—p~2g(Cp,Jn) +4A%, (45)

where Ap := g(As, Js) for any unit vector s € P.

If M is simply-connected, then also the converse statement is true.

Lemma 5.2 Assume that J, A and n satisfy Equations @) and (A2). Then

g(C(X’Y)an) =0, (46)
R(X,Y)n = fO(X,Y) — dns(AX A AY), (47)
R(X,Y)Jn = —JC(X,Y) + % (CX,Y), Ty — 4T () o(AX A AY).  (48)

Proof: Note first that X (f?) = X(1 —4|n|?) = —8¢(Vxn,n) = —8fg(AX,n). This implies X (f) =
—49(AX,n), which we will use in the following. Let X and Y be vector fields on M and assume
that VX = VY = 0 holds at a point p € M. At p, we have

VxVyn = Vx(fAY)=—4g(AX,n)AY + f(VxA)Y.
Thus

R(X,Y)n = —4(9(AX,n)AY — g(AY,n)AX) + fC(X,Y),
which gives Eq. [@T). In particular, this yields 0 = R(X,Y,n,n) = g(C(X,Y),n), which proves (46
since f # 0 everywhere.

In the following computation, the sign ‘=’ means equality up to a term S(X,Y") for some symmetric
bilinear map S. We compute

VxVy (Jn) = Vx((VyJ)(n) + J(Vyn))
= V(5 (90 AY )0+ pPTAY — gl JAY ) + J(Vy)
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16
(F-12?
(= g, (VX AY)n— gln, AY)(VxcT)n — Foln, AY)TAX +2fg(AX, ) JAY

+p*(VxJ)(AY) + p* J(Vx A)Y — fg(AX, JAY )n — g(n, (Vx J)AY )n
—9(n, J(VxA)Y)n — fg(n, JAY)AX)
+H(VxT)AY) + J(Vx Vyn)

- iﬂ)g G(AX, n) (PP JAY — g(, JAY )

+% ( = 9(n, (VxA)Y)Jn — g(n, AY)(Vx )0 + 2fg(AX, 1) JAY + p*(Vx J)AY
+0 I (VX A)Y = g(n, (Vx ))AY I — g(n, J(Tx A)Y Jn — 2fg(n, JAY)AX )
+J(VXVY77)

16p2
o1y AKX IAY +g(Jn, AY)AX)

+% (= 900, (Vx A)Y)Jn +2fg(AX, 1) JAY + pJ (Vx A)Y
—g9(n, J(VxA)Y)n —2fg(n, JAY)AX)
L I(VxVyn)
— 4g(AX,n)JAY + Ag(AY, J)AX — ——(g(n, (Vx A)Y)Jy + g(n, J(Vx A)Y 1)

f—1
—(f+1)J(VxAY + J(VxVyn).

(AX,n)(p*JAY — g(n, JAY )n)

This implies
R(X,Y)Jn = 49(AX,n)JAY —4g(AY,n)JAX + 49(AY, Jn)AX — 4g(AX, Jn)AY

—%(g(n, C(X,Y))Jn —g(Jn,C(X,Y))n) — (f +1)JC(X,Y) + J(R(X,Y)n).

Using Equations (48] and ([@7)) we obtain (4]). O

Proof of Propli 1l Before we start the proof of the two directions of the assertion, let us first
suppose that, on M, we are given a Hermitian structure J and a nowhere vanishing vector field n
of length p < 1/2. We want to define a vector field ¢ such that the identities £ = —(|¢]/p) - n and
p = [€]/(1+[£]?) hold according to Equation (@). Since this leads to a quadratic equation, we have
to choose one of the solutions. Here we use our assumption M = M" and define f = /1 — 4p2 and
& =2(f —1)7'n, compare Remark B3] which motivates this choice. Assume that the orientation
on M is such that orthonormal bases of the form s, Js1, s2, Js2 are negatively oriented. We define
a one-dimensional subbundle E of XM by

E={p|JX) ¢~ =iX-¢7, o7 =97 }. (49)

We want to show that E is parallel with respect to V defined by @ch = Vxp — AX - ¢ if and
only if J and 7 satisfy (1)) and (#2)). Let X and Y be vector fields satisfying VX = VY =0 at
p € M. Then we have at p € M

