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Abstract 

Background: Artemisinin‑resistant Plasmodium falciparum malaria parasites are now present across much of 
mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts 
require substantial resources. Here we propose a generic ‘smart surveillance’ methodology to identify optimal candi‑
date sites for future sampling and thus map the distribution of artemisinin resistance most efficiently.

Methods: The approach uses the ‘uncertainty’ map generated iteratively by a geostatistical model to determine 
optimal locations for subsequent sampling.

Results: The methodology is illustrated using recent data on the prevalence of the K13‑propeller polymorphism (a 
genetic marker of artemisinin resistance) in the Greater Mekong Subregion.

Conclusion: This methodology, which has broader application to geostatistical mapping in general, could improve 
the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in 
affected areas.
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Background
The success of artemisinin combination therapies (ACTs) 
in combatting Plasmodium falciparum malaria parasites 
over the last decade is being increasingly compromised 

by the emergence of artemisinin-resistant parasites in 
Southeast Asia [1–7]. There appears to be a crucible of 
antimalarial resistance in Western Cambodia, where par-
asites have repeatedly evolved resistance to widely used 
antimalarial drugs [1]. Resistance to artemisinin, the lat-
est casualty, not only jeopardises the elimination of P. fal-
ciparum malaria in this region but also poses a threat to 
global malaria control should resistant parasites spread to 
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India and then Africa, a path previously taken by resist-
ance to older antimalarials [8, 9]. While ongoing studies 
are measuring the extent of artemisinin resistance in the 
Greater Mekong Subregion (GMS), these are relatively 
time-consuming, logistically challenging, and costly. It is 
therefore important to identify the most informative sites 
for future data collection to accurately characterise the 
distribution of resistance in both time and space.

The recent identification of K13-propeller polymor-
phism as a genetic marker of artemisinin-resistant P. fal-
ciparum has the potential to enable rapid detection and 
geographical mapping of artemisinin-resistant parasites 
in the GMS [10]. While parasites with a nonsynonymous 
single-nucleotide polymorphism (SNP) in the K13-pro-
peller are suspected of being artemisinin-resistant, this 
has been confirmed for only some of the many muta-
tions observed in Cambodia, Vietnam, Thailand, Myan-
mar, and Southern China. Slow parasite clearance rates 
following treatment with an artemisinin monotherapy or 
an ACT [10–13] and increased parasite survival rates in 
ex vivo and in vitro ring-stage survival assays (RSAs) [14, 
15] have both been utilized for this purpose. However, 
further studies are needed to more efficiently follow geo-
graphical trends in the prevalence of P. falciparum para-
sites carrying these K13-propeller mutations and provide 
timely intelligence to guide decisions aimed at reducing 
the emergence or spread of artemisinin resistance.

Elimination of artemisinin-resistant parasites requires 
the identification of geographical areas threatened by 
resistance, locations seen as potential hot spots for new 
outbreaks of drug resistant malaria [5, 16]. Such geospatial 
information is crucial for efficient mobilization of appropri-
ate resources to eliminate resistant parasites and thereby 
reduce the risk of their spread to other localities. Since the 
geographical patterns of both transmission and resistance 
mutation frequency are highly heterogeneous, country-
level decisions are unlikely to lead to optimally tailored 
strategies and uses of limited resources. Local information 
on the efficacy of ACT partner drugs assures that the most 
appropriate combination can be selected in a given region. 
There is a paramount need for geospatial maps to convey to 
policy makers spatial information on the current status of 
key parameters and patterns of drug resistance. The objec-
tive of our study is to demonstrate that a strategic model-
ling methodology, referred to as ‘smart surveillance,’ can 
enhance data visualisation through spatial mapping and 
maximise the efficiency of further sampling to produce a 
cost effective map of antimalarial drug resistance.

