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STABILITY AND STABILITY DOMAINS ANALYSIS FOR
NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS

M. DAMBRINE and J.P. RICHARD

Ecole Centrale de Lille, LAIL - URA CNRS D 1440
BP 48, 59651 Villeneuve d’Ascq Cedex - FRANCE.

ABSTRACT: In this paper, the problem of stability analysis of nonlinear time-delay
systems is considered by using comparison-like methods. The main tool is the concept of
vector norms which gives a systematic way of defining comparison systems. Examples
illustrate the study.

AMS (MOS) subject classification. 34K20, 34K25, 34A40

1. INTRODUCTION

Comparison principle for functional differential equations [8], [12] coupled together
with the vector Lyapunov functions approach [7], [10] is an efficient way of analysing
stability of complex time-delay systems (see for instance [2], [13], or [14]).

In reference {2] the authors provided an approach based on vector norms and
comparison systems, by adapting previous results obtained in the non-delayed case ([1],
[6], [11]) to delay-systems. Following this method, this paper investigates delay-
independent stability properties of a general class of nonlinear, time-varying delay-
differential systems described by :

x(t) = A(t, x(1), x(t = T(1))) x(1) + B(t, x(®), x(t — =())) x(t— (V). ¢))
where x € IR? is the instantaneous state vector, A(.) and B(.) represent n x n matrices, 7 is
a piecewise continuous function of the variable t satisfying 0 < (t) < 7o,
and it is assumed that there is a unique solution x(t, to, ¢) of (1) for every tp € IR and for
every initial vector function ¢(t) defined and continuous on [ty — 7o, to].

This paper presents two main contributions:
- the first original point is to provide estimates of the attraction domain linked to an

asymptotically stable solution. This is obtained by using comparison systems which can be
valid only locally.

- the second one is to provide stability criteria that can be directly applied to nonlinear,
delayed systems. This allows us to enlarge the class of systems that can be analysed, as
will be shown in example 2, section 4.



2. COMPUTATION OF COMPARISON SYSTEMS

We first recall the vector norm concept [11]:
Consider the following partition of IR? : IR2 = E; @ E; & ... ® Ei, where @ denotes the
direct vector subspaces sum. Let P; be the projection operator from IR® onto E;, and x be a
vector of IR®, The projection of x onto E; will be denoted by x;, so xj= P; x = P; x;.
Let p; be a norm on the subspace E;, (i =1, ... , k). Then the vector function
p: R IR': , whose i - component is defined by p;(x) = pi(xy), is a regular vector
norm (VN) of dimension k.

In the sequel, the following notations and conventions are used: D*p;(x;) represents the
right-hand derivative of pi(x;) with respect to time taken along the motions of (1). T
denotes the interval [ty , +oo[. D is a region of IR® containing a neighbourhood of the
origin. C = C([-7p , 0], IR®) is the set of continuous functions that map the interval
[-to0, 0} into IR™, x, € C is defined by xi(s) = x(t +s), —=To < s £ 0. In the third section,
Su(o) will denote the set {@ € C:p(p(s)) St u, V se [-To, 0]} and I () the set
{x € IR?: p(x) < o u}, where u is a given vector, and & a positive number. Any vector or
matrix inequality A < B is to be understood component-by-component, and
M(t, x(t), x(t—=(t))) will be abbreviated by M(.).

Definition 1 : The matrices M, N : 7, X IR? X IR? — IRk Xk define an overvaluing
system of (1) with respect to the VN p and the region 2 if the following inequality is
satisfied along every motion of (1):

Dp(x(t)) < M(t, x(t), x(t — T(1))) p(x(t)) + N(t, x(8), x(t — (1)) p(x(t — (1)), (2)

Vte T,V x € C([~10, 0}, D),

where M(.) = {M;;(.)}, is such that its off-diagonal elements are non-negative, and
N() = {v;;(1)} is a non-negative matrix.
If D =1R", the overvaluing system is said to be global.

