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Abstract 

Based on the association of finite elements homogenization method and a rigorous homogenization scheme 

accounting for crack interactions, this paper provides rigorous predictions for the local and effective properties of 

microcracked viscoelastic masonry with or without creep of bricks. For the sake of simplicity,  viscoelastic bric k 

and mortar are assumed to follow the Generalized Maxwell rheological model and to be respectively safe and 

microcracked. In the mortar, the distribution of microcracks orientations is assumed to be random. Two steps are 

followed. The first one is based on the identification at the short and long terms of an approximate analytical 

creep function for the mortar. This step relies on the coupling between the Griffith’s brittle fracture theory and a 

rigorous homogenization scheme - the Ponte Castañeda & Willis model - accounting for crack interaction instead 

of the dilute scheme adopted previously in Rekik et al. Two cases are considered: open and closed cracks. The 

first step allows to avoid recourse to ’heavy’ numerical inversion of the Laplace-Carson transform. The second 

one provides overall creep coefficients of masonry by means of periodic homogenization carried out by finite 

elements method. For open cracks state, time-dependent crack density is investigated. The proposed model is 

validated by comparison with an analytical one available for a compressed masonry wall with ”‘standard”’ 

viscoelastic mortar joints. Effect induced by mic rocracks is also highlighted by comparison with uncracked 

masonry. At last, results provided by the proposed model can be considered to be rigorous solution improving on 

dilute estimates for the creep behavior of microcracked mortar and demonstrating the interest to not neglect 

both cracks interactions and creep of bricks units. 
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1. Introduction 

The rich heritage of historic masonry buildings in 

different parts in the world bears the idea that 

masonry is one of the oldest building materials used 

by man. Moreover, now days, it is still the most 

widely used building material. Several models have 

been developed and presented in the literature for 

studying and predicting the behavior of masonry 

structures. Depending on the level of accuracy and 

simplicity required, either macro- (classical no-

tension models [1, 2, 3, 4, 5, 6, 7, 8] or micro-

modeling [9, 10, 11, 12, 13] strategies can be used 

for this purpose. On the other hand, some authors 

have combined homogenization techniques with a 

continuum damage mechanics approach [14, 15, 16]. 

Other authors [17, 18], have defined suitably 

macroscopic yield failure surfaces. Macro-

approaches obviously require a preliminary 

mechanical characterization of the model, based on 

experimental laboratory or in situ tests [19, 20]. In 

studies based on micro-analysis, two main 

approaches have been used: the simplified approach, 

which is the more refined, and the detailed micro-

modeling approach. Simplified methods consist in 

modeling the bricks, mortar and interface separately  

 

 

by adopting suitable constitutive laws for each 

component. This approach gives highly accurate 

results, especially at local level. Several authors [21, 

22, 23, 24, 25, 26] have established that the interface 

elements reflect the main interactions occurring 

between bricks and mortar. A simplified micro-

model is an intermediate approach, where the 

properties of the mortar and the interface are lumped 

into a common element, while expanded elements 

are used to model the brick units. However this 

model reduces the computational cost of the 

analysis, some accuracy is obviously lost. 

Although creep effects in masonry are far from being 

negligible, in the literature, little attention [27, 28, 

29] is devoted to the prediction of the macroscopic 

creep behavior of masonry under sustained loads. In 

this context, [30, 31, 32, 33] proposed models to 

predict creep coefficients according to the properties 

of each masonry constituent. These models are based 

on analytical or numerical homogenization using 

finite elements method (FEM) in order to deduce the 

macroscopic creep of undamaged (without cracks) 

masonry. Moreover, most of these studies, except 

some works such as Cecchi & Taliercio’s paper [31], 
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neglects the brickwork creep which can be argued by 

the fact that most of the creep effects take place in 

the bed joints, which are responsible for 60 to 80 % 

of masonry creep even if their volume fraction 

represent only 20 % of the brickwork [34]. 

Nevertheless, the creep deformation of the brick 

layers may be far from being negligible. 

One of the objects of this work is to account for creep 

of each masonry constituents (brick units and mortar 

joints). Concerning the creep behavior of traditional 

mortar, various rheological models namely the 

USBR, Feng, Ross, typical and modified versions of 

the Burgers and Modified-Maxwell models may be 

investigated [35, 36]. Besides, it is well known that 

cracking is frequently concentrated in mortar joints 

in case of historical masonry and, in particular, in 

case of in-plane shear actions with low compression 

levels. This work takes into account presence of 

microcracks in the viscoelastic mortar joints. It is 

interesting to note that in the literature, there exist 

several approaches accounting for damage in 

viscoelastic materials [36, 37] based for example on 

a coupling between continuum damage mechanics 

and viscoelasticity through the generalized Kelvin 

Voigt model [37] in order to describe the long-term 

creep of gypsum rock. The main disadvantage of this 

model is that it requires experimental investigation 

[36] or computational efforts to resolve nonlinear 

equation [37] function of internal damage variables. 

In the works of Nguyen, Dormieux et al. [38, 39], the 

effective behavior of microcracked linear 

viscoelastic concrete was derived from a 

combination of the Griffith’s theory [40] and the 

Eshelby-based homogenization scheme [41]. The 

undamaged concrete was assumed to obey to the 

typical Burgers model. In Choi et al. [35], an 

experimental study was carried in order to 

investigate the creep of masonry. A number of 

rheological models (USBR, Feng, Ross, typical 

Burgers, Modified Maxwell) are examined to assess 

their ability to predict the creep of masonry. It was 

proved that the Modified Maxwell model is the most 

accurate. According to this result [35], only the 

Modified Maxwell model (a parallel combination of 

the Maxwell model and a spring) is adopted in this 

paper to describe the creep of the mortar joints. 

Similarly to the mortar and for the sake of simplicity, 

bricks are assumed to follow the Generalized 

Maxwell (GM) model. Now, for microcracked 

mortar, by contrary to recent works Rekik et al. [42, 

43, 44] and Nguyen et al. [38, 45] adopting 

respectively the dilute and dilute/Mori-Tanaka 

schemes in order to estimate the effective creep 

function of the mortar, it is proposed in this paper to 

adopt a rigorous homogenization model - the Ponte-

Castañeda & Willis scheme [46] - accounting for 

cracks interactions. Indeed, it is worth noting that 

even the dilute scheme is useful for dilute 

concentrations of cracks, it has been demonstrated in 

Dormieux and Kondo [47, 48] that its estimates 

coincide with those derived from the Mori-Tanaka 

(MT) scheme [41]. Moreover, they are close to the 

Ponte-CastaedaWillis (PCW) estimates for crack 

density parameter dc ≤ 0.15 [49]. However the MT 

predictions violate rigorous bounds of the Hashin-

Shtrikmann (HS) [41] type for composites with 

isotropic distributions of randomly oriented cracks 

[46]. It is worth noting that the adopted parameter dc 

allows the measurement of the effect of cracks on the 

bulk and shear moduli of the considered microcraked 

material. According to [48], dc is the relevant 

parameter with regard to the elastic energy as the 

internal variable governing the effect of damage 

evolution instead of the crack surface or its length. 

In a second step, it is necessary to determine the 

global behavior of the masonry with viscoelastic 

bricks and microcracked viscoelastic mortar. This 

step relies on homogenization technique based on 

the assumption that a statistically homogeneous 

medium represented by a ’representative volume 

element’ RVE, or a material with periodic structure 

represented by a ’repeated unit cell’ RUC, can be 

defined. The RVE, firstly used by Hill [50], 

corresponds to a microstructural subregion which is 

representative of the entire sub scale. Generally, the 

choice or the modeling of the RVE or RUC affects 

the homogenization results. Indeed the RVE depends 

on the investigated morphological or physical 

property, the contrast in the properties of the 

constituents, and their volume fractions. For given 

wanted precision and number of realizations, it is 

possible to provide a minimal volume size for the 

computation of effective properties. For composites, 

the RVE is the smallest material volume element 

which must contain a sufficient number of 

inclusions, which makes the effective moduli 

independent of assumed homogeneous forces or 

displacements on the RVE boundary. For regular 

masonry, as it is the case in the present work, it is 

useful to consider the pattern which is repeated 

periodically inside the masonry structure and to 

apply numerical periodic homogenization approach 

using FEM. At last, the obtained orthotropic 

effective properties are used to compute the behavior 

of a masonry wall subjected to compressive loadings 

[18, 42, 43]. 