Methods
Geospatial modelling techniques using molecular mark-
ers have already been applied to estimate the prevalence 
of antimalarial drug resistance [5, 7]. These models can 

also be used to identify geographical areas where data 
are currently insufficient for policy makers to determine 
whether or not drug resistance is present. In this study, 
we transform the geospatial mapping approach into a 
‘smart surveillance’ methodology by utilizing the geospa-
tial maps generated to identify optimal locations for addi-
tional sampling.

Our focus on Southeast Asia is motivated by the urgent 
need to provide evidence for ongoing malaria control and 
elimination efforts in the face of expanding artemisinin 
resistance in this region. The longer-term goal is to apply 
the methodology to other malaria-endemic regions. In 
all cases, reducing the uncertainty of current estimates 
of the geographical prevalence of antimalarial drug 
resistance is balanced against limitations on available 
resources. There is a practical constraint on the number 
of new sites that can be sampled, and therefore a prag-
matic requirement to ensure that sites are selected effec-
tively and efficiently.

Data sources
We have used published and unpublished K13 molec-
ular data from six GMS countries: Bangladesh, Cam-
bodia, Thailand, Laos,  Vietnam, and Myanmar. These 
K13 mutation prevalence data (number of sites =  64, 
number of indivduals  =  1832) were pooled from 
two sources: the NEJM TRAC clinical trial [11] and 
the  cross-sectional survey of Tun et  al. [7]. In both 
cases the primary sampling unit is the malaria treat-
ment centre or health facility at each site, which has 
a latitude and longitude reference verified by the data 
contributor for accuracy. A summary of the frequency 
of such samples from each country is exhibited in the 
Additional file 1: Table S1. Some data derive from clini-
cal trials during 2011–2014 that assessed the preva-
lence of mutant K13 alleles in particular geographic 
locations [7, 11]. We make the assumption throughout 
this paper that artemisinin resistance is conferred by 
nonsynonymous mutations which change the primary 
protein sequence occurring at codons above amino 
acid position 440 in the K13 gene [10, 17]. Nonsyn-
onymous mutations are those that result in a change in 
amino acid in the protein which may alter its activity. 
This assumption may change as a more refined metric 
of artemisinin resistance is defined by further genetic 
research.

Geospatial mapping
Nonsynonymous mutations occurring at codons above 
amino acid position 440 in the K13 protein together with 
the geographical information system (GIS) coordinates of 
each sampling site, were input in a geostatistical model, 
yielding a predictive map on a 5 × 5 km grid of estimated 
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mutation distribution and hence prevalence of parasite 
isolates assumed to be artemisinin-resistant. The model 
we utilize here is ‘kriging’ interpolation (giving best lin-
ear unbiased estimates at grid locations) implemented 
in MATLAB release 2013b and originally developed by 
Matheron in 1963 [18] (see Additional file 1).

An assumption of complete absence of information is 
made for regions beyond the boundaries of the domain 
in generating these maps. There is therefore smoothing of 
any potential ‘edge effects’ in addition to the smoothing 
which is typically observed with kriging [19].

The geospatial models applied by the WorldWide Anti-
malarial Resistance Network (WWARN) to the South-
east Asia region have utilized K13 mutation prevalence 
data to produce continuous spatial maps at a 5 ×  5 km 
resolution for estimating the prevalence of parasites car-
rying such genetic markers and hence assumed to be 
artemisinin-resistant [7]. The choice of a 5 × 5 km grid 
resolution (as used previously by MAP [21]) provides a 
sufficiently detailed overview of the Greater Mekong 
Subregion required for smart surveillance purposes. The 
underlying approach, which is applicable to mapping 
antimalarial drug resistance in general, has two steps:

1. Obtain data for a metric of choice to generate the 
map. This metric could incorporate current data 
on artemisinin resistance such as parasite clearance 
rates in patients, parasite survival rates after drug 
exposure, in  vitro susceptibility tests, prevalence of 
isolates that carry a K13-propeller polymorphism, 
or any combination of these parameters. All such 
measures can be estimated from sampling conducted 
at each site to derive an estimate of resistance preva-
lence, defined as the proportion of total parasite iso-
lates that are recorded as resistant.