This definition is an extension of the ones developped in the non-delayed case (see for
example [6], and [11]), and in [2] where the global case was the only considered. In the
sequel, the following assumption will be used:

Assumption 1: The pair of matrices (M, N) is such that system

z (t) = M(t, x(t), x(t — (1)) z(t) + N(t, x(t), x(t = T(t))) z(t — T(t))
admits a unique solution for any x;; € C([%o, 0], D) and any z e C({-1o , 0], p(D)).
For instance, M(.) and N(.) may be locally Lipschitzian with respect to their second and
third arguments (see [4])

It is possible to give, for every system of form (1), the expressions of a particular
overvaluing system. Let :

y =x(t - 7(V),
Aj() =P A() Py, Byj() =P B() Py

m(t, x, y, u) = M&%r&ﬁ)_‘ﬂ ’ 3



;  .&rad pi(upT By() vj
nlj(tt xr Yv u, V) PJ(VJ) 1

Theorem 1 : The matrices M(t, x, y), N(t, x, y) given by :
Kt x, y) = sup {mj(t, x, y, u)}

ue R

viit, x, y) = sup  {njt, x,y,u,V)},Vij andVte T, Vx,ye R* (4)
g, ve R®

define an overvaluing system of (1) with respect to the VN p. Systems given by (4) are
called natural overvaluing systems of (1).
Proof: Using (1), the Dini derivative of p; can be expressed by:

X x
D*pi(x) = _Zlgrad Pix)T Ay() xj + fi grad pi(x)T By(.) yj.
J_—. J=

If x;# 0, we have : grad pi(x)T Ay() x; =B Pii(’f‘(i,)('_r) Al X b (x)),
3\ %
and, by definition of py(t, X, y), it yields: grad pi(xi)T Ay() x; < pi(.) pi(x)).
If x; = 0, the last inequality obviously holds. In the same way, it is possible to prove :
grad pi(x;)T By(.) y; < vi() pi(yj)- So, inequality (2) is proved.
Independence of vectors u; and u; and of vectors u; and v;in (3) ensures that off-diagonal
entries of M(.) and all the elements of N(.) are non-negative.

Corollary 1: Any matrices M(.) and N(.) such that :

Byt x, YD) 2 Wit X, ¥),

Vit X, ¥)) 2 vii(t, X, ¥),

Vij=1,..,k and Vi, x,ye Box IRPx IR",
define an overvaluing system of (1).

The use of this corollary may provide simple forms of overvaluing systems, for example
M and N may be constant,

For usual norms, expressions of the natural overvaluing system are given in an explicit
form. Let a partition of the space IR" define a block partition of matrix A. I; and J;
represent the sets of indices of rows and columns, respectively, of block Aj;.

With pi(x;) = Il x; Il, where I, Il is an arbitrary norm on E;, we obtain

Hii() = (A, -
Hi() =N Agll, fori,j=1,...kandisj )
Vﬁ(.) = Bij “, for i,j = l, s Ky

where JL(A;;) is the matrix measure of A;; associated with the norm Ii . Il (see [3]). These
formulas generalize the ones given in [2].



We now propose an extension of Borne and Gentina's comparison lemma ([6]) to the
nonlinear differential-difference equations. :

Comparison lemma 1: Let (M(.), N(.)) define an overvaluing system of (1) with
respect to a regular VN p and a region 2, and such that system

z (1) = M(t, x(1), x(t — (1)) 2(t) + N(t, x (), x(t — 7(1))) z(t - (1)) )
_satisfies Assumption 1.
Then (6) is a comparison system of (1) in the sense that if the inequality
z(t) 2 p(x(1) @)
holds for t € [tg—Tg , to], then it holds as long as x(t) remains in D,

Proof : The proof of this lemma is a direct adaptation of Grujic et al. [6], and for sake of
brevity is not reproduced here. Y

Corollary 2: Stability (or respectively attractivity, asymptotic stability) of the zero
solution of a comparison system (6) deduced from (1) implies stability (respectively
attractivity, asymptotic stability) of the zero solution of system (1).

3. STABILITY THEOREMS AND STABILITY DOMAINS ESTIMATION

A classical result obtained by Tokumaru et al. [12] is that if (6) is linear, time-invariant
(i.e. the matrices M(.) and N(.) are constant and verify conditions of definition 1) then it is
asymptotically stable independent of delay if and only if the sum-matrix M+N is the
opposite of an M-matrix (see Appendix). The following theorems 2 and 3 generalize this
result to two classes of nonlinear, delayed systems (they can also be regarded as
generalizations of Borne and Gentina’s results). Theorem 4 is an extension of Mori’s
results [9].

