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HETEROGENEOUS SOCIAL INTERACTIONS AND THE COVID-19
LOCKDOWN OUTCOME IN A MULTI-GROUP SEIR MODEL

Jean Dolbeault1 and Gabriel Turinici1

Abstract. We study variants of the SEIR model for interpreting some qualitative features of the sta-
tistics of the Covid-19 epidemic in France. Standard SEIR models distinguish essentially two regimes:
either the disease is controlled and the number of infected people rapidly decreases, or the disease
spreads and contaminates a significant fraction of the population until herd immunity is achieved.
After lockdown, at first sight it seems that social distancing is not enough to control the outbreak.
We discuss here a possible explanation, namely that the lockdown is creating social heterogeneity:
even if a large majority of the population complies with the lockdown rules, a small fraction of the
population still has to maintain a normal or high level of social interactions, such as health workers,
providers of essential services, etc. This results in an apparent high level of epidemic propagation as
measured through re-estimations of the basic reproduction ratio. However, these measures are limited
to averages, while variance inside the population plays an essential role on the peak and the size of
the epidemic outbreak and tends to lower these two indicators. We provide theoretical and numerical
results to sustain such a view.

Résumé. Nous étudions des variantes du modèle SEIR afin d’interpréter certaines caractéristiques
qualitatives des statistiques de l’épidémie de Covid-19 en France. Les modèles SEIR standards dis-
tinguent deux régimes: soit la maladie est contrôlée et le nombre de personnes infectées diminue
rapidement, soit la maladie se propage et contamine une fraction importante de la population jusqu’à
ce que l’immunité collective soit atteinte. Après le confinement, il semble à première vue que la distan-
ciation sociale soit insuffisante pour contrôler l’épidémie. Nous avançons ici une explication possible, à
savoir que le confinement crée de l’hétérogénéité sociale: même si une grande majorité de la population
obéit aux règles de confinement, une petite fraction doit continuer à maintenir un niveau normal ou
élevé d’interactions sociales, comme les personnels médicaux, les prestataires de services essentiels, etc.
Cela se traduit par un niveau de propagation élevé de l’épidémie, mesuré par des ré-estimations du
taux de reproduction de base. Ces mesures se limitent toutefois à des moyennes alors que la variance au
sein de la population joue un rôle essentiel sur le pic et la taille de l’épidémie et contribue à abaisser ces
deux indicateurs. Nous apportons des arguments théoriques et numériques pour développer ce point
de vue.
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Introduction

Although widely used in practice, compartmental models of epidemic spread (as for instance the celebrated
SIR [26] model) rely on various simplifying assumptions, like a limited number of compartments, the homogeneity
of the population inside a compartment, or some well defined parameters. The advantage of such models is that
the impact of the variation of a single parameter on various qualitative properties can easily be studied, but the
risk lies in an outrageous simplification of the representation of a complex system, with the additional difficulty
that some parameters can be difficult to quantify from the available statistical data. Here we numerically
study how the separation of the population into two sub-groups of individuals with different intensities of social
interaction can qualitatively explain some observed features of the current pandemic of Covid-19, and provide
some theoretical explanations which also apply to more realistic models.

New characteristics of the pandemic of Covid-19 are unveiled every day and reveal various interesting features.
One of the issues is that curves showing the number of new cases in European countries stabilize very slowly
after the beginning of the lockdown. Many questions have been raised on the methods for collecting the data
and on their quality, that we do not address, not to mention variations between countries that deserve further
investigations. As a simple explanation, it is has been suggested that the main reason is that a significant
fraction of the population does not respect lockdown. This ignores the nonlinear properties of simple epidemic
models. We show here that, if a rather small fraction of the population cannot reduce its social interactions,
eventually for very good reasons as, e.g., the health workers or some other key actors of our societies, the
epidemic keeps spreading, stabilizes at a much slower rate than what one would expect, and finally affects a
significant fraction of the population.

In this paper we shall use the SEIR model rather than the simpler SIR model because of the significant period
of incubation in the Covid-19 disease. The SEIR model has various properties that can be understood, at least
for the order of magnitude of its effects, using simple objects like the well known basic reproduction ratio R0.
However, it also has very nonlinear features which are defying common sense and require rigorous mathematical
analysis. In the accompanying numerical examples, we take values for the parameters which are compatible with
the data collected during the pandemic of Covid-19. These examples are intended to understand qualitative
features of the epidemic but cannot and should not be implemented for direct predictive use, as our model is
too crude and oversimplified to reflect the Covid-19 epidemic in a quantitative manner.

We start by reviewing known results concerning the SEIR model applied to a homogeneous population in
Section 1. A model with a large majority of the population under lockdown and a small minority which does
not or cannot implement the social distancing is then considered. The factor of reduction of social interac-
tions q quantifies the effect of the lockdown. It is certainly very difficult to measure this parameter in real life
applications and structured population models should be considered, in order to reflect the variety of social
interactions. Our goal is to understand how, by varying q, one eventually triggers the nonlinearity of the SEIR
model and, as a consequence, how this drives the system into a stable equilibrium which is far from the usual
target of a lockdown policy, that is, the control of the disease, but is also far from the dynamics that would
develop in absence of lockdown.
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1. Basic mathematical properties of the SEIR model