J(X) - (Vyp)” =J(X) - (Vyp—AY - )~
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= J(X)- (pr_ —AY - ¢7)
Vy (J(X = (VyD)(X) - ¢~ = J(X)AY) - ¢*
Vy(zX ¢ ) (VYJ)( )0 +AY)I(X)E 97 +29(J X, AY )"
= X Vyg™ = (Vy)(X) ¢~ —iA(Y)EX -~ —29(J X, §AY - ¢~ +29(JX, AY )p*
= X Vyp = (VyJ)(X) ¢~ —iXAY)E ¢~ +2ig(§, X)AY - o~
—2ig(AY, X)¢- ¢~ —29(JX,§AY - ¢~ + 2g(JX AY)E - o™
= X Vyp = (VyJ)(X) ¢~ —iXAY) - o" +29(§, X)JAY) - ¢~
—29(AY, X)J(§) - ¢~ = 29(JX, AY - o~ +29(JX, AY)E - o™
This equals iX - (Vyg)~ if and only if (VyJ)(X) = 2X (JE N AY + & A JAY) holds, which is
equivalent to Equation (@I]). Furthermore,
(Vxp)t = Vxpt —AX .97 = Vx(§-¢7)—AX -~
= (Vx&) ¢~ +& - Vxp~ —AX -~
= (Vx&) -9~ +EAX)- " +£- (Vxp)” —AX -~
= (Vx€— (1 - [€F)AX +29(AE, X)E) -0~ +&- (Vxp) ™
This equals € - (Vx¢)~ if and only if Vx& = (1 — €]7)AX — 2g(AE, X)¢ holds, which is equivalent
to [@2). Consequently, F is parallel with respect to V if and only if J and n satisfy (@I) and ([2).

Assume that V reduces to a connection VZ on E. Then Equations (@) and (#2), and therefore
also (@6), [@7) and [@R) hold. We will show that the curvature R of VZ vanishes if and only if the
Riemannian curvature R of M equals the tensor B defined by

B(X,Y):=p (% (C(X,Y)An) — fC(X,Y)An) —4AX N AY (50)

for all vector fields X and Y on M. By an easy calculation similar to that in the proof of Propo-
sition 211 we get

Rxyp = IRX,Y) ¢—CX,Y) ¢+2(AX NAY) - ¢
This shows that R vanishes if and only if
R(X,Y)-QQ:QC(X,Y)-50—4(AX/\AY)-<p (51)

for all vector fields X and Y and all sections ¢ of E. In the following, we will use that /\Qi M acts
trivially on XFM and that, for any nowhere vanishing section p* of X*M, the maps defined by
([@) are isomorphisms. Let ¢ be a section of E such that ¢ (z) # 0, ¢~ (x) # 0 for all z € M (here
we use that £ does not vanish). Then

QC(X,Y)-(‘D = QC(XaY)'(g'(P__lﬂ_QE'SDJr)
B e V) Ao 202 OX.Y) AE) - ot
O AD) g ALK A s

‘ -

= L (CEY) A e IR Y A e

f
= p 2 (*(CX,Y)An) - fCX,Y)An) - .

Thus (1) and (5I) show that R vanishes if and only if R = B. The latter condition is equivalent
to the system of equations

R(X,Y)n = B(X,Y)n (52)
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R(X,Y)Jn = B(X,Y)Jn (53)
R(s,Js,s,Js) = g(B(s,Js)s,Js) (54)
9(B(n, X)s,Js) = g(B(s, Js)n, X) (59)
g(B(Jn,Z)s,Js) = g(B(s,Js)Jn,Z) (56)

for all X,Y € X(M) and all Z € T'(P). Recall that (4@) holds in our situation, which we will use
in the following computations. Equations (B3] and (B6) are equivalent to the two equations
g(SJ( x (C(n,X)An)— fCn,X) A 77), Js) = g(nJ( x (Cp An) — fCp A n),X),
g(sa(=(C(In, Z) Am) = fC(In, Z) An), Js) = g(Jns(* (Cp An) = fCp A1), Z),

which are equivalent to ([@3) and ([#4]), respectively. Because of
na(* (C(X,Y) An) = FC(X,Y) An) = fp’C(X,Y),
and
J(m)a(* (C(X,Y)An) = fOX,Y) An) = +(C(X,Y)AnAJn) = fg(C(X,Y), n)n

= 7/)29(0()(7 Y)v S)JS + p2g(C(X, Y)v ‘]S)S - fg(C(Xﬂ Y)a JU)U
= 7/)2(9(‘]0()(7 Y)v JS)JS + g(JC(Xv Y)ﬂ S)S) - fg(C(Xﬂ Y)a JU)U
= —p’JOX,Y) — (f+1Dg(C(X,Y), Jn)n

4
= prJC(X,Y)wLfflg(C(va)an)n,

Lemma shows that Equation (B2)) is equivalent to {@7)) and (B3] is equivalent to [@8]). Recall
that (@7)) and (@8] are satisfied in our situation. Finally,

g(sa(*(CpAn)— fCpAn),Js) = g(*(sACpAn),Js) = g(Cp,Jn),

which implies that (54)) is equivalent to ([@3]). Consequently, the curvature R of V vanishes if and
only if the Equations (@3), (@4 and (45) hold.