The layout of the paper is as follows. The first step 

(see Fig. 1) of the proposed model is detailed in 

Section 2. 
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A recall of the PCW estimates for effective moduli 

of a microcracked media with isotropic 

distributions of randomly oriented (closed or 

opened) cracks is provided. After that the 

identification procedure of the MM’s six 

parameters for the microcracked mortar at short and 

long terms allowing the expression of its creep 

function is presented. The last part in Section 2 

shows an illustrative example for the followed 

methodology in step 1. Section 3 deals with the 

second step (Fig. 1) of the proposed model based 

on numerical periodic homogenization of regular 

masonry accounting for creep of both brick units 

and mortar joints (bricks are assumed to be safe 

unlike mortar). Section 4 validates the proposed 

numerical model by comparison with analytical 

expression for local displacement at the top of a 

compressed masonry wall with rigid bricks and 

’standard’ viscoelastic mortar joints. At last, the 

relevance of the proposed model is illustrated by 

investigating the case of a masonry wall subjected 

to compressive loadings. 

 

2. Instantaneous global properties of viscoelastic 

microcracked mortar (step -1) 

The results of brittle fracture mechanics - the 

Griffith’s theory - could be useful if we move from 

the real temporal space to the symbolic one due the 

Laplace-Carson (LC) transform. In the symbolic 

space, the apparent behavior of the mortar is linear 

elastic. This procedure allows the use of 

expressions available in the literature for the 

displacement’s jump induced by the crack [43]. 

Assuming again that the displacement jump field 

depends linearly on the macroscopic stress, it is 

possible to define an effective linear behavior for 

the microcracked mortar in the symbolic space 

using one of the available homogenization schemes 

(dilute, Mori-Tanaka, self-consistent, PCW or 

others [41]). To determine the global behavior in 

the real space time, it is possible to apply the inverse 

of the LC transform in some simple cases. It is then 

interesting to approach in the symbolic space, at 

least in short and long terms, the symbolic effective 

stiffness (or compliance) by an existing rheological 

model. For example, if the undamaged mortar 

behaves as the Modified Maxwell model, we try to 

approach the symbolic effective behavior of the 

corresponding microcracked mortar by the same 

model. After validation of this approximation at 

short and long terms, the inversion of the apparent 

effective stiffness will be straightforward. 

Therefore, the effective behavior of the micro-

cracked viscoelastic mortar could be expressed in 

the real space time. 

In this work, in the symbolic space, the Ponte-

Castañeda and Willis homogenization scheme 

(PCW) [46] is adopted for its ability of properly 

accounting for interactions and influence of spatial 

distribution of microcracks by contrary to the dilute 

scheme. 

Fig.1 Basic steps followed by the propose model: (s1) and (s2). 
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2.1. Ponte-Castañeda & Willis model 

We distinguish the case of closed from that of 

opened cracks as shown in the following 

2.1.1. Closed cracks 

We assume that the mortar contains a set of closed 

cracks with unit normal n and that the contact 

between the two crack lips is frictionless. In 

contrast to open cracks, it is necessary to take into 

account the fact that a compressive normal stress 

can be transmitted through the contact of the crack 

lips, while the shear stress in the crack plane 

remains zero. Adopting a continuum 

micromechanics approach, the closed crack is 

represented by a flat ellipsoidal inhomogeneity 

filled with an isotropic fictitious material having a 

 zero shear modulus, µc = 0 and a non-zero bulk 

modulus, kc ≠ 0. Accordingly Cc = 3kcJ where J is 

the spherical fourth-order projector. For randomly 

oriented closed cracks requiring an averaging 

process on crack orientations, the effective 

symbolic bulk and shear moduli read 

{

�̃�𝑃𝐶𝑊
∗ =�̃�𝑚

∗

�̃�𝑃𝐶𝑊
∗ = �̃�𝑚

∗ (1 −
480 𝑑𝑐

 (1− 𝜈𝑚
∗ )

225(2 − 𝜈𝑚
∗ ) + 64𝑑𝑐

 (4− 5𝜈𝑚
∗ )
)
 

    (1) 
Where  is the symbolic Poisson’s ratio,  and

 are respectively the matrix’s symbolic bulk and 

shear moduli.

2.1.2. Open cracks

When all microcracks in the RVE (Representative 

Volume Element) are open, the global symbolic 

deformation is elastic and the effective symbolic 

stiffness tensor  �̃� read 

 �̃�∗ = 3�̃�𝑃𝐶𝑊
∗ 𝐽+  2 𝜇𝑃𝐶𝑊

∗ 𝐾  (2) 

 

 

 

 

Where K is the deviatoric fourth-order projector  

defined by K = I – J, effective bulk and shear moduli  

are given in the symbolic space by  

 

 

2.1.3. Opening-closure transition criteria 

A crack is opened means that its lips are free of 

stress which can be expressed as follows  

σxy = σyy = 0 :     [uy] ≥0        (4)   

where [uy] is the displacement jump across the 

upper and lower crack surfaces. The last condition 

implies that the asymptotic stress at infinity is a 

tensile stress 0 otherwise crack closure 

occurs. Accordingly, a frictionless closed crack, 

which is a model of unilateral contact, can be 

defined as follows  

σxy = 0, σyy ≤ 0   :    [uy] = 0        (5) 

The transition between the two regimes is defined 

by the relations   

σxy = σyy = 0  :    [uy] = 0        (6)  

 

2.2. Identification procedure of existent 

rheological model at short and long times 

Whatever the state of the crack (open or closed), the 

following described identification procedure 

remains available. Only mortar properties at the 

macroscopic scale change owing to the state of the  

crack and the adopted homogenization scheme 

accounting for the presence of cracks.  

 

 

 

 

The series expansion of the PCW estimates for the 

mortar’s bulk’s and shear symbolic modulus at the 

vicinity of p = 0 gives 

 

 

                                                                              (7)  

and at the vicinity of p =  ∞, it reads 

�̃�𝑃𝐶𝑊
∗ =�̃�∞

0 +
�̃�∞
1

𝑝
+𝑂(1/𝑝2) 

𝜇𝑃𝐶𝑊
∗ =𝜇∞

0 +
𝜇∞
1

𝑝
+𝑂(1/𝑝2) (8) 

Hereafter, parameters   

are assumed to be known. For example, for open 

cracks, using theorems on the initial and final values 

given by  

lim
𝑝→0

𝑓 
∗(𝑝) = lim

𝑝→∞
𝑓(𝑡),   lim

𝑝→∞
𝑓 
∗(𝑝) = lim

𝑡→0
𝑓(𝑡),    

 (9) 

the PCW’s symbolic bulk’s and shear’s moduli (Eq. 

(3)) of a non-aging linear viscoelastic (n.a.l.v.) 

microcracked mortar following the MM’s model can 

be approached, at least at short and long terms, by 

expressions (14) provided in [43] available for a 

{
 
 

 
 �̃�𝑃𝐶𝑊

∗ =�̃�𝑚
∗ (1−

48 𝑑𝑐
 (1− (𝜈𝑚

∗ ) 
2)

27(1 − 2𝜈𝑚
∗ ) + 16𝑑𝑐

 (1+ 𝜈𝑚
∗ ) 

2
)

�̃�𝑃𝐶𝑊
∗ = �̃�𝑚

∗ (1 −
480 𝑑𝑐

 (1− 𝜈𝑚
∗ )(5 − 𝜈𝑚

∗ )

675(2 − 𝜈𝑚
∗ ) + 64𝑑𝑐

 (4− 5𝜈𝑚
∗ )(5 − 𝜈𝑚

∗ )
)

 

𝜇𝑚
∗ (p) = 𝜇𝑅

𝑒 +
1

1

𝜇𝑀
𝑒 +

2

𝑝 𝜂𝑚
𝑑

,   𝑘𝑚
∗ (p) = 𝑘𝑅

𝑠𝑒 +
1

1

𝑘𝑀
𝑒 +

3

𝑝 𝜂𝑚
𝑒

 

𝜈𝑚
∗ =

3 𝑘𝑚
∗  −2𝜇𝑚

∗

6 𝑘𝑚
∗ +2𝜇𝑚

∗                                     (3) 

�̃�𝑃𝐶𝑊
∗

=�̃�0
0
+ �̃�0

1
𝑝 + 𝑂(𝑝2) 

�̃�
𝑃𝐶𝑊

∗
=�̃�

0

0
+ �̃�

0

1
𝑝 + 𝑂(𝑝2) 

�̃�0
0
, �̃�0

1
, �̃�∞

0
, �̃�∞
1
, �̃�
0

0
, �̃�

0

1
, �̃�

∞

0
, �̃�

∞

1
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mortar with a matrix (uncracked mortar) following 

the MM’s rheological model 

   (10) 

The series expansion of Eq. (10) at the vicinity of p 

= 0 gives 

 

 

 (11) 

 

At the vicinity of p = ∞, MM’s symbolic moduli 

can be approximated by 

 (13) 

respectively for spherical and deviatoric parts. 

