
HAL Id: hal-02560325
https://hal.science/hal-02560325v1

Submitted on 1 May 2020 (v1), last revised 30 May 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Rewriting System for Consistent Evolution of
RDF/S databases

Jacques Chabin, Cédric Eichler, Mirian Halfeld-Ferrari, Nicolas Hiot

To cite this version:
Jacques Chabin, Cédric Eichler, Mirian Halfeld-Ferrari, Nicolas Hiot. Graph Rewriting System for
Consistent Evolution of RDF/S databases. [Research Report] LIFO, Université d’Orléans, INSA
Centre Val de Loire. 2020. �hal-02560325v1�

https://hal.science/hal-02560325v1
https://hal.archives-ouvertes.fr


Graph Rewriting System for Consistent
Evolution of RDF/S databases ?

Jacques Chabin, Cédric Eichler, Mirian Halfeld-Ferrari, and Nicolas Hiot

Université d’Orléans, INSA CVL, LIFO EA, Orléans, France
{jacques.chabin, mirian, nicolas.hiot}@univ-orleans.fr

cedric.eichler@insa-cvl.fr

1 Introduction

Today RDF (Resource Description Framework) is a standard model for data in-
terchange on the Web and particularly for exporting Linked Open Data. These
data, enriched by constraints, stored in a database (especially in a graph database
or triple store), and available for querying systems are important sources for anal-
ysis and for guiding decisions. But only systems offering the capability of dealing
with evolution of data instance and structure without violating the semantics of
the RDF model can ensure sustainability. Since RDF databases can be canoni-
cally viewed as a typed graph, this technical report proposes a formalization of
RDF datastores evolutions through the use of graph rewriting rules. RDF/S is
the focus of the report because, currently, users interested in these facilities are
mostly those dealing with ontology evolution.

We are interested in the maintenance of valid RDF/S knowledge graph, i.e.,
data sets respecting RDF/S semantic constraints. When such a data set evolves
(through instance or schema changes) we have to guarantee that the new set
conforms to the constraints. To do so, we propose a set of graph rewriting rules
formalizing atomic RDF/S evolution that necessarily preserve the database in-
tegrity. The next section briefly introduces RDF/S notations and the considered
constraints. Section 3 presents their representation using a typed graph. Sec-
tion 4 is dedicated to our consistency-preserving graph rewriting rules formaliz-
ing atomic RDF/S updates.

2 RDF databases and updates

The RDF data model describes (web) resources via triples of the format (a P b),
which express the fact that a has b as value for property P . A collection of
RDF statements intrinsically represents a typed attributed directed multi-graph,
making the RDF model suited to certain kinds of knowledge representation [1].
Constraints on RDF facts can be expressed in RDFS (Resource Description
Framework Schema), the schema language of RDF, which allows, for instance,

? Supported by the French National Research Agency, ANR, under grant ANR-18-
CE23-0010; work also developed in the context of DOING-DIAMS network group.



2 Chabin, Eichler, Halfeld, Hiot

declaring objects and subjects as instances of certain classes or expressing se-
mantic relations between classes and between properties (i.e., subclasses and
sub-properties).

In [2] we find a set of logical rules expressing the semantics of RDF/S (rules
concerning RDF or RDFS) models. We consider AC = {a, b, . . . , a1, a2, . . .}, a
countably infinite set of constants and var = {X1, X2, . . . , Y1, . . .} an infinite set
of variables ranging over elements in AC . A term is a constant or a variable. We
classify predicates into two sets: (i) SchPred = {Cl, Pr, CSub, Psub,Dom,Rng},
used to define the database schema, standing respectively for classes, proper-
ties, sub-classes, sub-properties, property domain and range, and (ii) InstPred
= {CI, PI, Ind}, used to define the database instance, standing respectively for
class and property instances and individuals. An atom has the form P (u), where
P is a predicate, and u is a list of terms. When all the terms of an atom are in
AC , we have a fact.

Definition 1 (Database). An RDF database D is a set of facts composed by
two subsets: the database instance DI (facts with predicates in InstPred) and
the database schema DS (facts with predicates in SchPred). Denote by G the
graph that represents the same database D . The notation D/G designates these
two formats of a database. �

Constraints presented in [2] are those in Fig. 1 which is borrowed from [4].
These constraints (that we denote by C ) are the basis of RDF semantics. Given
c ∈ C we note body(c) its left-hand side and head(c) its right-hand side. For in-
stance, the schema constraint (20) establishes transitivity between sub-properties
and the instance constraint (27) ensures this transitivity on instances of a prop-
erty (if z is a sub-property of w, all z’s instances are property instances of w).
We are interested in database that satisfy all constraints in C .

Definition 2 (Consistent database (D ,C )). A database D is consistent if it
satisfies all constraints in C (i.e., in this paper, those in Fig. 1). �

D satisfy constraints C
m ��
G evolution guided by R

Fig. 2. Rewriting rules R and
constraints C .