Now we can prove both directions of the proposition. Suppose that there exists a spinor field 1 on
M satisfying Vx¢ = AX -1 for all X € TM such that M = M”. The latter condition means that
the vector field n defined in (8] satisfies 0 < p = |n| < 1/2. In particular, ¢~ # 0 everywhere and
we can define an almost Hermitian structure J by J(X) -4~ =iX -4 ~. Thus we may apply our
above considerations. If we define E C ¥M and V as above, then Pisa @—paraﬂel section of E. In
particular, V reduces to a connection V and the curvature of VF vanishes thus @I) — (@) hold.

Conversely, if we are given an almost Hermitian structure J and a nowhere vanishing vector field
n of length 0 < p = |n| < 1/2 such that {@I) — (@5) are satisfied. Then we can define a one-
dimensional subbundle E C XM by [@3]) together with a flat covariant derivative Von E.If M is
simply-connected, then E' admits a parallel section, which is a skew Killing spinor. (|

Remark 5.3 Let J be an almost Hermitian structure on a four-dimensional manifold M such
that (/1) and [F3) hold for a skew-symmetric endomorphism field A and a vector field E. Then J
defines a reduction of the SO(4)-bundle SO(M) to U(2). Here we want to give the intrinsic torsion
of this bundle in the special case where A and J commute. The two components of the intrinsic
torsion of this bundle are the Nijenhuis tensor N of J and the differential dQ) of the Kdhler form
Q= g(J, ). A direct calculation using {{1) and (£2) shows that under the assumption AJ = JA
these components are given by N =0 and dQ2 = —2A A (£.Q).
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5.2 The case where An is parallel to Jn

Let us assume again that the Killing map A is non-degenerate everywhere. We want to consider
the case where An is parallel to Jn in more detail. We will see that, in this situation, the existence
of skew Killing spinors is related to doubly warped products and to local DWP-structures. These
notions and their basic properties are explained in the appendix.

Lemma 5.4 Assume that M admits a skew Killing spinor with nowhere vanishing Killing map A
that satisfies An = uJn for some function u. Then A?n = —u?n. In particular, AJ = JA.

Proof. Note first that Lemma Bl [ and Eq. ({0) give
0 = fdAX,Y.n) = flg((VxA)Y,n) —g(VyA)X,n) +g((V,A)X,Y))
= f9(CX,Y),n) + fo((V,A)X,Y) = fg((VyA)X,Y)
for all X,Y € TM. Consequently, fV,A = 0. Because of
(T A An +n A JAn) = [>T An — g(n, JAn)n = —uln|*n +uln|*n = 0,

Eq. @I) gives (V,J)n = 0. Now, by differentiating the equality An = uJn in the direction of n,
we get

VyAn = (VyA)n+ A(Vyn) = n(w)Jn + u(VyJ)n +ud (Vyn) = n(w)Jn + ud (Vyn).

Finally, using the fact that V,n = fAn and fV,A = 0, we get that n(u) = 0 and f2A4%n = —u?f?n.
The latter equation implies A%2n = —u?n since supp(f) = M. O

Let (M 3.9,M) be a minimal Riemannian flow, i.e., an orientable three-dimensional Riemannian
manifold together with a unit Killing vector field 7). Then, locally, (M J)isa Rlemannlan submer-
sion over a two-dimensional base manifold B. Let us fix a Hermitian structure .J on A+ and put
w = g(- J- ) We define a function 7 on M which is constant along the fibres by Vx7j = 7 - J(X)
for X 6 ik Furthermore let K denote the Gaussian curvature of B. Now consider the metrrc
Grs =12 Jn @ 52 gsL on M where g5, g1 are the components of the metric § along R7) and At
respectively. Then (M . grs, 7 '1) is again a minimal Riemannian flow and we obtain new functions
#and K , say Trs and KTS. These functions satisfy

Trs =T8T 27, KTS = s 2K. (57)

If our four-dimensional manifold M is endowed with a DWP-structure, then every three-dimensional
leaf associated with this structure can be understood as a minimal Riemannian flow. In this way,
we obtain functions 7 and K on M.

Theorem 5.5 Assume that M admits a skew Killing spinor such that An||Jn and that p = |n| &
{0,1/2} everywhere. Then (v := —p~tJn,n) is a local DWP-structure on M such that

f-u=71, K=2u\+27% (58)
for f:= /1 —4p%, where A and p are the eigenvalues of the Weingarten map W = —Vv on Rn
and n'- N v, respectively.