2. Generate a continuous map over a domain of inter-
est from collected data, using a geospatial model. The 
outcome is a surface that predicts the prevalence of 
the metric of interest across the entire geographical 
region. Typically these models will operate in a geo-
statistical framework through spatial interpolation or 
by ‘fitting’ an underlying model to the data obtained 
for the given sites. A predictive map of the spatial dis-
tribution of artemisinin resistance is then obtained as 
a continuous surface on a regular grid covering the 
region of interest. This is computationally achieved 
by deriving a statistical estimate of the chosen metric 
at each grid location. A corresponding ‘uncertainty’ 
map is simultaneously generated with uncertainty 
represented by a suitable variability statistic. This 
map therefore shows the uncertainty connected with 
the former map on a pixel-by-pixel basis (i.e., the grid 
resolution of the map).

The resistance map can be viewed as a ‘landscape’ with 
local peaks (or troughs) corresponding to those areas 
with highest (or lowest) estimated prevalence of arte-
misinin resistance.

Each resistance map (together with its associated 
uncertainty map) serves as a vehicle to identify specific 
sites or regions where further measurements could be 
proposed. Such ‘second phase sampling’ would aim to 
identify locations in the original resistance distribution 
where current information on prevalence is most defi-
cient. Therefore, additional sampling at those sites could 
reduce the uncertainty of the resistance estimate and 
produce a more accurate estimate of the spatial distribu-
tion. The latter approach treats the uncertainty map as 
an associated landscape where peak locations would now 
correspond to areas of greatest uncertainty. Selection cri-
teria constraints could also be included, for example to 
exclude regions where geographic remoteness, low pop-
ulation density, or ongoing security issues would render 
sampling too costly or dangerous. In all cases, the main 
objective would be to enhance knowledge of the current 
distribution of antimalarial drug resistance.

Role of the funding source
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
The strategic modelling approach is illustrated by apply-
ing smart surveillance to the spatial distribution of the 
prevalence of K13-propeller polymorphisms associated 
with artemisinin resistance in the GMS. Second phase 
sampling strategies are then motivated by knowledge of 
the peak and trough locations of resistance, and of those 
regions with greatest information deficiency. Prevalence 
of isolates with a nonsynonymous mutation after codon 
440 (as used in Tun et al. [7]) was employed as an esti-
mate of the prevalence of artemisinin resistance in a geo-
spatial model with the site data, as shown in Fig. 1a.

The output kriging map of resistance prevalence 
is shown in Fig.  1b. Figures  1c and 2 (isolated in inset) 
show the resistance map with superimposed local max-
ima (12 black crosses) and minima (16 white crosses), as 
defined by the topology of the geospatial surface, which 
correspond to peak (and trough) locations with highest 
(and lowest) estimated prevalence of resistance, respec-
tively. These are locations where further studies would 
be a priority, to confirm and update current information 
on estimated resistance prevalence. Knowledge of the 
locations of these peaks and troughs would have imme-
diate utility in enabling the most appropriate antimalar-
ial to be used by local clinicians. Any additional spatial 
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information relevant to resistance prevalence could also 
be incorporated. For example, current knowledge of 
regions where malaria transmission is known to be low, 
as determined from other regional surveys or sources 
[20], could be incorporated as an additional constraint 
to be imposed on site identification as shown in Fig. 1d, 
where the spatial limits of unstable transmission sug-
gested by the malaria atlas project (MAP) are imposed in 
grey [21]. Sites falling within these areas could reasonably 
be excluded from further studies.