1.1. The SEIR model

Let us consider the SEIR (Susceptible, Exposed, Infected, Recovered) model [4] defined by the set of equations

dS

dt
= −β S I

N
, (1)

dE

dt
= β S

I

N
− αE , (2)

dI

dt
= αE − γ I , (3)

dR

dt
= γ I , (4)

which is a variant of the SIR model [26] of Kermack and McKendrick. Here we neglect birth and death rates,
i.e., we consider a model without vital dynamics. The average incubation period is 1/α, the parameter β is
the product of the average number of contacts per person and per unit time by the probability of disease
transmission in a contact between a susceptible and an infectious individual, γ is a transition rate so that 1/γ
measures the duration of the infection of an individual and N is the total population size. In the Covid-19
pandemy, the average incubation period is of several days and this is why an SEIR model has to be preferred
to a simple SIR model. Many qualitative features are the same in the two models but the compartment E of
exposed individuals makes the analysis slightly more delicate. Unreported cases or asymptomatic individuals
are not taken into account here: this is an important aspect of the Covid-19 epidemic, see for instance [9,34,35],
with important consequences on the epidemic size, but probably not so much on the qualitative issues that are
discussed in this paper. Other factors, like delays for the transmission of the information studied in [7], certainly
also play a role in the current outbreak.

The SEIR model is a compartmental model used to understand the mathematical modelling of infectious
diseases in a large population, with enough individuals in each compartment so that stochastic effects can be
neglected. Spatial effects are also neglected, which is a rather crude approximation. However, such a simplified
model allows us to perform an analysis of the sensibility to the parameters which are of interest for a qualitative
description of the outbreak of an epidemic disease.

The system (1)-(4) is homogeneous so that we can simply consider the fractions

s :=
S

N
, e :=

E

N
, i :=

I

N
, r :=

R

N

of the Susceptible, Exposed, Infected and Recovered individuals among the whole population.

1.2. Conservations and large time asymptotics

Here we perform a simple analysis of the model, which is done in the spirit of [22]. By conservation of the
total number of individuals, we have the relation

s(t) + e(t) + i(t) + r(t) = 1 (5)
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for any time t ≥ 0, which is easily proved by summing the equations in the system, while the evolution is now
governed by the system

ds

dt
= −β s i , (6)

de

dt
= β s i− α e , (7)

di

dt
= α e− γ i , (8)

dr

dt
= γ i . (9)

An important and classical observation is that the domain

s ≥ 0 , e ≥ 0 , i ≥ 0 , s + e + i ≤ 1

is stable under the action of the flow (6)-(9), and it is straightforward to check that

d

dt
(γ log s− β (s + e + i)) = 0 . (10)

Since s is monotone non-increasing by (6), this means that (6)-(9) has a global solution for any t ≥ 0 and

lim
t→+∞

s(t) = s? > 0 .

By an elementary analysis, we find that any solution (s, e, i, r) of (6)-(9) with initial data (s0, e0, i0, r0) such that
i0 + e0 > 0 converges as t→ +∞ to a stationary solution (s?, e?, i?, r?) with

e? = i? = 0 , s? + r? = 1 and γ log s? − β s? = γ log s0 − β (s0 + e0 + i0) , (11)

according to (5) and (10). Note that the solution is unique if γ − β > 0 but there are two solutions if γ − β < 0
and γ log s0 + β r0 = γ log s0 − β (s0 + e0 + i0) + β > 0. In our numerical applications, we shall assume that
γ log s0 + β r0 = γ log s0 − β (s0 + e0 + i0) + β < 0 if γ − β < 0, so that s? is uniquely defined.

The epidemic size ζ is defined as the fraction of individuals that are affected by the epidemic, here s0 − s?.
Next, let us consider more specifically the case of an initial datum which is a perturbation of the constant in
time DFE solution, or Disease Free Equilibrium (see [45]), corresponding to

(s0, e0, i0, r0) = (1, 0, 0, 0) . (12)

1.3. Stable equilibrium, epidemic size and phase transition

Let us assume that e0 + i0 + r0 = ε > 0 is small and r0 = ϑ ε for some given ϑ ∈ [0, 1). This initial condition,
in the limit as ε→ 0+, is a perturbation of the DFE solution. For any ε > 0, we know by (5) that s0 = 1− ε.
The solution of (6)-(9) converges as t→ +∞ to (s?, 0, 0, r? = 1−s?), the stationary solution (s?, 0, 0, r?) is stable
and this is why we call it the stable equilibrium solution. See [36, Section 7.3] for a discussion of the stability. In
a model with birth and death rates, the solution is usually called the endemic equilibrium, but we shall prefer
to call it simply the stable equilibrium solution as we neglect birth and death issues. The following discussion
is given here in preparation for the next two sections. We do not claim originality and refer for instance to [22]
for a detailed study motivated by very explicit examples. Depending whether the DFE solution is stable or not,
we have three regimes for s? = s?(ε):
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B Control of the epidemic. If γ > β, we find that

s?(ε) = s0 −
β ε

γ − β
+ o(ε) = 1− γ ε

γ − β
+ o(ε) (13)

as ε→ 0+. In other words, the stable equilibrium is a perturbation of the DFE solution and the epidemic size ζ
is of order ε.