At this point, it is worth noting the dichotomy
which usually exists when dealing with constraints
on RDF. The web semantics world mostly adopts
the open world assumption (OWA) and ontolog-
ical constraints are, in fact, just inference rules.
The database world usually adopts the closed
world assumption (CWA) and constraints impose
data restrictions. Rules are not supposed to infer
a non-explicit knowledge. This paper adopts the database point of view and
addresses the problem of updating an RDF database.

Definition 3 (Update). Let D/G be a database. An update U on D (for U =
F ) is either (i) the insertion of F in D (an insertion is denoted by F ) or (ii)
the removal of F from D (a deletion is denoted by ¬F ). To each update U
corresponds a graph rewriting rule r. �



Graph Rewriting System for Consistent Evolution of RDF/S databases 3

• Typing Constraints:

Cl(x)⇒ URI(x) (1) Pr(x)⇒ URI(x) (2)

Ind(x)⇒ URI(x) (3) (Cl(x) ∧ Pr(x))⇒ ⊥ (4)

(Cl(x) ∧ Ind(x))⇒ ⊥ (5) (Pr(x) ∧ Ind(x))⇒ ⊥ (6)

CSub(x, y)⇒ Cl(x) ∧ Cl(y) (7) PSub(x, y)⇒ Pr(x) ∧ Pr(y) (8)

Dom(x, y)⇒ Pr(x) ∧ Cl(y) (9) Rng(x, y)⇒ Pr(x) ∧ Cl(y) (10)

CI(x, y)⇒ Ind(x) ∧ Cl(y) (11)
PI(x, y, z)⇒ Ind(x) ∧ (Ind(y) ∨ Lit(y)) ∧ Pr(z)

(12)

Cl(x)⇒ CSub(x, rdfs:Resource) (13) Ind(x)⇒ CI(x, rdfs:Resource) (14)
• Schema Constraints:

Pr(x)⇒ (∃y, z)(Dom(x, y) ∧ Rng(x, y)) (15) ((y 6= z) ∧Dom(x, y) ∧Dom(x, z))⇒ ⊥ (16)

((y 6= z) ∧ Rng(x, y) ∧ Rng(x, z))⇒ ⊥ (17)

CSub(x, y) ∧ CSub(y, z)⇒ CSub(x, z) (18) CSub(x, y) ∧ CSub(y, x)⇒ ⊥ (19)

PSub(x, y) ∧ PSub(y, z)⇒ PSub(x, z) (20) PSub(x, y) ∧ PSub(y, x)⇒ ⊥ (21)

Psub(x, y) ∧Dom(x, z) ∧Dom(y, w) ∧ (z 6= w)⇒ CSub(z, w) (22)

Psub(x, y) ∧ Rng(x, z) ∧ Rng(y, w) ∧ (z 6= w)⇒ CSub(z, w) (23)
• Instance Constraints:

Dom(z, w)⇒ (PI(x, y, z)⇒ CI(x,w)) (24) Rng(z, w)⇒ (PI(x, y, z)⇒ CI(x,w)) (25)

CSub(y, z)⇒ (CI(x, y)⇒ CI(x, z)) (26) PSub(z, w)⇒ (PI(x, y, z)⇒ PI(x, y, w)) (27)

Fig. 1. Simplified and compacted form of RDF/S constraints

Updates can be classified according to the predicate of F , i.e., the insertion
(or the deletion) of a class, a class instance, a property, etc. For each update
type, a rewriting rule r describes when and how to transform a graph database.
This paper aims at proposing a set of graph rewriting rules, denoted by R, which
ensures consistent transformations on G due to any atomic update U . The set R
is defined on the basis of C as illustrated in Fig. 2: on the logical level, (D ,C )
expresses consistent databases; on the knowledge graph level, (G,R) expresses
graph evolution with rules in R encompassing constraints from C . The idea is:
given D/G for (D ,C ) and update U corresponding to rule r ∈ R; if G’ is the
result of applying r on G then our goal is to have (D ′,C ) for D ′/G′.

3 RDF/S databases as a typed graph

As stated int the previous section, RDF/S databases are formalized in two ways
in this report: as classical triple-based RDF statements and as a typed graph.
This section presents the latter.

RDF/S type graphs comprise 4 node types (Class, Individual, Literal, and
Prop) and 6 edge types (CI, PI, domain, range, subclass, and subproperty).
Each nodes have one attribute representing an URI, an URI, a value, and a
name, respectively. PI-typed edges are the only ones with an attribute which
represent the name of the property the edge is an instance of.