Figure  3a shows the key distribution associated with 
the uncertainty map in Fig.  3b, as a histogram (blue 

bars) with corresponding cumulative distribution (blue 
line). Figure  3b shows the corresponding ‘uncertainty 
map’ associated with the resistance map in Fig.  1b, 
where uncertainty is represented by kriging variance and 
interpreted as a landscape describing spatial informa-
tion deficiency. Because kriging is an exact interpolator, 
the uncertainty map surface has minima (troughs) at 
those locations where data were obtained, reflecting that 
uncertainty is least in these locations. However, the local 
maxima (Fig.  3c, black crosses) in this uncertainty map 
could be optimal target locations for further sampling 
to reduce uncertainty in the resistance map. Figure  3d 

Fig. 1 Artemisinin resistance maps (5 × 5 km grid resolution). Prevalence is displayed on the 0–1 colour scale. a The Southeast Asia domain of 
interest (grey), showing study sites (black solid circles). Prevalence of artemisinin resistance was determined at these sites using K13 genetic marker 
data collected in 2011–2014. b Geospatial map generated by a kriging model of the estimated distribution of artemisinin resistance, based on the 
sample data in a. c The locations where artemisinin resistance is estimated to be highest (black crosses) and lowest (white crosses), based on the 
locations of the local maxima and local minima of the geospatial map in b. d Geospatial map of c with a spatial constraint imposed (light grey) to 
exclude those regions where transmission is estimated to be unstable (as defined by MAP, 2010 [21])
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shows how the sampling strategy could be modified 
further by excluding sites in the unstable transmission 
region (grey). In general, the altitude of the map surface 
increases in a smooth and monotonic manner as dis-
tance from sampling sites is increased, as can be seen by 
the deeper red colouration shown in the more peripheral 
regions of the GMS. This tendency, which results from 
a smooth uncertainty landscape, is most evident in the 
central northern border extremities and southern pen-
insular border region of the GMS, where clustering of 
the local maxima occurs. In Fig. 3a, the distribution can 
be stratified into quantiles of a fixed arbitrary percentile 
threshold (here 20 %), each with a corresponding zone on 
the uncertainty map. The most uncertain locations in the 
map domain are associated with the highest (top) ranked 
percentiles which thereby give rise to zones correspond-
ing to ‘equivalent uncertainty’, which are displayed in the 
map. These uncertainty zones can be ranked and, when 
viewed in combination with the prevalence map, can 
define spatial zones as priority targets at the strategic 
level.

These corresponding spatial zones are shown superim-
posed (dark grey) in Fig. 4, where the landscape of Fig. 1b 
has been zoned into regions of equivalent uncertainty 
based on the topography of its associated uncertainty 
map (Fig. 3b). The zones for the highest three percentile 
bands of uncertainty using a percentile band width of 
20 %, range from the highest band (uppermost 20 %) in 

Fig. 4a, to the second highest band (21–40 %) in Fig. 4b, 
to the third highest band (41–60 %) in Fig. 4c. The zones 
typically include boundary regions of the GMS but now 
more widely cover internal locations. To demonstrate 
the utility of incorporating further spatial information or 
constraint into the assessment, the top band (zone previ-
ously shown in Fig. 4a) is now recalculated after superim-
posing the unstable transmission region defined by MAP 
and shown in Fig.  4d. Sampling can be made more (or 
less) dense in these zones, which may be deemed to be 
more (or less) critical because of relevant known infor-
mation or constraints that may be imported into the 
domain or scenario under consideration. The practical 
application of such ‘threshold zoning’ can be decided in 
light of approaches currently being used by policy makers 
to counter drug resistance, for example, to define com-
mon or consistent approaches that the policy maker may 
wish to be used across regions of particular interest.

Discussion
To facilitate policy making, there is a clear need to connect 
complex spatial model outputs with strategic allocation of 
resources, an approach that has been widely used in mak-
ing strategic decisions in other areas [22] but to a lesser 
extent in disease risk management [23, 24]. Application of 
data visualization tools that provide geospatial informa-
tion can inform policy to ensure optimal drug use, deploy-
ment of resources, and rapid response to newly emerging 

