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Abstract. This paper investigates the use of graph rewriting rules to
model updates -instance or schema changes- on RDF/S databases which
are expected to satisfy RDF intrinsic semantic constraints. Such databases
being modeled as knowledge graphs, we propose graph rewriting rules
formalizing atomic updates whose application transforms the graph and
necessarily preserves its consistency.
If an update has to be applied when the application conditions of the
corresponding rule do not hold, side-effects are generated: they engen-
der new updates in order to ensure the rule applicability. Our system,
SetUp, implements our updating approach for RDF/S data and offers a
theoretical and applied framework for ensuring consistency when a RDF
knowledge graph evolves.

Keywords: Graph rewriting · Updates · Constraints · RDF.

1 Introduction

Today RDF (Resource Description Framework) is a standard model for data in-
terchange on the Web and particularly for exporting Linked Open Data. These
data, enriched by constraints, stored in a database (especially in a graph database
or triple store), and available for querying systems are important sources for
analysis and for guiding decisions. But only systems offering the capability of
dealing with evolution of data instance and structure without violating the se-
mantics of the RDF model can ensure sustainability. Since RDF/S database can
be canonically viewed as knowledge graph, this paper proposes the use of graph
rewriting techniques in the evolution of RDF data stores, showing the utility of
this formal tool into a practical and useful application. RDF/S is the focus of
the paper because, currently, users interested in these facilities are mostly those
dealing with ontology evolution. However, new graph applications have now in-
creasing demands concerning their validity with respect to a set of constraints.
Our proposal naturally adapts to these new contexts.

We are interested in the maintenance of valid RDF/S knowledge graph, i.e.,
data sets respecting constraints. When such a data set evolves (through instance
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or schema changes) we have to guarantee that the new set conforms to the
constraints. The following example illustrates the problem.

Example 1 (Motivating Example.). Fig. 1 shows a complete RDF/S graph databa-
se consistent w.r.t. to the RDF/S semantic constraints. We are concerned by the
problem of updating this database, keeping it consistent. Firstly, suppose an
instance update: the insertion of a ASA as a class instance of Molecule. How
can we guarantee that ASA will be also an instance all the super-classes of
Molecule? Then, consider a schema evolution: the insertion of provokeReaction
as sub-property of HasConsequence. How can we perform this change ensuring
that provokeReaction will have its domain and range as sub-classes of those of
HasConsequence? �

This paper proposes SetUp (Schema Evolution Through UPdates), a main-
tenance tool for RDF knowledge graph.

SetUp summarized in two main steps
(1) Firstly we formalize updates as graph rewriting rules encompassing integrity
constraints. An Update is a general term and can be classified through two dif-
ferent aspects: on one hand, as insertions or deletions and, on the other hand as
instance or schema changes. Each update is formalized by a graph rewriting rule
whose application necessarily preserves the databases validity. To perform an
update, the applicability conditions of the corresponding rule are automatically
checked. When all conditions of a rule hold, the rule is activated to produce a
new graph which takes into account the required update and is necessarily valid
if the graph was valid prior to the update. The use of graph rewriting rules en-
sures consistency preservation in design time – no further verification is needed
in runtime.
(2) Secondly, if the applicability condition of a rule does not hold, the update
is rejected. SetUp provides the possibility to force its (valid) application by per-
forming side-effects. Indeed, in our method, side-effects are new updates that
should be performed to allow the satisfaction of a rule’s condition. Side-effects
are implemented by procedures associated to an update type, and thus, to some
rewriting rules. When an evolution is mandatory, we enforce database evolution
by performing side effects (i.e., triggering other updates or schema modifications
which will render possible rule application).

SetUp’s main characteristics.
• SetUp main goal is to ensure validity when dealing with the evolution of an
RDF/S knowledge graph. Such a graph represents a set of RDF (the instance)
and RDFS (the schema) triples which respect semantic constraints as defined
in [5].
• SetUp deals with complete instances, i.e., constraint satisfaction is obtained
only when the required data is effectively stored in the database.
• SetUp implements deterministic rules. Arbitrary choices have been made when
non-deterministic options are available.
• SetUp takes into account the user level. Only database administrators may
require updates provoking schema changes.
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Paper Organization. Sections 2 and 3 offer useful definitions and formal back-
ground on graph rewriting systems. Updates are formalized by rewriting rules
in Section 4 and side-effects considered in Section 5. Section 6 briefly discusses
different implementation options, mentioning results obtained with our current
prototype. Related work and concluding remarks are given in Sections 7 and 8.

2 RDF databases and updates

The RDF data model describes (web) resources via triples of the format (a P b),
which express the fact that a has b as value for property P . A collection of
RDF statements intrinsically represents a typed attributed directed multi-graph,
making the RDF model suited to certain kinds of knowledge representation [1].
Constraints on RDF facts can be expressed in RDFS (Resource Description
Framework Schema), the schema language of RDF, which allows, for instance,
declaring objects and subjects as instances of certain classes or expressing se-
mantic relations between classes and between properties (i.e., subclasses and
sub-properties).

Fig. 1. RDF schema and instance: database as a graph.

In [5] we find a set of logical rules expressing the semantics of RDF/S (rules
concerning RDF or RDFS) models. We consider AC = {a, b, . . . , a1, a2, . . .}, a
countably infinite set of constants and var = {X1, X2, . . . , Y1, . . .} an infinite set
of variables ranging over elements in AC . A term is a constant or a variable. We
classify predicates into two sets: (i) SchPred = {Cl, Pr, CSub, Psub,Dom,Rng},
used to define the database schema, standing respectively for classes, proper-
ties, sub-classes, sub-properties, property domain and range, and (ii) InstPred
= {CI, PI, Ind}, used to define the database instance, standing respectively for
class and property instances and individuals. An atom has the form P (u), where
P is a predicate, and u is a list of terms. When all the terms of an atom are
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Schema specification:
Cl(Drug); Cl(Component); Cl(Excipient); Cl(Mollecule); Cl(Effect); Cl(PosEffect);
Cl(NegEffect); Pr(HasConsequence); Pr(Produces); CSub(Drug, rdfs : Resource);
CSub(Component, rdfs : Resource); CSub(Excipient, rdfs : Resource);
CSub(Mollecule, rdfs : Resource); CSub(Effect, rdfs : Resource); CSub(PosEffect, rdfs : Resource);
CSub(NegEffect, rdfs : Resource); CSub(Component,Drug); CSub(Excipient,Drug);
CSub(Mollecule,Drug); CSub(Excipient, Component); CSub(Mollecule, Component);
CSub(PosEffect, Effect); CSub(NegEffect, Effect); Dom(HasConsequence,Drug);
Rng(HasConsequence, Effect); Dom(Produces,Mollecule); Rng(Produces, PosEffect);
PSub(Produces,HasConsequence);
Database instance:
Ind(Saccharose); Ind(Lactose); Ind(APAP ); Ind(Fever−); Ind(Allergy);
CI(Saccharose, rdfs : Resource); CI(Saccharose,Drug); CI(Saccharose, Component);
CI(Saccharose, Excipient); CI(Lactose, rdfs : Resource); CI(Lactose,Drug);
CI(Lactose, Component); CI(Lactose, Excipient); CI(APAP, rdfs : Resource); CI(APAP,Drug);

CI(APAP,Component); CI(APAP,Mollecule); CI(Fever−, rdfs : Resource); CI(Fever−, Effect);

CI(Fever−, PosEffect); CI(Allergy, rdfs : Resource); CI(Allergy, Effect); CI(Allergy,NegEffect);

PI(APAP, Fever−, HasConsequence); PI(APAP, Fever−, Produces);

Fig. 2. RDF schema and instance (logical point of view): database as a set of facts.

in AC , we have a fact. Fig. 1 shows an RDF instance (in blue) and schema (in
black) as a typed graph, and Fig. 2 its logical representation as positive atoms.
Class “rdfs:Resource” symbolizes the root of an RDF class hierarchy.

Node and edge are typed (represented with a unique combination of shape
and color, e.g. , an individual node is a blue oval) and attributed to indicate a
name or value when relevant. For instance, in Fig. 1 the schema specifies that
Has Consequence is a property having class Drug as its domain and the class
Effect as its range. The property Produces is a sub-property of Has Consequence
while PosEffect is a sub-class of Effect. Database instance is represented by
individuals which are elements of a class (e.g. APAP is an instance of class
Mollecule) and their relationships (e.g. the property instance Produces, between
APAP and Fever−).

Definition 1 (Database). An RDF database D is a set of facts composed by
two subsets: the database instance DI (facts with predicates in InstPred) and
the database schema DS (facts with predicates in SchPred). Denote by G the
graph that represents the same database D . Let G = (V,E) where V are nodes
with type in {Cl, Pr, Ind, Lit} and E are edges having type in {Dom,Rng, PSub,
CSub, CI, PI}. The notation D/G designates these two formats of a database. �

Constraints presented in [5] are those in Fig. 3 which is borrowed from [11].
These constraints (that we denote by C ) are the basis of RDF semantics. Given
c ∈ C we note body(c) its left-hand side and head(c) its right-hand side. For in-
stance, the schema constraint (20) establishes transitivity between sub-properties
and the instance constraint (27) ensures this transitivity on instances of a prop-
erty (if z is a sub-property of w, all z’s instances are property instances of w).
We are interested in database that satisfy all constraints in C .

Definition 2 (Consistent database (D ,C )). A database D is consistent if it
satisfies all constraints in C (i.e., in this paper, those in Fig. 3). �

At this point, it is worth noting the dichotomy which usually exists when
dealing with constraints on RDF. The web semantics world mostly adopts the
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• Typing Constraints:

Cl(x)⇒ URI(x) (1) Pr(x)⇒ URI(x) (2)

Ind(x)⇒ URI(x) (3) (Cl(x) ∧ Pr(x))⇒ ⊥ (4)

(Cl(x) ∧ Ind(x))⇒ ⊥ (5) (Pr(x) ∧ Ind(x))⇒ ⊥ (6)

CSub(x, y)⇒ Cl(x) ∧ Cl(y) (7) PSub(x, y)⇒ Pr(x) ∧ Pr(y) (8)

Dom(x, y)⇒ Pr(x) ∧ Cl(y) (9) Rng(x, y)⇒ Pr(x) ∧ Cl(y) (10)

CI(x, y)⇒ Ind(x) ∧ Cl(y) (11)
PI(x, y, z)⇒ Ind(x) ∧ (Ind(y) ∨ Lit(y)) ∧ Pr(z)

(12)

Cl(x)⇒ CSub(x, rdfs:Resource) (13) Ind(x)⇒ CI(x, rdfs:Resource) (14)
• Schema Constraints:

Pr(x)⇒ (∃y, z)(Dom(x, y) ∧ Rng(x, y)) (15) ((y 6= z) ∧Dom(x, y) ∧Dom(x, z))⇒ ⊥ (16)

((y 6= z) ∧ Rng(x, y) ∧ Rng(x, z))⇒ ⊥ (17)

CSub(x, y) ∧ CSub(y, z)⇒ CSub(x, z) (18) CSub(x, y) ∧ CSub(y, x)⇒ ⊥ (19)

PSub(x, y) ∧ PSub(y, z)⇒ PSub(x, z) (20) PSub(x, y) ∧ PSub(y, x)⇒ ⊥ (21)

Psub(x, y) ∧Dom(x, z) ∧Dom(y, w) ∧ (z 6= w)⇒ CSub(z, w) (22)

Psub(x, y) ∧ Rng(x, z) ∧ Rng(y, w) ∧ (z 6= w)⇒ CSub(z, w) (23)
• Instance Constraints:

Dom(z, w)⇒ (PI(x, y, z)⇒ CI(x,w)) (24) Rng(z, w)⇒ (PI(x, y, z)⇒ CI(x,w)) (25)

CSub(y, z)⇒ (CI(x, y)⇒ CI(x, z)) (26) PSub(z, w)⇒ (PI(x, y, z)⇒ PI(x, y, w)) (27)

Fig. 3. Simplified and compacted form of RDF/S constraints

open world assumption (OWA) and ontological constraints are, in fact, just
inference rules. The database world usually adopts the closed world assumption
(CWA) and constraints impose data restrictions. Rules are not supposed to infer
a non-explicit knowledge. This paper adopts the database point of view and
addresses the problem of updating an RDF database.