Fig 3 describes how each RDF triples are formalized in the typed graph
model. The type and attributes of each graph element is indicated



4 Chabin, Eichler, Halfeld, Hiot

(a) Cl(A) (b) Ind(A) (c) Pr(A) (d) Lit(v)

(e) CI(A,B) (f) CSub(A,B) (g) PSub(A,B)

(h) Dom(A,B) (i) Rng(A,B) (j) PI(A,B,C)

Fig. 3. RDF triples in the type graph model

4 Rewriting rules formalizing consistent RDF/S updates

To prevent the introduction of inconsistencies during updates, this section presents
1) formal specification of rules of R formalizing G evolution and 2) proofs that
every rule in R ensures the preservation of every constraints in C .

We adopt the SPO formalism [5] to specify rewriting rule as well as several
of its extension to specify additional application conditions and restrict rule
applicability: Negative Application Conditions (NACs) [3], Positive Application
Conditions (PACs), and General Application Conditions (GACs) [6].

In this formalism, rewriting rules formalize both graph transformations and
the context in which they may be applied. These rules may be fully specified
graphically, enabling an easy-to-understand graphical view of the graph trans-
formation that remains formal. We adopt the graphical conventions of AGG
(The Attributed Graph Grammar System1) [7],

In total, 18 rules modelling consistent updates are presented herein. Their
presentation follows a standard basic form filled by the main explanations of the
rule. The proofs are in fact quite immediate. Indeed, rules have been specified
to preserve consistency constraints by-design and their graphical specification,
while formal, ease comprehension.

tiny
1 user.cs.tu-berlin.de/gragra/agg/index.html

user.cs.tu-berlin.de/gragra/agg/index.html


Graph Rewriting System for Consistent Evolution of RDF/S databases 5

(a) (b) (c)

(d) (e) (f)

Fig. 4. Rewriting rule for the insertion of a class

4.1 Insertion of a Class (Fig. 4)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics: 1) SPO specification: (Fig. 4a)
LHS: A class-typed node with URI res. If this rule is applicable, there is such a
class in the database;
RHS: LHS plus a class-typed node with the URI A as a sub-class of Cl(res). The
application of the rule will lead to their addition.
2) PAC specification: (Fig. 4b) variable res is assigned to “rdfs:Resource”; this
PAC corresponds to constraint (13).
3)NACres and NACcl: (Fig. 4d and 4c respectively) these NACs are non-redun-
dancy guarantee (ie, two classes may not have the same URI). A class Cl(A)
may be inserted in the graph when: (i) A is not rdfs:Resource and (ii) another
class with URI A does not already exist.
4) NACind and NACpr (Fig.s 4e and 4f, respectively): guarantee that the sets of

classes, properties, and individuals are disjoint (constraints 4 and 5). The rule
is not applicable if Pr(A) or Ind(A) is in the database.

Proof of consistency preservation: It is clear from Fig. 1 that the addition of
a class may activate constraints 4, 5, and 13 (i.e., those having an atom with
predicate Cl in their bodies). Thanks to the specification of NACind and NACpr,
constraints 4 and 5 are ensured. The PAC and SPO core of the rule in Fig. 4b
and 4a impose the new class to be a subclass of rdfs:Resource, as constraint 13.

4.2 Deletion of a Class (Fig. 5)

Update category: Schema evolution
User level: Only authorized users such as database administrators



6 Chabin, Eichler, Halfeld, Hiot

Rule semantics:
1) SPO specification: (Fig. 5a)
LHS: A class-typed node with URI A;
RHS: empty, rule’s application leads to the deletion of the class with the URI A.
2) NACres : (Fig. 5b) states that the rule cannot be applied when A is rdfs:Resource
– indeed the root of RDF class hierarchy cannot be deleted.
3)NACdom and NACrange: (Fig. 5c and 5d respectively) impose that the class
being deleted is neither the domain nor the range of any property.

Proof of consistency preservation: From Fig. 1, the deletion of a class may im-
pact constraints 7, 9, 10, 11 (those having Cl(A) on the RHS) together with
constraints 13, 14, 15 (as consequences of possible deletion politics). Constraints
7 and 11 are preserved because CSub and CI relations involving Cl(A) are rep-
resented as edge incident to the node modelling Cl(A). As in the SPO approach
dangling edges are deleted, all CSub and CI relations involving Cl(A) are sup-
pressed when this rule is applied. Constraint 9 (respect. 10) forbids the deletion
of A as the domain (respect. as a range) of an existing property (which would
also impact rule 15). Thanks to NACdom and NACrng, our graph rewriting rule
is applicable only if the class to be deleted is neither the domain nor the range
of any property. Finally as NACres forbids the deletion of class rdfs:Resource,
constraints 13 and 14 are never violated by the deletion of a class.