Conversely, suppose that M is simply-connected and admits a local DWP-structure (v,n) on M
such that the length p of n satisfies 0 < p < 1/2. Moreover, assume that K and 7 satisfy (28) for
fi=+/1—4p2. Then M admits a skew Killing spinor such that n is associated with ¢ according
to [8) and such that An||Jn.
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Proof: Assume first that M admits a skew Killing spinor such that An||Jn and 0 < p < 1/2
everywhere. We define a vector field v and functions Ag and Ap by

v=—p YJn, AJn=—Apn, AJZ=—-ApZ, Zc {nuv}t.

Then 7 is a Killing vector field, see Remark Equation ([@2) yields

v(p) = fAp. (59)
We want to show that (v,7n) is a DWP-structure. The next Lemma will prove all properties of such
a structure except the conditions for the Weingarten map W = —Vv and its eigenvalues.

Lemma 5.6 Assume that M admits a skew Killing spinor such that An||Jn and |n| ¢ {0,1/2}
everywhere. Then

1. vt is integrable,
2. the vector field n has constant length on the integral manifolds of v+,

8. the unit vector field v is geodesic.

Proof Take X, Y L Jn. Using JA = AJ we obtain

g([X,Y],Jn) = g(VxY,Jn) —g(VyX,Jn) = —g(Y,Vx(Jn)) + g9(X,Vy(Jn))
= —g(Y,(VxJ)n) —g(Y, J(Vxn)) + 9(X, (VyJ)n) + g(X, J(Vyn))
= —A(f-1)""g(Yina (JnANAX +n A JAX)) — fg(Y, JAX)
+4(f = 1) 'g(X,na (JnANAY + A JAY)) + fg(X, JAY)
= 4f -1 (—g(Y,p?JAX — g(n, JAX)n) + g(X, p* JA(Y) — g(n, JAY )))

o

since JAn is a multiple of . This proves the first claim. For X 1 Jn, we have
Xg(n,m) =29(Vxn,n) = 2fg(AX,n) =0
since Anl||Jn. This shows the second assertion. The third one follows from (@Il), (#2) and (G9). O

We compute the eigenvalues of the Weingarten map —Vv, where we use that p = || is constant
on the integral manifolds of v:

Vv = p'Vy(In) = pH(Va)(0) + o I (Van)
= 4(f-D"tptena(InANAnp A JAR) + fptTAn
— *fp_lAE'TI, (60)

—Vzv = p'Vz(Jn) = p  (Vz)(n) +p T (V2n)
= A(f -1 L nu(InANAZ + N TAZ) + fp  JAZ
= pltAp-Z (61)

for Z € v+ Nnt. Thus
A=—fp 'Ap, p=pAp (62)
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are the eigenvalues of —Vv. We fix a local section s in P = {n,v}* and put

s1:=-n/p, S2:=Js1=v, Ss3:=8, 84:=Js. (63)

Let s',...,s* denote the dual local basis of T*M. By ({@2), (&0)
9(Vs;, s;) of the Levi Civita connection satisfy

0120 = —fp tAg s, 015 = fp~tAp s, 014
Oo3 = —p_lAp 83, 0oy = —p_lAp st

This gives

and (€1)), the coefficients 0;; :=

— flA 3
fp PSS, (64)

Cp = —2p71(A§3 + fAPAE)SQ — S3(Ap) 83 — S4(AP) - 84.

Indeed, @) shows that g(Cp,s1) = 0. Furthermore,

9(Cp,s2) = g((VszA)(s1) — (Vs, A)(83), 52)

9(Cp, s3)

s3(9(Asa, s2)) — g(A(Vsy84), 52) — g(Asa, Vi, $2)

—s4(g(Assz, 52)) + g(A(Vs,s3), s2) + g(Asz, Vi, s2)

9(Vss84, Asa) — g(Asa, Vs, 82) — g(Vs, 83, As2) + g(Ass, Vs, 82)
Ap (014(s3) — 013(54)) + Ap(B23(s3) + O24(s4)),

9(Vs, A)(54) — (Vs, A)(83),83) = g((Vsy, A)(54),83)
(Vs (Asy) — A(V;84), 83)

—9(Vss(Aps3), s3) + 9(Vs,54, Apsa)

—s3(Ap).

Analogously, g(Cp, s4) = —s4(Ap). Equations (64]) imply

9(C(JIn, Z),Jn) = p*g(C(s2, Z), 52) = p° (52(9(AZ, 52)) — g(A(Vs,Z),52) — g(AZ,Vs,52)) = 0

for Z € {s3,s4} and, similarly,

9(C(n, X), Jn) =

for X € {sa,s3,84}. Furthermore, g(C(7, s1), Jn) = 0 since C is antisymmetric. Hence, under the
assumption that (64 holds, Eqgs. (43), (#4) and 3] are equivalent to the system of equations

We also have

p2 (Sl(AEg(Xa 51)) - AEQ(V51X5 51) - g(AXa v5152) - X(AE))
P2 (Sl(AE)g(Xﬂ 51) + AEQ(Xv VSlsl) g(Xﬂ A(VSl‘S?)) - X(AE))

+
o2 (51(Ap)g(X, 51) — LAE g(x, 50) + LAE
—*X(Ap)

9(X, 52) — X(Ap))

s2(Ap) =2fp 'Ab +2f%p ' ApAp
Sj(AP) = Sj(AE) = 05 .7 = 3547
Kp=—2fp ?ApAp —2(p~? — 2) A}.