Definition 3 (Update). Let D/G be a database. An update U on D (for U =
F ) is either (i) the insertion of F in D (an insertion is denoted by F ) or (ii)
the removal of F from D (a deletion is denoted by ¬F ). To each update U
corresponds a graph rewriting rule r. �

D satisfy constraints C
m ��
G evolution constrained by R

Fig. 4. Rewriting rules R and
constraints C .

Updates can be classified according to the
predicate of F , i.e., the insertion (or the deletion)
of a class, a class instance, a property, etc. For each
update type, a rewriting rule r describes when and
how to transform a graph database. This paper
aims at proposing a set of graph rewriting rules,
denoted by R, which ensures consistent transfor-
mations on G due to any atomic update U . The
set R is defined on the basis of C as illustrated in Fig. 4: on the logical level,
(D ,C ) expresses consistent databases; on the knowledge graph level, (G,R) ex-
presses graph evolution with rules in R encompassing constraints from C . The
idea is: given D/G for (D ,C ) and update U corresponding to rule r ∈ R; if G’
is the result of applying r on G then our goal is to have (D ′,C ) for D ′/G′.
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3 Preliminaries: graph rewriting

We briefly introduce the theoretical background on the formal graph rewriting
approach adopted in this paper: the Single Push Out (SPO) [12] approach.

Graph rewriting is a well-studied field for the formal specification of graph
transformations [16]. It relies on the definition of graph rewriting rules which
specify both the effect of a graph transformation and the context in which it may
be applied. In this paper, we adopt the SPO formalism [12] to specify rewriting
rule as well as several extensions of its extension to specify additional applica-
tion conditions and restrict rule applicability: Negative Application Conditions
(NACs) [8], Positive Application Conditions (PACs), and General Application
Conditions (GACs) [17].

Specifying rewriting rules using the SPO approach. The SPO approach
is an algebraic approach based on category theory. A rule is defined by two
graphs – the Left and Right Hand Side of the rule, denoted by L and R or LHS
and RHS – and a partial morphism m from L to R. An example of an SPO
rule is specified in Fig. 5. The LHS of the rule is composed by a single node
of type Class whose Type attribute is set to “rdfs:Resource”. The RHS of the
rule is composed by two Class nodes with attribute values “rdfs:Resource” and
A and an edge of type Subclass from the latter to the former. By convention, an
attribute value within quotation mark (e.g. “rdfs:Resource”) is a fixed constant,
while a value noted without quotation mark (e.g. A) is a variable whose value
may be given as an input or assigned according to the context.

Fig. 5. An SPO rewriting rule

The partial morphism from L to R is
specified in the figure by tagging graph
elements - nodes or edges - in its domain
and range with a numerical value. An el-
ement with value i in L is part of the do-
main of m and its image by m is the graph
element in R with the same value i. In the
example, the notation 1: before the node
type of the two nodes symbolizing the root
of the class hierarchy in L and R indicates
that they are mapped through m.

Application of SPO rewriting rules. A graph rewriting rule r = (L,R,m)
is applicable to a graph G iff there exists a total morphism m̃ from L to G. The
two morphisms m : L → R and m̃ : L → G are shown in black in Fig. 6. The
object of its push-out, G′, depicted in red, is the result of the application of r
to G with regard to m̃.

Informally, the application of r to G with regard to m̃ consists in modifying
elements of G by (1) removing the image by m̃ of all elements of L that are not in
the domain of m (i.e., removing m̃(L\Dom(m))); (2) removing all dangling edges
(i.e., deleting all edges that were incident to a node that has been suppressed in
step (1)); (3) adding an isomorphic copy of all elements of R that are not in the
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domain of m. Going back to the example rule depicted in Fig. 5 this means that
the rule is applicable to any graph G containing a class node n with attribute
“rdfs:Resource”. Its application consists in adding a class node with attribute
A and a subclass edge from this node to n. Assuming that A is given as input,
this rule is thus a first way of formalizing the addition of a class node to the
database. It is however naive since the class node could already be present in
the graph, creating a duplicate. To avoid this situation, the applicability of the
rule must be further restricted.

L R

G G’

m

m̃

Fig. 6. Push-Out, application
of SPO rules

Extensions to restrict applicability: NACs
and PACs are well-known extensions that forbid
or require certain patterns to be present in the
graph for a rule to be applicable, respectively. A
NAC or a PAC is defined as a constraint graph
which is a super-graph of the LHS of the rule they
are associated to. An SPO rule r = (L,R,m) with
NACs and PACs is applicable to a graph iff: (i)
there exists a total morphism m̃ : L → G (this is
the classical SPO application condition); (ii) for all PACs P (resp. NACs N)
associated with r, there exists a total morphism (resp. there exists no total mor-
phism) m̄ : P → G whose restriction to L is m̃. By convention and to avoid re-
dundancy, since NACs and PACs are super-graphs of L, when illustrating a NAC
or a PAC, L will not be depicted. This convention has two major implications.
Firstly, it is necessary to explicitly identify graph elements that are common to
L and the depicted part of the NAC. This is done similarly to the identification
of graph elements matched by the morphism from L to R, by adding numerical
value to relevant graph elements in L and NAC/PAC. Secondly, it is important
to note that m̃ and m̄ are not necessarily injective. However, it is forbidden for
an element of the depicted part of the NAC and an element of L to have the
same image by m̄ in G if they are not explicitly identified as common.

(a) (b) (c) (d)

Fig. 7. Less naive rewriting rule for the insertion of a class

Fig. 7 shows an enrichment of the rule depicted in Fig. 5. In the SPO core of
the rule, the attribute “rdfs : Resource” is simply replaced by a variable res.
The PAC specified in Fig. 7b imposes that res =“rdfs:Resource”, i.e., the node
in L should be the root of the class hierarchy. So far, the rule has the same
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behaviour as the one in Fig. 5. In addition, it (i) avoids the addition of duplicate
class node, thanks to the NAC of Fig. 7d defined as the juxtaposition of L and a
Class attributed URI=A; (ii) forbids the addition of a second rdfs:Resource class
node thanks to the NAC presented in Fig. 7c, stating that the input A may not
be equal to the res.

The more classical application conditions, be it NACs or PACs, are defined as
a constraint graph C and an injective partial morphism (in that case, the identity
function) from C to L. That observation lead to the introduction of nested
application conditions [7,9] that allows to define conditions on the constraint
graphs. A condition over a graph G is of the form true or ∃(a, c) where a : G→ C
is a graph morphism from G to a condition graph C, and c is a condition over C.
With this definition, a PAC P over a rule (L,R,m) can be seen as a condition
(a, true), with a being the identity morphism from L to P . Application conditions
can be negated, so that a NAC N can be defined as a condition ¬(a, true), with
a similar definition of a. GACs [17] are a combination of nested application
condition allowing the definition of complex applications conditions for SPO
rules. A GAC of a rule (L,R,m) is a condition over L that may be quantified
by ∀ and combined using ∧ and ∨. The rule (L,R,m) with GAC ∃(a, c) is
applicable to a graph G with regard to a morphism m̃ if there is an injective
graph morphism m̄ : G→ C such that m̄ ◦ a = m̃ and m̄ satisfies c.

(a)

(b)

Fig. 8. SPO rule for the insertion of a class instance with a GAC

Fig. 8 shows an example of a rule with a nested GAC of the form ∀(a, c). The
morphism a from L to GacTransCI is depicted in the right part of Fig. 8b. Gac-
TransCI contains L plus a subclass edge from the class node of L to a new class
node n. The condition c is ∃(b, true), with b the morphism from GacTransCI to
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NestCond (left part of Fig. 8b): NestCond is itself a super-graph of GacTran-
sCI and comports one more CI edge from the individual node to n. Due to
this GAC, the rule is applicable to a graph G with regard to a morphism m̃
only if for all morphism m̄ from GacTransCI to G whose restriction to L is m̃,
there also exists at least a morphism from NestCond to G which restriction to
GacTransCI is m̄. In other word, this GAC ensures that if the rule is applica-
ble, then ∀C,Cl(C) ∧ CSub(B,C) ⇒ CI(A,C). Indeed, if there is a mapping
from L to the database graph, the rule is applicable only if, for each matching of
GacTransCI (i.e., for all class C that is a super-class of B) there is a matching
of NestCond (i.e., there must be an edge of type CI from Ind(A) to Cl(C)).

4 Graph rewriting for consistency maintenance

In our proposal, rewriting rules formalize both graph transformations and the
context in which they may be applied. These rules may be fully specified graphi-
cally, enabling an easy-to-understand graphical view of the graph transformation
that remains formal. To prevent the introduction of inconsistencies during up-
dates, we 1) formally specify rules of R formalizing G evolution and 2) prove
that every rule in R ensures the preservation of every constraints in C .

Recall from Section 2 the relationships between D and G and between C and
R. In this context, we have designed the set R: eighteen graph rewriting rules
which formalize atomic updates on G ensuring database consistent evolution
w.r.t. C . The kernel of R’s construction lies on the detection of constraints in
C impacted by an update: an insertion F (respectively, a deletion ¬F ) impacts
constraints having the predicate of F in their body (respectively, in their head).
Consider for instance constraint (11): if CI(A,B) is in D then it should also
contain a class B and an individual A. Hence, the graph rewriting rule concerned
by the insertion of CI(A,B) is activated only in a database respecting these
conditions.

In our approach each update type corresponds to a rule in R. Notice however
that two different rules describe the insertion (or the deletion) of a property,
depending whether its range is a class or a literal. The 18 rules of R are available
online [2], this section offers the presentation of three of them while the others,
together with the proof of their consistency, are presented in the Annexe ??. The
rules considered now are: (a) the insertion of class; (b) the deletion of a class and
(c) the insertion of a class instance. Their presentation follows a standard basic
form filled by the main explanations of the rule. Recall that the LHS of a SPO
specification is related to its applicability while its RHS is related to the effect
of its application. The proofs are in fact quite immediate. Indeed, rules have
been specified to preserve consistency constraints by-design and their graphical
specification, even if formal and respecting the definitions presented in Section 3,
ease comprehension.

• Insertion of a Class (Fig.s 7 and 9)
Update category: Schema evolution
User level: Only authorized users such as database administrators
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Rule semantics: This rule has been partially presented in Section 3 (Fig. 7).
1) SPO specification: (Fig. 7a)
LHS: there exists a class with URI res in the database;
RHS: LHS plus a class with the URI A as a sub-class of Cl(res). The application
of the rule will lead to their addition.
2) PAC specification: (Fig. 7b) variable res is assigned to “rdfs:Resource”; this
PAC corresponds to constraint (13).
3)NACres and NACcl: (Fig. 7d and 7c respectively) these NACs are non-redun-
dancy guarantee (ie, two classes may not have the same URI). A class Cl(A)
may be inserted in the graph when: (i) A is not rdfs:Resource and (ii) another
class with URI A does not already exist.
4) NACind and NACpr (Fig.s 9a and 9b, respectively): guarantee that the sets

of classes, properties, and individuals are disjoint (constraints 4 and 5).

(a) (b)

Fig. 9. Additional NACs for
addCl(A)

Proof of consistency preservation: It is clear from
Fig. 3 that the addition of a class may activate
constraints 4, 5, and 13 (i.e., those having an
atom with predicate Cl in their bodies). Thanks
to the specification of NACind and NACpr, con-
straints 4 and 5 are ensured. The PAC and SPO
core of the rule in Fig. 7b and 7a impose the
new class to be a subclass of rdfs:Resource, as con-
straint 13.

