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Abstract: Emotions taint our life and allow expressing the different facets of the personality. Among the expressions of 

the human body, facial ones are the most representative of the mindscape of a person. Several works are 

devoted to it and applications have already been developed. The latter, based on computer vision, are 

nevertheless facing some limitations and difficulties that are related to the point of view, lighting, occlusions, 

etc. Artificial Neural Networks (ANN) have been introduced to solve some of these limitations. The latter 

give satisfactory results, but still have not solved all the problems such as camera angle, the position of the 

head and, the occlusions, etc. In this paper, we review models of neural networks used in the field of 

recognition of facial emotions. We also propose an architecture based on the bilinear pooling in order to 

improve the results obtained by previous works and to provide solutions to solve these recurring constraints. 

This technique greatly improves the results obtained by architectures based on conventional CNNs. 

1 INTRODUCTION 

The automatic recognition of humans' facial 

expressions is an emerging field in scientific research. 

The latter allows new applications in other areas such 

as human-computer interaction, security, medicine, 

etc. The goal of a facial expressions recognition 

system is to identify simple or combined universal 

emotions by analyzing the characteristics of facial 

deformities of the mouth, eyes and eyebrows. 

Reliable recognition of facial expressions under 

natural conditions is therefore necessary, but remains 

an area where many problems are still unresolved 

(variations in lighting, position of the head, 

occlusions, etc).Artificial Intelligence has made a 

quantum leap in recent years, with the advent of 

neural networks and machine learning. These 

techniques, combined with computers, sensors and 

cameras, have produced increasingly intelligent and 

autonomous systems. They have also made it possible 

to significantly change the artificial vision that is at 

the base of the recognition of individuals and their 

facial expressions. In the literature, several 

approaches have been proposed. Recently a special 

attention has been given to the methods based on the 

deep learning and particularly CNNs. The latter 

showed a real potential to overcome certain 

difficulties in the process of recognition and have thus 

significantly increased the classification rate. 

Several works are devoted to this field but differ 

considerably by the CNN architectures adopted, the 

learning and test protocols applied, the parameters 

used (filter size, number of filters, etc.), etc. Indeed, 

the results that we studied in the literature and 

experimented with different architectures differ 

considerably from one model to another, depending 

on the choice of parameters. In addition, the same 

model can produce different results on the same set of 

data with two different initializations. 

The fact that two CNNs give different results or 

that the same CNN with different  initialization can 

give different results has spurred the idea of using the 

bilinear pooling (Liu et,2014) that consists in using 

two CNNs in parallel as described in § C. We believe 

that bilinear CNNs drastically improve the 

recognition performance comparing to previous 

works. This is what we are trying to demonstrate in 

this paper. 

The contributions we bring through this study can 

be summarized as follows: first of all, we propose the 
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use of a pre-trained model (such as VGG16, Inception 

or ResNet50) with a transfer learning to classify the 

basic emotions. We then propose our own shallow 

CNN architecture built from scratch for the same 

purpose. This architecture has fewer layers than 

predefined architectures and a smaller number of 

parameters. Finally, we propose the use of the bilinear 

pooling to improve the results.  

The rest of this paper is organized into four 

sections. In Section 2, we present the related work on 

the recognition of facial emotions with the CNNs and 

the bilinear CNN models, as well as the relevant 

literature on the combination of features. Then, In 

Section 3, we describe our contribution and our 

proposed deep neural network architectures for 

emotion recognition. In Section 4, we present our 

experimental results. The last section is devoted to the 

conclusion. 

2 RELATED WORK 

The recognition of facial emotions is based on facial 

landmarks. The most significant facial references that 

have a real impact on the facial analysis and 

recognition are the corners of the eyes, the eyebrows, 

the lobes of the ears, the tip of the nose, nostrils, chin, 

mouth, etc. While humans are naturally able to 

understand these emotions, facial landmarks 

identification is a challenging task in automatic 

emotions recognition. In fact, the performance of an 

automated approach depends on the selection of a 

discriminate feature set and the use of an efficient 

learning technique. Recent researches have shown the 

potential and effectiveness of the use of CNNs. 

Unlike other ANNs that require a pre-processing 

phase to set the learning features, CNNs are deep 

artificial neural networks in which, the convolution 

blocks automatically select the most relevant filters to 

extract relevant features. 