The characteristic times of the spherical and 

deviatoric parts of the Modified Maxwell model 

followed by the microcracked viscoelasticortar are 

respectively 

 

 

 

    (14) 

At last, the approximate creep function of a 

microcracked mortar which matrix follows the 

MM’s model reads (Eq. (15)) 

The Eqs. (7) = (11), (8) = (12) allow the identification  

of the following expressions for the six effective MM’s  

parameters for the HEMm (the homogeneous equivalent  

material to the microcracked mortar) 

 

 

2.3. Illustrative example 

In order to illustrate the above described 

identification procedure whether for mortar with 

open or closed cracks, it is proposed to consider 

hereafter the case of a microcracked mortar which 

properties at the safe state are given in Table 1. 

Table 1  Elastic and viscous moduli of the mortar (one 

term, n = 1) tested by Brooks et al. [30, 31] 

 E0 (MPa) Ν ei τM (days) 

Mortar 7700 0.2 0.7602 7.1 

2.3.1. Closed cracks 

Dilute and PCW estimates for effective elastic and 

viscous properties (explicit functions of the 

parameter dc) of the considered microcracked 

viscoelastic mortar with closed cracks are provided 

in the Table 1. For closed cracks, we recall that the 

bulk’s modulus of the microcracked mortar 

coincides with that of the safe matrix which is 

independent from the crack density. Accordingly, 

the PCW and dilute estimates for the spherical part 

of the mortar’s behavior coincide and are also 

independent from crack density dc. 

As shown on Table 2, only expressions of the 

effective properties related to the deviatoric part of 

the mortar’s behavior differ with the adopted 

predictive model. Accordingly, also the PCW 

estimate for the mortar’s ‘effective Poisson’s ratio’ 

is a function of the crack density (but it is time free).  

This expression is obtained by an exact inversion of 

the Laplace-Carson transform as follows 

 

 

 

accordingly 

  

         (16) 

which is not heavy to carry out by contrary to the 

LC inversion [51] of PCW estimate for the mortar’s 

effective creep function. 

Fig. 2-(a) demonstrates that the mortar’s ‘effective 

Poisson’s ratio’ increases with the increase of the 

crack density in the case of closed cracks. It remains 

lower than 0.5 showing that the mortar is far from 

to be incompressible. In case of closed cracks, the 

damage is assumed to do not evolve [47], 

accordingly, hereafter the crack density dc is 

assumed to be constant. 

Fig. 3 reports time-evolution of the mortar’s 

Young’s modulus for different crack densities values 

(dc = 0, 0.2, 0.55, 1). Qualitatively, it shows that the 

𝑘𝑀𝑀
∗ =𝑘𝑅

𝑠𝑒+
 𝜂𝑚
𝑠

3
𝑝 +𝑂(𝑝2) 

𝜇𝑀𝑀
∗ = 𝜇𝑘

𝑒 +
 𝜂𝑚
𝑑

2
𝑝 +𝑂(𝑝2) 

𝑘𝑀𝑀
∗ =(𝑘𝑅

𝑠𝑒+ 𝑘𝑚
𝑠𝑒)− 3

(𝑘𝑚
𝑒 ) 

2

 𝜂𝑀
𝑠 𝑝

 +𝑂(1/𝑝2) 

𝜇𝑀𝑀
∗ =(𝜇𝑘

𝑒 +𝜇𝑀
𝑒 )− 2

(𝜇𝑀
𝑒 )

 

2

 𝜂𝑀
𝑑 𝑝

 +𝑂(1/𝑝2)          (12) 

𝑘𝑅
𝑠𝑒= �̃�0

0,  𝑘𝑚
𝑠𝑒=�̃�∞

0 -𝑘𝑅
𝑠𝑒,  𝜂𝑀

𝑠 = 3�̃�0
1  

𝜇𝑘
𝑒=𝜇0

0 ,𝜇𝑀
𝑒 = 𝜇∞

0 -𝜇𝑘
𝑒,  𝜂𝑀

𝑑 =2𝜇0
1,  

𝜏 𝑀𝑀
𝑠 (𝑑𝑐

 )=
 𝜂𝑀
𝑠 (𝑑𝑐

 )(𝑘𝑅
 (𝑑𝑐

 )+𝑘𝑀
 (𝑑𝑐

 ))

3𝑘𝑅
 (𝑑𝑐

 )𝑘𝑀
 (𝑑𝑐

 )
 

𝜏 𝑀𝑀
𝑑 (𝑑𝑐

 )=
 𝜂𝑀
𝑑 (𝑑𝑐

 )(𝜇𝑅
 (𝑑𝑐

 )+𝜇𝑀
 (𝑑𝑐

 ))

2𝜇𝑅
 (𝑑𝑐

 )𝜇𝑀
 (𝑑𝑐

 )
 

J 𝑀𝑀
𝑎𝑝𝑝(𝑡,  𝑑𝑐

 )=
1

9𝑘𝑅
 (𝑑𝑐

 )
(1 −

𝑘𝑀
 (𝑑𝑐

 )

(𝑘𝑅
 (𝑑𝑐

 )+𝑘𝑀
 (𝑑𝑐

 ))
𝑒−𝑡/𝜏 𝑀𝑀

𝑠 (𝑑𝑐
 )) 

+
1

3𝜇𝑅
 (𝑑𝑐

 )
(1 −

𝜇𝑀
 (𝑑𝑐

 )

(𝜇𝑅
 (𝑑𝑐

 )+𝜇𝑀
 (𝑑𝑐

 ))
𝑒−𝑡/𝜏 𝑀𝑀

𝑑 (𝑑𝑐
 ))              (15) 

𝜈𝑃𝐶𝑊
∗ (𝑝, 𝑑𝑐

 )= 
3�̃�𝑃𝐶𝑊

∗  −2𝜇𝑃𝐶𝑊
∗

6�̃�𝑃𝐶𝑊
∗ +2𝜇𝑃𝐶𝑊

∗  

𝜈𝑃𝐶𝑊
 (𝑑𝑐

 )=1- 
2.8125

3.51562+𝑑𝑐
  

{
 
 

 
  𝑘𝑀𝑀

∗ =𝑘𝑅
 (𝑑𝑐

 )+
𝑝𝑘𝑀

 (𝑑𝑐
 ) 𝜂𝑀

𝑠 (𝑑𝑐
 )/3

𝑘𝑀
 (𝑑𝑐

 )+ 𝑝 𝜂𝑀
𝑠 (𝑑𝑐

 )/3

𝜇𝑀𝑀
∗ = 𝜇𝑅

 (𝑑𝑐
 ) +

𝑝𝜇𝑀
 (𝑑𝑐

 ) 𝜂𝑀
𝑑 (𝑑𝑐

 )/2

𝜇𝑀
 (𝑑𝑐

 )+ 𝑝 𝜂𝑀
𝑑 (𝑑𝑐

 )/2
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PCW estimate decreases rapidly with time t during a 

period of about 5.106 ≈ 58 days. In a second stage, it 

stabilizes or reaches a non-null asymptotic limit. 

This trend is also available for dc = 1. Quantitatively, 

this asymptotic limit decreases with the increase of 

the crack density. 

On Fig. 4 are depicted the PCW and dilute estimates 

for the mortar’s Young’s moduli evolutions with 

crack densities at times t = 20 and 1000 days. It can 

be observed that PCW and dilute models provide 

close estimates for the effective modulus 𝐸PCW(t,dc) 

for a crack density 0 ≤ dc ≤ 0.25. Beyond this 

interval, the percent error 

                                                                           (17) 

 

between these estimates increases to exceed 10 % 

for dc ≥ 0.55 as shown on Fig. 5. It can also be 

remarked that the PCW effective estimates are 

softer than the dilute ones which is an expected 

result due to the fact that the PCW model accounts 

for cracks interactions by contrary to the dilute 

scheme. For mortar with closed cracks, it can be 

concluded that dilute estimate remains acceptable 

for every time t and crack density dc < 0.55 (see 

Figs. 5 and 6). Otherwise this model highly 

overestimates the effective Young’s modulus of 

microcracked mortar. Besides, cumulative errors 

for both viscoelastic constituents (mortar and 

bricks) if bricks are also assumed to be 

microcracked could lead to (highly) stiffer 

macroscopic estimates for the masonry.

 

Table 2 Closed cracks : identified MM’s parameters for the microcracked mortar at the macroscopic scale (effective 

properties) using the PCW and dilute homogenization models. 