• Deletion of a Class (Fig. 10)
Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 10a)
LHS: there exist a class with URI A in the database;
RHS: empty, rule’s application leads to the deletion of the class with the URI A.
2) NACres : (Fig. 10b) states that the rule cannot be applied when A is
rdfs:Resource – indeed the root of RDF class hierarchy cannot be deleted.
3)NACdom and NACrange: (Fig. 10c and 10d respectively) impose that the class
being deleted is neither the domain nor the range of any property.

Proof of consistency preservation: From Fig. 3, the deletion of a class may im-
pact constraints 7, 9, 10, 11 (those having Cl(A) on the RHS) together with
constraints 13, 14, 15 (as consequences of possible deletion politics). Constraints
7 and 11 are preserved because CSub and CI relations involving Cl(A) are rep-
resented as edge incident to the node modelling Cl(A). As in the SPO approach
dangling edges are deleted, all CSub and CI relations involving Cl(A) are sup-
pressed when this rule is applied. Constraint 9 (respect. 10) forbids the deletion
of A as the domain (respect. as a range) of an existing property (which would
also impact rule 15). Thanks to NACdom and NACrng, our graph rewriting rule
is applicable only if the class to be deleted is neither the domain nor the range
of any property. Finally as NACres forbids the deletion of class rdfs:Resource,
constraints 13 and 14 are never violated by the deletion of a class.
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(a) (b) (c) (d)

Fig. 10. In (10a) the SPO rule for the deletion of a class, denoted delCl(A). It has 3
NAC, namely (10b) NACres : A 6= “rdfs : Resource”; (10c) NACdom : ∀P such that
Pr(P ) , Dom(P,A) is false; (10d) NACrng: ∀P such that Pr(P ) , Rng(P,A) is false.

Fig. 11. Additional NAC for
addCI(A,B)

• Insertion of a Class Instance (Fig. 8 and 11)
Update category: Instance evolution
User level: Any user
Rule semantics: This rule has been partially pre-
sented in Sec. 3 (Fig. 8).
1) SPO specification: (Fig. 8a)
LHS: there exist a class with URI B and an indi-
vidual A in the database;
RHS: an edge from Ind(A) to Cl(B) is introduced in the graph.
2) NACred : (Fig. 11) forbids the application of the rule if CI(A,B) already
exists in the database.
3)GAC: (Fig. 8b) ensures that the instance A of class B (being inserted) will
also be an instance of all super-classes of B.

Proof of consistency preservation: From Fig. 3, constraints 11 and 26 (having
atoms with CI on their body) are impacted. Our graph rewriting rule ensures
that the insertion of a class instance is performed only when the individual and
its type already exist in the database (constraint 11). According to GacTrans,
if there exists some super-class C of B and A is not an instance of C, then the
class instance relation CI(A,B) cannot be added (ensuring constraint 26).

The following lemma proves that R ensures the consistency of the database
when an update is performed.

Lemma 1 (Correction of rewriting rules). Let U be an update, F the fact
being inserted (resp. deleted) and r ∈ R the corresponding rewriting rule. Let
G/D be a consistent database, G’ be the result of the application of r on G
(we write G′ = r(G)), and D ′ the database defined by G’/D ’. Then (1) G′ is
consistent, i.e., (D ’,C ) and (2) F ∈ D ′ (resp. F /∈ D ′). �
Proof. Individual proofs are provided above and in Appendix B for each rule of
R . It is shown that each rule preserve the data-base consistency and does indeed
add or remove the fact it is related to.

5 Side-effects and Consistent Database Evolution

Traditionally, whenever a database is updated, if constraint violations are de-
tected, either the update is refused or compensation actions, which we call side-
effects, must be executed in order to guarantee their satisfaction. In our ap-
proach, as explained in Section 4, for each update U there is a rewriting rule
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rU ∈ R and the application of rU relies on whether G satisfies the premisses of
rU . The graph transformation takes place only when G respects all the conditions
expressed in rU . If such conditions are not respected, our algorithm generates
new updates capable of changing G into a new graph Gn on which rU can be
applied to produce G′. These new updates are called side-effects of U .

Example 2. Let D/G be the database as the one in Fig. 1, but without the
sub-graph concerning NegEffect. In this context, consider that U is the insertion
CI(Allergy,NegEffect). Let rCI ∈ R be the graph rewriting rule concerning
the insertion of a class instance (Section 4). Rule rCI cannot be applied on G
since it requires the existence of both the class and the individual which we want
to “link together” as class instance. Thus, in this situation, two new updates are
generated as side-effects:

– U1 the insertion of an individual Allergy and
– U2 the insertion of class NegEffect.

Both updates conditions are checked and, since they are valid, the corresponding
rules are triggered, adding the individual and class and connecting them to class
rdfs:Resource. Once we have the new graph resulting from the application of rU1

and rU2 , rule rCI is applied. The result will be a graph as the one in Fig. 1,
except for a missing sub-class edge between Effect and NegEffect and a missing
class instance edge from Allergy to Effect. �

Roughly, SetUp is an algorithm allowing the interaction between a graph
rewriter and a side-effect generator. The latter, producing new updates to be
treated by the former, can follow different politics in ordering and in authorizing
the treatment of these new updates. Indeed, in our approach, different levels of
users are considered: those authorized to trigger side-effects or provoke schema
changes and those for whom only instance updates respecting R are allowed.
Algorithm 1 summarizes our approach for authorized users.

Update Type Conditions

CI(Xi,XC) Indiv(Xi); Cl(XC) ∨ (XC = Ressource);
∀ YC CSub(XC, YC) then CI(Xi, YC)

Cl(A) ¬Pr(A); ¬Indiv(A);
CSub(A, Resource); Uri(A)

¬ Pr(P) ∀ Xsp PSub(Xsp, P) then ¬ PSub(Xsp, P)
∀ XP PSub(P, XP) then ¬ PSub(P, XP)
∀ XD Dom (P, XD) then ¬ Dom (P, XD)
∀ XR Rng (P, XR) then ¬ Rng (P, XR)
∀ Xi, Yi PI (Xi, Yi, P) then ¬ PI (Xi, Yi, P)

Fig. 12. Extract of UpdCond table.

Given a database D/G and an update U , Algorithm 1 transforms G, following
rules in R. Denote by rU ∈ R the rewriting rule associated to U . When rU
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cannot be applied on G, SetUp computes, recursively, all updates necessary to
change G into a new graph where rU applies. Here, it is worth noting the design
flexibility imposed by the update scenario: either imposed by the intrinsic non-
determinism of consistency maintenance or by side-effect ordering. Our current
solution implements pre-defined choices.

Indeed, on line 1 of Algorithm 1, each condition c, necessary for applying
rU on G, is added to PreCoditions. Function FindPredCond2ApplyUpd works
on table UpdCond indexed by the update type. Fig. 12 shows an extract of
UpdCond (e.g. from the first row, we know that the insertion of CI(A,B),
depends on the existence of A as an individual, B as an class and the respect of
hierarchical constraints). The full table can be found in appendix D.

Roughly, to design UpdCond for an insertion P , we consider all constraints
c ∈ C having atoms with the predicate of P in body(c) and we build updates
corresponding to the atoms in head(c). Deletions are treated in a reciprocal
way: we look from the predicate of P on the head of constraints and define the
new updates based on the atoms in their bodies. Unfortunately, a deletion may
engender non-deterministic side-effects. Consider for instance the deletion of a
class instance CI(A,B). Constraint 26 in C (Fig. 3) indicates two possible side
effects in this case: deleting A as a class instance of all super-classes of B or
breaking the class hierarchy. In this paper, we deal with non-determinism in
an arbitrary way: when a choice is needed, the priority is given to updates on
the instance, leaving the schema unchanged. Thus, in the above example, side-
effect updates are: ¬CI(A, yc), for each yc which is a super-class of B. When
non-determinism is over two side-effects implying changes on the schema, the
priority is to break the highest hierarchical link.

Algorithm 1: SetUp (G,R, U)

Input: Graph database G, set of rewriting rules R, update U
Output: New graph database G
1: PreConditons := FindPredCond2ApplyUpd(G,R, U)
2: for all condition c in PreConditons do
3: if c is not satisfied in G then
4: U ′ :=Planner2FitGraphInCond (G, c)
5: for all update u′ in U ′ do
6: G := SetUp (G,R, u′)
7: G := GraphRewriter(G,R, U)
8: return G

Then, on line 2 of Algorithm 1, each condition c is considered. The order in
which each c is treated impacts the order in which new updates are applied to
the database and gives rise to different approaches. PreConditions can be seen as
a set (updates treated on any order) or as a list ordered according to a particular
method. Our prototype uses an arbitrarily pre-defined order. Arbitrary choices
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are seldom the best solution: we are currently working on a cost function to
guide our choices both for update ordering and non-deterministic choices.

Once a condition c is chosen, function Planner2FitGraphInCond (line 4)
generates a new update U ′ (i.e., a side effect of U). Recursive calls (line 6)
ensure that each side effect U ′ is treated in the same way. When conditions for
a rewriting rule rU ′ hold, function GraphRewriter applies rU ′ and the graph
evolves. Eventually, if U is not intrinsically inconsistent, we obtain a new graph
on which rU is applicable. Indeed, some updates U related to a fact F may be
intrinsically inconsistent, i.e., ∀D , F ∈ D =⇒ ¬(D ,C ). The following example
illustrates such a situation.

Example 3. Let U be an intrinsically inconsistent update requiring the insertion
of a class instance CI(Excipient, Excipient) in G of Fig 1 (rule rCI). Follow-
ing Algorithm 1 and the order established in table UpdCond, conditions c1 :
Ind(Excipient) and c2 : Cl(Excipient) are obtained by FindPredCond2Apply-
Upd. However, these two conditions are contradictory since they engender incon-
sistent update requests, namely: Ind(Excipient) and ¬Ind(Excipient) and also
Cl(Excipient) and ¬Cl(Excipient). In this situation, our current implementa-
tion behaves as follows:

1. As condition c1 is not satisfied by G, insertion Ind(Excipient) is required
(rule rind). Rule rind imposes the deletion ¬Cl(Excipient) (since Excipient,
as an individual, cannot be a class). The deletion is performed with success,
rind applies and Ind(Excipient) is inserted in G.

2. Condition c2 is then checked. As Excipient is no more a class, the inser-
tion of Cl(Excipient) is triggered (rule rCl). To apply rCl, the deletion
¬Ind(Excipient) is executed. Class node Cl(Excipient) is added to G.

3. Conditions c1 and c2 having been handled, rCI is invoked but it cannot be
applied: there is no individual node Excipient ; the algorithm stops.

�

According to the method chosen for dealing and ordering side-effects on line 2
of Algorithm 1, inconsistent updates may result in cycles. As shown in Exam-
ple 3, the current version of SetUp performs updnglingates according to a pre-
established order, without any backtracking. Therefore, once a rule is activated
for side effect e1 of update u1 it will not be activated again for the same up-
date u1. Being simple it avoids loops in the treatment of intrinsically inconsistent
updates. The resulting graph, in this case, does not change, but stays consistent.

The goal of side-effects is to adapt the knowledge graph to the application
of rule r corresponding to a given update U . If r is not applicable to G then we
have: (I) G1 = r1(G), G2 = r2(G1), . . . Gn = rn(Gn−1) where r1, r2, . . . rn are
the rewriting rules associated to updates recursively generated by Algorithm 1
and

(II) G′ = r(Gn) is the new updated graph.

Lemma 2 (SetUp Correction and terminaison). Let U be an update, G a
consistent graph, R our set of graph rewrite rules and G′ = SetUp(G,R, U). (1)
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SetUp terminates and (2) if U is consistent then if U is an insertion, U appears
in G′, else U is a deletion, U does not appear in G′.