Behzad Hasani et al. (Behzad 2017) proposed a 

3D CNN architecture named 3D Inecption-ResNet 

(3DIR) for the extraction of spatial relationships in 

facial images and the temporal relationships between 

different video frames. The approach extracts 66 

landmarks from the face using a regression method of 

local binary characteristics (Dhananjay 2014). These 

landmarks are used as inputs to the 3DIR model 

during the training phase. Toevaluate the proposed 

method they used four facial expression databases, 

which are MMI (Pantic 2005), CK+ (Lucey 2010), 

GEMEP-FERA (Banziger 2010), and DISFA 

(Mavadati 2013). They obtained a recognition rate of 

67.52% on CK+ dataset. 

Zhan Wu et al (Zhan 2017) proposed a three-

stream 3D CNN that automatically extracts both 

spatial and temporal characteristics. The purpose is to 

fuse local and global facial expression features by 

using different methods that could produce different 

recognition rates. The concatenation method has 

given the best recognition rate of 78.42%. 

Octavio Arriaga et al. (Arriaga 2017) proposed 

two real-time CNN models to simultaneously 

perform the face detection, the gender recognition 

and the emotion classification tasks. In the first 

model, they removed the fully connected layers and 

used a Global Average Pooling, which reduces each 

feature map to a scalar value. The second model is 

inspired by the Xception (Chollet 2017) architecture 

in which fully connected layers are eliminated and 

residual modules (Kaiming 2016) have been 

included. They also proposed to use depth-wise 

separable convolutions that separate the processes of 

features extraction to depth-wise convolution layers 

and point-wise convolution layers to separate the 

spatial cross-correlations from the channel cross-

correlations. The accuracy rate for emotion 

recognition and classification reached 66% using the 

FER-2013 dataset. 

Liu et al. (Liu 2014) proposed a CNN model 

named 3DCNN-DAP for the emotion recognition, 

based on Deformable Action Parts (DAP). This work 

focuses on the deformable facial action part, which is 

the most important facial information when analyzing 

emotions and dynamically changes according to the 

facial expressions. They proposed a technique for 

learning deformable parts of action and for detecting 

specific parts of the action of the face under structured 

spatial constraints. To evaluate the proposed method, 

they used CK+ and MMI posed expression datasets 

and, the FERA spontaneous dataset. The best 

accuracy rate they have obtained is 87.5% on CK+ 

dataset. 

In their paper, Khorrami et al. (Khorrami 2015) 

proposed a CNN architecture for the selection of the 

most relevant parts of the human face allowing the 

recognition of facial expressions. They built a zero-

bias CNN network, which consists on ignoring the 

biases of the convolutional layers in order to reduce 

the number of parameters. To evaluate the 

performance of this method, they used the CK + and 

Toronto Face Dataset (TFD) datasets. They obtained 

an accuracy rate of 81.8% with the CK + dataset and 

an accuracy rate of 79.4% with the TFD dataset. 

Li et al. (Li 2018) proposed a Patch-Gated CNN 

(PG-CNN) model that breaks down the face into 

facial regions. They extracted an intermediate 

features map of the facial image using VGGnet 
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model. After, this intermediate features map is 

decomposed by the PG-CNN into 24 sub-feature-

maps corresponding to 24 local patches. They then 

calculated the weight of each patch to perceive facial 

occlusions. Finally, the representation of the occluded 

face is obtained by the concatenation of the weighted 

local features. They achieved an accuracy of 80.28% 

using the CK + database. 

In the paper of Xie and Hu (Xie 2019), the Deep 

Comprehensive Multi-patches Aggregation CNN 

(DCMA-CNN) for the recognition of facial 

expression has been introduced. This architecture is 

composed of two branches of a CNN. One branch 

extracts local features depicting the expression details 

of image patches, while the other extracts global 

features characterizing the high-level semantic 

information of an expression derived from the entire 

expression image. The local and global features are 

fused for the classification task. To evaluate the 

model they used CK+ and JAFFE facial expression 

datasets, and they obtained a rate accuracy of 88.67%. 

Zhou et al. (Zhou 2018), proposed a method that 

uses bilinear-CNN models. They transformed facial 

expression analysis from a classification problem into 

a regression one to predict the facial expression 

updates based on local appearance features. They 

explored two different deep CNN architectures, 

VGG16 and ResNet50. To improve these methods by 

a bilinear pooling, they modified them accordingly to 

serve the regression task. Specifically, they removed 

all the layers after the global pooling layer that 

aggregated all features spatially; these layers include 

the last convolution layer and the loss layer. Over the 

global pooling layer, they stacked a new convolution 

layer with randomly initialized weights to output final 

embedding vectors for input images. They evaluated 

their models on the FER-2013 dataset and they 

obtained a rate accuracy of 81,79% using global 

pooling VGG16 and 83,78% using bilinear pooling 

VGG16. The proposed method recognize the basic 

emotion and a full range of other emotions. 