B Epidemic spreading and herd immunity. If γ < β, then we note that s 7→ γ log s − β s achieves a
maximum point on (0, 1) at s = γ/β and, as a consequence, that

s?(ε) <
γ

β
(14)

even for an arbitrarily small value of ε > 0. Hence we find that s?(ε) is not only a perturbation of order ε of s0
but also that the value of s?(ε) is of order s?(0), the unique root in (0, 1) of γ log s + β (1 − s) = 0. Since the
constant solution

(
s?(ε), 0, 0, 1 − s?(ε)

)
is a stable equilibrium, herd immunity is always granted in the sense

that no outbreak can occur. Let R0 = β/γ.
With R0 > 1, the epidemic spreads in the sense that s?(0) is the solution of

log s−R0 (s− 1) = 0 . (15)

This means that s?(0) = − 1
R0

W
(
−R0 e

−R0
)
where the function W is known as the Lambert function (see for

instance [8]) and defined as the inverse of w 7→ w ew. Note that r = 1− s is given for s = s?(0) by the equation

e−R0 r + r = e−
β r
γ + r = 1 (16)

and that r = 1− s?(ε) solves

s0 e
− βγ (r−r0) + r = 1 , s0 = 1− ε , (17)

so that s?(ε) also depends on ϑ (but this dependence disappears in the limit as ε→ 0+). Altogether, if γ < β,
that is, for R0 > 1, the epidemic size ζ is of order 1 as ε→ 0+. See Fig. 2 for an illustration of the dependence
of ζ in R0.

B In the threshold case β = γ, i.e., R0 = 1, which is typical of a phase transition, we have to solve

log s?(ε)− s?(ε) = log(1− ε) + r0 − 1 (18)

and find that
s?(ε) = 1−

√
2 (1− ϑ) ε+ o

(√
ε
)

(19)

as ε → 0+. We recall that 0 ≤ r0 < ε and observe that the epidemic size ζ is of order
√
ε as ε → 0+. Scale

invariance is reflected by the fact that there is no dependence neither on β nor on γ.
Summarizing, there are two phases and a threshold case corresponding to the phase transition. If γ > β, the

epidemic size ζ is close to zero. The disease does not spread in the population and simply vanishes exponentially
fast. On the opposite, if γ < β, the Disease Free Equilibrium is unstable, the diseases quickly spreads with
an exponential growth, the system converges for large times to a stable equilibrium far away from the DFE
solution and the epidemic size ζ is a significant fraction of the total population, irrespective of how small the
fraction of initially infected individuals is. Whether R0 > 1 or R0 < 1 determines the asymptotic stable
equilibrium starting from the DFE solution. In the literature, R0 is called the basic reproduction ratio, or the
basic reproduction number. So far we simply consider it here as the order parameter of the phase transition,
in the usual sense in physics: see for instance [30, p. 449] or [44, p. 3]. In the next section, we shall explain
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the role it plays in the initial dynamics of the model and refer to Section 1.6 for more considerations on the
epidemiologic interpretation of R0.

Note that the SIR model has exactly the same stationary states and the same phase transition as the SEIR
model, as the SIR model is obtained by replacing (7) by β s i = α e, so that, in the SIR model, the equation for i
becomes

di

dt
= β s i− γ i . (20)

The order parameter is also R0 = β/γ and whether R0 > 1 or R0 < 1 determines if the epidemic is spreading
or if the disease is controlled.

1.4. Linearization and the basic reproduction ratio

In the case of the SIR model, (20) can be rewritten as

di

dt
= (β s− γ) i =

(
R0 s− 1

)
γ i (21)

and it is elementary to observe that when s ∼ 1, whether R0 > 1 or R0 < 1 determines the initial dynamics of
the model: the interpretation of R0 is clear from the above equation. After this digression on the SIR model,
let us come back to the SEIR model. Understanding the role of R0 is a little bit more subtle than in the SIR
model. We recall that r(t) = 1− s(t)− e(t)− i(t) plays no role in the stability analysis of the DFE solution. At
any time t, the linearized dynamics of t 7→

(
s(t), e(t), i(t)

)
is described by the matrix

M(s, i) :=

 −β i 0 −β s
β i −α β s
0 α − γ

 (22)

and we may notice that the largest eigenvalue of M(1, 0), corresponding to the linearization around the DFE
solution, is

λ(α, β, γ) :=
1

2

(√
(α− γ)2 + 4αβ − α− γ

)
, (23)

so that λ(α, β, γ) is positive if and only if R0 = β/γ > 1. Moreover, the eigenspace is compatible with the
nonlinear dynamics so that there are perturbations of the DFE solution which are exponentially growing with a
rate λ(α, β, γ) if and only if R0 > 1. However, the basic reproduction ratio R0 is not anymore directly connected
with the linearized growth mode of i. In fact, we can observe that (21) is replaced by

d

dt
(e + i) = (β s− γ) i ∼

(
R0 − 1

)
γ i (24)

if s ∼ 1, which is indeed the correct way of estimating the growth of the epidemic. We will come back on the
interpretation of R0 in Section 1.6 and note that (e + i) is known in the literature as the population in the
infectious compartments.



