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STABILITY ANALYSIS OF TIME-DELAY SYSTEMS

M. DAMBRINE and J.P. RICHARD

Ecole Centrale de Lille, LAIL - URA CNRS D 1440
BP 48, 59651 Villeneuve d’ Ascq Cedex - FRANCE.

ABSTRACT: This paper presents a new way of studying stability of nonlinear delayed
systems, by using vector norms and comparison principle. This allows to apply, with

some modifications, the stability criteria available for linear systems. Examples illustrate
the method.

1. INTRODUCTION

The modelling of numerous processes involves time-delay differential equations, taking
into account the phenomenon of delay or post-effect. In free motion, such equations are
described by :

(B) QE_EQ =X (8 = £(t, x(t), X(t=T1), .oy X(+TH)),

where t is the time, x a vector of IR ", and 0 < T) < ... < Ty are constant parameters.
Obviously, k = 0 is the “ordinary” case, that will not be considered here. When k = 1, the
system (E) is said to be with single delay and when the 7; are all integer multiples of a
same real T (called basic delay), the system (E) is said to be with commensurate delays.
These equations belong to the more general class of functional-differential equations.

Time-delay equations have been discussed in literature since the early 1700's, beginning
with Bernoulli and Euler. However, their works dealt with the study of special properties
for particular equations. In his research on predator-prey models and viscoelasticity,
Volterra ([29] and [30]) was one of the first to develop a more detailed theory for
functional-differential equations. In recent decades, the theory of time-delay systems has
experienced a rapid development and since the 50’s a few books have been available on the
subject (see for example Mishkis [18], Bellman and Cooke [2], El’sgol’ts [5], Halanay
[7], Hale [8]).



The fields of applications are various : in theory of numbers, the equation

x (1) == x(t-1) [1 + x(t)]

appears in studies of the distribution of primes (cf Wright [32]). In biology, Bailey and
Reeve [1] have encountered retarded differential-difference equations in their study of the
distribution of labelled albumin in the human blood system. Such systems are also
common in the theory of epidemics. Fields of electronics, economics, nuclear and
automatic control are also concerned. For this latter, Minorsky was one of the first
scientists, in his study of ship stabilization and automatic steering [17], to show the
importance of the delay in feedback mechanisms.

Vector x of the equation (E) is defined by several authors as the instantaneous state of the
system, the state of the system at instant t is then the trajectory segment x¢ (0) = x(t + 6)
for - T < 6 <0 (Shimanov’s notation [25]), and one defines on this state space the norm :

lIxyll= sup [x(t+6)| wherel.!isa given norm of RR™,
6 e [-7,0]

Initial values are determined by the knowledge of the initial instant ty and of n functions
@i(t), defined and continuous on [- 7« , 0], what we note with @(0) = [91(0), ..., 0,(0)]T
by xt,(0)=9(®),V6e [-u, 0}

It is assumed in the following that the function f has the sufficient properties for the
existence of a unique solution defined and continuous on [ty , +eo[ for any initial value
function ¢(6) (for instance, f satisfies a Lipschitz condition in its second argument [5]).
We do the supplementary hypothesis that f(t, O, ..., ) = 0, so that x = 0 is a solution of
(E).

Simulation of these systems is tricky. A first way is the step-by-step method which
consists in getting by a classical method the numerical values of the solution of

x (1) = f(t, (), X(t-T1), ..., X(t-Tx))
where X(t) is some polynomial interpolation of the discrete approximation of x on the
interval already covered. But because of the integration approximation results of the
interpolation, this method is not very precise. Another way of operating, proposed by Virk
[28], consists in adapting the Runge-Kutta method for delay-differential systems.

As for ordinary differential equations, the stability analysis is a crucial step in the control
synthesis of time-delay systems. Lyapunov’s stability notion can be extended to delayed
systems :

- The solution x=0 is called stable if for any € > 0 and any ty IR, there is a 8 = 3(g, tp) >0
such that all continuous solutions of (E) for which Il x¢; <8 holds, satisfy : |x(t) | <€
forevery t 2 tp . Stability will be said global (or in the whole ) if and only if the maximal
8(e, tg) of the preceding definition tends to + « when & — + oo,



- The solution x = 0 is attractive if there is a ) > 0 such that every solution x(t) of (E) for
which Il x¢ I €1 holds, satisfies t_])m+1 x(t) = 0. Attractivity is said global when the

preceding condition holds for ) = + ee.