Proof. Proof is made for each possible update. So in all cases, we show that we
have (i) a finite number of side effects produced (possibly recursively) as well
as (ii) the side effects corresponding to the desired update if it is consistent. All
proofs are provided in Appendix C. The number of side effects is less important
than the number of modifications (addition / deletion of a node or addition /
deletion of an arc) in the graph because, in the SPO approach, dangling edges
are automaticaly deleted, if we delete node with Uri = A, all edges (A,X) or
(X,A) no longer exist.

We have performed a hundred tests on synthetic RDF/S graphs and when no
intrinsic inconsistent update is considered SetUp always generates a new consis-
tent and updated graph. The pre-established order imposed by table UpdCond
seems reasonable, but we are interested in introducing a cost computation func-
tion before considering formal proofs of the whole algorithm. We discuss the
implementation in the next section.

6 Implementation

SetUp is implemented using Java and AGG (The Attributed Graph Grammar
System) [19]. AGG is one of the most mature and cited development environment
supporting the definition of typed graph rewriting systems [18]. It supports the
SPO approach as well as its main extension: PAC, NAC, and GAC. The current
version of SetUp [3] provides a textual interface and offers different updating
modes, according to the user level. The complexity of GraphRewriter essentially
determines SetUp’s complexity.

Fig. 13 illustrates the recursive execution of SetUp for the insertion of the fact
PI(Aspirin, Fever−, P roduces) on G of Fig. 1. Leaves represent updates that
are already implemented in G or have no more consequences. Indeed, to apply
U , our algorithm generates a set S of updates that would ensure the necessary
conditions for the application of the rewriting rule rU .

Each update u ∈ S corresponds to a rewriting rule ru. However, when u
implies no graph transformations (e.g. insertion of a node which already exists;
deletion of an edge which does not exist, etc.) rule ru is not executed. This
is illustrated in Fig. 13 by the insertion of Pr(Produces): a node concerning
this property already exist in G. On the other hand, the rule corresponding
to the insertion of Aspirin as a class instance of Mollecule cannot be applied
before the perfomance of other updates, namely: Ind(Aspirin), Cl(Molecule),
CI(Aspirin, rdfs : Resource), CI(Aspirin,Drug) and CI(Aspirin, Component).
The execution of each update u follows the same reasoning, resulting in a graph
on which rU is executed.
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PI(Aspirin, Fever−, Produces)

Pr(Produces)

CI(Aspirin,Mollecule)

Ind(Aspirin)

¬Pr(Aspirin)

¬Cl(Aspirin)

CI(Aspirin,Resource)Cl(Molecule)

CI(Aspirin,Resource)

CI(Aspirin,Drug)

Ind(Aspirin)

Cl(Drug)

CI(Aspirin,Resource)

CI(Aspirin, Component)

Ind(Aspirin)

Cl(Component)

CI(Aspirin,Drug)

CI(Aspirin,Resource)

CI(Fever−, PosEffect)

PI(Aspirin, Fever−, HasConsequence)

Pr(HasConsequence)

CI(Aspirin,Drug)

CI(Fever−, Effect)

Fig. 13. Recursive execution tree

The execution tree supports our approach as our algorithm correctly applies
some required updates in order to get a graph G after the update, that satisfy
all constraints.

In our tests (shown in appendix E) we consider RDF/S graphs differing in two
main aspects: (1) the hierarchy depth (hd) and (2) the number of instances (#I).
Hierarchy depth has a great influence in the number of side-effects for insertions
(due to transitivity conditions when inserting instances for sub-classes or sub-
properties). Deletions generate less side-effects except for ¬Pr(P ), ¬Dom(P,A)
and ¬Range(P,A) .

Insertions on graphs differing only on the size of their instances generate the
same number of side-effects. For instance, for insertion PI(A,B), SetUp produces
81 side effects on a graph with hd = 5, independently of its #I, while just 15
for a graph with hd = 1.

Time execution is mostly a consequence of the complex morphism detection
(more tests are needed), e.g. on a graph with hd = 5, with 97 nodes and 440
edges, insertions such as PI(A,B, P ) and PSub(P,Q) take about 4000ms and
668ms respectively. Despite the fact that the time measure cannot be taken into
account (not precise), it properly provides a scale and show that, as is, our ap-
proach is not suited for dynamic updates (as with small instances our algorithm
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is already time consuming). But, it can still be considered when transforming
an existing arbitrary database to a consistent one.

7 Related work

The validity of knowledge databases is yet a very important research issue, bring-
ing the question concerning their updating in front of the scene. Several recent
work consider this problem. The focus of [15] is completely different from ours:
the authors neither care about the validity w.r.t. constraints nor propose an up-
dating method. They propose a semantic consistency measure on the basis of the
difference between a sub-graph from the original RDF graph database and a pro-
posed updated sub-graph. The incremental update algorithm proposed in [6] has
similarities with the updating proposal in [4] but without the deep examination
of null values introduced in the latter. A parallel can be done between Saturation
in [6], the chase in [5,4,10] and SetUp. Authors in [5,6,4,10] offer home-made pro-
cedures to implement their methods: [6] deals only with the instance constraints
of Fig. 3; in [5,4], constraints are tuple-generating-dependencies (tgd) given by
a user while in [10] constraints are simpler than tgd (but the paper also focuses
on RDF/S semantic constraints). Nulls (as incomplete information or as a blank
node in RDF) are the focus of [10,4]. All these works consider updates; [5,6]
mention schema evolution. The originality of SetUp is the use of home-made
procedures only to generate side-effects lying on well-studied graph rewriting
system to ensure database (instance or schema) consistent evolution.

To the best of our knowledge, [13] is the only proposal regarding the use
of graph rewriting to model ontology updates that provides an implementation.
The objective is to tackle the evolution, alignment, and merging of ontologies
(see also [14]). Graph rewriting rules are used to model updates on an OWL
ontology with the open world assumption (OWA) under some consistency con-
straints. Their work does not consider nested and general application conditions
and can thus not tackle more complex constraints (e.g. , relative to transitive
properties). This aspect, coupled with the OWA, makes it impossible to guaran-
tee the preservation of all of the consistency constraints considered in this paper
(e.g. , the absence of cycles in subclass relationships).

8 Concluding Remarks

This paper proposes SetUp a theoretical and applied framework for ensuring
consistency when a RDF knowledge graph evolves. Its originality lies in the
use of a typed graph rewriting system offering a formal graphical specification;
each atomic updates is formalized using a graph rewriting rule whose applica-
tion necessarily preserves RDF intrinsic semantic constraints. If an update can
not be applied, depending an user level, SetUp generates additional consistency
preserving updates to ensure its applicability.

SetUp can be used as a test-bed for updating approaches. While its com-
putation complexity makes SetUp unfit for on-the-fly automated updates, it is
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satisfactory for interactive command line updates and can also be used for of-
fline modifications. In particular, we plan on using SetUp to work on offline RDF
knowledge graph anonymization where a snapshot of a graph is updated to be
anonymized and published.
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A RDF/S databases as a typed graph

RDF/S databases are formalized in two ways in this paper: as classical triple-
based RDF statements and as a typed graph. This appendix is dedicated to the
latter.

RDF/S type graphs comprise 4 node types (Class, Individual, Literal, and
Prop) and 6 edge types (CI, PI, domain, range, subclass, and subproperty).
Each nodes have one attribute representing an URI, an URI, a value, and a
name, respectively. PI-typed edges are the only ones with an attribute which
represent the name of the property the edge is an instance of.

Fig 14 describes how each RDF triples are formalized in the typed graph
model.

(a) Cl(A) (b) Ind(A) (c) Pr(A) (d) Lit(v)

(e) CI(A,B) (f) CSub(A,B) (g) PSub(A,B)

(h) Dom(A,B) (i) Rng(A,B) (j) PI(A,B,C)

Fig. 14. RDF triples in the type graph model
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B Rewriting rules formalizing consistent RDF/S updates

This section presents the graph rewriting rules which are not described in the
main text, together with, for each one, the proof of its correction, i.e., the proof
that, when it is applied, graph consistency is preserved and the specified trans-
formation is performed. In total, our approach works with a total of 18 graph
rewriting rules.

To present the rules, in this section, we continue using the standard basic
form used in Section 4. We recall that the LHS of a SPO specification is related
to its applicability while its RHS is related to the effect of its application. One
may see the LHS and RHS of a rule as a ”before” and ”after” its application;
an image of the LHS has to be in the graph for the rule to be applicable and an
image of the RHS will be in the graph after its application. GACs, PACs and
NACs have no impact on the effect of a rule, but only restrict its applicability.

B.1 Deletion of a class instance (Fig. 15)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 15a)
LHS: An individual is linked to a class by an edge typed CI, i.e., in the database,
the individual is an instance of this given class.
RHS: The CI edge is removed (the individual still exists but is not an instance
of the given class anymore).
2) NACs: The individual considered here is an instance of the given class. The
NAC in Fig. 15b forbids the application of the rule when this individual is
also connected to another individual by a property (i.e., as part of a property
instance) whose domain is the given class. The NACs in Figs. 15c and 15d are
similar to the previous one, treating the cases where the individual is connected
to a literal or to itself, respectively. The NACs in Figs. 15f and 15g impose
similar prohibition when the given class is the range of the property. The NAC
in Fig 15g ensures that no instance of resource is removed – since an individual
is always an instance of class Resource. The NAC in Fig 15h disallows the rule
application when the individual is an instance of a subclass of the given class.

Proof of consistency preservation: From Fig. 3, we remark that constraints 14,
24, 25, and 26 are concerned by the deletion of a class instance since an atom
with predicate CI appear in their right-hand sides. The NAC in Fig 15g ensures
the satisfaction of constraint 14. The NACs in Figs. 15b– 15f ensures the sat-
isfaction of constraints 24 and 25. Finally the NAC in Fig 15h guarantees that
constraint 26 is not violated.

B.2 Insertion of an individual (Fig. 16)

Update category: Instance evolution
User level: Any user
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. Rule concerning the deletion of a class instance.

Rule semantics:
1) SPO specification: (Fig. 16a)
LHS: The class Resource;
RHS: LHS plus an individual with the URI A and a CI edge from the from
the former to the latter. The application of the rule inserts the individual as an
instance of class Resource.
2)NACs: The NACs defined in Fig. 16c and 16d guarantee that the sets of classes,
properties, and individuals are disjoint (constraints 5 and 6 in Fig. 3). The Nac
from Fig. 16b forbids the addition of the individual if an individual with the
same URI already exists.

Proof of consistency preservation: The addition of an individual triggers con-
straints 3 (Fig. 3) requiring an URL (given as a rule parameter) and con-
straints 5 and 6 which are guaranteed by the two NACs. 16c and 16d. Unicity
is guaranteed by NAC 16b .

B.3 Deletion of an individual (Fig. 17)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification:
LHS: An individual with URI A;
RHS: the empty graph: rule’s application leads to the deletion of the individual
with the URI A (and all edge incident to it).

Proof of consistency preservation: From Fig. 3, the deletion of an individual may
impact constraints 11 and 12. These constraints are still preserved because CI
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(a) (b) (c) (d)

Fig. 16. Rewriting rule for the insertion of an individual

and PI relations involving an individual A are represented as an edge incident
to the node modelling Ind(A). In the SPO approach, dangling edges are deleted,
thus all CI and PI relations involving Ind(A) are suppressed when this rule is
applied.

Fig. 17. Rewriting rule for the deletion of an individual

B.4 Insertion of a literal (Fig. 18)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 18a)
LHS: Empty
RHS: The application of the rule inserts a node corresponding to the literal and
its associated value in the graph.
2)NACs: (Fig. 18b) the NAC guarantees that such a literal does not exist yet.