PCW 

model 

kR  (MPa) kM  (MPa) ηs (MPa.s) 

1025.81 3251.97 5.9846 109 

µR (MPa) µM (MPa) ηd (MPa.s) 

  

 

 

 

Dilute 

Model 

µR µM ηd 

   

 

 

 

 
 

 

2.99233 10 
9

1 + 0.948148 𝑑𝑐
  

2438.97

1 + 0.948148𝑑𝑐
  

769.358

1 + 0.948148𝑑𝑐
  

−2.99233 10 
9  +

1.26239 10 
10

2.10938 + 𝑑𝑐
  −2438.98+  

10289.4

2.10937 + 𝑑𝑐
  −769.358 +  

3245 .73

2.10938 + 𝑑𝑐
  

𝐸𝑟𝑟
 (%) = 100(

�̃�𝑃𝐶𝑊
 

 −�̃�𝐷𝐼𝐿
 

(�̃�𝑃𝐶𝑊
 

+�̃�𝐷𝐼𝐿
 
)/2

 ) 

Fig. 2  Evolution of the PCW estimate for the effective “Poisson’s ratio” of the microcracked mortar with crack density dc in the cas e of closed 

(a) and open (b) cracks. 
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2.3.2. Open cracks and time-dependent crack 

density 

By contrary to the case of closed microcracks, both 

spherical and deviatoric parts of the mortar’s 

behavior are affected by the presence of open 

cracks. Accordingly, the six effective mortar’s 

(elastic and viscous) parameters identified after 

averaging process on randomly oriented cracks 

based on the PCW model are different from those 

provided by the dilute scheme. Table 3 provides 

these parameters for both PCW and dilute models 

when the microcracked mortar’s properties at the 

safe (uncracked) state are given in Table 1. 

Based on these identified parameters, it is possible 

to calculate explicitly the effective creep function 

and hence the mortar’s Young’s modulus and its 

effective “Poisson’s ratio” in the case of open 

cracks 

 

 (18) 

 

By contrary to the case of closed cracks, Fig. 2-(b) 

shows that the mortar’s effective “Poisson’s ratio”  

 

 

 

 

decreases with the increase of density dc. The later 

should not exceed 0.41 otherwise the mortar’s 

effective “Poisson’s ratio” tends towards negative 

values which is aberrant. In the following, for the 

case of microcracked mortar with open cracks, we 

assume that the condition dc ≤ 0.41 is fulfilled. 

Moreover, for the sake of showing the trends, we 

assume firstly that crack density is constant. 

Secondly, since damage evolves in mortar (or more 

generally a media) with open cracks, than crack 

density is assumed to evolve following a power-law 

time function as prescribed by [54] for the sake of 

simplicity and as a first assumption. 

 
Constant crack density. Fig. 7 shows that the PCW 

estimates for the mortar’s Young’s modulus 

decreases with the increase of damage but does not 

vanish for dc ≤ 0.4. Moreover as predicted by the 

dilute scheme [42], the PCW estimates stabilizes 

beyond t ≥ 2.107 ≈ 231 days and tend towards none 

null asymptotic limits even if the PCW model 

provides softer estimates than the dilute ones for t 

≤ 1000 days (see Fig. 8). The huge difference 

between the PCW and dilute estimates mainly 

beyond dc = 0.2 (see Figs. 9 and 10) demonstrates 

Fig. 3 Closed cracks: PCW estimates for the evolution of the mortar’s 

effective Young’s modulus versus ’Ln(time)’. 

Fig. 4 Closed cracks: comparison between PCW and dilute estimates for 

the microcracked mortar’s effective Young’s modulus  (t = 1000 days) 

versus crack density. 

Fig. 6 Closed cracks: percent error between PCW and dilute estimates for 

the microcracked mortar’s effective Young’s modulus versus time. 

Fig. 5 Closed cracks: percent error between PCW and dilute estimates for 

the microcracked mortar’s effective Young’s modulus (t = 20 and 1000 

days) versus crack density. 

�̃�𝑃𝐶𝑊
 =

−0.185394+(0.369141+0.2𝑑𝑐
 )𝑑𝑐

 

−0.926971+𝑑𝑐
 (0.369141+𝑑𝑐

 )
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that the presence of open cracks implies a high 

interaction level between the micro-cracks by 

contrary to the same density of closed cracks. 

Accordingly, for damaged mortar with open cracks 

it is important and more rigorous to assess its 

effective Young’s modulus by means of the PCW 

model instead of the dilute one if dc > 0.2. 

 

 

 

 

 

 
Table 3 Open cracks : identified MM’s parameters for the microcracked mortar at the macroscopic scale using the PCW and 

dilute homogenization models. 

 

 

PCW 

model 

kR (MPa) kM (MPa) ηs (MPa.s) 

  

 

 

µR (MPa) µM (MPa) ηd (MPa.s) 

  

 

 

 

 

Dilute 

model  

kR kM ηs 

   

 

µR µM ηd 

 

 

  

  

 

 

Fig. 8 Open cracks: PCW and dilute estimates for the microcracked mortar’s 

Young’s modulus versus crack density at instants t = 20 and 1000 days. 

Fig. 10 Open cracks: percent errors between PCW and dilute estimates for the 

microcracked mortar’s Young’s modulus with different crack densities (dc = 0, 

0.1, 0.2, 0.3 and 0.4) versus time. 

Fig. 9 Open cracks: percent errors between PCW and dilute estimates for the 

micro-cracked mortar's Young's modulus versus crack density either for t = 20 

and 1000 days. 

Fig.7 Open cracks: PCW estimates for the mortar’s Young’s modulus 

versus ’Ln(Time(s))’ for different crack densities 

2.99233 10 
9

1 + 1.51704𝑑𝑐
  

2438.97 

1 + 1.51704𝑑𝑐
  

769.358

1 + 1.51704𝑑𝑐
  

1025.81

1 + 2.84444𝑑𝑐
  

3251.97

1 + 2.84444𝑑𝑐
  

5.98466 10 
9

1 + 2.84444𝑑𝑐
  

−2.99233 10 
9  +

7.88993 10 
9

1.31836 + 𝑑𝑐
  −2438.98+

6430 .89

1.31836 + 𝑑𝑐
  −769.358 +

2028 .58

1.31836 + 𝑑𝑐
  

−5.98466 109  +
8.41593 10 

9

0.703125 + 𝑑𝑐
  −3251.97+

4573.08

0.703125 + 𝑑𝑐
  −1025.81+

1442.55

0.703125 + 𝑑𝑐
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Time-dependent crack density evolution. As noted 

above, for the sake of simplicity, the crack density 

is assumed to accumulate in the following form as 

proposed by Shrive et al. [52] 

 

 

 (19)   

where τD is a constant damage time which refers to 

the time where most damage would occur. The 

coefficients are taken here as τD = 800, η = 0.3, and  

n = 10. dc(t) represents the level of damage 

accumulated from the time at which damage starts, 

t0, to the time of evaluation t. In the calculations here, 

damage is assumed to begin at 400 days. The rate of 

damage accumulation with this model is slow 

initially, but accelerates over time, as shown on Fig. 

11 reporting Fig 4.4 in [52].  

For the sake of showing the trends and effects, quite 

considerable damage is assumed to occur in a 

relatively short time in this example. Here damage 

factor attains about 0.33 after 1000 days with the 

damage starting at 400 days. Damage initially 

accumulates at a very low rate but then increases 

rapidly [52]. 

Fig. 12 shows a rapid decrease of the mortar’s 

Young’s modulus for t ≤ 5.107 (s) ≈ 578 (days). After 

that it tends towards an asymptotic limit of about 

2000 (MPa). At a third step, it decreases rapidly for 

t ≥ 8.107 (s). It can also be observed that for the 

considered time power-law crack density, dilute and 

PCW estimates for time evolution of the mortar’s 

effective Young’s modulus are close for t ≤ t1 = 8.107 

(s) ≈ 925 (days) (Fig. 13). This can be argued by the 

fact that dc is negligible below t1. After that (that 

means when t > t1) this damage parameter increases 

rapidly. Accordingly the mortar’s effective Young’s 

modulus decreases rapidly and it can be observed 

that the PCW estimates are (highly) softer than the 

dilute ones. Moreover, errors between these 

estimates exceed 10 % beyond t2 = 8.4 107 (s) ≈ 972 

(days). This trend is consistent with that observed on 

Fig. 9

 

3. Actual global properties of microcracked 

masonry using periodic homogenization 

(step-2): viscoelastic bricks and mortar 

In this part, both of brick and mortar are assumed to 

follow the Generalized Maxwell (GM) model. For 

the sake of simplicity, only one term is considered 

for the GM model [34]. Accordingly rheological 

model followed by bricks and mortar coincide with 

the MM’s model which tends towards a ’purely’ 

elastic behavior both at the vicinity of 0 or at 

infinity as shown below 

    .  