- The solution x = 0 is asymptotically stable if it is both stable and attractive, and it is
globally asymprotically stable if it is both stable and globally attractive.

- The solution x = 0 of a system with commensurate delays is asymptotically stable
independent of delay if it is asymptotically stable for any value of the basic delay 7.
Lyapunov’s second method is still valid, but with some modifications : for theoretic
reasons, N. N. Krasovskii [14] showed that the use of functionals is a convenient choice
because the state space is of infinite dimension. Nevertheless, choosing a classical
Lyapunov function is not useless but needs to restrict the candidates to belong to a class of
particular solutions (cf Razumikhin [23] and Lakshmikantham [15]).

Concerning the first Lyapunov’s method, there exists an analogue to the Poincaré-
Lyapunov’s theorem asserting that asymptotic stability of the linearized system proves the
asymptotic stability of the initial system [14], and this justifies the research of stability
criteria for delayed systems with constant coefficients.

The next part (section 2) is a brief survey of the methods available for such linear delayed
systems.

Section 3 presents an original way of comparing nonlinear behaviours to linear ones,
which leads to global stability results. It is based on the notions of vector norms (VN) and
overvaluing systems. This allows to apply criteria of linear systems to nonlinear ones, as
an example will illustrate.

2. A BRIEF SURVEY OF CRITERIA FOR LINEAR SYSTEMS

Consider the class of linear systems
k
L) Xx@®=Ax(D+ 2, B;x(t-1;)
i=1

where A and B; are real n X n matrices, and T; non-negative numbers. Such a linear system
is said to be asymptotically stable if its unique equilibrium x = 0 is asymptotically stable.
We know that if the roots (and there are, generally, an infinity) of the characteristic

equation
k

(s, Th oo T) =det[s[-A- ), Bjetis ] =0,

i=1
(obtained by searching the particular solutions of the exponential type : eM ¢, where cis a
constant vector) are with negative real parts then the system is asymptotically stable. This
result is exactly the same that for ordinary linear systems but in the delayed case there is no
criterion as simple as the Routh-Hurwitz test.
The criteria available for linear, autonomous systems can be classified in 3 groups :
- algebraic methods (state-space representation): on the basis of matrix measures, Mori
proposed a basic criterion [19] which opened a serial of more easy-to-check corollaries
[21, 22]. The Lyapunov’s equation [4] and the concept of M-matrices [16, 20, 27] are also
to be concerned as algebraic methods.



- roots locus type methods (frequency domain) consists in determination of the delay
values that change the stability of the systems. Among them, the method of Walton and
Marshall [31] is a powerful approach of linear systems with single or commensurate
delays (see also [10]). Several authors proposed to replace es® in the characteristic equation
by rational fractions of a so-called pseudo-delay [9, 26].

- polynomial methods (frequency domain) globally consist in associating a bivariate (or
multivariate) polynomial to the characteristic equation [11, 12, 13].

3. APPLICATIONS TO NONLINEAR DELAY-DIFFERENTIAL SYSTEMS

In order to analyse stability of a nonlinear system it is sometimes convenient to define a
comparison system, this is, a system whose stability properties are characteristic of the
original motion, and.are simpler to investigate. Vector norms approach represents a
practical way of defining comparison systems. Using this concept, Borne and Gentina [3]
(see also [6] and [24]) have established stability criteria for nonlinear time-varying
systems.

We propose now to extend the use of vector norm to nonlinear delay-differential systems,
and more particularly for the construction of comparison systems.

3.1. Overvaluing systems and vector norms
3.1.1 Concept of regular vector norm
Consider the following partition of IR ® :

Ro=E, ®E; ® .. D Ey,

where @ denotes the direct vector subspaces sum.
Let x be a vector of IR? with a projection in the subspace E; denoted by x; :

X;=P;x, where P; is the projection operator from IR ® into E;.
Let p; be a (scalar) norm defined on the subspace E; and p, which components are :
pi(x) = pi(x;).