In this first result, we consider that the delay 1(t) is constant, i.e. 7(t) = 7o for all t in .

Theorem 2 : If for the system (1) there is an overvaluing system:
2(t) = M(t, x(t), x(t — To)) z(t) + N(t, x(t), x(t — To)) z(t — o),
related to a regular VN p and a region D, satisfying Assumption 1, such that:
(i) non-constant elements of Z;(t, x, y, w) = M(t, x, y) + N(t + 1q, w, X) are isolated in
one column, and
(ii) there is € > 0 such that, for all t in Tpand all x, y, win B,
Zy(t, x, y, W) +€ It is the opposite of an irreducible M-matrix,

then the zero solution of (1) is stable (asymptotically stable if N(.) is bounded), and
stability (or asymptotic stability) is global if D=IR".

Proof : Let Amax = sup[An(Z(t, x, y, w)); (1, X, y, w) € Tox T3] (Where Ay (Z,) is the
importance eigenvalue of Z;, see Appendix), so Amax S —€, and let u be an eigenvector of
Zf(t, X, y, w) associated with Apqy for a given (i, X1, Y1, W1).



t
Let V(x) = pT(x(®)u+ | pT(x(s)).NT(s+To, x(s+Tg), X(s))u ds

t-Tg
be a tentative Lyapunov-Krasovskii functional, then from (2) we obtain:
D*V(xy) < pT(x()) [M(t, x(t), x(t —T0)) + N(t + 7o, x(t + To), x(t))] T u
Then, conditions (i), (ii), and lemma 2 (in Appendix) yield:
IM(t, x(t), x(t — To)) + N(t + To, x(t + To), X()ITu S Apy uS £ u,
so  D*V(xp < —€ pT(x(t)).u
According to Krasovskii’s theorem, the solution x = 0 of (1) is stable, or asymptotically
stable if N(.) is bounded.

Theorem 3 : If for the system (1), it is possible to define an overvaluing system
z(t) = M(t, x(t), x(t — (1)) z(t) + N(t, x(t), x(t — T(t))) z(t — T(t)),

related to a regular VN p and a region 2, satisfying Assumption 1, such that:

(i’) non-constant elements of Z(t, X, y) = M(t, x, y) + N(t, x, y) are isolated in one row,

(ii’) there is € > 0 such that, for all tin % and all x, y in B,

Zo(t, x, y) + & Iy is the opposite of an irreducible M-matrix,

then the solution x = 0 of (1) is stable (asymptotically stable if N(.) is bounded) and the

set Sy (or), where u. = u(9) is an importance eigenvector related to Apax = max{An(Za(t,

"X, y));te T, x,y € D}, and 0. is any positive real such that the set I, (&) is included in

D, is a positively invariant set with respect to (1).

Proof : Let v(x)=Max(Rl(—xll, e Pklfxg)}
c, k

For any time tin 7o, there is an index i € {l ., K} such that:
Dv(x(t) = D*p.(X(t)),

k .
S0 DV((D) S (i) pilxi(t) + _g_ i 0 POG() + 3 vy () oyt = TN,
C, 1 j#l )=
then, from the definition of v(x), we deduce
DHv(x(D) < u—‘- [M(.) e v(X(D) + N(.) e v(x(t = TN

Following Razumikhin’s method, we only consider the solutions satisfying
v(x(t)) £ v(x(t—7(t)).
Then, DHv(x(t)) £ Amax v(x(1)) <O.
Thus, v(x) is a Lyapunov-Razumikhin function, and hence, solution x = 0 is stable.
If N(.) is bounded, the solutions satisfying v(x(t)) £ (1+ &) v(x(t — z(t)) for all t in T,
where o is a sufficiently small positive number, verify D+v(x(t)) <0, so accordmg to {7]
or [10], the solution x =0 is asymptotically stable.
At last, the sets {x € IR": v(x) < o} contained in 9 are positively invariant (see [7]).