Sl(AE) == Sl(Ap) =0.

Indeed, @8] implies g(C(sl, $2), 77) = 0, thus we obtain

0= g((vslA)SQ

— (Vs A)s1,n) = g((Vs, A)sa,n) = g(Vs, (Asz),n) = psi(Ag),



which gives s1(Ag) = 0. Using (65)) and taking into account that [s1, s2] is a multiple of s1, we get
0=s1(s2(Ag)) = 281 (fpflAfg + f2p71AEAp) = 2fp71(214p + fAE)Sl(Ap).

Assume that s1(Ap)(x) # 0 at x € M. Then s1(Ap) # 0 in an open neighbourhood U of x. But
then 2Ap = —fAg on U, which would imply s1(Ap) =0, a contradiction.

Hence we proved that besides p also Ap and Ap are constant on the integral manifolds of vt
Thus also p and A are constant along these leaves. Consequently, (v,7) is a local DWP-structure
on M. By (62)), the associated function 7 satisfies

T=p""g(Vsn,Js) = p~'g(fAs, Js) = fu,

where s € {n, v} is of length one. This proves the first equation in (G8).

It remains to prove that also the second equation in (B8] is true. Let N be an integral manifold
of v1. Then, locally, N is a Riemannian submersion over a base manifold B. The following lemma
will relate the sectional curvature Kp in direction of P = span{ss, s4} to the Gaussian curvature
K of B, which will almost finish the proof of the forward direction of Theorem

Lemma 5.7 Let (v,n) be a local DWP-structure such that the coefficients of the Levi-Civita con-
nection satisfy (64) with respect to an orthonormal frame s1 = —n/p, s2 = v, s3,54. Then the
Gaussian curvature K of B equals

K=Kp+ (1+3f*)p 24%.
Proof: The second fundamental form o of N C M satisfies
a(ss, s3) = a(sa, s4) = p " Apsa, a(ss, s4) =0,
which follows from (64]). Hence the Gauss equation gives

Kp = R(s3,54,54,53) = RY(s3,54,54,53) — g(a(53,53),a(54,54))
= RN(s3,54,54,83) — p AL, (68)

Let A denote the fundamental tensor used in O’Neill’s formulas. We have
As;55 =9(Vs,;55,51)51 =0, j=3,4

and
Agys1 = —As,835 = g(Vs,84,51)81 = —014(s3)s1 = fp ' Apsi.

The O’Neill formula for RN now gives
RN(S?H 84, 84, 53) =K — 3|"45384|2 =K — 3f2p_2A%‘a

which combined with (G8)) implies the assertion. O

Lemma [5.7] together with (62) and (G7) finally shows that B has constant curvature

K =-2fp2ApAp + 2f?p72A% = 2u\ + 272

Now let M be simply-connected and let (v,7) be a local DWP-structure on M such that 0 <
[n] < 1/2 and such that ([B8) holds. Note that f = y/1 —4p? is smooth since p = |n| < 1/2. By
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assumption, p is constant on the integral leaves of v. We write 0, for the derivative in direction
v. By ([[4), we have p’ = —\p, which implies

=40/ f = X—f+1/]). (69)
We define functions

Ap=—=Xpf™',  Ap:=pp, (70)

which are all constant along the integral leaves of v. We consider a local orthonormal frame
s1:=-n/p, S2=v, S3, 4

such that s3,s4 is a positively oriented basis of {n,v}*. The assumption that (v,7n) is a local
DWP-structure with eigenvalues A and u together with the assumption 7 = fu implies that the
local coefficients of the Levi-Civita connection satisfy Equations (64]). Indeed,

Vs,82 =0, Vi 83 =—As1, vstQ = —us;, j=3,4
implies
010 = —g(Vsa,s1) = —g(Vs, 82,51)s" = As',
3