Fig. 2 Some maxima and minima may be located close to each other in regions where spatial autocorrelation is low
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resistance. At the same time, those areas free of resistance 
can be engaged with recommended therapeutic, preven-
tive, and vector control measures. Smart surveillance is 
a generic approach to enable health managers to develop 
optimal strategies to combat any disease. Dependent on 
the disease, this can be structured to known constraints 
to define the best actions which reduce geographic spread. 
Simultaneously, this must enable a better understanding of 
the disease epidemiology to be acquired. This method is a 
general one, and could be applied to other genetic markers 
correlated with resistance to ACT partner drugs. In this 

context, smart surveillance can provide a first step toward 
wider application of modelling to extend efforts in malaria 
control and combat antimalarial resistance. The utility of 
the model can be enhanced by exploring clearly defined 
alternatives based on thresholds that are deemed to be 
relevant. These thresholds must somehow incorporate the 
notion of risk because any such decision making process 
takes place under uncertainty. A natural vehicle for achiev-
ing this goal is to stratify the associated uncertainty map 
surface based on the distribution of its surface values (pixel 
values).

Fig. 3 Uncertainty and uncertainty maps (5 × 5 km grid resolution). Uncertainty is represented by the kriging variance displayed on the 0–1 colour 
scale. a Distribution of uncertainty, represented by the kriging variance x associated with the uncertainty map of a with corresponding cumulative 
frequency plot F(x) (blue line). This key distribution is used to define uncertainty thresholds in terms of 20 % percentiles, which in turn give rise to the 
ranked spatial zones (shown in Fig. 4). b The uncertainty map corresponding to the prevalence resistance map in Fig. 1b, represented by the kriging 
variance. Uncertainty is lowest at the study sites where sample data were collected, as kriging is an exact interpolator. c Locations where uncertainty 
in estimated resistance is highest (black crosses), based on local maxima of the uncertainty map in b. In general, these locations are situated in the 
more peripheral regions of the domain that are furthest from the study sites. d The uncertainty map of c with a spatial constraint imposed (light 
grey) to exclude those regions where transmission is estimated to be unstable (as defined by MAP, 2010 [21])
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Several extensions could be incorporated to improve 
evidence provided for decision-making processes. 
For example, if the sequential order of site selection is 
important in defining a combat strategy, then optimal 
sites selected will be different from those in a simulta-
neous choice model. The iterative modelling necessary 
to update the resistance map and determine site selec-
tion would take into account the additional information 
gained as each site is identified. Decision-making could 
be assisted further by determining regions within the 
domain of interest where estimated prevalence together 
with associated uncertainty are to be considered in tan-
dem. In particular, policy makers may wish to iden-
tify areas in which prevalence of resistance falls below 

a threshold level (e.g., 5  %) perceived as significant, but 
where the associated uncertainty exceeds a desired 
degree of confidence. Combining the prevalence and 
uncertainty maps into a single ‘relative uncertainty’ map, 
calculated as the ratio of prevalence to uncertainty, can 
identify these. The decision maker may wish to incorpo-
rate other covariates deemed to be relevant [25]. In such 
extensions, more sophisticated search algorithms will 
be required to identify the local maxima and minima in 
corresponding nonlinear objective functions of a mul-
tivariate parameter space. A possible limiting factor to 
spatial inference is sampling bias of data, which may arise 
through uneven or skewed sampling at different locations 
as well as pooling of data obtained across different time 

Fig. 4 ‘Equivalent uncertainty’ zones (5 × 5 km grid resolution). Prevalence is displayed on the 0–1 colour scale. Zones of ‘equivalent uncertainty’ 
are shown superimposed (dark grey) onto the prevalence resistance map of Fig. 1b. The three highest ranked percentiles (in 20 % bands) associated 
with the uncertainty map of Fig. 3a are shown. Each zone would represent a priority region to be targeted with second phase sampling aimed at 
improving the accuracy of the current resistance map: a top percentile (0–20 %), b second percentile (21–40 %), c third percentile (41–60 %). d Top 
percentile (0–20 %) with the spatial constraint imposed (light grey) to exclude those regions where transmission is unstable (as defined by MAP, 
2010 [21])