7

1.5. Social distancing and the factor of reduction of social interactions

The goal of a lockdown policy is to replace the system (6)-(9) by

ds

dt
= − β

q
s i (25)

de

dt
=
β

q
s i− α e (26)

di

dt
= α e− γ i (27)

dr

dt
= γ i (28)

for some factor q > 1 which measures the reduction of social interactions of each individual. Of course, what
we obtain is exactly (6)-(9) with the parameter β replaced by β/q. The point is that the basic reproduction
ratio becomes

R(1)
0 (q) =

β

γ q
=
R0

q
(29)

and the goal is either to fix q to a value large enough so that the epidemic is controlled, that is q > R0, or at
least to make R0 − q > 0 small in order to flatten the curve, i.e., to have an epidemic going at slower pace.
See Fig. 1 for an illustration. Here the exponent (1) in the notation R(1)

0 points to the assumption that we
consider a population with a single group of susceptible individuals or, in other words, a socially homogeneous
population.

In a SIR model with social distancing, with (25), (28) on the one hand, but (26) and (27) replaced by

di

dt
=
β

q
s i− γ i (30)

on the other hand, it is possible to compute the epidemic peak. This is a classical result, see for instance [36,
Section 2.1.2]. The epidemic peak is defined as the maximum i(tp) of t 7→ i(t) after noticing that, at t = tp, we
have the system of equations

β

q
s i− γ i = 0 , γ log

(
s

s0

)
+
β

q
(r − r0) = 0 , s + i + r = 1 , (31)

which provides us with the value

i(tp) = 1− r0 −
1

R(1)
0 (q)

(
1 + log

(
R(1)

0 (q) s0
))

(32)

for any q < 1/R0. Note that i(tp) ∼ 1 − R(1)
0 (q)−1

(
1 + log(R(1)

0 (q))
)
as (s0, r0) → (1, 0), i.e., in the limit of

a DFE initial datum. We obtain the same expression in the SEIR model if we replace i by e + i. See [15] as
a source of inspiration for such considerations, and also Property (2) of Theorem 2, in a much more general
framework.

1.6. The basic reproduction ratio and the method of the next generation matrix

According to [12], the basic reproduction ratio R0 is the expected number of secondary cases produced, in
a completely susceptible population, by a typical infected individual during its entire period of infectiousness.
In [6], Blackwood and Childs provide us with a comprehensive introduction to the computation of R0 using the
method of the next generation matrix in the case of the SEIR model. Such a computation goes back to [12], the
standard method is exposed in [45] and we can also refer to [13] for an application to the SEIR model. As for a
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more general presentation of the method in compartmental models and more formal mathematical treatments,
one can refer to [11, 36], and to [23] and [4, p. 17] for early considerations on endemic and stable equilibria.
Alternative definitions of the basic reproduction ratio in compartmental models are also available: see [36] for
an overview, [22] for a more historical account and [21,23] for considerations on models which are more directly
linked to our interests (see Section 2).

For sake of completeness, let us give a brief summary of the method of the next generation matrix. First of
all, one restricts the analysis to the infectious compartments, x = (e, i) in case of (25)-(28), and consider the
linearized evolution equation around the DFE solution, that is,

dx

dt
= (F−V) x (33)

where F and V respectively denote the matrices associated with the rate of new infections and the rates of
transfer between compartments, i.e.,

F =

(
0 β

q

0 0

)
and V =

(
−α 0
α − γ

)
(34)

See [45] for details. According to [45, Lemma 1], we observe that the matrix F is non-negative and the matrix V
is non-singular. In this framework, the basic reproduction ratio is defined as the largest eigenvalue of F V−1. It
is an elementary computation to check that

F V−1 =

( β
q γ

β
q γ

0 0

)
(35)

has two eigenvalues, 0 and β
q γ = R(1)

0 (q). This proves that R(1)
0 (q) is the basic reproduction ratio, as defined by

the method of the next generation matrix. In this framework, it is known from [45, Theorem 2] that the DFE
solution is stable if R(1)

0 (q) < 1 and unstable if R(1)
0 (q) > 1.

2. A heterogenous model of social distancing

2.1. A simple model with two groups

Let us consider a population divided in two groups indexed by k = 1, 2, in which the Susceptible individuals
have a factor of reduction of social interactions qk which differ in the two groups. We shall assume that each
of these groups gather a fixed fraction of the population pk with p2 = p small and p1 = 1− p. While the group
corresponding to k = 1 observes a lockdown and has a factor qk > 1, we are interested in the situation in which
the other group has no reduction of social interactions: q2 = 1, or eventually has more social interactions than
average before lockdown, corresponding to some q2 < 1. The typical example is the case of health workers in
a period of epidemic disease or supermarket cashiers, who have contacts with a much larger number of people
than an average individual. It is of course very difficult to estimate q2 and one should take into account the
efficiency of barrier procedures. Instead of trying to make rough guesses for the value of q2, we will vary it in
order to see what is the impact on the solutions.

With a straightforward notation, let us split the population of Susceptible individuals in two groups

s = s1 + s2

and consider for k = 1, 2 the system

s′k
sk

= −βk i with βk =
β

qk
, e′ = (β1 s1 + β2 s2) i− α e , i′ = α e− γ i , r′ = γ i . (36)
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There are multiple possible variants and it would make sense, for instance, to distinguish i1 and i2 in the above
equations, with detailed contamination rules. The above system has striking properties. It is for instance
straightforward to see that the linearized system around the DFE solution, i.e., the matrix M(1, 0), has a
largest eigenvalue given by

λ(α, β, γ) =
1

2

(√
(α− γ)2 + 4αγR(2)

0 (q1, q2, p)− α− γ
)
, (37)

where the basic reproduction ratio R, as defined in the method of the next generation matrix, is given by

R(2)
0 (q1, q2, p) =

(1− p)β1 + p β2
γ

. (38)

One can indeed apply the method of Section 1.6 and observe that the only change lies in the matrix F, where
the coefficient β/q has to be replaced by (1− p)β1 + p β2, which establishes (38). It is easy to deduce from (37)
that λ(α, β, γ) is positive if and only if R(2)

0 (q1, q2, p) > 1.