(a) (b) (c) (d)

Fig. 5. Rule concerning the deletion of a class

4.3 Insertion of a Class Instance (Fig. 6

Update category: Instance evolution
User level: Any user
Rule semantics: 1) SPO specification: (Fig. 6a)
LHS: two nodes, with type class and URI B and type individual and URI A;
RHS: LHS plus a CI-typed edge from Ind(A) to Cl(B).
2) NACred : (Fig. ??) forbids the application of the rule if CI(A,B) already
exists in the database.
3)GAC: (Fig. 6b) this GAC is of the form ”for all pattern GacTransCI there
exists a pattern NestCond”. GacTransCI is similar to LHS plus an unattributed
(i.e. any attribute can be matched) node of type class and a subclass edge from
Cl(B) to said node. NestCond is GacTransCI plus a CI-typed edge from Ind(A)
to this new class. It ensures that the rule is applicable only if A is an instance
of all super-classes of B.



Graph Rewriting System for Consistent Evolution of RDF/S databases 7

(a)

(b)

(c)

Fig. 6. Rule concerning the insertion of a class instance



8 Chabin, Eichler, Halfeld, Hiot

Proof of consistency preservation: From Fig. 1, constraints 11 and 26 (having
atoms with CI on their body) are impacted. Our graph rewriting rule ensures
that the insertion of a class instance is performed only when the individual and
its type already exist in the database (constraint 11). According to GacTrans,
if there exists some super-class C of B and A is not an instance of C, then the
class instance relation CI(A,B) cannot be added (ensuring constraint 26).

4.4 Deletion of a class instance (Fig. 7)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 7a)
LHS: An individual is linked to a class by an edge typed CI, i.e., in the database,
the individual is an instance of this given class.
RHS: The CI edge is removed (the individual still exists but is not an instance
of the given class anymore).
2) NACs: The individual considered here is an instance of the given class. The
NAC in Fig. 7b forbids the application of the rule when this individual is also
connected to another individual by a property (i.e., as part of a property in-
stance) whose domain is the given class. The NACs in Figs. 7c and 7d are
similar to the previous one, treating the cases where the individual is connected
to a literal or to itself, respectively. The NACs in Figs. 7f and 7g impose similar
prohibition when the given class is the range of the property. The NAC in Fig 7g
ensures that no instance of resource is removed – since an individual is always
an instance of class Resource. The NAC in Fig 7h disallows the rule application
when the individual is an instance of a subclass of the given class.

Proof of consistency preservation: From Fig. 1, we remark that constraints 14,
24, 25, and 26 are concerned by the deletion of a class instance since an atom
with predicate CI appear in their right-hand sides. The NAC in Fig 7g ensures
the satisfaction of constraint 14. The NACs in Figs. 7b– 7f ensures the satis-
faction of constraints 24 and 25. Finally the NAC in Fig 7h guarantees that
constraint 26 is not violated.

4.5 Insertion of an individual (Fig. 8)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 8a)
LHS: The class Resource;
RHS: LHS plus an individual with the URI A and a CI edge from the from
the former to the latter. The application of the rule inserts the individual as an
instance of class Resource.
2)NACs: The NACs defined in Fig. 8c and 8d guarantee that the sets of classes,



Graph Rewriting System for Consistent Evolution of RDF/S databases 9

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Rule concerning the deletion of a class instance.

properties, and individuals are disjoint (constraints 5 and 6 in Fig. 1). The Nac
from Fig. 8b forbids the addition of the individual if an individual with the same
URI already exists.

Proof of consistency preservation: The addition of an individual triggers con-
straints 3 (Fig. 1) requiring an URL (given as a rule parameter) and constraints 5
and 6 which are guaranteed by the two NACs. 8c and 8d. Unicity is guaranteed
by NAC 8b .

(a) (b) (c) (d)

Fig. 8. Rewriting rule for the insertion of an individual



10 Chabin, Eichler, Halfeld, Hiot

4.6 Deletion of an individual (Fig. 9)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification:
LHS: An individual with URI A;
RHS: the empty graph: rule’s application leads to the deletion of the individual
with the URI A (and all edge incident to it).

Proof of consistency preservation: From Fig. 1, the deletion of an individual may
impact constraints 11 and 12. These constraints are still preserved because CI
and PI relations involving an individual A are represented as an edge incident
to the node modelling Ind(A). In the SPO approach, dangling edges are deleted,
thus all CI and PI relations involving Ind(A) are suppressed when this rule is
applied.

Fig. 9. Rewriting rule for the deletion of an individual

4.7 Insertion of a literal (Fig. 10)

Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 10a)
LHS: Empty
RHS: The application of the rule inserts a node corresponding to the literal and
its associated value in the graph.
2)NACs: (Fig. 10b) the NAC guarantees that such a literal does not exist yet.

Proof of consistency preservation: Property or class values such as textual strings
are examples of RDF literals. The addition of a literal does not trigger any
constraint (Fig. 1), just allowing its future use –as a value for property for
instance–. The NAC avoids literal redundancy.