Page 8 of 10Grist et al. Int J Health Geogr  (2016) 15:37 

and spatial scales. Dependent on the spatial interpolative 
approach adopted however, this can still be controlled 
by a variety of statistical approaches. For example with 
kriging, the kriging variance can be elaborated so that it 
is ‘weighted’ to counter for such effects [25]. Alternative 
geostatistical models such as PYMC [26] or R-INLA [27] 
(or combinations of model ensembles) relying on differ-
ent underlying assumptions or parameterisations could 
be employed to generate additional maps for comparison. 
In this context, information on sample sizes and geo-
graphical barriers to transmission (e.g., mountains, lakes, 
etc.) could be incorporated.

In order to be operationally relevant, this method will 
rely greatly on the capacity to collate data of interest 
in a timely manner. While data sharing is increasingly 
embraced by the scientific community [28], policy mak-
ers [29, 30], and funders [31, 32], the real-time imple-
mentation and necessary systems to securely share data 
still lag behind [33]. In the surveillance of antimalarial 
resistance, the number of organizations collecting data of 
interest are relatively limited to national malaria control 
programs, the World Health Organisation (WHO), non-
governmental organisations, and research groups. Devel-
oping a mechanism to share published and unpublished 
data will be essential to achieve the objectives described 
here. In the absence of a global policy framework or 
operational guideline for sharing public health data, we 
propose to use the data sharing platform and govern-
ance structures developed by WWARN to facilitate such 
endeavours, and to pilot and validate this methodology in 
Southeast Asia. However, political support and endorse-
ment from endemic countries and the WHO will be criti-
cally important to ensure the success of this approach.

In all cases, this methodology relies on the accuracy 
of the map surface generated, which in turn depends on 
the data available and the underlying assumptions of the 
geospatial model employed. An inherent limitation of the 
current methodology comes from its dependence on an 
indirect metric to represent drug resistance (here we have 
used prevalence of parasite isolates with any nonsynony-
mous K13-propeller mutation). The sensitivity and speci-
ficity of this definition may be enhanced by using only the 
subset of K13-propeller mutations that have been asso-
ciated with artemisinin resistance in clinical and in vitro 
studies, or combining them with other molecular mark-
ers. This limitation can be partially mitigated by employ-
ing alternative metrics and comparing their respective 
maps to see how they may change or concur across any 
regions of common overlap. In practice, spatial data will 
need to be aggregated in time to provide sufficient accu-
racy in the maps conveyed. There is therefore a ‘trade off’ 
between gaining maximum utility (enabling spatial pat-
terns to be reviewed and resources to be allocated) and 

defining an appropriate time scale for aggregation (ena-
bling maps to convey sufficient information). This is to be 
decided in view of the given data and selected metric. In 
any event, the main value of smart surveillance remains 
unaltered, which is to utilize any such metric to optimally 
benefit the decision making process.

As with any statistical modelling approach, limita-
tions to inference are defined by the assumptions used, 
and the quality, quantity, and timeliness of data. If emer-
gence and transmission of resistance change rapidly, the 
dynamic situation will limit assessments of the impact of 
policy interventions from transmission data. Conversely, 
with sufficient data collected over space and time, the 
approach could be extended by employing a spatiotem-
poral model (as in [34]) to investigate how optimal sites 
might change over time in view of the sampling strategies 
and interventions performed to date.

Conclusion
Smart surveillance provides a cost-effective and efficient 
approach to monitoring the geographical distribution 
of antimalarial drug resistance in endemic regions. The 
methodology can be employed to improve the quality 
and efficiency of drug robustness mapping and thereby 
assist practical operations to eliminate malaria (and more 
generally, any disease) in affected areas.

Future extensions
If population genetics could be made available from 
samples collected, the method could also help to deter-
mine whether antimalarial drug resistance has spread or 
emerged independently outside the geographic domain of 
interest. Since these two outcomes have different under-
lying mechanisms, this additional information should 
improve ongoing malaria control and elimination efforts.
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