 

 

                                                                           (20) 

 

The mortar’s behavior can then be considered 

elastic and damaged at short and long terms as it 

Fig. 12 Comparison between dilute and PCW estimates : time evolutions of 

the microcracked mortar’s Young’s modulus with open cracks which crack 

density is assumed to be a time power-law function. 

Fig. 11  Non-linear evolution of damage ratio with time [52]. 

Fig. 13 Open cracks which crack density evolves following a time 

power-law function: percent error between PCW and dilute estimates  

𝑑𝑐
 (𝑡) =  ∑

100𝜂

𝜏𝐷
(
𝑡

𝜏𝐷
)
 

𝑛𝑡

𝑖=𝑡0

 

(𝐽𝑀𝑀(𝑡 → 0) =
1

9(𝑘𝑅
 + 𝑘𝑀

 )
+

1

3(𝜇𝑅
 +𝜇𝑀

 )
) 

(𝐽𝑀𝑀(𝑡 → ∞) =
1

9𝑘𝑅
 +

1

3𝜇𝑅
 ) 
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evolves with crack density variation. Its behavior, 

at each time t, can be described by two effective 

parameters: the Poisson’s ratio (relation (16)) if 

cracks are closed (respectively, relation (17), if 

cracks are opened) and ’Young’s modulus’ 𝐸PCW(t, 

dc) = 1//�̃�PCW(t, dc) if damaged or  𝐸PCW(t) = 

1/�̃�PCW(t) otherwise (dc = 0). The considered bricks 

are assumed to be isotropic, safe (uncracked) with 

a viscoelastic behavior following the MM’s model 

with parameters data given in Table 4.  

 
Table 4 Elastic and viscous moduli of brick (one term, n 

= 1) [30, 31] 

 E0 (MPa) Ν ei τM (days) 

Brick 17100 0.15 0.5327 33.8 

 

Bricks can than be considered to be “elastic” with a 

time-dependent ’Young’s modulus’ (see Fig. 14). 

 

                                                                                 

 

(21) 

Dimensions of the bricks are the following: height 

a = 55 mm, width b = 120 mm and thickness s = 

250 mm. Mortar joints are 10 mm thick. For the 

viscous rheological model, since the instantaneous 

Young’s moduli E0 for the MM’s model is given by 

E0 = E(t = 0) = ER +EM where the relaxation moduli 

is set equal to EM = eiE0 then the spring’s Young’s 

moduli ER reads ER = (1 − ei)E0. ei is a dimensionless 

parameter. 

Now, according to the fact that the considered 

masonry shows regular arrangement of bricks and 

mortar’s joints, it is possible to consider only a 

periodic cell and carry out numerical periodic 

homogenization using FE method. Moreover, as 

this periodic cell presents two axes of symmetry, 

normal and tangential directions along the unit 

vectors n and t, respectively, only its quarter (see 

Fig. 15) will be retained for computation. 

 

When applying a constant macroscopic stress and  

assuming that the per phase localization tensor 𝐴𝑟 

is time independent as previously mentioned in [43] 

following the hypothesis of Deudé et al. [53] then 

the average strain 𝜀 ̅𝑟 per phase r and the masonry’s 

overall behavior reduce respectively to 𝜀 ̅𝑟 =

𝐴𝑟:𝜀 ̅  and  𝜎 = �̃�: 𝜀 ̅  where the overall stiffness is 

given by �̃� =< 𝐶:𝐴 >. Recall that the average 

strain localization over the periodic cell reads < A 

>= I. It is then important to determine components 

of the localization strain tensor Ar
ijkl. To assess the 

effective ’elastic engineering constants’, it is 

proposed to subject the unit cell to three types of 

loadings: axial compression along n, axial 

compression along t and shear loading as shown on 

Fig. 15). In this case, strain localization 

components Ar
ijkl are given by the following 

equations: 

 
 

                        
                              (22)                                  
 

The localization strain tensor A is assumed to be 

orthotropic. Since the symmetry of the Cauchy strain 

tensor both in the anisotropic and isotropic spaces is 

required, it follows that Ar
ijkl = Ar

jikl = Ar
jilk (minor 

symmetry). 

The major symmetry of Ar is also necessary Ar
ijkl = 

Ar
klji. Accordingly only the components Axxxx, Ayyyy, 

Axyxy = Axyyx and Ayxxy = Ayxyx are not null. Owing to 

the classical Voigt notation, the constitutive 

behavior law of the unit cell reads 

  

  

 

 

  (23) 

where   𝜎 =<𝜎 >𝑉  is the overall applied stress on 

the periodic cell. The software Cast3M [54] has 

been used to provide local mechanical fields and 

mainly average mechanical fields such as strain 𝜀 ̅𝑟, 

stress  𝜎𝑟 over each phase r (r = b for bricks, m for 

mortar) and macroscopic strain  𝜀 ̅ = 𝑓𝑏𝜀 ̅
𝑏 + 𝑓𝑚𝜀 ̅

𝑚 

calculated in order to deduce components of the 

effective stiffness tensor �̃� (Eq. (23)). The five 

engineering ’constants’ are then given by 

 

 

  

 

Fig. 14 Time evolutions of the ’effective Young’s moduli’ of the 

considered viscous brick and mortar 

𝐸𝑏
 (𝑡) =

1

𝐽𝑀𝑀
𝑏 (𝑡)

=
7990.83

1 − 0.5327𝑒−1.60017.10
−7𝑡

 

𝜀 ̅𝑥𝑥
𝑟

=𝐴𝑥𝑥𝑦𝑦
𝑟 �̅�𝑦𝑦

 
, 𝜀 ̅𝑦𝑦
𝑟

=𝐴𝑦𝑦𝑦𝑦
𝑟 𝜀 ̅𝑦𝑦

 
,   �̅�=𝜀 ̅𝑦𝑦

 
𝑒𝑦⨂𝑒𝑦 

𝜀 ̅𝑥𝑥
𝑟

=𝐴𝑥𝑥𝑥𝑥
𝑟 𝜀 ̅𝑥𝑥

 
, 𝜀 ̅𝑦𝑦
𝑟

=𝐴𝑦𝑦𝑥𝑥
𝑟 𝜀 ̅𝑥𝑥

 
,   𝜀=̅𝜀 ̅𝑥𝑥

 
𝑒𝑥⨂𝑒𝑥 

𝜀 ̅𝑥𝑦
𝑟

=2𝐴𝑥𝑦𝑥𝑦
𝑟 �̅�𝑥𝑦

 
,     𝜀=̅𝜀 ̅𝑥𝑦

 
(𝑒𝑥⨂𝑒𝑦 + 𝑒𝑦⨂𝑒𝑥) 

(

�̅�𝑦𝑦
 

�̅�𝑥𝑥
 

�̅�𝑥𝑦
 
) =  (

�̃�𝑛𝑛𝑛𝑛
 

�̃�𝑛𝑛𝑡𝑡
 

0

�̃�𝑛𝑛𝑡𝑡
 

�̃�𝑡𝑡𝑡𝑡
 

0

0
0
�̃�𝑛𝑡𝑛𝑡
 
)(

𝜀 ̅𝑦𝑦
 

𝜀 ̅𝑥𝑥
 

2𝜀 ̅𝑥𝑦
 
) 

1

�̃�𝑡𝑡
 
(𝑡, 𝑑𝑐)

= 
�̃�𝑛𝑛𝑛𝑛
 

�̃�𝑛𝑛𝑛𝑛
 

�̃�𝑡𝑡𝑡𝑡
 

−�̃�𝑡𝑡𝑛𝑛
 

�̃�𝑛𝑛𝑡𝑡
 ,   

1

�̃�𝑛𝑛
 
(𝑡, 𝑑𝑐)

= 
�̃�𝑡𝑡𝑡𝑡
 

�̃�𝑛𝑛𝑛𝑛
 

�̃�𝑡𝑡𝑡𝑡
 
−�̃�𝑡𝑡𝑛𝑛
 

�̃�𝑛𝑛𝑡𝑡
 ,    

�̃�
𝑛𝑡

 (𝑡,  𝑑𝑐) = �̃�𝑛𝑡𝑛𝑡
 

,   �̃�𝑛𝑡
 
(𝑡,  𝑑𝑐) =

�̃�𝑛𝑛𝑡𝑡
 

�̃�𝑡𝑡𝑡𝑡
 ,   

 �̃�𝑛𝑡
 
(𝑡,  𝑑𝑐) =

�̃�𝑡𝑡𝑛𝑛
 

�̃�𝑛𝑛𝑛𝑛
            (24)    
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Recall that for an isotropic material (brick and 

mortar), components of the stiffness tensor 𝐶𝑟 (r = 

b, m) read 

 

 

 

  (25) 

Where 

 

  

are respectively the bulk and shear moduli. 