4.8 Deletion of a literal (Fig. 11)

Update category: Instance evolution
User level: Any user



Graph Rewriting System for Consistent Evolution of RDF/S databases 11

(a) (b)

Fig. 10. Rewriting rule for the insertion of a literal

Rule semantics:
1) SPO specification: (Fig. 11a)
LHS: The node corresponding to the literal.
RHS: Empty.
2)NACs: (Fig. 11b) the NAC guarantees that the literal rdfs:Literal node is not
the one been deleted; this node is a modelling artefact used as range when the
range of a property is a literal and should not be deleted.

Proof of consistency preservation: From Fig. 1, the deletion of a literal is only
concerned by constraint 12 when it is the value of a PI. In the SPO approach,
dangling edges are deleted, thus all PI relations involving the literal are sup-
pressed when this rule is applied.

(a) (b)

Fig. 11. Rewriting rule for the deletion of a literal

4.9 Insertion of a property

Two rules formalize the insertion of a property depending on the nature of its
range.

• Insertion of a property having a class as its range (Fig. 12a)
Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 12a)
LHS: the LHS is composed of two classes with URI domain (denoted by domain



12 Chabin, Eichler, Halfeld, Hiot

class) and range (denoted by range class);
RHS: LHS plus a node representing a property, whose URI is A, which is con-
nected to the domain class by a domain-typed edge and to the range class by a
range-typed edge. Thus, the application of this rule inserts a property between
existing classes which are specified as the domain and range of that property.
2)NACs: NACs of Figs. 13a, 13c and 13d guarantee that there exist no class
with URI A (Fig. 13c), including the range (Fig. 13a) and the domain (Fig.13d)
classes. NAC of Fig 13e prohibits the existence of an individual whose URI is
A. Again, the NACs ensure that classes, properties, and individuals are disjoint
sets (constraints 4 and 5 in Fig. 1). Finally, NAC 13b guarantees that a property
with the same URI does not already exists, guaranteeing unicity.

Proof of consistency preservation: The addition of a property concerns con-
straints 2, 4 and 6 of Fig. 1. The NACs in Figs. 13a, 13c and 13d of our rewrit-
ing rule ensure that these three constraints are respected. Notice that classes on
LHS of our rule are not required to be distinguishable. Constraint 15 in Fig. 1
is also concerned by the insertion of a property. It requires the existence of a
domain and a range for every property. On the LHS, our rewriting rule imposes
the existence of two classes, while in its RHS, it establishes these classes as the
property’s domain and range. Constraint 15 is respected even when the same
class is defined as the domain and the range of a given property.

(a) (b)

Fig. 12. Rewriting rules for inserting properties come in two versions according to the
the type of the property’s range.

• Insertion of a property having a literal as its range (Fig. 12b)
Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 12b)



Graph Rewriting System for Consistent Evolution of RDF/S databases 13

(a) (b) (c) (d) (e)

Fig. 13. NACs for the insertion of a property.

LHS: The LHS is composed of a class and a literal node attributed ”rdfs:Literal”.
The latter is a special node used solely to specify that the range of a property
is a literal ;
RHS: LHS plus a node representing a property, whose URI is A, which is con-
nected to the class by a domain-typed edge and to ”rdfs:Literal” by a range-
typed edge. Thus, the application of the rule inserts a property between a class
and ”rdfs:Literal” which are specified, respectively, as the domain and range of
that property.
2)NACs: This rule is concerned only by the four NACs defined in Fig. 13d, 13c, 13e,
and 13b. These two first NACs guarantee that there exist no class with URI A
(Fig. 13c), including the domain (Fig.13d) class. NAC of Fig 13e prohibits the
existence of an individual whose URI is A. Again, the NACs ensure that classes,
properties, and individuals are disjoint sets (constraints 4 and 5 in Fig. 1). Fi-
nally, NAC 13b guarantees that a property with the same URI does not already
exists, guaranteeing unicity.

Proof of consistency preservation: The proof is similar to the previous one, the
only difference is that the range is not a class, but a literal.

4.10 Deletion of a property (Fig. 14)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: (Fig. 14a)
LHS: a property with URI A;
RHS: the empty graph. Rule’s application leads to the deletion of the property
with the URI A.
2) NACs: NACs ensure that a property having instances cannot be deleted.
Indeed, a property instance is a PI-typed edge between individuals (Fig. 14b
where the instances of the property are individuals), between an individual and
a literal (Fig. 14c) or an atomic loop (Fig. 14d).

Proof of consistency preservation: From Fig. 1, we can remark that constraints 8,
9, 10 and 12 are concerned by the deletion of a property. Constraints 8, 9, 10



14 Chabin, Eichler, Halfeld, Hiot

are still respected after the application of the rule because, when the node cor-
responding to the property is deleted, all dangling edges are deleted. Here these
edges indicate sub-property relationship (constraint 8), property domain (con-
straint 9) or property range (constraint 10). Constraint 12 is preserved because
NACs prohibit the deletion of a property having instances.