Proof of consistency preservation: Property or class values such as textual strings
are examples of RDF literals. The addition of a literal does not trigger any
constraint (Fig. 3), just allowing its future use –as a value for property for
instance–. The NAC avoids literal redundancy.
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(a) (b)

Fig. 18. Rewriting rule for the insertion of a literal

B.5 Deletion of a literal (Fig. 19)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 19a)
LHS: The node corresponding to the literal.
RHS: Empty.
2)NACs: (Fig. 19b) the NAC guarantees that the literal rdfs:Literal node is not
the one been deleted; this node is a modelling artefact used as range when the
range of a property is a literal and should not be deleted.

Proof of consistency preservation: From Fig. 3, the deletion of a literal is only
concerned by constraint 12 when it is the value of a PI. In the SPO approach,
dangling edges are deleted, thus all PI relations involving the literal are sup-
pressed when this rule is applied.

(a) (b)

Fig. 19. Rewriting rule for the deletion of a literal

B.6 Insertion of a property

Two rules formalize the insertion of a property depending on the nature of its
range.

• Insertion of a property having a class as its range (Fig. 20a)
Update category: Schema evolution
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User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 20a)
LHS: the LHS is composed of two classes with URI domain (denoted by domain
class) and range (denoted by range class);
RHS: LHS plus a node representing a property, whose URI is A, which is con-
nected to the domain class by a domain-typed edge and to the range class by a
range-typed edge. Thus, the application of this rule inserts a property between
existing classes which are specified as the domain and range of that property.
2)NACs: NACs of Figs. 21a, 21c and 21d guarantee that there exist no class
with URI A (Fig. 21c), including the range (Fig. 21a) and the domain (Fig.21d)
classes. NAC of Fig 21e prohibits the existence of an individual whose URI is
A. Again, the NACs ensure that classes, properties, and individuals are disjoint
sets (constraints 4 and 5 in Fig. 3). Finally, NAC 21b guarantees that a property
with the same URI does not already exists, guaranteeing unicity.

Proof of consistency preservation: The addition of a property concerns con-
straints 2, 4 and 6 of Fig. 3. The NACs in Figs. 21a, 21c and 21d of our rewrit-
ing rule ensure that these three constraints are respected. Notice that classes on
LHS of our rule are not required to be distinguishable. Constraint 15 in Fig. 3
is also concerned by the insertion of a property. It requires the existence of a
domain and a range for every property. On the LHS, our rewriting rule imposes
the existence of two classes, while in its RHS, it establishes these classes as the
property’s domain and range. Constraint 15 is respected even when the same
class is defined as the domain and the range of a given property.

(a) (b)

Fig. 20. Rewriting rules for inserting properties come in two versions according to the
the type of the property’s range.
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(a) (b) (c) (d) (e)

Fig. 21. NACs for the insertion of a property.

• Insertion of a property having a literal as its range (Fig. 20b)
Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 20b)
LHS: The LHS is composed of a class and a literal node attributed ”rdfs:Literal”.
The latter is a special node used solely to specify that the range of a property
is a literal ;
RHS: LHS plus a node representing a property, whose URI is A, which is con-
nected to the class by a domain-typed edge and to ”rdfs:Literal” by a range-
typed edge. Thus, the application of the rule inserts a property between a class
and ”rdfs:Literal” which are specified, respectively, as the domain and range of
that property.
2)NACs: This rule is concerned only by the four NACs defined in Fig. 21d, 21c, 21e,
and 21b. These two first NACs guarantee that there exist no class with URI A
(Fig. 21c), including the domain (Fig.21d) class. NAC of Fig 21e prohibits the
existence of an individual whose URI is A. Again, the NACs ensure that classes,
properties, and individuals are disjoint sets (constraints 4 and 5 in Fig. 3). Fi-
nally, NAC 21b guarantees that a property with the same URI does not already
exists, guaranteeing unicity.

Proof of consistency preservation: The proof is similar to the previous one, the
only difference is that the range is not a class, but a literal.

B.7 Deletion of a property (Fig. 22)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 22a)
LHS: a property with URI A;
RHS: the empty graph. Rule’s application leads to the deletion of the property
with the URI A.
2) NACs: NACs ensure that a property having instances cannot be deleted.
Indeed, a property instance is a PI-typed edge between individuals (Fig. 22b
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where the instances of the property are individuals), between an individual and
a literal (Fig. 22c) or an atomic loop (Fig. 22d).

Proof of consistency preservation: From Fig. 3, we can remark that constraints 8,
9, 10 and 12 are concerned by the deletion of a property. Constraints 8, 9, 10
are still respected after the application of the rule because, when the node cor-
responding to the property is deleted, all dangling edges are deleted. Here these
edges indicate sub-property relationship (constraint 8), property domain (con-
straint 9) or property range (constraint 10). Constraint 12 is preserved because
NACs prohibit the deletion of a property having instances.

(a) (b) (c) (d)

Fig. 22. Rule concerning the deletion of a property (with associated NACs).

B.8 Insertion of a property instance

We have two rules for the insertion of properties, we similarly have to consider
different situations for the insertion of property instances.

• Insertion of a property instance for a property having a class as its range (Fig. 23)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 23a)
LHS: the LHS is composed of a property (identified by propURI ) having classes
as its domain and range. Each of these classes has an individual as an instance.
RHS: LHS plus an edge connecting the individuals. The edge represents the
property instance, indicating that the individuals are related to each other by
the property propURI.
2)GAC: (Fig. 23b) In the schema of the graph database, if the property propURI
is a sub-property of property supPr (for all pattern GacTransPI), then the two
individuals should be already instances of supPr (NestCond), i.e., the rule is
applied only if the individuals involved in the property instance been inserted
are already related by instances of all its super-properties.
3)NACs: (Fig. 23c) The NAC guarantees that the individuals are not already
instances of the property propURI.
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Proof of consistency preservation: The addition of a property instance concerns
constraints 12, 24 and 25 of Fig. 3 which are ensured by the SPO specification.
Let us denote by source (respectively, target) of a PI edge the node (individual)
being the start point (respectively, the ending point) of the PI edge. The LHS
guarantees: (i) the existence of two individuals and the property in the graph
(constraint 12), (ii) that the source of the PI is an instance of its class domain
(constraint 24) and (iii) that the target of the PI is an instance of its class range
(constraint 25). Constraint 27 is ensured by the GAC. An instance of P can be
inserted between two individuals only if their is between the two an instance of
all the super-properties of P .

(a)

(b) (c)

Fig. 23. Rewriting rule for the insertion of a property instance when the property
range is a class.

• Insertion of a property instance for a property having a literal as its range (Fig. 24)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 24a)
LHS: the LHS is composed of a property (identified by propURI ) having a class
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as its domain and the literal class as its range, one individual (instance of the
domain) and a literal.
RHS: LHS plus an edge from the individual to the literal. The edge represents
the property instance, indicating that the individual and the literal are related
to each other by the property propURI.
2)GAC: (Fig. 24c) In the graph database schema, if the property propURI is a
sub-property of property supPr (GacTransPI), then the individual and the literal
should be already instances of supPr (NestCond), i.e., the rule is applied only
if the individual and the literal involved in the property instance been inserted
are already involved in instances of all its super-properties.
3)NACs: (Fig. 24b) The NAC guarantees that the individual and the literal are
not already linked as an instance of the property propURI.

Proof of consistency preservation: Similar to the proof in the previous item.

(a)

(b) (c)

Fig. 24. Rewriting rule for the insertion of a property instance when the property
range is a literal.
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B.9 Deletion of a property instance

Similarly, we have to consider two different situations for the deletion of property
instances.

• Deletion of a property instance for a property having a class as its range (Fig. 25)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 25a)
LHS: the LHS is composed of two individuals denoted by indivDom and indivRng
linked by a PI-typed edge attributed with propURI, i.e., there is an instance of
property propURI whose object is indivDom and value indivRng.
RHS: LHS minus the edge, the rule application leads to the removal of the prop-
erty instance.
2)NACs: (Fig. 25b) If property propURI has at least one sub-property the indi-
viduals are also instances of the NAC forbids the rule application.

Proof of consistency preservation: The deletion of a property instance concerns
constraint 27 of Fig. 3. The NAC ensures this constraint since the rule cannot
be triggered if there exist sub-property instance links between the individuals.

(a)

(b)

Fig. 25. Rewriting rule for the deletion of a property instance when the property range
is a class.
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• Deletion of a property instance for a property having a literal as its range (Fig. 26)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 26a)
LHS: the LHS is composed of an individuals denoted by indivDom and a literal
linked by a PI-typed edge with attribute propURI, i.e., they are instances of
property propURI.
RHS: LHS minus the edge, the rule application leads to the removal of the edge
linking the the individual to the literal.
2)NACs: (Fig. 26b) If property propURI has a sub-property with an instance
involving indivDom and the literal, then the NAC forbids the rule application.

Proof of consistency preservation: Similar to the proof in the previous item.

(a)

(b)

Fig. 26. Rewriting rule for the deletion of a property instance when the property range
is a literal.

B.10 Insertion of a subclass relation (Figs. 27 and 28)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 27a
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LHS: Two class-typed nodes with URI A and B;
RHS: An edge of type ”subclass” from class B to class A is added, indicating
that B is a subclass of A.
2) NACs: The NAC in Fig 27b ensures that class B is not a subclass of class
A yet, while the NAC in Fig 27c prohibits the construction of cyclic subclass
relationships – if A is already a subclass of B, the insertion of a subclass re-
lationship from B to A is not possible. The NAC in Fig 27d forbids reflexive
subclass relationship.
3) GACs: Fig. 28
The tree in Fig 28a shows the entire logical combination of conditions imposed
to the graph for the application of the rule. The right branch of the tree refers to
GAC in Fig. 27b. In the graph database, all individuals which are instances of
class B (GacTransCI) should also be instances of class A (NestCond1) for the rule
to be applicable, i.e., the rule is applicable only if all instance of B are already
instances of A. The left sub-tree in Fig. 28 gathers two conditions. The leftmost
one corresponds to Fig 28c. Each superclass of A (GacTransCsub) is a superclass
of B (NestCond), i.e., the application of the rule is possible only if there exists
a subclass relationship between B and all superclass of A. The last condition is
the one in Fig.28d. It states that all subclass of class B (GacTransCsub2) is a
subclass of A (NestCond2).

(a) (b) (c) (d)

Fig. 27. Rule concerning the insertion of a subclass (with associated NACs).

Proof of consistency preservation: From Fig. 3, we remark that constraints 7, 18,
19 and 26 are concerned by the insertion of a subclass. Constraint 7 is not violated
since the LHS of the SPO specification (Fig. 27a) imposes the existence of two
classes before the addition of the edge representing the subclass relationship.
GACs in Figs. 28c and 28d ensures the satisfaction of constraint 18 of Fig. 3,
since they guarantee the application of the rule only if the class hierarchy stays
consistent. Constraint 19 is implemented by the NACs which ensure that a cyclic
subclass hierarchy is not possible. Constraint 26 is ensured by GAC in Fig. 28b
which imposes the application of the rule only if all instances of class B are
already instances of class A.
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(a)

(b) (c) (d)

Fig. 28. GAGs concerning the insertion of a sub-class property.
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B.11 Deletion of a subclass relation (Fig. 29)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 29a
LHS: Two class-typed nodes with URI subClass and SuperClass with a subclass-
typed edge from the former to the latter;
RHS: LHS minus the edge, indicating its deletion.
2) NACs: The NAC in Fig 29b ensures that class SuperClass is not ”rdfs:Resource”,
since all classes are subclasses of the root. The NAC in Fig 29c (resp. Fig 29d)
ensures that SuperClass is not the domain (resp. the range) of a property which
has a sub-property whose domain (resp. range) is subClass. If such properties
exist, the rule is not applicable. The NAC in Fig 29e forbids the existence of a
class that is both a subclass of SuperClass and a superclass of subClass, en-
suring consistency with regard to transitivity.

(a) (b)

(c) (d) (e)

Fig. 29. Rule concerning the deletion of a subclass (with associated NACs).