Modeling heterogeneous mixing in infectious disease dynamics when the population is subdivided by char-
acteristics other than those that are disease-related, such as risk status or age, is not new. This has been
considered for instance from the dynamical point of view in [28] or in the case of sexually transmitted diseases
and particularly in HIV/AIDS models, with groups that are not all defined by disease related properties. In
this perspective, contact matrices have been considered, which involve a detailed analysis of the transmission
mechanisms. We can refer to [2, 23–25, 37] for various considerations in this direction and to [21, Section 3]
for a discussion of the homogeneous mixing fallacy in the application to successful vaccination policies. The
present paper ignores a number of issues like symmetry in transmission between groups and density-dependent
transmission questions in order to focus on simple qualitative questions: any serious study with quantitative
goals should of course address these issues with care: see for instance [6] for a warning. For sake of simplicity,
we have chosen to consider that the origin of the infected individuals (group 1 or 2) plays no role in the trans-
mission. This has the simple consequence that the basic reproduction ratio R is in the end exactly the average
of the ratios independently computed for each group, as shown by (38). In the regime corresponding to p much
smaller than 1− p and whatever the details are, our model is anyway good enough to show that what matters
concerning the basic reproduction ratio is the average of the ratios1. However, when one considers the epidemic
peak and the large time asymptotics, the message is not only the average and this is what we explain next.

2.2. Conservations and large time asymptotics

System (36) inherits of the properties of the standard SEIR model. The conservation of mass

s1(t) + s2(t) + e(t) + i(t) + r(t) = 1 ∀ t ≥ 0 (39)

guarantees that all quantities are bounded by 1 as long as they are nonnegative. For a solution of (36), let us
observe that

d

dt
(log sk) = −βk i = − βk

γ
r′ , (40)

so that
sk(t) = s0k e

− βk r(t)

γ with s0k = sk(0) e
βk r(0)

γ . (41)
We shall moreover assume that

sk(0) = pk s(0) (42)

1 For instance, it is not the average of the factors of reduction of social interactions which matters, as it is usually done when
considering homogeneous populations represented as a single group.
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as the population can be considered, in the initial phase of the outbreak (for t ≤ 0, in our setting), as a
single group. This point could be reconsidered and studied as in [5] if one is interested in the dynamics of the
epidemics, but it has a no significant impact on the stable equilibrium in the uncontrolled case. An analysis of
the trajectories of (36) as in Section 1.3 shows that solutions globally exist and that there is a unique stable
attractor (s?1, s

?
2, 0, 0, r

?). We deduce from the conservation of mass

s?1 + s?2 + r = 1 (43)

that the stable stationary solution is given as the unique solution with r? = r > r(0) of

1 =
∑
k=1,2

s0k e
− βk rγ + r , s?k = s0k e

− βk rγ , k = 1, 2 . (44)

Under the condition that
(
ek(0), ik(0)

)
6= (0, 0), we have that

lim
t→+∞

(
s1(t), s2(t), e(t), i(t), r(t)

)
= (s?1, s

?
2, 0, 0, r

?) . (45)

2.3. Stable equilibrium and phase transition

The same discussion as in Section 1.3 can be done. To fix ideas, let us assume for instance, as a simplifying
assumption, that s(0) = 1− ε, e(0) + i(0) + r(0) = ε, and r0 = ϑ ε for some given ϑ ∈ [0, 1), so that s0k = sk(0) =
pk (1− ε). The equation for the equilibrium (44) can be rewritten as

(1− ε)
(

(1− p) e−
β1 (r−ϑ ε)

γ + p e−
λ(α (r−ϑ ε)

γ

)
+ r = 1 (46)

and the Taylor expansion

(1− ε)
(

1−R(2)
0 (q1, q2, p)

(
1 + o(ε)

)
r
)

+ r = 1 + o(r) (47)

for r > 0, small, shows that there is a solution with r > 0, small, as ε→ 0+ if and only if R(2)
0 (q1, q2, p) < 1, thus

giving a solution of order ε, which turns out to be the unique solution. Otherwise, the only positive solution
of (46) corresponds to some r >> ε and we have exactly the same phase transition as in Section 1.3, with
R(2)

0 (q1, q2, p) playing the role of an order parameter. When the disease spreads, we find that r? is of the order
of the solution of (46) with ε = 0, that is, of the solution r = r of

(1− p) e−
β1 r
γ + p e−

β2 r
γ + r = 1 . (48)

By convexity, we know that

(1− p) e−
β r
γ q1 + p e−

β r
γ q2 ≥ e−R

(2)
0 (q1,q2,p) r . (49)

If we choose q such that R(1)
0 (q) = R(2)

0 (q1, q2, p), which means 1
q = 1−p

q1
+ p

q2
, then it is clear that the solution

of

(1− p) e−
β r
γ q + r = 1 (50)

is larger than r?. In other words, the epidemic size is reduced if we replace (25)-(28) by (36) with q, q1 and q2
as above.
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3. General heterogeneous distribution

In this section we extend the previous framework to the situation of an arbitrary number of different popu-
lation classes. Each class, or group, contains the individuals that share a given value of the transmission rate
β/q. More precisely we consider a probability space (Ω,F ,P) and S(ω, t), B(ω) random variables on this space
designating respectively the state of a random individual ω ∈ Ω and its β/q parameter. We denote by E[·] the
average operator.