(a) (b) (c) (d)

Fig. 14. Rule concerning the deletion of a property (with associated NACs).

4.11 Insertion of a property instance

We have two rules for the insertion of properties, we similarly have to consider
different situations for the insertion of property instances.

• Insertion of a property instance for a property having a class as its range (Fig. 15)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 15a)
LHS: the LHS is composed of a property (identified by propURI ) having classes
as its domain and range. Each of these classes has an individual as an instance.
RHS: LHS plus an edge connecting the individuals. The edge represents the
property instance, indicating that the individuals are related to each other by
the property propURI.
2)GAC: (Fig. 15b) In the schema of the graph database, if the property propURI
is a sub-property of property supPr (for all pattern GacTransPI), then the two
individuals should be already instances of supPr (NestCond), i.e., the rule is
applied only if the individuals involved in the property instance been inserted
are already related by instances of all its super-properties.
3)NACs: (Fig. 15c) The NAC guarantees that the individuals are not already
instances of the property propURI.

Proof of consistency preservation: The addition of a property instance concerns
constraints 12, 24 and 25 of Fig. 1 which are ensured by the SPO specification.
Let us denote by source (respectively, target) of a PI edge the node (individual)
being the start point (respectively, the ending point) of the PI edge. The LHS



Graph Rewriting System for Consistent Evolution of RDF/S databases 15

guarantees: (i) the existence of two individuals and the property in the graph
(constraint 12), (ii) that the source of the PI is an instance of its class domain
(constraint 24) and (iii) that the target of the PI is an instance of its class range
(constraint 25). Constraint 27 is ensured by the GAC. An instance of P can be
inserted between two individuals only if their is between the two an instance of
all the super-properties of P .

(a)

(b) (c)

Fig. 15. Rewriting rule for the insertion of a property instance when the property
range is a class.

• Insertion of a property instance for a property having a literal as its range (Fig. 16)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 16a)
LHS: the LHS is composed of a property (identified by propURI ) having a class
as its domain and the literal class as its range, one individual (instance of the
domain) and a literal.
RHS: LHS plus an edge from the individual to the literal. The edge represents
the property instance, indicating that the individual and the literal are related



16 Chabin, Eichler, Halfeld, Hiot

to each other by the property propURI.
2)GAC: (Fig. 16c) In the graph database schema, if the property propURI is a
sub-property of property supPr (GacTransPI), then the individual and the literal
should be already instances of supPr (NestCond), i.e., the rule is applied only
if the individual and the literal involved in the property instance been inserted
are already involved in instances of all its super-properties.
3)NACs: (Fig. 16b) The NAC guarantees that the individual and the literal are
not already linked as an instance of the property propURI.

Proof of consistency preservation: Similar to the proof in the previous item.

(a)

(b) (c)

Fig. 16. Rewriting rule for the insertion of a property instance when the property
range is a literal.

4.12 Deletion of a property instance

Similarly, we have to consider two different situations for the deletion of property
instances.

• Deletion of a property instance for a property having a class as its range (Fig. 17)
Update category: Instance evolution



Graph Rewriting System for Consistent Evolution of RDF/S databases 17

User level: Any user
Rule semantics:
1) SPO specification: (Fig. 17a)
LHS: the LHS is composed of two individuals denoted by indivDom and indivRng
linked by a PI-typed edge attributed with propURI, i.e., there is an instance of
property propURI whose object is indivDom and value indivRng.
RHS: LHS minus the edge, the rule application leads to the removal of the prop-
erty instance.
2)NACs: (Fig. 17b) If property propURI has at least one sub-property the indi-
viduals are also instances of the NAC forbids the rule application.

Proof of consistency preservation: The deletion of a property instance concerns
constraint 27 of Fig. 1. The NAC ensures this constraint since the rule cannot
be triggered if there exist sub-property instance links between the individuals.

(a)

(b)

Fig. 17. Rewriting rule for the deletion of a property instance when the property range
is a class.

• Deletion of a property instance for a property having a literal as its range (Fig. 18)
Update category: Instance evolution
User level: Any user
Rule semantics:
1) SPO specification: (Fig. 18a)
LHS: the LHS is composed of an individuals denoted by indivDom and a literal
linked by a PI-typed edge with attribute propURI, i.e., they are instances of



18 Chabin, Eichler, Halfeld, Hiot

property propURI.
RHS: LHS minus the edge, the rule application leads to the removal of the edge
linking the the individual to the literal.
2)NACs: (Fig. 18b) If property propURI has a sub-property with an instance
involving indivDom and the literal, then the NAC forbids the rule application.

Proof of consistency preservation: Similar to the proof in the previous item.

(a)

(b)

Fig. 18. Rewriting rule for the deletion of a property instance when the property range
is a literal.