Then p = (p;) is a regular vector norm (VN) of dimension k :
p: R0 — IRE

3.1.2  Overvaluing systems

We consider now the class of nonlinear time-varying systems described by the following
vector delay-differential equation :

(NL) x (1) = A(t, x(t), x(t-1)) x() + B(t, x(1), x(t-7)) X(t-7),
where x € IR is the instantaneous state vector, T > Qs the delay, A(.) and B(.) represent

N xN matrices ;
A (or B): TxRR® xIR?» - IR®X0  where %o = [to , +oof, to € IR.



‘We assume that the system (NL) possess the adequate smoothness conditions ensuring the
existence of continuous solutions x(t, to, ¢) for every tp € IR and for every initial function
@(t) that is defined and continuous on [tp- T, tg].

The following definitions extend previous overvaluing systems [24] to the nonlinear

delay-differential systems.
D+p;(x;) represents the right-hand Dini derivative of pj(x;), taken along the motion of

(NL), and we shall abridge M(t, x(t), x(t-t)) into M(.).

Definition : The matrices M, N: % x IR? x [R? —» IRkxk define a delay-overvaluing
system of (NL) with respect to the VN p if and only if the following inequality is satisfied
along every motion of (NL) and for each corresponding component :
DHp(x(t)) < M(t, x(1), x(t - T) p(x(t)) + N(t, x(t), x(t - 7)) p(x(t - T)),
Vie%,Voe Cto-T,t], R"),
where M(.) = {;;(.)} is such that its off-diagonal elements are non-negative, and N(.) =
{v;(.)} is non-negative.

3.1.3 Application to usual Hdolder's norms

For usual norms, it is easy to make explicit the natural system of delay- overvalumg
matrices of a system (NL),

Let a partition of IR ® define a block partition of matrix A. I; and I represent the sets of
indices of rows and columns, respectively, of block Aj;.

If pi(x;) is the Euclidean norm of x;, then denoting by a;j(.) and by(.) (for i 1, je {1,.

n}) the elements of matnces A() and B(.), we obtain :

Hi() = max [ass+— 2 rage+agll, Vie {1, ..k)
€

2
te I;
uij(.)— L ( max [Z lagel] + max Z lal]) , Vi#je {l,.,Kk}
seli peoy sey
i

vij(.)- (max[Zlb8¢I]+max[Zlbgsl]),anJe[1 k}
seli 4&T, tely (T
forallxmlR"andtm'lb
If pi(x;) is the “max" norm {maximum of the modulus of each component of x;), then ;

Mi()= max fag+ 3 lagl) V¥ ie (L..k)

sel; teli-(s)
)= max [ Y lagll, Vi#je (1,..k)
s€ ]i le I_]

vi(.) = max [ E Ibgl)l, Vi,je {1, ..k}
§ € li te Ij
The dual norm of the max normn (i.e the modulus norm) leads to equations analogous to
the precedent ones but inverting £ € [jands € I;.



3.2. Application to stability analysis
3.2.1. Vector norms and comparison principle

The following lemma is a generalization of [6] to delay systems.
Comparison Lemma : Let there exist a VN p and two matrices M(.) and N(.)
connected with (NL) such that the off-diagonal elements of M(.) and all the elements of
N(.) are all non-negative and assume that the following inequality is satisfied along a
solution of (NL) :

D+p(x(1)) < M(.) p(x(1)) + N(.) p(x(t - 7)), Vte T,V @€ C(lto- T, o], R ™),
and suppose that system (C) :
© z () =M() z(t) + NC) 2(t-7)
has time-continuous selutions.
Then (C) is a comparison system of (NL) in the sense that :

z(t) 2p(x(V) , Vte To

holds as soon as z(s) = p(®(s)) , for all s in the initial interval [t - T ; tol-

Proof : € denotes an error vector defined as follows : &(t) = z(t) - p(x(t)), Vte T
where x(t) = x(t, to, ¢) as usnal.
By assumption, for all s in [to-T ; to], we have &(s) = 0: Definitions of z and p involve :
D+e(t) 2 M(.) e(t) + N(.) &(t-7).
x and z are continuous, therefore € is a continuous vector, so let us assume that t; = tg is
the first moment when a component of € (denoted by &;)- becomes zero. Then, we can
write:
Kk Kk
D+ai(t)2j E lLlij(-) gj(ty) +j Z..}’ij(-) gi(t1-1),
j#i
each term of the right member of this relation is non-negative, thus :
Dtgi(t) > 0.