Zhang et al. (Zhang 2019) proposed a Bilinear 

CNN model based on factorized bilinear pooling 

(FBP) that aims to use the audio and video features 

for the emotion recognition. In this proposed method, 

they extracted the emotion features from video and 

audio using two different parallel streams of CNN. 

Then, they fused the outputs feature maps using 

factorized bilinear pooling. Finally, they classify the 

emotion using a fully connected layer followed by a 

Softmax function. To validate their method, they used 

the audio-video AFEW dataset and they obtained a 

rate accuracy of 62,48%. 

3 PROPOSED METHOD 

The main contribution of this work is the use of 

bilinear pooling by combining a standard CNN (with 

generally performs well, but suffers from a huge 

number of parameters and are time consuming) and a 

shallow CNN built from scratch, which has a reduced 

number of parameters, and an acceptable recognition 

rate. Bilinear pooling is considered as a Second-order 

aggregation of CNN activations, which can provide 

improvements over classical representations using 

first-order aggregation (e.g., sum or max).  Actually, 

the Bilinear CNN (B-CNN) is considered as a state-

of-the-art network architecture for texture and fine-

grained recognitions. A bilinear CNN model consists 

of two parallel CNNs, each of them extracts the 

features map from an input image. Features maps 

produced by each of the two CNNs are multiplied 

using the outer product generating second-order 

characteristics. The latter are then pooled to form high 

dimensional bilinear features to obtain an image 

descriptor. Bilinear features maps are normalized 

using sqrt (square root) and L2 normalization. 

Finally, fully connected layers and a Softmax 

function are used for the classification task. Such 

bilinear architectures have been proposed for the 

recognition and classification of facial emotions. 

Bilinear CNN models have proven effective for fine 

recognition, scene categorization, texture 

recognition, and visual question-and-answer tasks, 

among others. They are able to distinguish the subtle 

differences between cars, birds and planes (Lin et al, 

2017) (Lin et al, 2015). In the following, we present 

the transfer learning process, the architecture of the 

shallow CNN as well as the bilinear architecture. 

3.1 Transfer Learning for Emotion 
Recognition 

First, we proposed to explore standard CNN 

architectures such as (Densenet, Mobilenet V1 & V2, 

InceptionResnetV2, NasnetMobile, Xception, 

ResNet50, VGG16 and VGG19), which are widely 

studied and exploited in practical applications. To 

train these architectures to the classification of the 

basic facial expression, we combined the transfer 

learning and the fine tuning. The transfer learning is 

a machine learning technique that consists of using a 

model trained in a particular task to perform another 

one. The fine tuning consists in using an already 

trained model and training it on a specific dataset. 

This technique requires that the last fully connected 

layer be replaced by another one adapted to the new 

task to be performed (classifying the seven basic 
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facial expressions in our case). These deep models 

have performed well, but they use a huge number of 

parameters for the training. 

3.2 Shallow CNN Architecture 

To obtain a good performance with small number of 

parameters, we proposed to introduce a new CNN 

architecture with a small number of layers.  After 

several experimentations, we built a shallow CNN 

with 7 convolution layers, 3 max-pooling layers and 

a single fully connected layer. The table 1 

summarizes the architecture of the proposed shallow 

CNN. To train this architecture to the classification of 

the basic facial expression, we used transfer learning 

and the fine tuning. Our architecture has been trained 

on facial expressions datasets. The classification of 

the facial expressions with the shallow architecture 

has given the accuracy rate of 67.78% (on the CK+ 

dataset), which is quite good considering the depth of 

the CNN and its number of parameters. 

Table 1: Architecture of the shallow CNN. 