Proof of consistency preservation: From Fig. 3, we remark that only constraints 13,
18, 22 and 23 are concerned by the deletion of a subclass relation. Constraint 13
is preserved thanks to the NAC defined in Fig. 29b that forbids the suppression
of the sub-class relation to the root of the class hierarchy. The NAC of Fig. 29e
ensures that the transitivity of the sub-class relation is respected, guaranteeing
the respect of constraint 18. Finally, constraints 22 and 23 are ensured by NACs
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depicted in Figs. 29c and 29d, respectively. The sub-class relationship can not
be deleted if it is required for the subsumption between two properties to reflect
in their domains and ranges.

B.12 Insertion of a sub-property relation (Fig. 30, 31, 32, and 33)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 30a
LHS: Two property-typed nodes with URI superProp and subProp;
RHS: LHS plus a subproperty-typed edge from the node with URI subProp to
the one with URI superProp, indicating its addition.
2) NACs: The NACs in Fig 30b and 30d ensure that the sub-property relation
is neither reflexive nor symmetric, respectively. The NAC formalized in Fig. 30c
forbids the insertion of the relation if it already exists.
3) GACs: The logical formula for the GACs is presented in Fig 31 while the
GACs are formalized in Fig. 32 and 33. The logical formula states that all of the
following conditions must be fulfilled for the rule to be applicable:

– SameDom ∨ SubDom (Fig. 32a and 32b); the properties have the same
domain or the domain of superProp is a super-class of subProp’s domain;

– SameRng∨SameRngLit∨SubRng (Fig. 32c), 32d, and 32e; the properties
have the same range or the range of superProp is a super-class of subProp’s
domain;

– for all patterns GacTransPI, NestCond is true (Fig. 33a); all couple of
individual related with an instance of superProp also have an instance of
subProp.

– for all patterns GacTransPISelf , NCselfPI is true (Fig. 33c); all individ-
ual with a reflexive instance of superProp also has an instance of subProp.

– for all patterns GacTransPILit, NCtransPIlit is true (Fig. 33b); all couple
of individual and literal with an instance of superProp also have an instance
of subProp.

– for all patterns of GacTransPsub, NCtransPsub is true (Fig.33d) (resp.
GacTransPsub2, NCtransub2); all super-property of superProp is also a
super-property of subProp (resp. all sub-property of subProp is also a sub-
property of superProp).

Proof of consistency preservation: From Fig. 3, we remark that only constraints 8, 20, 21, 27, 22,
and 23 are concerned by the deletion of a subproperty relation.

The typing of the relation (constraint 8) are guaranteed by the SPO part of
the rule that may match only property-typed nodes.

Constraints 21 is preserved thanks to the NACs defined in Fig. 30b and 30d
that forbid the introduction of a cycle in the sub-property relation. The GACs
of Fig. 33d and 33e ensure the preservation of the relation transitivity (con-
straint 20).



Graph Rewriting Rules for Consistent Evolution of RDF Knowledge Graphs 37

(a)

(b) (c) (d)

Fig. 30. Rule concerning the insertion of a subproperty relation subclass (with associ-
ated NACs).

Fig. 31. Logical relations for GACs regarding the insertion of a subproperty relation
subclass.
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(a) (b)

(c) (d) (e)

Fig. 32. GACs for the insertion of a subproperty relation subclass.

The preservation of property instance propagation (constraint 27) is ensured
by the GACs represented in Fig. 33c, ??, and ??.

Finally, constraints 22 and 23 are ensured by GACs depicted in Figs. 32a
and 32b and 32c, 32d, and 32e, respectively. The sub-property relationship may
be added only if the two properties have the same domain (resp. same range) or
if their respective domains (resp. ranges) are related with an adequate sub-class
relationship.

B.13 Deletion of a subproperty relation (Fig. 34)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 34a
LHS: Two property-typed nodes with URI superProp and subProp with a
subproperty-typed edge from the former to the latter;
RHS: LHS minus the edge, indicating its deletion.
2) NAC: The NAC in Fig 34b ensures that there exists no third property which
is both a super-property of subProp and a sub-property of superProp.

Proof of consistency preservation: From Fig. 3, we remark that only con-
straint 20 is concerned by the deletion of a suproperty relation. Its conservation
is ensured by the NAC of Fig. 34b that forbids deletion of the relation if it has
to exist due to transitivity.
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(a)

(b)

(c)

(d)

(e)

Fig. 33. GACs for the insertion of a subproperty relation subclass (cont’).
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(a) (b)

Fig. 34. Rule concerning the deletion of a subproperty relation (with associated NAC).

C SetUp proof

Lemma 3 (SetUp Correction and terminaison). Let U be an update, G a
consistent graph, R our set of graph rewrite rules and G′ = SetUp(G,R, U). (1)
SetUp terminates and (2) if U is consistent then if U is an insertion, U appears
in G′, else U is a deletion, U does not appear in G′.

Proof. Proof is made for each possible update. So in all cases, we show that we
have (i) a finite number of side effects produced (possibly recursively) as well
as (ii) the side effects corresponding to the desired update if it is consistent. All
proofs are provided in Appendix C. The number of side effects is less important
than the number of modifications (addition / deletion of a node or addition /
deletion of an arc) in the graph because, in the SPO approach, dangling edges
are automaticaly deleted, if we delete node with Uri = A, all edges (A,X) or
(X,A) no longer exist.

Let study different possible updates. In the columns of the following tables,
we present the side effects obtained with each recursive call from SetUp. The
side effects with red background are not tested because, in the SPO approach
dangling edges are automaticaly deleted, if we delete node with Uri = A, all
edges (A,X) or (X,A) no longer exist. If a side effect does not produce any other
side effect, it is either that the conditions for producing a new side effect are all
false or that it is done in the rewrite rule. Side effects with green background
are done in a recursively call of SetUp, those with yellow background are done
by GraphRewriter line 7 of Algorithm 1 where U is the first column of the
following tables.

• For SetUp(G,R, Cl(A)). (Insertion of a Class)
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Cl(A) ¬Pr(A)) ∀X¬PSub(X,A) Nothing to do
∀X¬PSub(A,X) Nothing to do
∀X¬Dom(A,X) Nothing to do
∀X¬Rng(A,X) Nothing to do
∀X,Y ¬Pi(X,Y,A) No more side effects

¬Indiv(A) ∀X¬CI(A,X) Nothing to do
∀X,Y ¬Pi(A,X, Y ) Nothing to do
∀X,Y ¬Pi(X,A, Y ) Nothing to do

CSub(A,Resource) Nothing to do, it’s added by the rewwrite rule.
Uri(A) Nothing to do, it’s added by the rewwrite rule.

With this table we conclude that SetUp(G,R, Cl(A)) ends and the result
contains Cl(A).
Cl(A) :�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

¬Indiv(A)�

CSub(A,Resource)�

Uri(A)

Proof ok for this case.
• For SetUp(G,R,¬Cl(Resource)). (Deletion of class Resource). We do nothing
because a graph without the node Cl(Resource)) is inconsistent.
¬Cl(Resource)) : nothing
• For SetUp(G,R,¬Cl(A)). (Deletion of a class distinct of Resource).
¬Cl(A) ∀X¬CSub(X,A)) Nothing to do

∀X¬CSub(A,X) Nothing to do
¬CSub(A,Resource) Nothing to do
∀X¬Dom(X,A) ¬Pr(X) * ∀Y,Z¬PI(Y,Z,X) * No more s-e
∀X¬Rng(X,A) ¬Pr(X) * ∀Y,Z¬PI(Y,Z,X) * No more s-e

In this previous table, we introduce ’*’ in some cells when side effect is done
for all X find in the previous cell. The number of these side effects is finite
because the graph is finite.
¬Cl(A) A 6= Resource :�

∀X¬Dom(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

∀X¬Rng(X,A) → ¬Pr(X)(*) → ∀Y, Z¬PI(Y,Z,X)(*)

Proof ok for this case.
• For SetUp(G,R, CI(A,B)). (Insertion of a class instance).
CI(A,B) :�

Cl(B)�

¬Indiv(B)�

¬Pr(B) → ∀X,Y ¬Pi(X,Y,B)�

Indiv(A)�

¬Cl(A)�

∀X¬Dom(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)
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�

∀X¬Rng(X,A) → ¬Pr(X)(*) → ∀Y, Z¬PI(Y,Z,X)(*)�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

CI(Resource,A)�

∀X s.t. CSub(B,X) CI(A,X)

It always terminates because ∀X s.t. CSub(B,X) CI(A,X) does’t produce
other side effects, indeed if it exists X, X is a node of a consistent graph so
CI(X,A) just puts an edge between X and Indiv(A) (Indiv(A) is added in the
graph just before, nothing to check here). The case where we can’t apply the
rewrite rule is explain previously so if A! = B, SetUp(G,R, CI(A,B)) adds in
the graph CI(A,B) and all side effects to keep it consistent.

Proof ok for this case.

• For SetUp(G,R,¬CI(A,Resource)). (Deletion of a Resource instance).

¬CI(A,Resource)

�

¬Indiv(A)�

¬Literal(A) except if A =′ Literal′

It terminates of course. It’s correct, if we don’t have Indiv(A) or Literal(A),
the edge CI(A,Resource) is dangling and so automaticaly deleted. If A is
′Litteral′ we do nothing because a graph without the node Literal(Literal))
is inconsistent.

Proof ok for this case.

• For SetUp(G,R,¬CI(A,B)). (Deletion of a class instance class is distinct of
Resource).

¬CI(A,B) :

�

∀Xs.t.Dom(X,B) then ∀Y ¬PI(A, Y,X)�

∀Xs.t.Rng(X,B) then ∀Y ¬PI(Y,A,X)�

∀Xs.t.CSub(X,B) then ¬CI(A,X)�

∀Y s.t.Dom(X,Y ) then ∀Z¬PI(A,Z, Y )�

∀Y s.t.Rng(X,Y ) then ∀Z¬PI(Z,A, Y )

There are no other recusive calls due to transitivity of CSub. It terminates
because graph is finite.

Proof ok for this case.

• For SetUp(G,R, Indiv(A)). (Insertion of an individual).

Indiv(A) :

�

¬Cl(A)�

∀X¬Dom(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y, Z,X)(*)�

∀X¬Rng(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

CI(A,Resource)
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It terminates and Indiv(A) is in the graph.
Proof ok for this case.

• For SetUp(G,R,¬Indiv(A)). (Deletion of an individual).
¬Indiv(A) : no side effects is produce all dangling edges are deleted. Termi-
nates and Indiv(A) is no more in the result graph.

Proof ok for this case.
• For SetUp(G,R, Literal(A)). (Insertion of a literal).
Literal(A) : just added in the graph.

Proof ok for this case.
• For SetUp(G,R,¬Literal(A)). (Deletion of a literal).
Literal(A) : just removed from the graph, all dangling edge are removed.