So ¢g; is a non-decreasing function at time t;.
In conclusion, &(t) will remain non-negative V t 2 ty, hence z(t) 2 p(x(t)) for all t in Z.

3.2.2 Practical Criteria of stability

Theorem 1 : The (asymptotic) stability of the solution x = 0 of a comparison system
deduced from (NL} involves the (asymptotic) stability of the null solution of the initial
system (NL).

Proof : This is obvious from the comparison lemma.

In particular, if (M, N) is a pair of constant matrices then results of Tokumaru et al [27]
allows us to state the following theorem :



Theorem 2 : (i) If for the system (NL), it is possible to define for all (t, x(t), x(t - T)) in
7o x D x D(where D is a region of R " containing a neighbourhood of the origin) a
constant delay-overvaluing system (M, N) related to a VN p with the additional property
that M + N is the opposite of a M-matrix then the solution x = 0 of (NL) is asymptotically
stable.
(ii) If (i) is valid for D=1IR ", then the system (NL) is globally asymptotically stable.
Remark : This theorem is still valid for independent time-varying delays if we use the
notations :

(1) = [Ta(t), T2(1), ..., Ta®IT,

x(t-2()) = [x1(t-T11(1), X2(t=T2(D)s «..r Xn(t-Ta(D]T,
and if we assume that all delays are sectionally smooth and bounded, i.e. :

0<t) <19, Vie .

Theorem 3 : (i) If for the system (NL), it is possible to define for all (t, x(t), x(t - T)) in
To»x D x D (where D is a region of R " containing a neighbourhood of the origin) a
constant delay-overvaluing system (M, N) related to a VN p such that the comparison
system (C) is asymptotically stable (independent of delay or not) then the solution x = 0 of
system (NL) is asymptotically stable.

(ii) If ©=1R ", then the system (NL) is globally asymptotically stable.

3.3. Examples
3.3.1 Example 1

Consider the following system :

. -4 sign (x2) 0
(NL1) X(t)=[ sign (xq) -4 ]x(t)— [ 0 asin (1)

] x(t-2), fort=0,
1 ifa >0
with sign (@) =9 0 if o 0
-1 ifa <0
The use of the regular vector norm pi(x) = [ [x; 1, Ix2 17 gives the following expression
of the natural delay-overvaluing systems : )

N -4 | sign (x9) | 0 0
€y 0= | sign (x) | -4 }Z“)"L[o lal Isin(t)l]z(t'z)'

We note here that for vector norms of form p(x) = [ | X1 | . | Xk | 1T, the expression of
the natural delay-overvaluing system is easily obtained by taking the absolute values of all
off-diagonal entries of the first matrix, and the absolute values of all entries of the second
matrix.



By a new overvaluation of system (C1), we obtain the linear delay-overvalaing system of
(NL1) with respect to py :

. -4 1 0 0
y)= L -4 y(t)+[0 lal]y(t—Z).

Theorem 2 shows then that system (NL1) is asymptotically stable for lal <3,75.

3.3.2 Example 2

We consider the following system (NL 2):

-4 sin X3 0,2 0,2 0,3 sin x3

X (1) =[ -0,1 -3 0,6sin x; | x(1) +\\ sinx(t-1) 0,1 0,5 ] x(t-1).
sint 0,5sinxp(t-1) -3 0,1 O,sint 1

The use of the regular VN p(x) = [ max ( [ X1 [, [xg |), |X3 | T

induces the linear comparison system :

o [-2906 L1 1
© 2= 3 3 )70+ [ g5 1 =,
We easily verify that the matrix :

18 16]
1,7 -2

is the opposite of a M-matrix, so asymptotic stability of (NL2) is proved by theorem 2.
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