Layer Output shape Params. count
Input Layer 224, 224, 3 0
Convolution 224, 224, 64 1792
Convolution 224, 224, 64 36928
Max-pooling 112, 112, 64 0
Convolution 112, 112, 128 73856
Convolution 112, 112, 128 147584
Max-pooling 56, 56, 128 0
Convolution 56, 56, 256 295168
Convolution 56, 56, 256 590080
Convolution 56, 56, 256 590080

3.3 Bilinear Pooling for Emotion 
Recognition 

A bilinear CNN model consists of two parallel CNNs, 

each of them extracting the features map from an 

input image. Features maps produced by each of the 

two CNNs are multiplied using the outer product 

producing second-order characteristics. The latter are 

then pooled to form high-dimensional bilinear 

features to obtain an image descriptor. Bilinear 

features maps are normalized using sqrt (square root) 

and L2 normalization. Finally, fully connected layers 

and a Softmax function are used for the classification 

task. Such bilinear architectures have been proposed 

for the recognition and classification of facial 

emotions. Bilinear CNN models have proven 

effective for fine recognition, scene categorization, 

texture recognition, and visual question-and-answer 

tasks, among others. They are able to distinguish the 

subtle differences between cars, birds and planes (Lin 

2017) (Lin 2015).  

The bilinear architecture nevertheless poses some 

performance problems in terms of temporal 

complexity. The learning phase of both networks is 

time consuming. Even the recognition phase can 

often be time consuming. This is due to the depth of 

the architectures used and the number of parameters 

required for each branch of the bilinear architecture. 

Our goal is to reduce the processing time of a bilinear 

architecture while keeping a very good accuracy rate. 

The combination of a standard architecture with our 

shallow architecture seemed to us a good compromise 

that needed to be tested. 

We tested a number of bilinear configurations. We 

combined two instances of standard architectures as 

well as combined with our shallow CNN. All the 

CNNs have been modified to become a bilinear 

architecture. All layers after the last convolution layer 

have been removed, namely the last pooling layer, the 

fully connected layer, and the loss layer. The weights 

of each CNN have also been fixed. The two CNNs 

were used in parallel with a different weight 

initialization for each of them in order to extract the 

feature maps from the same input images. These 

feature maps were merged using the Khroneker 

product (Paumard 2018). Two normalization layers 

follow the features extraction (sqrt and L2 have 

experimented with more or less the same 

performance). Finally, a fully connected layer with 7 

outputs followed by a Softmax function was used for 

the final classification. The bilinear architecture that 

combines VGG16 and our shallow CNN is presented 

in Fig. 1. 

Figure 1: The proposed Bilinear CNN architecture. 

4 RESULTS AND DISCUSSION 

In this section, we present the facial expression 

databases used in our experiments and we detail the 

experimental results. 
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Table 2: Results obtained using standard configurations and bilinear ones on CK+ dataset. 

Standard CNNs Bilinear pooling 

ARCHITECTURES 
Training 

Accuracy 

Test 

accuracy 

Number of 

parameters 

Training 

Accuracy 

Test 

accuracy 

Number of  

parameters 

DenseNet (1) 53,10% 35,96% 
8,062,504 91,08% 34,09% 

7,040,538 DenseNet (2) 52,68 % 33,40% 

MobileNet-V1 (1) 53,75% 31,09% 
4,253,864 96,53% 37,38% 

14,568,903 MobileNet-V1 (2) 56,06 % 28,46% 

MobileNet V2 (1) 60,51 % 29,59% 
3,538,984 100,00% 42,82% 

13,721,671 MobileNet V2 (2) 61,32 % 31,87% 

NASNetMobile (1) 62.10% 30,90% 
5,326,716 75,43% 41,18% 8,526,964 

NASNetMobile (2) 63,30 % 34,09% 

InceptionResNetV2 (1) 61,5 7% 36,13% 
55,873,736 82,62% 39,20% 49,758,951 

InceptionResNetV2 (2) 59,77 % 33,41% 

ResNet50 (1) 58,38% 40,07% 
25,636,712 86,90% 41,50% 44,363,911 

ResNet50 (2) 59,03 % 42,98% 

Xception (1) 51,68% 42,31% 
22,910,480 77,48% 36,77% 50,221,615 

Xception (2) 53,99 % 44,01% 

VGG16 (1) 62,21% 69,16% 
138,357,544 100,00% 84,30% 16,549,703 

VGG16 (2) 65,89 % 70,60 % 

VGG19 (1) 63,91% 68,91% 
143,667,240 100,00% 83,12% 21,859,399 

VGG19 (2) 64,88 % 69,33% 

Shallow (1) 65,21% 67,78 % 
3,140,423 100,00% 78,65% 3,929,735 

Shallow (2) 62,97 % 65,77% 

VGG16 (2) 65,89 % 70,60% 143,667,240 
100,00% 86,98% 9,470,279 

Shallow (1) 65,21% 67,78% 3,140,423 

Table 3: Results obtained using standard configurations and bilinear ones on FEI dataset. 