Fig. 16 reports the time evolution of PCW estimates 

for the masonry’s effective Young’s 𝐸𝑥𝑥, 𝐸𝑦𝑦,  and 

shear 𝜇𝑥𝑦  moduli. Qualitatively, it can be observed 

that the Young’s moduli decrease quickly during 

the first 100 days to attain almost their half initial 

values (at t = 0). Beyond 100 days, these moduli 

stabilize during a period of about 600 days before 

decreasing again rapidly beyond t = 800 (days), but 

less quickly compared to the first 100 days period. 

Recall that similar trends were observed for dilute 

estimates of the curves ’masonry’s effective 

Young’s moduli versus time’ where considered 

bricks were rigid [42]. Effective shear moduli is 

softer than effective Young’s moduli (is about 

𝐸𝑥𝑥/6, and 𝐸𝑦𝑦/4). Moreover, by contrary to 

Young’s moduli, it decreases progressively for t ≤ 

100 days and t ≥ 800 days (there is no sudden nor 

intensive decrease). Fig. 17 shows that masonry’s 

macroscopic estimates derived from PCW and 

dilute schemes are very close for t ≤ 800 days (error 

lower than 4 %). 

 Beyond this instant the percent error between the 

two estimates increases rapidly to exceed 10 % and 

even reach 24 % at t = 1000 days. At each time t, 

the PCW estimates are a softer than the dilute ones. 

On Fig. 18 are depicted time-evolutions of percent 

error 

                     (26) 

 

between macroscopic properties of masonry with 

elastic and viscous bricks. The highest gap between 

the two cases is observed for the 𝐸𝑦𝑦modulus. The 

brick’s viscosity increases stiffness along the 

normal direction y. This difference stabilizes 

around 12 % during a period of about 600 days after 

a rapid increase during the first 200 days. Beyond t 

= 800 days, 𝐸𝑟𝑟(%) increases to exceed 15 %. For 

𝐸𝑥𝑥 modulus, differences between the elastic and 

viscous cases is almost negligible since it is lower 

than 4 % for t ≤ 800 days. Similarly to the modulus 

𝐸𝑦𝑦, the error for 𝐸𝑥𝑥 increases rapidly for t ≥ 800 

days to exceed 15 % at t = 1000 days. By contrary 

to moduli 𝐸𝑥𝑥 and 𝐸𝑦𝑦, shear modulus of masonry 

with viscous bricks is softer than masonry with 

elastic bricks. Beyond t = 900 days, this trend is 

reversed. However difference between effective 

modulus 𝜇𝑥𝑦 for the two cases (elastic and viscous) 

remains acceptable (lower than 8 % for t ≤ 1000 

days). 

 

Fig. 15 Boundary and symmetry conditions for the considered quarter cell 

subjected to axial normal (a) or tangential (b) compression or shear (c) loadings  

Fig. 16 Times evolutions of the effective properties of a masonry cell constituted 

by viscous bricks and microcracked mortars joints with open cracks which crack 

density evolves following a time power-law function. 

�̃�𝑥𝑥𝑥𝑥
𝑟 = �̃�𝑦𝑦𝑦𝑦

𝑟 =𝑘 
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4

3
𝜇 
𝑟, �̃�𝑥𝑥𝑦𝑦

𝑟 = �̃�𝑦𝑦𝑥𝑥
𝑟 = 𝑘 

𝑟− 
2

3
𝜇 
𝑟,   �̃�𝑥𝑦𝑥𝑦

𝑟 = 2𝜇 
𝑟 

𝑘 
𝑟=

𝐸 
𝑟

3(1−2𝜈 
𝑟)

,    𝜇 
𝑟= 

𝐸 
𝑟

2(1+𝜈 
𝑟)
  𝐸𝑟𝑟

 (%) = 100(
𝐴𝑣
  −𝐴𝑒

 

(𝐴𝑣
 +𝐴𝑒

 )/2
 ) 
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4. Local behavior of a masonry wall: open cracks 

Since in the case of closed cracks, the damage is 

assumed to not evolve [47] and in order to consider 

interesting problems accounting for crack density 

evolution, it is proposed in this section to deal only 

with the case of open cracks. 

 

4.1. Rigid bricks: comparison between numerical 

and analytical solutions 

In order to validate the herein proposed numerical 

model, it is suggested in this part to compare its 

result in terms of vertical displacement of a 

compressed wall along the y direction (Fig. 19-(a)) 

to the analytical solution of a homogeneous plate 

submitted to the same vertical compressive load and 

assuming the hypothesis of ’in-plane stress’ [55]. 

Here, bricks are assumed to be rigid while mortar is 

viscoelastic following the Generalized Maxwell 

rheological model which elastic and viscous 

properties (one term) are provided in Table 1. 

Accordingly, the mortar’s Young’s modulus 

evolves at safe (dc = 0) and micro-cracked (dc 

following time power-law relation (18)) states as 

reported on Fig. 20. It can be noticed that while 

error between these states (safe and micro-cracked) 

is lower than 6 % for time t ≤ 750 (days), it increases 

relatively quickly after this limit to reach 22 % at t 

= 900 (days). 

 

For a homogeneous vertically compressed plate, we 

recall that the analytic solution is given by [55]  

 
      

    (27) 

where L and H are respectively the width and height 

of the panel and s is the brick thickness. Q1 and 𝑞1 =
𝑄1/(𝐿𝑠)   denote respectively the total vertical load  

 

 

 

and pressure applied at the top of the masonry 

panel. AF
ijkl represent approximate expressions for 

the homogenized relaxation coefficients provided 

by the kinematically admissible solution given in 

[55]. Particularly,  

 

                                                                          (28) 

 

where a denotes the height of the brick, eh is the 

thickness of the mortar head joints and  

                    

         (29) 

 is the bulk relaxation moduli of horizontal 

interfaces. In this work, note that viscoelastic 

behaviors of the bed and head joints (indexed 

respectively by ’b’ and ’h’) are assumed to be 

coincident and are defined by the relaxation 

function Em(t) (instantaneous ”‘Young’s modulus”’ 

of the mortar given by Em = 1/JMM
app (see relation 

(15)). 

On the other hand, to obtain the local numerical 

solution for this structure, the real heterogeneous 

problem (Fig. 19-(a)) is substituted by the 

homogenized one denoted by MHE(t, dc) (Fig. 19-

(b)) which orthotropic properties used for finite 

element resolution of the considered problem are 

determined due to the periodic homogenization 

procedure previously described in Section 3.  

Fig. 21 reports time evolution of the vertical 

displacement at the top of the compressed masonry 

wall composed of rigid bricks and (safe or 

microcracked) viscoelastic mortar. At the safe state 

of the mortar joints, this figure allows comparison 

between finite elements solution and analytical one 

provided by Eq. (27) assumed to be the reference 

solution. It can be seen that numeric and analytic 

solutions show similar qualitative trends. 

Fig. 17 Comparison between PCW and dilute estimates for effective 

properties of a masonry cell constituted by viscous bricks and 

microcracked mortars joints with open cracks which crack density 

evolves following a time power-law function. 

Fig. 18 PCW effective estimates for periodic masonry cell with 

microcracked mortar joints (open cracks):  comparison between elastic 

and viscous bricks . 

𝑢𝑦
 (𝑥,  𝐻,  𝑡) =  
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 𝐻
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Quantitatively, numeric solution is very close to the 

analytical one. Indeed, according to Fig. 22, the 

error between numerical and analytical (red curve) 

solutions does not exceed 7 % for all time 0 ≤ t ≤ 

1000 (days). This non-null error (at safe state of 

viscoelastic masonry) can be explained by the fact 

that analytic model implies approximate 

expressions for homogenized relaxation coefficient 

( ). Moreover, it is available for masonry with 

rigid bricks connected by interfaces, however the 

herein proposed numerical model accounts for 

finite thickness of mortar joints (here set equal to 

10 mm). 