O3 = g(Vsa,s3) = g(Vsys0,53)s° = —pus’,
and (70) gives the formulas for 615 and fo3. Similarly, we get f24. On span{ss,ss}, we fix the
Hermitian structure J that maps s3 to s4. Recall that 7 is defined by Vxn = 7JX for all X €
span{ss, s4}. Since 7 is a Killing vector field and p is constant along the integrals leaves, we obtain

s = g(Ves1,88)s" + ...+ 9(Vs,s1,53)s"
= —p " (g(Vs,n,53)s" + g(Vs,m, 53)° + g(Vs,n, 53)s*)
= —p (= 9(s1, Veam)s' = gls2, Vegn)s® + 9(Vi,m, 53)s")
= —g(s1,Vays1)s' — g(s2, Viys1)s® + 7s*
= fus' = fp tAps’,

where we used the already proven equation 612(s3) = 0. Analogously, we obtain 614. Now we define
skew-symmetric maps A and J by

A(s1) = Apsa, A(s2) = —Agps1, A(ss) = Apsy, A(ss) = —Apss,
J(s1) =52, J(s2) = =51, J(s3) =4, J(s4) = —s3.

Note that J extends the above defined map J on span{ss, s4}. A few lines above, we proved that
([©4) holds in our situation. Using this equation, we obtain

Van = —pVes1 = fAgss = fA(s1),
Ve,n = —p's1—pVs,81 = Mps1 = —fAgs1 = [fA(s2),
Vssn = —pVss1 = fApsqa = fA(s3),
Van = —pVsst = —fApss = fA(s4).

Hence, 7 satisfies ([@2]). By definition of J and A, Eq. [@Il) is equivalent to the system of equations
Vyd =ViJ =0,
(VsJ)(n) = (f + 1) Aps, (Vs J)(Jn) = =(f +1)ApJ(s),
(VsI)(s) =4(f —1)7"Apn,  (VsJ)(Js) = —4(f — 1) ApJ(n),
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for all s € {n, Jn}*, |s| = 1, which indeed can be verified using (64). Finally, we prove that (@3],
#4) and (@H) hold. We already have seen that these equations are equivalent to (€0), (@6) and
(7). Now we use Lemma .71 Together with our assumption (GB8) and Equation (70), it implies

Kp=2p\+27° — p2(1 4+ 3f%)Ab = —2fp 2 ApAp — p~>(1 + f?) A},

which is equivalent to ([67). Also (66]) holds since p, A and p are constant on the leaves by as-
sumption. It remains to prove ([63). Locally, (M,g) is isometric to a doubly warped product
(I x M,p(t)2g; @ o(t)?g;+). In particular, o/ = —po by (). Furthermore, 7 = 7po~2 and
K =Ko 2 by 7)) for some constants 7 and K. Thus, by assumption ),

wf = po=27.

Taking the absolute value and then the logarithm on both sides and differentiating, we obtain
‘LL/ f/ pl /

A A A S
v f p o

and therefore, by (69),

o= (1= F7AN— A+ 202 = — 72 + 202
holds (globally) on M. By assumption,

K=Ko? = (2u\ 4 27%)0% = 2u(\ + pf?)o.

Differentiating, using ¢’ = —uo and dividing by 2uo? yields

0 = %(A +uf?) N+ P 2uf = 2N — 207 2
= (A T2 A wfP) N F (ST 4 20%) 2 4 2(1 = ) A — 2 — 27 7,

thus X = A2 f~2 — 2f2(u? — A\u), which gives (G3) by Equations (69) and (70). Consequently, we
proved that Equations (#I]) — (@3] hold. Now Proposition [5.1] shows the existence of a skew Killing
spinor. 0

Corollary 5.8 Let (M, g) admit a skew Killing spinor such that An||Jn and |n| ¢ {0,1/2} every-
where. Then M is locally isometric to a doubly warped product (I x M,dt* & p(t)?g; & U(t)2gﬁL)

for which the data K and # are constant and p and o satisfy the differential equations

2

o) = -7 71

oy k- 2 sz, (72)
p o?

Conversely, if M is isometric to a doubly warped product (I x M, dt*> & p(t)2g; & O’(t)QQﬁL) for
which the data K and # are constant and p and o satisfy the differential equations (71) and (73)
and if M is simply-connected, then (M, g) admits a skew Killing spinor such that An||Jn.

Proof: The conflition wef=r7is eq2uivalent to 7%’ - f = L7, thus to (D), and K = 2u\ + 272 is
equivalent to & = 252 +2 (&7)", thus to (72). O
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Note 5.9 Locally, Equations (71]) and (72) can be solved explicitly to get solutions o and p.