ARCHITECTURES 
Training 

Accuracy 

Validation 

accuracy 

Number of 

parameters 

Training 

Accuracy 

Validation 

accuracy 

Number of  

parameters 

DenseNet (1) 60.34% 25,32 % 
8,062,504 80,52% 31,09% 7,040,538 

DenseNet (2) 59,63 % 23,99 % 

MobileNet-V1 (1) 60.62% 29,63 % 
4,253,864 68,55% 31,62% 14,568,903 

MobileNet-V1 (2) 61,08 % 30,10 % 

MobileNet V2 (1) 64,75 % 32,23 % 
3,538,984 75,65% 42,33% 13,721,671 

MobileNet V2 (2) 65,03 % 34,73 % 

NASNetMobile (1) 54.03% 22,91 % 
5,326,716 65,43% 32,53% 8,526,964 

NASNetMobile (2) 57,88 % 25,83 % 

InceptionResNetV2 (1) 61,5 7% 36,13% 
55,873,736 81,43% 45,20% 49,758,951 

InceptionResNetV2 (2) 60,55 % 34,11 % 

ResNet50 (1) 66,85% 50,49% 
25,636,712 86,90% 51,31% 44,363,911 

ResNet50 (2) 63,36 % 48,77 % 

Xception (1) 51,68% 32,31% 
22,910,480 57,58% 45,46% 50,221,615 

Xception (2) 49,65 % 36,98 % 

VGG16 (1) 70,09% 80,89 % 
138,357,544 100,00% 83,52% 16,549,703 

VGG16 (2) 69,83 % 79,89 % 

VGG19 (1) 68,39% 78,21% 
143,667,240 100,00% 82,77% 21,859,399 

VGG19 (2) 66,97 % 76,88% 

Shallow (1) 68,20% 67,20 % 
3,140,423 97,67% 77,15% 3,929,735 

Shallow (2) 65,37 % 64,20 % 

VGG16 (2) 70,09 % 80,89 % 143,667,240 
100,00% 85,35% 9,470,279 

Shallow (1) 67,21% 57,33 % 3,140,423 

4.1 Databases 

In our experiments, we used CK+ and FEI facial 

expression datasets, which consist of seven basic 

expressions (anger, disgust, fear, happiness, sadness 

and surprise). The CK+ dataset (Cohn-Kanade 

extended dataset) is the extension of the CK one and 

it is composed of 327 video sequences. We extracted 

the last three images from each sequence of the CK+ 

video dataset to build a new image dataset with 981 

mainly grey images. The FEI facial expression 

dataset has been created in the Artificial Intelligence 

Laboratory of FEI Brazil and it is composed of 252 

images. 

5



4.2 Results 

We used the same CNN standard architecture with 

different initializations and we combined them to 

form the bilinear CNN model. The accuracy rate 

using the bilinear architecture has been improved 

compared the initial results. The bilinear VGG16 

model gives the best accuracy rate but it still uses a 

huge number of parameters. A bilinear architecture 

using two instances of the shallow CNN has also been 

tested. It resulted in the third best accuracy while 

using a reduced number of parameters. Finally, we 

implemented a bilinear architecture by combining 

VGG16 with the shallow CNN to see the impact on 

the accuracy rate while reducing the number of 

parameters and then reduce the processing time.  

Table 2 and table 3 summarize the results obtained 

using standard configurations and bilinear ones on 

respectively CK+ and FEI dataset. For the CK+ 

dataset, the fine-tuned VGG16 achieved the best 

accuracy rate, while the shallow CNN has achieved 

the third performance with an accuracy rate of 

67,78%. In a bilinear configuration, VGG16 has also 

achieved the best performance with an accuracy rate 

of 84.30 %, and the shallow CNN has realized an 

acceptable performance with an accuracy rate 

78,65%. 