For instance the case of Section 2 corresponds to the situation when B has only two values, β1 = β/q1 and
β2 = β/q2, and sk(t) = P [S(t) = “Susceptible”,B = β/qk], with k = 1, 2. In order to keep notation simple,
we will suppose in the following that the conditional law P[B|S(0) = “Susceptible” ] of B relative to being
susceptible (at t = 0) only takes a finite number of values β1, ..., βK , i.e., is of the form

∑K
k=1 pk δβk , with

pk = P[B = βk|S(0) = “Susceptible” ], but all results given below extend to the general case. Note that∑K
k=1 pk = 1. We adopt the notation R = B/γ, Rk = βk/γ for any k = 1, ...,K and define

sk(t) = P [S(t) = “Susceptible”, B = βk] , e(t) = P [S(t) = “Exposed” ] ,

i(t) = P [S(t) = “Infected” ] , r(t) = P [S(t) = “Recovered” ] ,
(51)

and

s(t) = P [S(t) = “Susceptible” ] =

K∑
k=1

sk(t) . (52)

With these notations pk = sk(0)/s(0). The evolution of (sk, e, i, r) is governed by the system of equations2:

dsk
dt

= −βk sk i ,
de

dt
=

(
K∑
k=1

βk sk

)
i− α e ,

di

dt
= α e− γ i ,

dr

dt
= γ i . (53)

Let us start by a simple observation.

Lemma 1. The solution (sk, e, i, r) of (53) satisfies:

ds

dt
= − β̄ a(t) s(t) i(t) ,

de

dt
= β̄ a(t) s(t) i(t) − α e(t) ,

di

dt
= α i(t)− γ i(t) , dr

dt
= γ i(t) , (54)

where β̄ =
∑
k pk βk = E[B |S(0) = “Susceptible” ] and a(t) is a positive nonincreasing function of t with

a(0) = 1.

Proof. System (54) is satisfied with

a(t) =

∑
k βk sk(t)

β̄ s(t)
. (55)

By definition of β̄, we know that a(0) = 1. Using the equation for dsk/dt, we can compute the derivative of a
and conclude that

da

dt
= − i(t)

β̄ s(t)2

(∑
k sk(t)

∑
k β

2
k sk(t)−

(∑
k βk sk(t)

)2) ≤ 0 (56)

by the Cauchy-Schwarz inequality. �

Theorem 2. Suppose that r(0) = 0. Then (53) possesses the following properties:
(1) The basic reproduction ratio is the average of the reproduction ratios, i.e., R = β̄/γ. In probabilistic

notation, R = E[R |S(0) = “Susceptible” ] 3.

2 The mathematically rigorous formulation of the equations involves defining a continuous time Markov chain for any individual
and the associated infection and recovering probabilities, see [29] for details.
3 Here we will only consider the value of R for the event {S(0) = “Susceptible”}. Although the notation designates a random
variable, we will consider it, when there is no ambiguity, as a real number.
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(2) If R > 1, the peak (defined as the maximum value attained by e + i) is smaller than the peak obtained
with a Dirac mass distribution ( i.e., having only one group) with the same basic reproduction ratio.

(3) If R > 1, the total epidemic size ζ is the unique solution of

1− ζ = s(0) E
[
e−R ζ |S(0) = “Susceptible”

]
. (57)

For any distribution, ζ is smaller than the total epidemic size of a Dirac mass distribution having the
same average.

By imposing the condition r(0) = 0, what we have in mind as initial datum is a perturbation of the DFE
solution, or a solution with initial values for which the infectious compartments are non-empty at t = 0, i.e.,
e(0) + i(0) > 0, eventually small (but this is not even mandatory). As we shall see, (57) follows by convexity as
in Section 2.3.

Proof. Property (1) is obtained by linearization using the next generation method. The proof is the same as
for (38) when K = 2.

Next we prove Property (2). The peak is the value of (e + i) at some time tp such that (e + i)′(tp) = 0, or,
using Lemma 1, for the unique t = tp such that β̄ a(tp) s(tp) = γ. In particular, since a(t) ≤ 1, we know that
s(tp) ≥ 1/R, which is precisely the value of s at the peak for the homogeneous case a = 1. The value of the
peak can be written as:

(e + i)(tp) = (e + i)(0) +

∫ tp

0

(
β̄ a(t) s(t) i(t)− γ i(t)

)
dt = (e + i)(0) +

∫ tp

0

(
(R)

−1

a(t) s(t)
− 1

)
ds

dt
(t) dt

≤ (e + i)(0) +

∫ tp

0

(R)
−1 d

dt
log s(t) dt+ s(0)− s(tp) = (e + i)(0) + h(s(tp))− h(s(0)) , (58)

where h(x) = (R)
−1

log x− x. Since the function x 7→ h(x) is monotone decreasing on [1/R, 1], we obtain