Remark : When the matrices M(.) and N(.) of the overvaluing systems are constant,
theorems 2 and 3 hold simultaneously : we encounter the classic condition given in
Tokumaru et al. [12], but, in the case of a local comparison system (D # IR®), theorem 3



and the following corollary give the definition of positively invariant sets which estimate
the stability domain of the null solution.

Corollary 3: If for the system (1), it is possible to define for all (t, x, y) in px DxDa
linear, time-invariant overvaluing system z(t) = M z(t) + N z(t — =(t)) (M, N constant
matrices) related to a VN p with the additional property that M+N is the opposite of an
irreducible M-matrix, then

i) the solution x = 0 of (1) is asymptotically stable (Tokumaru et al.’s criterion [12]), and
it) an estimate of the attraction domain is given by the maximal set 3 4(cx) for which o is
such that Ig(c) is included in © and d is any vector such that (M+N)d < 0.

Moreover, if D =R, then the system (1) is globally asymptotically stable.

The use of one-dimensional vector norms permits the formulation of a theorem that
extends Mori's results [9] to the nonlinear case.

Theorem 4 : If there are two functions a(t), b(t) such that :

(i) 3e>0,Vte Ta(t)S—¢,

(i) Vte %, a(t) + b(t) <0 and

(i) Vte %,V x,y € IR%, p(A(t, x,y)) < a(t) and lIB(t, x, y)Il < b(t),

(iv) The system z (t) = a(t) z(t) + b(t) z(t — ©(t)) satisfies Assumption 1.
where Il . Il denotes an induced matrix norm, and jt(.) is the corresponding matrix measure
(see [3]), then the zero solution of (1) is asymptotically stable.

Proof : Consider p(x) = lixll then:
DHp(x(t) =, lim,h-t [ix(t + W)l ~ x(t)l]
= h' Jig 11 fllx(t) + hCAQ)x(8) + BCx(t = TN = lx(t)l]
So: DHp(x() <, bt [T+ h AQI = 1] (@)l + B (e — @)
By definition of H(A(.)), we have
D*p(x(t) < H(A()) p(x(1)) + B p(x(t - (1))

Thus, z (t) = a(t) z(t) +b(t) z(t — T(t)

is a comparison system deduced from (1). Then, using Razumikhin’s method [10], with
the Lyapunov function V(z) = 72, it is easy to show that, under conditions (i) and (ii), the
solution x = 0 of (1) is asymptotically stable, 0

4. EXAMPLES

Example 1: Let us consider the system described by the relation:

3 [ -3 +x, sin y; [0 0 ]
x(@®) = x(t) + . x(t — 2). (8)
@ [ 2cost ~4+y1:| ( 0 sin x, =2

where y(t) = x(t-2) = [y, 21T



Let p be defined as: px) ={Ix | [ %2117 ®)

T [ I I [ }

2 [cos t] -4 2 -4 +y;

| C 0 0 1007
andN(t,x,Y)~[0 ;si,‘lxﬂ']s[o 1]=N'

On the domain D(g) = (—ee, 3 — V2 — €] X IR, with £ > 0, M(t, x, y) is overvalued by:

-2 —-€ 1
M(e) = V2 . (10)
2 -1-vy2-¢
-V2-¢ 1 : . . .
M@E)+N = is the opposite of an M-matsix, so system (8) is
2 -V2-¢

locally asymptotically stable and admits the following positively invariant sets
S(E)={p e C: V(OO <[fie), HeNT, Vs € [-2,0]},

with  fi(e) =3-v2—¢,and fx(e)=3V2-2+(3-2V2)e—-¢c2

It yields S={@e C:V(p(s)) <[3—2,3V2-2JT,Vs e [-2, 0]}

is an estimate of the domain of attraction of (8).

3

Fig 1: Simulation of syst. (8) for different initial functions



Example 2 : In order to illustrate the efficiency of Theorems 2 and 3, let us consider the
system described by:

‘() = -2 2 cos?t 0 0 ] ) i
i 1+ x; -2-sin?t X(t)+[0 a sin?t Xt D (

Let us first show that the results of references [12], [13], [14], or our corollary 3, that
involve constant comparison systems, are inapplicable in this case.