The combination of VGG16 and the shallow CNN 

achieved the best performance of all standard and 

bilinear configurations tested. It achieved the 

accuracy rate of 86,98%.For the, FEI Dataset, the 

VGG16 in a standard configuration reached the 

accuracy rate of 80.89%, which is the best 

performance of all the tested architectures. Our 

shallow CNN has given the third performance with an 

accuracy rate of 67,20%. The VGG16 in a bilinear 

configuration has given the best performance of all 

the standard architectures used in the same 

configuration. It, indeed reached the accuracy rate of 

83.52%. Our shallow model used in a bilinear 

configuration has given the third accuracy rate that is 

77,15%. Finally, the bilinear configuration in which 

we combined the VGG16 model with our shallow 

model gives the best performance of all the bilinear 

configurations as well as he standard configuration 

with an accuracy rate of 85,35%. 

4.3 Comparison with the State of the 
Art 

In Table 4, we compare the performance of the 

proposed Bilinear model on CK+ dataset, with 

different other methods, including Hand-crafted-

based methods (TMS (Lin 2017), CDA (Jain 2011), 

MSR (Jain 2011) and ITBN (Rifai 2012)) and deep-

based methods (3DCNN (Kaiming 2016), Zero-bias 

CNN (Liu 2014b), PG-CNN (Khorrami 2015) and 

LFCNN (Zhao 2011)). The recognition accuracy of 

some methods that are involved in comparison is far 

lower than the proposed model, which validates the 

effectiveness of our model. 

Table 4: Results of hand-crafted and CNN models on 

(CK+) Dataset. 

Method 
Validation 

accuracy 

Hand-crafted 

features 

TMS (Lin 2017) 91.80%

CDA (Jain 2011) 85.00%

MSR (Jain 2011)  91.40% 

ITBN (Rifai 2012) 86.30%

CNN 

Architecture 

3DCNN-DAP (Kaiming 2016)  87.90%

Zero-bias CNN (Liu 2014b) 81.80% 

PG-CNN (Khorrami 2015)  80.28%

LFCNN (Zhao 2011) 88.67%

Our CNN 

models 

VGG16  70.60%

Shallow CNN 67.78%

Bilinear VGG16  84.30%

Bilinear Shallow CNN 78.65%

Proposed Bilinear model  86.98%

In Table 5, we compare our proposed CNN 

models with (PCA (Wang 2013), LDA methods 

(Thomaz 2010) using FEI dataset.  We notice that the 

handcrafted methods implemented FEI dataset give 

an accuracy rate better than the proposed model. 

For the fine-grained facial expression analysis, we 

experimented various CNN architectures such as 

VGG16, ResNet50, Mobilnet, as well as our own 

shallow model. We evaluated these architectures on a 

standard CK + and FEI databases. The results have 

shown that deep CNN models achieve very promising 

results. Moreover, the bilinear CNN models have 

significantly outperformed their respective 

counterparts. 

Table 5: Results of hand-crafted and CNN models on FEI 

dataset. 

Architectures CNN 
Proposed 

Bilinear CNN

CNN 

Architecture 

VGG16 70,0% 
85,35%

Shallow CNN 67,2% 

Handcrafted 

features 

PCA (Wang 2013) 94,00%

LDA (Thomaz 2010) 92,20%

5 CONCLUSIONS 

Advances in modern techniques in artificial 

intelligence have led to considerable advances in the 

field of facial recognition. Nevertheless, there are still 

a number of problems to solve in order to achieve 

performances close to those of humans. Our 
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contribution is, in our opinion, a contribution to 

advancing research in this area in the right direction. 

Normally, the use of CNNs imposes the 

introduction of a large number of parameters with 

more or less efficient classification rates. The most 

powerful architectures often use the largest number of 

parameters. We tested these architectures 

individually and combined using the bilinear pooling. 

We found that a bilinear architecture improves 

performance, but the number of parameters remains 

too large. 

To measure the impact of the number of 

parameters in the classification performance, we 

developed our own shallow architecture which, 

despite the small number of parameters, still gave 

good results when it’s used individually. 

We then used our shallow model with the standard 

VGG16 architecture that gave us the best 

performance. We evaluated our proposed bilinear 

model on the CK + and FEI datasets. We found that 

this model allowed us to obtain a good precision rate, 

namely 86.98% using the CK+ dataset, and 85.35% 

on the FEI dataset while using a reduced number of 

parameters. We can therefore conclude that the 

bilinear model CNN has clearly exceeded the 

performance of simple deep CNN models. 

We compared the results with other deep models 

and handcrafted methods. We found that we 

performed better than some methods. We also found 

that methods that use local and global characteristics 

exceeded our method in terms of performance.  

In perspective, we will propose a CNN model that 

extracts local and global characteristics and merges 

them with bilinear pooling to improve the 

performance of our method. 
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