(e + i)(tp) ≤ (e + i)(0) + h(1/R)− h(s(0)) = 1− 1

R

[
1 + log

(
R s(0)

) ]
. (59)

Property (3) is obtained as follows. Denote by ζ the epidemic size, which satisfies the two identities: ζ =
r(∞) = r(∞) − r(0) = s(0) + e(0) + i(0) −

∑
k sk(∞). Thus ζ =

∫∞
0

r′(t) dt = γ
∫∞
0

i(t) dt. For any k ≤ K:
sk(∞) = sk(0) exp

(
−
∫∞
0
βk i(t) dt

)
= s(0) pk e

−ζ βk/γ . Combining the above relations we obtain (57). In
particular if the distribution is reduced to a Dirac mass centered at the mean value R, the epidemic size,
denoted by ζ0, satisfies: ζ0 = 1 − s(0) e−R ζ0 as expected. We use now the Jensen inequality for the convex
function x 7→ e−x:

1− ζ = s(0)E[e−Rω ζ |S(0) = “Susceptible” ] ≥ s(0) e−R ζ = s(0)
(
e−R ζ0

)ζ/ζ0
= s(0)

(
1− ζ0
s(0)

)ζ/ζ0
. (60)

We obtained thus
(

1−ζ
s(0)

)1/ζ
≥
(

1−ζ0
s(0)

)1/ζ0
, which implies, after recalling that

(
1−x
s(0)

)1/x
is a decreasing function

on ]0, s(0)[ that ζ ≤ ζ0, our conclusion. �

Note that, by assuming that (e + i)(0) is small, it is clear that the peak can be made small if R − 1 > 0 is
small.
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4. Numerical results

4.1. Choice of a set of parameters

It is not the purpose of this paper to discuss the values of the parameters in a SEIR model of the pandemic of
Covid-19 and we shall simply choose values that can be found in the literature, for a purely illustrative purpose.
However, for the interested reader, we list our sources and some entries in the rapidly growing literature on the
topic.

Concerning the initial data for the SEIR model, we shall assume that the size of the French population is
N = 67.8×106. The following values correspond to the situation for the Covid-19 in France on March 15, 2020,
according to [5] and data released on a daily basis by SPF at [43]. We shall take as initial data the values

S(0) = N −R0R(0) , E(0) = 5970 , I(0) = 1278 , R(0) =
E(0) + I(0)

R0 − 1
≈ 5450

with R0 = 2.33. Here we provide the formulae used in [5] to infer the numbers, which are based on an
asymptotic analysis of the SEIR model during the initial phase of the epidemics (without lockdown). Such
values are important for controlled epidemics but play essentially no role if the disease is spreading in the
population, which is the case under investigation. Note that it is very likely that the numbers will be revised in
the future, to account for non well documented cases at the time this study was done. In any case, for numerical
computations, we take the following initial data, as fractions of the total population

s(0) = 0.99981 , e(0) = 8.81× 10−5 , i(0) = 1.88× 10−5 , r(0) = 8.04× 10−5 , (61)

in all our examples.

Now comes the issue of estimating the parameters β, γ and α of the SEIR model, and the factor of reduction
of social interactions q, at least as an average, in a socially homogeneous model and also for the majority of the
population in the model with two groups. The methodology is out of the scope of this paper and we will not
comment it. We refer to [35] for a recent discussion. However, in order to fix the order of magnitude and give
an idea of the uncertainties, let us review some numbers which recently appeared. An estimate based on the
statistics of the known cases of Covid-19 at the beginning of the outbreak has been proposed in [5], with the
following values

β = 2.33 , α = 0.25 , γ = 1 , R0 = 2.33 (62)

before lockdown. By fitting the values for the first two weeks of lockdown, N. Bacaër came up with q ≈ 1.7 for
an estimate of the factor of reduction of social interactions. These numbers are the ones used for our choice (61).
We learn from [10] that the parameters in the SEIR model can be estimated by: β = 2, α = 1/3.7 ≈ 0.27,
γ = 1/1.5 ≈ 0.67 and R0 = 3 at regional level (Ile-de-France) and it was suggested that q ≈ 2.94 so that
R0/q = 0.68. This is consistent with the estimate 0.67 of [42].

Before going further, let us list some limitations of our model and features which have to be taken into
account in more realistic models. In [35], it is argued that Unreported cases (U) should be taken into account
in a S(E)IRU model for correctly accounting the Covid-19 outbreaks (also see [32]). There is certainly an
important point here, although we did not introduce it for sake of simplicity. Note that such models produce a
very high R0 (at least on the basis of the data used for fitting the curves) ranging from 4.45 to 4.49. In [41],
the basic reproduction ratio is adjusted to R0 = 2.8. In [42], the authors find that the basic reproduction
ratio, which was R0 ≈ 3.41 before lockdown, has been reduced to 0.52, which corresponds to q ≈ 6.6. This
is consistent with the factor q = 7 found in [40]. Of course important factors like risk status or age (see for
instance [16,18]) have been put in evidence, but they are not easy to study from the point of view of transmission
rates. In our aproach, it is clear that we take oversimplifying assumptions, but this is probably the price to pay
to prove results and put them numerically in evidence.
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Recent papers have emphasized that the heterogeneity of the transmissions rates is important in the current
pandemic and that it lowers herd immunity thresholds in various modeling frameworks. During the revision of
this paper, we became aware of [14, 16, 17]. Superspreaders and superspreading events are known to play an
essential role in the propagation of Covid-19 according to [1,3,19,20,27,38,39]. Incorporating these considerations
in compartmental models will anyway require further studies.