The curve describing the evolution of the 

displacement uy at the top of the compressed wall 

(Fig. 21) with microcracked mortar joints shows 

qualitative trend similar to that observed for 

masonry wall with safe mortar joints till t = 600 

(days). After that the absolute value of the 

displacement uy does not stabilize as it increases 

with time. This is consistent with the decrease of 

the microcracked mortar’s Young’s modulus 

observed on Fig. 20. The difference between safe 

and micro-cracked states is highlighted by the blue 

curve depicted on Fig. 22 showing that presence of 

micro-cracks induces a gap between uy results lower 

than 13 % for time t ≤ 750 (days) but which 

increases with time to reach (for example) 31,3 % 

at t = 900 (days). It is worth noting that Fig. 22 

reports also curve estimating error between 

numerical results for uy at the top of the compressed 

wall with mortar joints at safe and microcracked 

states. Qualitatively, the trend of this curve is 

similar to that estimating error between analytic and 

numeric results at safe state of mortar joints. 

Quantitatively, this curve shows errors lower than 

those provided by blue curve. Indeed for t ≤ 760 

days, this error is below 7 %. After that, it can reach 

almost 25 % at t = 900 days which is consistent with 

the decrease of the microcracked mortar’s Young’s 

modulus observed on Fig. 20. 

 

 

 

 

 

 

 

 

Fig. 20 Mortar joints : Time evolutions of the ’instantaneous global Young’s moduli Em’ of the considered viscoelastic mortar at safe  and 

microcracked states and the error (%) between these moduli. 

Fig. 19 Rigid bricks and viscoelastic mortar joints: Real (a) and equivalent homogenized (b) masonry panels subjected to a vertical 

distributed load applied at the top [56]. 
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4.2. Viscoelastic bricks: numerical solution 

This part aims to assess the relevance and 

efficiency of the proposed model based on the 

coupling between PCW homogenization model and 

Griffith’s brittle theory. For this purpose, we 

consider the problem of a viscoelastic masonry wall 

of dimensions L = 1560 mm (length) and H = 1040 

mm (height) submitted to compressive loadings 

(three distributed loads at the top and two lateral 

edges and an additional concentrated load F applied 

on the top) as shown on Fig. 23. Bricks are assumed 

to be safe and viscous following the MM’s 

rheological model. The mortar’s (respectively, 

brick’s) material data used to compute this problem 

are given in Table 1 (respectively, Table 4). Crack 

density is assumed to evolve according to a time 

power-law function (Eq. (19)). On the other hand, 

as the arrangement of the bricks is regular, the 

effective behavior of the panel is assumed to be 

well estimated by that of a periodic cell which 

effective behavior (macroscopic effective stiffness) 

is determined in Section 3. The wall can then be 

modeled as a homogeneous material which 

properties coincide with those of the equivalent 

material HEM-2 (Fig. 1- (e)).  

On Fig. 24 are depicted the normal and shear 

stresses distributions in the compressed wall at t = 

900 days. Qualitatively, it can be observed that, 

under BC-2, distribution of the stress field σyy is 

symmetric (Fig. 24-(a)) by reference to the 

symmetry axis of the panel (x = L/2) unlike that of 

the shear stress σxy which is anti-symmetric (Fig. 

24-(b)). Similar trends are observed on Fig. 25  

 

 

 

 

related to the case of a wall under compressive 

loadings without concentrated load F (boundary 

condition BC-1) showing however different stress 

localization zones: at the right and left corners of 

the top of the wall. By contrary, normal and shear 

stresses concentrate at the vicinity of the 

application’s point of the concentrated load F when 

considering wall under boundary condition BC-2. 

Moreover, although under BC-1, compressive 

loadings induce only compression (σyy ≤ 0) 

throughout the area of the wall, the additional load 

F make appears tensile stresses (σyy ≥ 0) in small 

area surrounding the application point P of the load 

F as a reaction (response) to the highest values of 

normal compressive stresses reached around point 

P. Quantitatively, comparison between Figs. 24 and 

25 shows that the magnitude of the local normal 

stress throughout the wall under BC-1 is negligible 

compared to that attained in a wall under BC-2. 

Under condition BC-1, it can also be observed that 

the induced local shear stress is negligible 

compared to the induced local normal stress. For 

wall under BC-2, the shear stress is not negligible 

but (almost 4 times) lower than local normal stress. 

Fig. 26 illustrating evolutions of stress components 

at the middle height of the wall (y = H/2) along the 

x axis shows difference of stresses magnitudes 

between boundary conditions BC-1 and BC-2 

demonstrating that a concentrated load at the 

middle length of the wall increases the stresses 

magnitudes and even implies a peak for normal 

(shear) stress along the axis of the load F. 

 

 

 

Fig. 21 Rigid bricks and viscoelastic mortar joints: Time evolutions of the 

local vertical displacement uy at the top of the panel. 

Fig. 22 Time evolutions of the error between analytic (safe mortar) and 

numerical (safe and microcracked mortar) solutions for vertical 

displacement uy at the top of the compressed wall 
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Fig. 26 PCW estimates at time t = 900 days for the evolutions of the local stress σyy (left) and σxy (right) versus abciss x in the middle height of a wall 

with viscous bricks: comparison between boundary conditions BC-1 and BC-2. 

Fig. 25 Local normal (left) and shear (right) stress snapshots throughout a wall (with viscous bricks) under BC-1 

Fig. 24 Local normal (left) and shear (right) stress snapshots throughout a wall (with viscous bricks) under BC-2. 

Fig. 23 Masonry panel submitted to boundary conditions BC-1 (a), BC-2 (b) and equivalent problem (c) for masonry under BC-2. 
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Fig. 27 allows comparison between PCW and dilute 

estimates for the local normal and shear stresses. 

For the normal stress, these estimates are close 

except around the axis of symmetry of the wall 

where dilute scheme gives softer estimates than 

PCW model (a percent error of about 8 % is 

attained at the peak of stress σyy). This error value 

is acceptable, however it can be (quite) harmful if 

we study the risk of failure of the wall. Moreover, 

this error increases in the vicinity of the application 

point of the concentrated load (it can exceed 80 % 

inside the stress localization area). Although Fig.  

27-(b) shows close estimates deriving from dilute 

and PCW models, the percent error between these 

estimates reaches 46 % (Fig. 28) at three zones: 

near right and left wall edges and area surrounding 

application point of the concentrated load. This 

difference is clearly harmful and even dangerous 

when predicting failure of this compressed wall. 

The PCW model is then greatly recommended 

rather than the dilute homogenization model in 

order to anticipate efficiently the collapse of 

masonry compressed wall. On the other hand 

neglecting brick’s creep can be acceptable when 

estimating the normal local stress (see Fig. 29) 

since error between masonries with elastic and 

viscous bricks is lower than 4 % at the level of the 

wall’s middle height, however it is strongly harmful 

for the prediction of magnitudes of shear stresses 

for which evolution of error along the axis x shows 

a strong jump at the level of the wall’s symmetry 

axis. 

For comparison purpose between strain fields 

inside masonry under boundary condition BC-1 and 

BC-2, Fig. 30 reports εxy and εyy strain evolutions 

curves versus the x axis. Globally, under these 

boundary conditions, it is observed that the MM’s 

model predicts small strains. Moreover, 

qualitatively, these evolutions show similar trends 

(symmetric and anti-symmetric evolutions by 

reference to the axis x = L/2 respectively for εyy and 

εxy) as those observed for the normal and shear  

 

 

 

 

stress. Indeed, under BC-1, normal strain is almost 

constant with variation of the abciss x. 

However absolute value of the strain εyy presents a 

peak around the symmetry axis of the wall. The 

magnitude of this peak is two times higher than 

values of normal strain attained at the level of the 

wall’s edges. Clearly, normal strains induced by 

condition BC-2 are higher than those attained under 

condition BC-1 due to the additional concentrated 

load F. This remark remains available for the shear 

strain predicted at the wall line y = H/2. Sign of 

corresponding shear peaks under BC-1 and BC-2 

are opposite.   

For masonry with viscous bricks, comparison 

between dilute and PCW estimates for the local 

normal (shear) strain field as depicted on Fig. 31-

(a) (respectively 31-(b)) shows that the dilute 

scheme highly underestimates (in terms of absolute 

value) the PCW predictions (considered as a 

reference local solution) for all abciss x  [0, L]. 

Errors between PCW and dilute estimates for 

normal and shear strains are significant. For the 

former, this error varies between 48 % and 59.3 %. 

for shear strain Err(%) belongs to the interval [10 

%, 66.9 %]. Similarly to the shear stress, the 

maximal error value for shear strain is attained 

around the symmetry axis of the wall (x = L/2). This 

result confirms again that neglecting cracks 

interactions highly underestimates stress and strain 

local (normal and shear) fields throughout the 

compressed wall. This could lead to false 

interpretations of the magnitude of local stress and 

strain fields throughout the studied wall and 

accordingly to not properly anticipate the wall’s 

failure. At last, comparison between PCW 

predictions for the strain fields for masonries with 

elastic and viscous bricks (Fig. 32) reveals that 

absolute normal strain values attained inside the 

masonry with elastic bricks are higher than 

masonry with viscous bricks. In this context, errors 

for normal strain varies between 12.4 % and 17.8 

%. However evolution of error related to shear 

strain show a strong jump around the symmetry axis 

of the wall. Otherwise it varies between about 4.3 

% and 18.1 %
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Fig. 27  Boundary condition BC-2: comparison between PCW and dilute estimates for the evolutions of normal and shear stresses versus x axis (wall with 

viscous bricks) and study of the effect of accounting for creep of bricks. 