The finest constant comparison system associated with the vector norm p(x) = [|x;l, Ixal]*
on any region D = {x € IR2 : Ix;] S ¢} {where & is any positive number) is given by:

s | 722 00
Z(t)-[1+a _l]z(t)+[0 laﬂ]z(t-n, 12)

and M+N is not the opposite of an M-matrix, which is needed in previous references.

However, we can apply Theorems 2 and 3 by considering the following non-constant
comparison system:

. -2 2 0 0
z(t)=[ e ]z(t)+ [ o sinzt]z(t— 1. (13)

There is a positive number € (sufficiently small) such that

-2+¢€ 2
l1+a -2+e+ (lal—1)sin2t
is the opposite of an M-matrix for any t if and only if lal + & < 2. So, according to

Theorem 2, the solution x = 0 of (11) is asymptotically stable. We now apply Theorem 3
to obtain an estimate of its stability domain. On D= {x € IR?: Ix;| < 2 —lal — €}, we have

-2 2 =2 2
s =2Z5(e),
11+ x31 =2+ (lal - 1) sin2t 3-lal—g -3+ {al

and this upper bound is reached for x; =2 —lal—¢, and t =0.

P
= —1ah2 - 1/2
u.(D) =[l, 1+ lal+[(5 7 lal) 8e) ] is an importance eigenvector of Z3(e),

and A = 2 — lal — € is the biggest positive number such that the set I, (A) belongs to D.
Considering € infinitely small, we show that the set 3 defined by:

S={pe C:pps) <[2-1a,2-lal}T,Vse [-1, 0]}

is a positively invariant set that estimates the domain of stability of solution x = 0 of (11).



5. CONCLUSIONS

This paper has presented several original criteria to test the delay-independent stability
of nonlinear, time-varying systems with delays. These results extend Borne and Gentina's
work [1] to the delay case. An example shows that these criteria have less restrictive
hypotheses than previous ones ([2], [12], [13], [14]). Moreover, they give (Theorem 3
and Corollary 3 in particular) estimates of the stability domain, which also represents an
original contribution. Checking the algebraic conditions is rather easy, since they involve
properties classically used for linear systems even if the comparison system is nonlinear.
The analysis of the stability of nonlinear large-scale systems with delays does not pose
more difficult problems since vector norm method is an aggregation technique (see [6]). In
addition, following [13], Wang’s method for robust stability can be extended to the two
classes of nonlinear, time-delay systems defined in Theorems 2 and 3.

APPENDIX

Definition and properties of (~M)-matrices :

M is the opposite of an M-matrix if it is a Hurwitz matrix with non-negative off-diagonal
elements. If M is the opposite of an M-matrix then ([5]):

i) M-! is a non-positive matrix.

ii) M admits an eigenvector u called the importance vector of M, whose components are
non-negative, and which is related to the real, maximal and negative eigenvalue An(M). If
in addition A is irreducible then the components of u are strictly positive.

iii) for any vector x >0, x # 0, there is an index i such that x;y; < 0 (with y = Mx).

A matrix M with positive off-diagonal elements is the opposite of an M-matrix if and only
if the Kotelyansky conditions are satisfied, i.e. its successive principal minors are sign-
alternate:

oMy il osoivisl ..k

Lemma 2 : Let M(t, x, y) be the opposite of an M-matrix with all non-constant elements
located on a same row. Let Apax = sup[An(M(t, X, ¥)) ; (L, X, y) € Tox Dx D}, and let u
be an eigenvector of M(t, x, y) associated with Apqy.
Then, the inequality :

Mt X, y) uSAgax (14)
holds for any (t, x, y) in Tox Dx D.

Proof : We suppose that all non-constant elements of M(.) are isolated in the last row.
There are two possible cases : either (t, x, y) is such that u is an eigenvector of M(t, x, y)
associated with Anax, and then inequality (14) is obvious, or (t, x, y) is such that
(M(t, x, y) — Apax Ix) is the opposite of an M-matrix. But the first k—1 components of
vector (M(t, X, ¥) — Amax Ix).u are zero (due to the special form of M(.) and to the

definition of u), so applying property iii), it yields the fact that its k® component is strictly
negative, and then inequality (14) holds again.
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