Proof ok for this case.
• For SetUp(G,R, P r(A,B,C)). (Insertion of a property A with it’s domain
B and it’s range C which is Literal here.)
Pr(A,B,C) : if Pr(A), Dom(A,B), Rng(A,C) are all in G do nothing else :�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

¬Cl(A)�

∀X¬Dom(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y, Z,X)(*)�

∀X¬Rng(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

¬Indiv(A)�

Cl(B)�
¬Pr(B) → ∀X,Y ¬Pi(X,Y,B)�
¬Indiv(B)�

CSub(B,Resource)�

Uri(B)�

if C = Literal do nothing
else Cl(C) :�

¬Pr(C) → ∀X,Y ¬Pi(X,Y,C)�

¬Indiv(C)�

CSub(C,Resource)�

Uri(C)�

Pr(A)�

Dom(A,B)�

Rng(A,C)

Proof ok for this case.
• For SetUp(G,R,¬Pr(A)). (Deletion of a property.)
¬Pr(A) :�

∀X,Y ¬Pi(X,Y,A)

Proof ok for this case.
• For SetUp(G,R, P i(A,B,C)). (Insertion of a property instance.)
Pi(A,B,C) :
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�

if ∃DC,RC s.t. {Pr(C), Dom(C,DC), Rng(C,RC)} ⊆ G then do nothing
else (do the update Pr(C,Resource,Resource)):�

¬Cl(C)�

∀X¬Dom(X,C) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

∀X¬Rng(X,C) → ¬Pr(X)(*) → ∀Y, Z¬PI(Y, Z,X)(*)�

¬Indiv(C)�

Pr(C)�

Dom(C,Resource), (note DC = Resource)�

if Literal(B) then Rng(C,Literal), (note RC = Literal)
else Rng(C,Resource), (note RC = Resource)�

Ci(A,DC)�

Indiv(A)�

¬Cl(A)�

∀X¬Dom(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y, Z,X)(*)�

∀X¬Rng(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

CI(Resource,A)�

∀X s.t. CSub(DC,X) CI(A,X)�

if RC = Literal then Literal(B)
else Ci(B,RC)�

Indiv(B)�
¬Cl(B)�

∀X¬Dom(X,B) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

∀X¬Rng(X,B) → ¬Pr(X)(*) → ∀Y, Z¬PI(Y, Z,X)(*)�

¬Pr(B) → ∀X,Y ¬Pi(X,Y,B)�

CI(Resource,B)�

∀X s.t. CSub(RC,X) CI(B,X)

Proof ok for this case.
• For SetUp(G,R,¬Pi(A,B,C)). (Deletion of a property instance.)
¬Pi(A,B,C) :�

∀X s.t. PSub(X,C) ¬Pi(A,B,X)

Proof ok for this case.
• For SetUp(G,R, CSub(A,B)). (Insertion of a sub-class relation.) A 6= B and
A 6= Resource else we do nothing since CSub(A,A) and CSub(Resource,B) are
inconsistents.
CSub(A,B) :�

¬CSub(B,A)�

∀X,Y s.t. Dom(X,B) and Dom(Y,A) : ¬PSub(X,Y ) →
∀U s.t. PSub(X,U) and PSub(U, Y ) : ¬PSub(U, Y ) (*)�

∀X,Y s.t. Rng(X,B) and Rng(Y,A) : ¬PSub(X,Y ) →
∀U s.t. PSub(X,U) and PSub(U, Y ) : ¬PSub(U, Y ) (*)
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�

∀X s.t. CSub(B,X) and CSub(X,A) : ¬CSub(X,A) →
∀Y, Z s.t. Dom(Y,X) and Dom(Z,A) : ¬PSub(Y, Z) (*) →

∀U s.t. PSub(Y,U) and PSub(U,Z) : ¬PSub(U,Z) (**)�

∀X s.t. CSub(B,X) and CSub(X,A) : ¬CSub(X,A) →
∀Y, Z s.t. Rng(Y,X) and Rng(Z,A) : ¬PSub(Y,Z) (*) →

∀U s.t. PSub(Y, U) and PSub(U,Z) : ¬PSub(U,Z) (**)�

Cl(A)�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

¬Indiv(A)�

CSub(A,Resource)�

Uri(A)�

Cl(B)�

¬Pr(B) → ∀X,Y ¬Pi(X,Y,B)�

¬Indiv(B)�

CSub(B,Resource)�

Uri(B)�

∀Z s.t. Ci(Z,A) : Ci(Z,B)�

∀X s.t. CSub(B,X) : CSub(A,X) → ∀Z s.t. Ci(Z,A) : Ci(Z,X) (*)�

∀X s.t. CSub(X,A) : CSub(X,B) → ∀Z s.t. Ci(Z,X) : Ci(Z,B) (*)�

∀X,Y s.t. CSub(B,X) and CSub(Y,A) : CSub(Y,X) →
∀Z s.t. Ci(Z, Y ) : Ci(Z, Y ) (*)

Proof ok for this case.
• For SetUp(G,R,¬CSub(A,B)). (Deletion of a sub-class relation.) If B =
Resource or A = B we do nothing.
¬CSub(A,B) (A 6= B and B 6= Resource) :�

∀X,Y s.t. Dom(X,A) and Dom(Y,B) : ¬PSub(X,Y ) →
∀U s.t. PSub(X,U) and PSub(U, Y ) : ¬PSub(U, Y ) (*)�

∀X,Y s.t. Rng(X,A) and Rng(Y,B) : ¬PSub(X,Y ) →
∀U s.t. PSub(X,U) and PSub(U, Y ) : ¬PSub(U, Y ) (*)�

∀X s.t. CSub(A,X) and CSub(X,B) : ¬CSub(X,B) →
∀Y, Z s.t. Dom(Y,X) and Dom(Z,B) : ¬PSub(Y,Z) (*) →

∀U s.t. PSub(Y, U) and PSub(U,Z) : ¬PSub(U,Z) (**)�

∀X s.t. CSub(A,X) and CSub(X,B) : ¬CSub(X,B) →
∀Y, Z s.t. Rng(Y,X) and Rng(Z,B) : ¬PSub(Y, Z) (*) →

∀U s.t. PSub(Y, U) and PSub(U,Z) : ¬PSub(U,Z) (**)

Proof ok for this case.
• For SetUp(G,R, PSub(A,B)). (Insertion of a sub-property relation.)
PSub(A,B) :�

if ∃DB,RB s.t. {Pr(B), Dom(B,DB), Rng(B,RB)} ⊆ G then do nothing
else (do the update Pr(B,Resource,Resource)):�

¬Cl(B)�

∀X¬Dom(X,B) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y, Z,X)(*)
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�

∀X¬Rng(X,B) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

¬Indiv(B)�

Pr(B)�

Dom(B,Resource), (note DB = Resource)�

Rng(B,Resource), (note RB = Resource)�

if ∃DA,RA s.t. {Pr(A), Dom(A,DA), Rng(A,RA)} then�

if DA = DB or CSub(DA,DB) then do nothing
else if DA = Resource then�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

Pr(A)�

Dom(A,DB)�

Rng(A,RB)
else�

CSub(DA,DB) we insert here the tree corresponding to insert a sub
class given above.�

if RA = RB or CSub(RA,RB) then do nothing
else if RA = Resource or RA = Literal then�

¬Pr(A) → ∀X,Y ¬Pi(X,Y,A)�

Pr(A)�

Dom(A,DB)�

Rng(A,RB)
else�

CSub(RA,RB) we insert here the tree corresponding to insert a sub
class given above.�

if @DA,RA s.t. {Pr(A), Dom(A,DA), Rng(A,RA)} ⊆ G then�

¬Cl(A)�

∀X¬Dom(X,A) → ¬Pr(X)(*) → ∀Y,Z¬PI(Y,Z,X)(*)�

∀X¬Rng(X,A) → ¬Pr(X)(*) → ∀Y, Z¬PI(Y,Z,X)(*)�

¬Indiv(A)�

Pr(A)�

Dom(A,DB)�

Rng(A,RB)

Proof ok for this case.
• For SetUp(G,R,¬PSub(A,B)). (Deletion of a sub-property relation.)
¬PSub(A,B) :�

∀X s.t. PSub(A,X) and PSub(X,B) : ¬PSub(X,B)

Proof ok for this case.
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D Side-effects (UpdCond table)

This is the full UpdCond table that is used to determine wich side effects need
to be applied for insertion (table 1) and deletions (table 2) updates.

Update Side effects on graph schema Rule
Cl(A) ¬Pr(A) 4

¬Indiv(A) 5
CSub(A, Resource) 13

Uri(A) 1
Pr(P) ¬Cl(P) 4

¬Indiv(P) 6
Dom(P, Resource) 15
Rng(P, Resource) 15

Uri(P) 3
Indiv(I) ¬Cl(I) 5

¬Pr(I) 6
CI(I, Resource) 14

Uri(I) 3
CSub(XC,YC) Cl(XC) 7

Cl(YC) ∨ (YC= Ressource) 7
∀ ZC such that CSub(YC,ZC) then CSub(XC,ZC) 18
∀ ZC such that CSub(ZC,XC) then CSub(ZC,YC) 18

¬CSub(YC,XC) % Error message contradiction, i.e. Csub(XC,XC) 19
∀Zi such that CI(Zi, XC) then CI(Zi,YC) 26

PSub(Xp,Yp) Pr(Xp) 8
Pr(Yp) 8

∀ Zp such that PSub(Yp,Zp) then PSub(Xp,Zp) 20
∀ Zp such that PSub(Zp,Xp) then PSub(Zp,Yp) 20

¬PSub(Yp,Xp) % Error message, i.e. Psub(Xp,Xp) 21
∀ Zi1, Zi2 such that PI(Zi1, Zi2, Xp) then PI(Zi1, Zi2 ,Yp) 27

Let Dom(Xp,ZD1) and Dom(Yp, ZD2) then ZD1=ZD2 or CSub(ZD1, ZD2) 22
Let Rng(Xp,ZD1) and Rng(Yp, ZD2) then ZD1=ZD2 or CSub(ZD1, ZD2) 23

Dom(Xp, XD) Pr(Xp) 9
Cl(XD) ∨ (XD= Ressource) 9

∀ YD 6= XD , ¬ Dom (Xp,YD) 16
∀ Xp1, XD1 such that PSub (Xp, Xp1) and Dom(Xp1, XD1)

then CSub(XD, XD1) ∨ (XD = XD1) 22
∀ Xp1, XD1 such that PSub (Xp1, Xp) and Dom(Xp1, XD1)

then CSub(XD1, XD) ∨ (XD = XD1) 22
∀ Xi, Yi such that PI(Xi, Yi, Xp) then CI(Xi, XD) 24

Rng(Xp, XR) Pr(Xp) 10
Cl(XR) ∨ (XR= Ressource) ∨ (XR is litteral) 10

∀ YR 6= XR , ¬ Dom (Xp,YR) 17
∀ Xp1, XR1 such that PSub (Xp, Xp1) and Dom(Xp1, XR1)

then CSub(XR, XR1) ∨ (XR = XR1) 23
∀ Xp1, XR1 such that PSub (Xp1, Xp) and Dom(Xp1, XR1)

then CSub(XR1, XR) ∨ (XR = XR1) 23
∀ Xi, Yi such that PI(Xi, Yi, Xp) then CI(Yi, XR) ∨ (Lit(Yi) ∧ XR is litteral) 25

CI(Xi,XC) Indiv (Xi) 11
Cl (XC) ∨ (XC = Ressource) 11

∀ YC CSub (XC, YC) then CI(Xi, YC) 26
PI(Xi,Yi, Xp) Indiv (Xi) 12

Indiv (Yi) ∨ Lit(Yi) 12
Pr(Xp) 12

∀ Yp PSub (Xp, Yp) then PI(Xi, Yi, Yp) 27
Let Dom (Xp, XD) then CI(Xi, XD) 24

Let Rng (Xp, XR) then CI(Yi, XR) ∨ (Lit(Yi) ∧ XR is litteral) 25

Table 1. UpdCond table for insertions.