Note 5.10 Let us study the restriction of a skew Killing spinor v to N. The restriction (SM)|n
can be understood using an isomorphism

¢: (EM)|y — IN @ EN = ¢((ZTM)|n) ® o((Z7M)|n)
which is compatible with the Clifford multiplication in the following sense. If ¢(p) = (u,v), then

¢(V : 90) = (_U’U)a ¢(V X 90) = (_X N U, Xy U)’

where v = sg is a normal vector of N, X is a tangent vector of N and ‘-5’ denotes the Clifford
multiplication on XN. In particular, s18384 -~ 4 = u for all w € XN. By the spinorial O’Neill
formulas, we obtain

A
Vi) =~ g 605), VE*) = - 2 o0) (73)

for all Z € TN Nn*. Up to rescaling, these are Sasakian quasi-Killing spinors on N, which we
will explain in the following.

Up to rescaling of the metric, each integral manifold N in our construction has a Sasakian structure,
see [8] for a definition of such structures. Indeed, n restricted to N is a Killing vector field of
constant length and Vn restricted to n* equals In|TJ|,., where also T is constant. The Nijenhuis
tensor of J|,» vanishes since n'- is two-dimensional. Consequently, € :=n/(r|n|) is the Reeb vector
field of a Sasakian structure on (N, g := 12g). The scalar curvature of (N, §) equals S = 4\/(f7)+2.

A spinor field ¢ on a Sasakian manifold (M,é, g) with Reeb vector ﬁgldé is called a Sasakian
quasi-Killing spinor of type (a,b) if it satisfies Vxi) = aX -9 for X € &+ and Ve = (a+b)E -
for a,b € R. If (M,£,§) admits a Sasakian quasi-Killing spinors of type (a,b), then the scalar
curvature S is constant and given by S = 8m(2m + 1)a® + 16mab, see [11], Lemma 6.4. In the
following sense, in three dimensions, the converse is true. Let (M,g,&) be a simply-connected
three-dimensional Sasakian spin manifold with constant scalar curvature S. Then there exist two
linear independent Sasakian quasi-Killing spinors of type (—1/2,3/4—S/8), see [11], Theorem 8.4.
We identify the spinor bundle YN of (N,g) with ¥*N by XN — YN, @ — @ such that a section ¢
in XN satisfies B ~
(X v@) =X vp, (VX9) =Vig,

where X = X/|7| and VN denotes the Levi-Civita connection on ~N. Now we consider the
restriction of the skew Killing spinor 1 = ¢ + 9~ to N. We will write Y* instead of ¢p(1p*).
Then, by (73),

oN, 7+ _ N 7+\~ _ _i. +\~ A . +\~
vnw - (vn ) _( 2f77 Nw) - 2f|7_|77 N(’L/} )a
oSN T+ N it\~ _ _ﬂ ) i~__ﬂf ) :t~__Sgn(T) ] 1y~
Vzw - (VZ'L/J) _( 2ZN1/]) - 2|T|Z N(’L/J) - ) ZN(w)

for Z € n-. Hence, ¥* is a Sasakian quasi-Killing spinor with a = —sgn(7)/2 and

237' 4 sgn2(7) = sgn(T)( — 2%_ + %) = sgn(T)(% - 2)

Thus we are up to a change of orientation exactly in the situation described above.

b=
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In dimension three Sasakian quasi-Killing spinors of type can also be understood as transversal
Killing spinors, see [12] for a definition. If we return to our original metric g on N, this means
that the restrictions of Y& to N are transversal Killing spinors. Indeed,

_ 1 1 A
Vgt = VYT glalsssa vt = VYOS 4 gl vt = (=55 - g7)mw vt
= T

Vot = vfzwififle(Z) Nt = J‘—sz Nwi+52 JUT =0

holds for the transversal covariant derivative V on N.

Appendix: Doubly warped products

Definition 5.11 A doubly warped product is a Riemannian manifold (M, g) of the form
(I x M, dt* @ p(t)*gs & o (t)*G41),

where (M,g) is a Riemannian manifold with unit Killing vector field 1) and gg, gs1 are the com-
ponents of the metric § along R and 7, respectively, I C R is an open interval and p,o:1 — R
are smooth positive functions on I.

Definition 5.12 Let (M,g) be a Riemannian manifold. A local DWP-structure (v,1) on (M, g)
consists of

1. a unit geodesic vector field v whose orthogonal complement distribution is integrable,

2. a nontrivial Killing vector field j on (M, g) that is pointwise orthogonal to v and whose length
is constant along any integral leaf of v+

€1

with the property that the Weingarten map W = —Vuv of each integral leaf of v— has two

eigenspaces, R and 7~ N v+ and the corresponding eigenvalues A and p are constant along the
leaf.

Proposition 5.13 If (M, g) is isometric to a doubly warped product, then (M, g) admits a local
DWP-structure. Conversely, if (M, g) has a local DWP-structure, then it is locally isometric to a
doubly-warped product.