Fig. 28 Percent error between dilute and PCW estimates for local normal (left) and shear (right) stresses in the middle height of the  wall (case with viscous 

bricks). 

Fig. 29 Percent error between PCW estimates for local normal (left) and shear (right) stresses in the middle height of the wall: effect of bricks’ creep. 
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5. Synthesis of the results 

In the following, Tables 5 and 6 summarize trends 

of above obtained results at three levels: micro- 

 

cracked mortar, masonry periodic cell and 

compressed wall

 

 

 

 

Fig. 30 PCW estimates at time t = 900 days for the evolutions of the local strain εyy (left) and εxy (right) versus abciss x in the middle height of a 

wall with viscous bricks: comparison between boundary conditions BC-1 and BC-2. 

Fig. 31 Boundary condition BC-2: comparison between PCW and dilute estimates for the evolutions of normal and shear stresses versus x axis (wall 

with viscous bricks) and study of the effect of accounting for creep of bricks  

Fig. 32 Local normal (left) and shear (right) strain snapshots throughout a wall (with viscous bricks) under BC-2 
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Table 5 Comparison between PCW and dilute estimates at three levels: microcracked mortar, masonry periodic cell and 

compressed wall. 

Trends 

Mortar’s effective Young’s modulus 
DIL > PCW, Err ≥ 10 %, for dc ≥ 0.25, if open cracks (0.55 if closed cracks). 
 

Masonry’s effective cell properties (open cracks & dc = time power-law function) 

DIL ≥ PCW (Err → 19 to 24 % for dc → 0.33) 
 

Local fields in a compressed wall (open cracks & dc = time power-law function) 
           and              are close (−8 % ≤ Err ≤4 %]) 
           slightly stiffer than  
 
 

|𝜀𝑦𝑦
𝐷𝐼𝐿| ≪ |𝜀𝑦𝑦

𝑃𝐶𝑊|  (𝐸𝑟𝑟
  ∈ [47 %,  60 %]) 

 

 
 

Table 6 Comparison between masonry with elastic and viscous bricks: PCW estimates 

Trends 

Masonry’s effective cell properties (open cracks & dc is a time power-law function) 
 
 
 

 
 
 

Local fields in a compressed wall (open cracks   &   dc = time power-law function) 
 
 
 
  

  
 

6. Conclusions and perspectives 

This work provides a multi-scale improved model 

to the earlier one proposed in [43, 42] allowing 

rigorous assessment at short and long-terms of 

global and local behavior of microcracked 

viscoelastic masonry. Advantages of the proposed 

model are mainly related to the none recourse to 

numerical inversion of the Laplace-Carson 

transform [57, 58] when assessing the overall creep 

behavior of mortar and periodic masonry cell, to the 

ability of this model to take into account cracks 

interactions, creep of bricks units and variation of 

mortar’s ”‘Poisson’s ratio”’ with crack density. 

Assuming that the PCW estimates are the reference 

solution at local and global levels, this work shows 

that the dilute scheme overestimates the micro-

cracked mortar’s overall properties whether with  

 

open or closed cracks. This result is available at the 

level of the masonry’s periodic cell (with open 

cracks which crack density evolves owing to a time 

power-law function) in terms of overall orthotropic 

properties. At the level of a compressed masonry 

wall with a concentrated load exerted on its top, it 

has been observed that dilute estimates for local 

shear stresses highly underestimate the PCW ones. 

Moreover, even if percent error for dilute and PCW 

estimates for the local normal stress can be 

acceptable at the middle height of the wall, it can be 

significant in the wall area located at the vicinity of 

application point of the concentrated load. These 

results demonstrates that using the dilute scheme 

instead of the PCW model to predict the local 

behavior of a compressed wall can be harmful when 

|𝜎𝑦𝑦
𝐷𝐼𝐿| |𝜎𝑦𝑦

𝑃𝐶𝑊| 
(|𝜎𝑦𝑦

𝐷𝐼𝐿|  |𝜎𝑦𝑦
𝑃𝐶𝑊|) 

|𝜎𝑥𝑦
𝐷𝐼𝐿| ≪ |𝜎𝑥𝑦

𝑃𝐶𝑊|  (𝐸𝑟𝑟
  ∈ [−15 %,  45 %]) 

|𝜀𝑥𝑦
𝐷𝐼𝐿| ≪ |𝜀𝑥𝑦

𝑃𝐶𝑊|  (𝐸𝑟𝑟
  ∈ [10 %,  70 %]) 

𝐸𝑦𝑦
𝑣𝑖𝑠𝑐𝑜 > 𝐸𝑦𝑦

𝑒𝑙𝑎𝑠(𝐸𝑟𝑟
  ∈ [0,  15 %]) 

𝐸𝑥𝑥
𝑣𝑖𝑠𝑐𝑜 ≈ 𝐸𝑥𝑥

𝑒𝑙𝑎𝑠 for t ≤ 640 days and 𝐸𝑥𝑥
𝑣𝑖𝑠𝑐𝑜 > 𝐸𝑥𝑥

𝑒𝑙𝑎𝑠  otherwise 

𝜇
𝑥𝑦
𝑣𝑖𝑠𝑐𝑜 ≈ 𝜇𝑥𝑦

𝑒𝑙𝑎𝑠 (𝐸𝑟𝑟
  ∈ [−5,  8 %]) 

(𝜇
𝑥𝑦
𝑣𝑖𝑠𝑐𝑜 is higher for t ≥ 880 days and lower otherwise) 

|𝜎𝑦𝑦
𝑣𝑖𝑠𝑐𝑜| ≈ |𝜎𝑦𝑦

𝑒𝑙𝑎𝑠| (𝐸𝑟𝑟
  ∈ [−2,  4 %]) 

|𝜎𝑥𝑦
𝑣𝑖𝑠𝑐𝑜| ≤ |𝜎𝑥𝑦

𝑒𝑙𝑎𝑠| except around x = L/2 

|𝜀𝑦𝑦
𝑣𝑖𝑠𝑐𝑜| ≫ |𝜀𝑦𝑦

𝑒𝑙𝑎𝑠|  (𝐸𝑟𝑟
  ∈ [47 %,  60 %]) 

|𝜀𝑥𝑦
𝑣𝑖𝑠𝑐𝑜| ≫ |𝜀𝑥𝑦

𝑒𝑙𝑎𝑠| mainly around x = L/2 
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investigating the risk of failure. This work shows 

also that viscosity of bricks increases the overall 

stiffness of masonry cell (of about 15 % to 17 % for 

𝐸𝑦𝑦 and 8 % for 𝜇𝑥𝑦 if dc = 0.33) for none negligible 

crack density (dc ≥ 0.12) of microcracks inside 

mortar joints. This effect is more significant along 

the direction of head joints even if dc is small (0 ≤ 

dc ≤ 0.12). At the level of the investigated 

compressed wall, creep of bricks induces higher 

strains but lower (normal and shear) stresses except 

around the axis of symmetry of the wall (direction 

of the concentrated load) where relative error 

between local normal (shear) stresses in masonry 

with elastic and viscous bricks attain its peak. This 

error is (highly) more significant for local shear 

stresses at the vicinity of wall edges (of about 20 %) 

and mainly around the axis of the concentrated load 

(x = L/2). Moreover this demonstrates the fact that 

neglecting the creep of bricks could false prediction 

of failure in the wall. 

In this work, for the sake of simplicity and trends, 

the crack density is assumed to follow a time 

power-law function [52]. In the future, it will be 

interesting to investigate damage propagation in a 

thermodynamics framework [48] or by a stress 

criterion [59]. For bricks and mortar, considering 

creep functions following the Generalized Maxwell 

(GM) model with two terms could enrich and 

increase the accuracy of predictions provided by the 

proposed model. Moreover, it could be interesting 

to assess the relevance of the proposed model by 

comparison with a ‘full’ heterogeneous finite 

elements model (by modelling all bricks and 

microcracked viscoelastic mortar joints). At last, 

accounting for thermal loading could extend this 

model for refractory linings present for example in 

blast furnaces subjected to compressive loads 

resulting from constrained thermal expansion [60, 

61]. 
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