48 Chabin, Eichler, Halfeld, Hiot

Update Side effects on graph schema Rule
¬ Cl(A) ∀ Xsc CSub(Xsc, A) then ¬ CSub(Xsc, A) 7

∀ XC CSub(A, XC) then ¬ CSub(A, XC) 7
∀ XD Dom(XD, A) then ¬ Dom(XD, A) 9
∀ XR Rng(XR, A) then ¬ Rng(XR, A) 10

∀ Xi CI(Xi, A) then ¬ CI(Xi, A) 11
¬ Pr(P) ∀ Xsp PSub(Xsp, P) then ¬ PSub(Xsp, P) 8

∀ XP PSub(P, XP) then ¬ PSub(P, XP) 8
∀ XD Dom(P, XD) then ¬ Dom(P, XD) 9
∀ XR Rng(P, XR) then ¬ Rng(P, XR) 10

∀ Xi, Yi PI(Xi, Yi, P) then ¬ PI(Xi, Yi, P) 12
¬ Indiv(I) ∀ XC CI(I, XC) then ¬ CI(I, XC) 11

∀ Xi, XP PI(I, Xi, XP) then ¬ PI(I, Xi, XP) 12
∀ Xi, XP PI(Xi,I, XP) then ¬ PI(Xi,I, XP) 12

¬ CSub(Xsc,XC) if XC = Resource then ¬ Cl(Xsc) 13
NON deterministe SITUATIONS:

∀ Y such that CSub(Xsc, Y) and CSub(Y,XC) then
Choice (¬ CSub(Xsc,Y), ¬ CSub(Y, XC), both) or exception 18

∀ XP1, XP2 such that PSub(XP1, XP2) and Dom(XP1,Xsc) and Dom (XP2,XC) then
Choice (¬ PSub(XP1, XP2), ¬ Dom(XP1,Xsc), ¬ Dom (XP2,XC), all them) or exception 22

∀ XP1, XP2 such that PSub(XP1, XP2) and Rng(XP1,Xsc) and Rng (XP2,XC) then
Choice (¬ PSub(XP1, XP2), ¬ Rng(XP1,Xsc) ¬ Rng (XP2,XC), all them) or exception 23

¬ PSub(Xsp,XP)
NON deterministe SITUATION:

∀ Y such that PSub(Xsp, Y) and PSub(Y,XP) then
Choice (¬ PSub(Xsp,Y), ¬ PSub(Y, XP), both) or exception 20

¬ Dom(Xp, XD) ¬ Pr(Xp) 15
¬ Rng(Xp, XR) ¬ Pr(Xp) 15
¬ CI(Xi,XC) if XC = ressource then ¬ Indiv(Xi) 14

NON deterministe SITUATIONS:

∀ YC such that CI(Xi, YC) and CSub(YC,XC) then
Choice (¬ CI(Xi,YC), ¬ CSub(YC, XC), both) or exception 26

∀ Yi, Zp such that PI(Xi, Yi, Zp) and Dom(Zp,XC) then
Choice (¬ PI(Xi, Yi, Zp), ¬ Dom(Zp,XC), both) or exception 24

∀ Yi, Zp such that PI(Xi, Yi, Zp) and Rng(Zp,XC) then
Choice (¬ PI(Xi, Yi, Zp), ¬ Rng(Zp,XC), both) or exception 25

¬ PI(Xi,Yi, Xp)
NON deterministe SITUATIONS:

∀ Yp such that PI(Xi,Yi, Yp) and PSub(Yp,Xp) then
Choice ( ¬ PI(Xi,Yi, Yp), ¬ PSub(Yp,Xp), both) or exception 27

Table 2. UpdCond table for deletions.
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E Benchmarks

The following tables show the results of the benchmarks obtained respectively
for deletions (table 3) as well as insertions (table 4) on an arbitrary, dynamically-
build data graph. The first column (Benchmark) show the update applied. The
following two columns: NB inst and NB sch indicate respectively the number of
instances for each class/property (instance size) and the number of classes/properties
(schema size). These two columns are intended to evidence the impact of the
schema and the instance on the result while the last two (NB nodes and NB
edges) show the real size of the resulting graph.

ResCl0Cl1Cl2
CsubCsubCsub

Fig. 35. Example of class hierachy of size 3

The resulting class hierarchy is shown in figure 35 for NB sch = 2 (a similar
structure exists for property and k instances are associated with each class).
Some facts are tested in different configurations. For example, the addition of
the fact CSub(X,Y ) is tested in four different ways:

– down: add a class at the bottom of the hierarchy (i.e. CSub(X,Cl2));
– top: add a class at the top of the hierarchy (i.e. CSub(X,Cl0));
– down reverse: add a sub class to the bottom class (i.e. CSub(Cl2, X));
– top reverse: add a sub class to the top class (i.e. CSub(Cl0, X)).

The results of the benchmarks are given in columns Time, wich give the
execution time of the benchmark, and Nb SE, which tell the number of side
effects triggered to apply the update. The time is measure with JMH [?] on
3 forks of 10 warmup iterations and 50 measure iteration with a mean of 150
operations per iteration. Each operation is triggered on a clean copy of the built
data graph. The execution time naturally varies with the number of side effects.
PI > PSub due to more complex morphism detection (guess). The result also
confirms only the size of the schema affects the number of side effects for positive
updates.

CE: Je trouve que cela manque un peu d’explication; il faudrait peut tre ex-
pliquer ce qu’est down et top l’aide d’un schma sur un exemple (e.g. CI),
ainsi que down/top reverse. Il faut aussi commenter plus les rsultats en ex-
hibant les valeurs numriques. Je dirais qu’il faut choisir un fait et le com-
menter fond, schma, expliquer les side effects trigger etc
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Benchmark NB inst NB sch Time (ms/op) Error Nb SE NB nodes NB edges
¬CI (down) 1 1 14,152 1,088 0 9 12
¬CI (down) 1 5 17,036 1,265 4 37 140
¬CI (down) 5 1 13,437 1,045 0 21 40
¬CI (down) 5 5 15,993 0,960 4 97 440
¬CI (top) 1 1 14,368 1,127 0 9 12
¬CI (top) 1 5 17,133 1,293 4 37 140
¬CI (top) 5 1 13,232 0,965 0 21 40
¬CI (top) 5 5 16,136 1,070 4 97 440
¬CSub 1 1 18,716 1,424 0 9 12
¬CSub 1 5 17,197 1,247 3 37 140
¬CSub 5 1 9,701 0,847 0 21 40
¬CSub 5 5 6,078 0,534 3 97 440
¬Cl (down) 1 1 4,057 0,307 0 9 12
¬Cl (down) 1 5 4,411 0,341 0 37 140
¬Cl (down) 5 1 1,604 0,126 0 21 40
¬Cl (down) 5 5 1,556 0,093 0 97 440
¬Cl (top) 1 1 3,954 0,278 0 9 12
¬Cl (top) 1 5 4,471 0,348 0 37 140
¬Cl (top) 5 1 1,602 0,121 0 21 40
¬Cl (top) 5 5 1,700 0,114 0 97 440
¬Dom/Rng (down) 1 1 4,495 0,356 0 9 12
¬Dom/Rng (down) 1 5 4,374 0,281 0 37 140
¬Dom/Rng (down) 5 1 1,927 0,150 0 21 40
¬Dom/Rng (down) 5 5 1,673 0,109 0 97 440
¬Dom/Rng (top) 1 1 5,068 0,352 1 9 12
¬Dom/Rng (top) 1 5 7,109 0,567 1 37 140
¬Dom/Rng (top) 5 1 2,388 0,176 1 21 40
¬Dom/Rng (top) 5 5 3,078 0,201 1 97 440
¬PI (down) 1 1 9,046 0,718 0 9 12
¬PI (down) 1 5 10,581 0,926 4 37 140
¬PI (down) 5 1 10,399 0,737 0 21 40
¬PI (down) 5 5 11,779 1,039 4 97 440
¬PI (top) 1 1 3,715 0,303 0 9 12
¬PI (top) 1 5 4,559 0,556 0 37 140
¬PI (top) 5 1 4,912 0,353 0 21 40
¬PI (top) 5 5 6,084 0,459 0 97 440
¬PSub 1 1 0,028 0,001 0 9 12
¬PSub 1 5 0,052 0,002 3 37 140
¬PSub 5 1 0,036 0,004 0 21 40
¬PSub 5 5 0,059 0,002 3 97 440
¬Prop (down) 1 1 1,129 0,085 1 9 12
¬Prop (down) 1 5 1,645 0,131 1 37 140
¬Prop (down) 5 1 0,563 0,039 5 21 40
¬Prop (down) 5 5 0,699 0,042 5 97 440
¬Prop (top) 1 1 1,173 0,090 1 9 12
¬Prop (top) 1 5 2,022 0,15 5 37 140
¬Prop (top) 5 1 0,560 0,036 5 21 40
¬Prop (top) 5 5 0,906 0,050 25 97 440

Table 3. Benchmark results for deletions



Graph Rewriting Rules for Consistent Evolution of RDF Knowledge Graphs 51

Benchmark NB inst NB sch Time (ms/op) Error Nb SE NB nodes NB edges
CI (down) 1 1 14,074 1,099 3 9 12
CI (down) 1 5 16,028 1,271 3 37 140
CI (down) 5 1 13,376 0,952 3 21 40
CI (down) 5 5 14,870 1,015 3 97 440
CI (top) 1 1 14,062 1,074 3 9 12
CI (top) 1 5 15,715 1,176 3 37 140
CI (top) 5 1 13,646 1,01 3 21 40
CI (top) 5 5 15,491 1,136 3 97 440
CSub (down) 1 1 19,614 1,706 4 9 12
CSub (down) 1 5 18,557 1,449 8 37 140
CSub (down) 5 1 10,721 0,869 4 21 40
CSub (down) 5 5 6,448 0,585 8 97 440
CSub (top) 1 1 19,604 1,713 4 9 12
CSub (top) 1 5 19,107 1,520 4 37 140
CSub (top) 5 1 10,505 0,813 4 21 40
CSub (top) 5 5 6,188 0,560 4 97 440
CSub (down reverse) 1 1 19,397 1,553 5 9 12
CSub (down reverse) 1 5 17,280 1,247 5 37 140
CSub (down reverse) 5 1 10,687 0,881 9 21 40
CSub (down reverse) 5 5 6,889 0,672 9 97 440
CSub (top reverse) 1 1 19,432 1,559 5 9 12
CSub (top reverse) 1 5 16,573 1,183 13 37 140
CSub (top reverse) 5 1 11,116 0,990 9 21 40
CSub (top reverse) 5 5 6,971 0,658 33 97 440
Cl 1 1 4,660 0,325 2 9 12
Cl 1 5 4,449 0,295 2 37 140
Cl 5 1 2,230 0,166 2 21 40
Cl 5 5 1,922 0,130 2 97 440
PI (down) 1 1 9,599 0,714 2 9 12
PI (down) 1 5 8,457 0,541 6 37 140
PI (down) 5 1 10,085 0,678 2 21 40
PI (down) 5 5 11,776 0,982 6 97 440
PI (top) 1 1 9,632 0,724 2 9 12
PI (top) 1 5 9,772 0,756 2 37 140
PI (top) 5 1 10,392 0,772 2 21 40
PI (top) 5 5 10,848 0,682 2 97 440
PSub (down) 1 1 0,031 0,001 5 9 12
PSub (down) 1 5 0,057 0,002 9 37 140
PSub (down) 5 1 0,037 0,001 5 21 40
PSub (down) 5 5 0,065 0,001 9 97 440
PSub (top) 1 1 0,033 0,001 5 9 12
PSub (top) 1 5 0,058 0,001 5 37 140
PSub (top) 5 1 0,041 0,001 5 21 40
PSub (top) 5 5 0,066 0,002 5 97 440
PSub (down reverse) 1 1 0,031 0,001 6 9 12
PSub (down reverse) 1 5 0,064 0,010 6 37 140
PSub (down reverse) 5 1 0,041 0,001 10 21 40
PSub (down reverse) 5 5 0,066 0,002 10 97 440
PSub (top reverse) 1 1 0,034 0,001 6 9 12
PSub (top reverse) 1 5 0,053 0,002 14 37 140
PSub (top reverse) 5 1 0,040 0,002 10 21 40
PSub (top reverse) 5 5 0,061 0,002 34 97 440
Prop 1 1 2,678 0,197 1 9 12
Prop 1 5 2,013 0,139 1 37 140
Prop 5 1 1,253 0,091 1 21 40
Prop 5 5 0,829 0,050 1 97 440

Table 4. Benchmark results for insertion
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