4.13 Insertion of a subclass relation (Figs. 19 and 20)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 19a
LHS: Two class-typed nodes with URI A and B;
RHS: An edge of type ”subclass” from class B to class A is added, indicating
that B is a subclass of A.
2) NACs: The NAC in Fig 19b ensures that class B is not a subclass of class
A yet, while the NAC in Fig 19c prohibits the construction of cyclic subclass
relationships – if A is already a subclass of B, the insertion of a subclass re-
lationship from B to A is not possible. The NAC in Fig 19d forbids reflexive



Graph Rewriting System for Consistent Evolution of RDF/S databases 19

subclass relationship.
3) GACs: Fig. 20
The tree in Fig 20a shows the entire logical combination of conditions imposed
to the graph for the application of the rule. The right branch of the tree refers to
GAC in Fig. 19b. In the graph database, all individuals which are instances of
class B (GacTransCI) should also be instances of class A (NestCond1) for the rule
to be applicable, i.e., the rule is applicable only if all instance of B are already
instances of A. The left sub-tree in Fig. 20 gathers two conditions. The leftmost
one corresponds to Fig 20c. Each superclass of A (GacTransCsub) is a superclass
of B (NestCond), i.e., the application of the rule is possible only if there exists
a subclass relationship between B and all superclass of A. The last condition is
the one in Fig.20d. It states that all subclass of class B (GacTransCsub2) is a
subclass of A (NestCond2).

(a) (b) (c) (d)

Fig. 19. Rule concerning the insertion of a subclass (with associated NACs).

Proof of consistency preservation: From Fig. 1, we remark that constraints 7, 18,
19 and 26 are concerned by the insertion of a subclass. Constraint 7 is not violated
since the LHS of the SPO specification (Fig. 19a) imposes the existence of two
classes before the addition of the edge representing the subclass relationship.
GACs in Figs. 20c and 20d ensures the satisfaction of constraint 18 of Fig. 1,
since they guarantee the application of the rule only if the class hierarchy stays
consistent. Constraint 19 is implemented by the NACs which ensure that a cyclic
subclass hierarchy is not possible. Constraint 26 is ensured by GAC in Fig. 20b
which imposes the application of the rule only if all instances of class B are
already instances of class A.

4.14 Deletion of a subclass relation (Fig. 21)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 21a



20 Chabin, Eichler, Halfeld, Hiot

(a)

(b) (c) (d)

Fig. 20. GAGs concerning the insertion of a sub-class property.



Graph Rewriting System for Consistent Evolution of RDF/S databases 21

LHS: Two class-typed nodes with URI subClass and SuperClass with a subclass-
typed edge from the former to the latter;
RHS: LHS minus the edge, indicating its deletion.
2) NACs: The NAC in Fig 21b ensures that class SuperClass is not ”rdfs:Resource”,
since all classes are subclasses of the root. The NAC in Fig 21c (resp. Fig 21d)
ensures that SuperClass is not the domain (resp. the range) of a property which
has a sub-property whose domain (resp. range) is subClass. If such properties
exist, the rule is not applicable. The NAC in Fig 21e forbids the existence of a
class that is both a subclass of SuperClass and a superclass of subClass, en-
suring consistency with regard to transitivity.

(a) (b)

(c) (d) (e)

Fig. 21. Rule concerning the deletion of a subclass (with associated NACs).

Proof of consistency preservation: From Fig. 1, we remark that only constraints 13,
18, 22 and 23 are concerned by the deletion of a subclass relation. Constraint 13
is preserved thanks to the NAC defined in Fig. 21b that forbids the suppression
of the sub-class relation to the root of the class hierarchy. The NAC of Fig. 21e
ensures that the transitivity of the sub-class relation is respected, guaranteeing
the respect of constraint 18. Finally, constraints 22 and 23 are ensured by NACs
depicted in Figs. 21c and 21d, respectively. The sub-class relationship can not
be deleted if it is required for the subsumption between two properties to reflect
in their domains and ranges.



22 Chabin, Eichler, Halfeld, Hiot

4.15 Insertion of a sub-property relation (Fig. 22, 23, 24, and 25)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 22a
LHS: Two property-typed nodes with URI superProp and subProp;
RHS: LHS plus a subproperty-typed edge from the node with URI subProp to
the one with URI superProp, indicating its addition.
2) NACs: The NACs in Fig 22b and 22d ensure that the sub-property relation
is neither reflexive nor symmetric, respectively. The NAC formalized in Fig. 22c
forbids the insertion of the relation if it already exists.
3) GACs: The logical formula for the GACs is presented in Fig 23 while the
GACs are formalized in Fig. 24 and 25. The logical formula states that all of the
following conditions must be fulfilled for the rule to be applicable:

– SameDom ∨ SubDom (Fig. 24a and 24b); the properties have the same
domain or the domain of superProp is a super-class of subProp’s domain;

– SameRng∨SameRngLit∨SubRng (Fig. 24c), 24d, and 24e; the properties
have the same range or the range of superProp is a super-class of subProp’s
domain;

– for all patterns GacTransPI, NestCond is true (Fig. 25a); all couple of
individual related with an instance of superProp also have an instance of
subProp.