Proof: First assume that (M, g) is isometric to a doubly warped product, thus (M, g) = (I x M ,dt?®
p(t)?Gi ® o(t)?Gse ). Then we have the following expressions for the Levi-Civita connection V of

(M, g), see e.g. [T4, Sec. 3] (mind that our 7 here corresponds to ¢ in [14] and that our p and o
correspond to po and p, respectively). For all sections X, Y of m3Q, where Q := )+ — M,

/ o0X o

Vo0 =0,  Vai=2q  vax=% 12X,
p ot o
/
Vil =S Vai= g0 VaX = VX 4 5hY, (74)
’ 2

o . . . 1 .
Vxd ==X, Vxij= %hX, VxY = VxY = —g(hX,Y) - o'g(X,Y),
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where h := V]ff 7 € I'(End(Q)). Tt is straightforward to see that v := 9; is a geodesic vector field
with v+ = T M, the vector field /) (seen as a section of 73T M C TM) is Killing on (M, g) with

constant length along each {t} x M and that W := -V, = —%IdRﬁ @ —%,IdQ.

Conversely, let (v,7) be a local DWP-structure on (M, g). Let p be a point in M. Then we find
a local leaf M of vt such that the integral curves of v starting from M are defined at least on
an interval (—tg,tp). We denote by § the induced metric on M. Up to rescaling / by a nonzero
constant, we may assume that §(7,7) = 1 along M. Consider the map F: (—to,to) X M — M
given by F(t,z) := F;(z), where (F}); is the flow of the vector field v. The map F is clearly a
local diffeomorphism. Next we identify the pull-back metric F*g on (—tg,t0) X M. For any given
(t,z) € (—to,to) x M and X € T, M, we have

(F*g)(t,z)(at’X) = gF(t,z)(Va szt(X)) = gF(t,m)(szt(V)’det(X)) = (Ft*g)w(VaX)'

Since v is geodesic of constant length, (L,9)(»,Y) = g(V,1,Y) + g(Vyv,v) = 0 holds for all
Y € T M. Consequently, the derivative

0

SE )20, X) = S (Fia)al0: X)) = (£00) ey (F)o (B)2X) = (L) (v (F).X)

vanishes, thus (Ffg),(v, X) = (Fi9)e(v,X) = gu(v,X) = 0 for all (t,z) € (—to,to) x M. This
proves the splitting F*g = dt* @ g;, where g; := (F{"g)|pyrsrir- As @ next step, we compute g,

more precisely along each of the distributions R7) and @ of T'M. We first notice that 7} is invariant
under the flow of v. Namely, we write W = Aldg, ® pldg for functions A, u: R — R, which are
constant along each integral leaf of v+ by assumption. Since 7 is Killing, we have g(V,7%,v) = 0.
Moreover, because of 77 L v,

9(Vuiy ) = —g(Van,v) = g(Vav,0) = —g(Win, 7)) = —Ag(#, 1)

Note that this proves in particular that, if 7 vanishes at a point, then it must vanish on the
corresponding integral leaf of v and therefore identically on the image of F since g(#, /) satisfies
the ODE v(g(7,7)) = —2Ag(7, 7). Furthermore, for every X € @,

g(vuﬁaX) = _g(vXﬁa V) = g(VXl/,ﬁ) = _Mg(ﬁaX) =0.

As a first consequence, V, /) = — 7). This implies £,7) = [v,7] = V,7— Vv = 0, so that (F;).) =1
for every t € R. For any X,Y € v, we have

(L,g)(X,)Y) = g(Vxv,Y)+g(Vyr, X)=-29WX,Y).
Thus, in particular,
%(Fs*g)(ﬁay)‘szt = (Log)rt,a)(F)eN, (F1)«Y) = (Lug) Pty (0, (Fr)4Y)
—29(Wi), (F1).Y) = =2(Ao F) - g(7), (F})+Y) (75)

—2(A o F)(Fg)(1,Y).

Consequently, for fixed Y € T, M N v, the function ¢(t) := (F;)*g(7,Y) satisfies the differential
equation

' (t) = —2A\(F(t, 2)) - ().
For Y € @, we have ¢(0) = 0, thus ¢ = 0. This means that the flow of v preserves the distribu-
tion i*. For Y = 1), we have ¢(0) = 1, thus

(F)*9(i7) = p(t) = exp(—2 / No Fyds) =: p(t)
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Finally, for X,Y € @, a computation analogous to ({70 shows that

8 (Fg)x.y)

= —Q(MO F)(Ft*g)(X’ Y)a

s=t
which yields
t
(Fyg)(X,Y) = exp(—2/ po Fuds) - 9(X,Y) = o(t)?§(X,Y).
0

It remains to notice that 7 must be a Killing vector field along (M ,§) since it is already Killing
on (M,g) and is tangent to M. On the whole, we obtain the doubly warped product metric as
required. O
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