– for all patterns GacTransPISelf , NCselfPI is true (Fig. 25c); all individ-
ual with a reflexive instance of superProp also has an instance of subProp.

– for all patterns GacTransPILit, NCtransPIlit is true (Fig. 25b); all couple
of individual and literal with an instance of superProp also have an instance
of subProp.

– for all patterns of GacTransPsub, NCtransPsub is true (Fig.25d) (resp.
GacTransPsub2, NCtransub2); all super-property of superProp is also a
super-property of subProp (resp. all sub-property of subProp is also a sub-
property of superProp).

Proof of consistency preservation: From Fig. 1, we remark that only constraints 8,
20, 21, 27, 22, and 23 are concerned by the deletion of a subproperty relation.

The typing of the relation (constraint 8) are guaranteed by the SPO part of
the rule that may match only property-typed nodes.

Constraints 21 is preserved thanks to the NACs defined in Fig. 22b and 22d
that forbid the introduction of a cycle in the sub-property relation. The GACs
of Fig. 25d and 25e ensure the preservation of the relation transitivity (con-
straint 20).

The preservation of property instance propagation (constraint 27) is ensured
by the GACs represented in Fig. 25c, ??, and ??.

Finally, constraints 22 and 23 are ensured by GACs depicted in Figs. 24a
and 24b and 24c, 24d, and 24e, respectively. The sub-property relationship may
be added only if the two properties have the same domain (resp. same range) or



Graph Rewriting System for Consistent Evolution of RDF/S databases 23

(a)

(b) (c) (d)

Fig. 22. Rule concerning the insertion of a subproperty relation subclass (with associ-
ated NACs).

Fig. 23. Logical relations for GACs regarding the insertion of a subproperty relation
subclass.



24 Chabin, Eichler, Halfeld, Hiot

(a) (b)

(c) (d) (e)

Fig. 24. GACs for the insertion of a subproperty relation subclass.

if their respective domains (resp. ranges) are related with an adequate sub-class
relationship.

4.16 Deletion of a subproperty relation (Fig. 26)

Update category: Schema evolution
User level: Only authorized users such as database administrators
Rule semantics:
1) SPO specification: Fig 26a
LHS: Two property-typed nodes with URI superProp and subProp with a
subproperty-typed edge from the former to the latter;
RHS: LHS minus the edge, indicating its deletion.
2) NAC: The NAC in Fig 26b ensures that there exists no third property which
is both a super-property of subProp and a sub-property of superProp.

Proof of consistency preservation: From Fig. 1, we remark that only con-
straint 20 is concerned by the deletion of a suproperty relation. Its conservation
is ensured by the NAC of Fig. 26b that forbids deletion of the relation if it has
to exist due to transitivity.



Graph Rewriting System for Consistent Evolution of RDF/S databases 25

(a)

(b)

(c)

(d)

(e)

Fig. 25. GACs for the insertion of a subproperty relation subclass (cont’).



26 Chabin, Eichler, Halfeld, Hiot

(a) (b)

Fig. 26. Rule concerning the deletion of a subproperty relation (with associated NAC).

References

1. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.C., Senellart, P.: Web data
management. Cambridge University Press (2011)

2. Flouris, G., Konstantinidis, G., Antoniou, G., Christophides, V.: Formal foundations
for RDF/S KB evolution. Knowl. Inf. Syst. 35(1), 153–191 (2013)

3. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application con-
ditions. Fundam. Inf. 26(3,4), 287–313 (Dec 1996), http://dl.acm.org/citation.
cfm?id=2379538.2379542

4. Halfeld Ferrari, M., Laurent, D.: Updating RDF/S databases under constraints.
In: Advances in Databases and Information Systems - 21st European Conference,
ADBIS, Nicosia, Cyprus, Proceedings. pp. 357–371 (2017)

5. Löe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109(12), 181 – 224 (1993)

6. Runge, O., Ermel, C., Taentzer, G.: Agg 2.0 – new features for specifying and analyz-
ing algebraic graph transformations. In: Schürr, A., Varró, D., Varró, G. (eds.) Ap-
plications of Graph Transformations with Industrial Relevance. pp. 81–88. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

7. Taentzer, G.: Agg: A graph transformation environment for modeling and validation
of software. In: AGTIVE (2003)

http://dl.acm.org/citation.cfm?id=2379538.2379542
http://dl.acm.org/citation.cfm?id=2379538.2379542

	Graph Rewriting System for Consistent Evolution of RDF/S databases 