So far it remains difficult to choose a set of parameters, although one can hope that a better understanding
of the dynamics of the pandemic will emerge out of the various studies that are currently done. What we
learn after the end of the lockdown is still to be studied. Now comes a very empirical observation, in the
framework of SEIR models, with parameters that are supposed to be constant in time, a crude assumption that
is definitely not valid after the end of the lockdown. This empirical observation is the starting point for this
paper. Situations with a basic reproduction ratio R0 < 1 exhibit an exponential decay of the number of cases
while the data of [43] (at the beginning of the lockdown) were emblematic of a situation with R0 > 1. Several
phases for a population under lockdown are illustrated in [31] by the computation of the effective reproduction
ratio Rt (which is of the order of R0 as only a small proportion of the total population was concerned) in
Wuhan, based on the reported daily Covid-19 infections: when there was no intervention (before January 23,
2020): Rt ≈ 3.88; under lockdown with traffic ban and many confined at home (between January 23-February
1st, 2020): Rt ≈ 1.25; using centralized confinement (after February 1st, 2020): Rt ≈ 0.32. Also see [33] for a
detailed analysis of the data in Wuhan based on a SIR type model. The curves in France and southern Europe
during the first month of lockdown look more like to what happened in Wuhan by the end of january, with
an R0 > 1, than to what happened later. This is what we intend to explain in France, at least partially, by
social heterogeneity. For the sake of simplicity, we shall retain the values of (61), and one of the reasons is that
q ≈ 1.7 < R0 is compatible with the above remarks, but our models of Sections 2 and 3 show that there might
be some subtleties when heterogeneities are taken into account.

4.2. SEIR model with a single group

We start by considering the standard SEIR model (6)-(9) or its variant (25)-(28), where q is the factor of
reduction of social interactions. The basic reproduction ratio in the second system is R(1)

0 (q) = R0/q, which
allows us to reduce both problems to (6)-(9) with various values of the basic reproduction ratio depending on
the q factor. Here we choose the initial data according to (61) and the set of parameters (62). See Fig. 1 for
the epidemic curves, and Fig. 2 for the epidemic size.
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R(1)
0 = 1.37

Figure 1. The peak of the outbreak in the SEIR model. The time t is counted in days. The
vertical axis represents the fraction of the population. The basic reproduction ratio is either
R0 = 2.33 (left) or 1.37 (right) corresponding to a reduction of social interactions by a factor
q = 1.7 as in [5]. This illustrates the flattening of the curves.
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Figure 2. The epidemic size ζ as a function of the basic reproduction ratio R0 in the simplest
SEIR model corresponding to (6)-(9) exhibits a clear phase transition at R0 = 1 (thick curve).
The other curves represent r(t) taken for t = 30, 60, 90, for which equilibrium is not yet
achieved. In practice, varying R0 is achieved by acting on the q factor in (25)-(28).

4.3. SEIR model with two groups having different factors of reduction of social interactions

One of the most disturbing results in [5] is that fitting the data of the cumulated number of cases by
model (25)-(28) shows that q ≈ 1.7, which is far below R0 = 2.33 and suggest that lockdown is inefficient for
controlling the outbreak. However, we have seen that there is another possible model, as it is illustrated by
Fig. 3, with two groups. From the figure, it is clearly impossible to distinguish between the two scenarios at the
early stage of the outbreak.

2 4 6 8 10 12 14

-9.0

-8.5

-8.0

-7.5

t

log(e + i + r)

One group

Two groups

Figure 3. Plot of t 7→ e(t) + i(t) + r(t) for a solution of (25)-(28) with q = 1.7 (black dotted
line) versus a plot of t 7→ e(t) + i(t) + r(t) for a solution of (36) in logarithmic scale with
p = 0.02, q1 = 2.35, and q2 = 0.117 (brown). In both cases the basic reproduction ratio is 1.37.

With two groups arises the question of choosing the initial data. As a crude and simplifying assumption,
we make the choice to consider that before lockdown there was a single population and that the two categories
of the population had the same exposure to the disease. We can then use (61) as initial condition and take
s1(0) = (1 − p) s(0) and s2(0) = p s(0). With this choice, we recover the results of (25)-(28) if q1 = q2 and
s = s1 + s2. In order to fix ideas, we also make the arbitrary choice of choosing q1 = 2.35 so that the epidemic
disease would extinguish by itself after affecting 0.81% of the population if q2 = q1. We can illustrate the role of
the two parameters p and q2 by showing that they completely change the picture and bring us back to a regime
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with an epidemic size corresponding to some inefficient lockdown, however with lower epidemic peak and size:
see Fig. 4, and Fig. 5 for the epidemic size.
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Figure 4. Model with a single group (left) and q = 1.7 corresponding to a basic reproduction
ratio of 1.37, and two groups (right) with q1 = 2.35, q2 = 0.117, and p = 0.02 as in Fig. 3, with
same basic reproduction ratio. Note that the figure on the left is the same as in Fig. 1 (right),
on a different scale. The straight dotted line is the level p. In the case with two groups, note
that almost all individuals of the second group get infected during the propagation of the
disease.
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Figure 5. The epidemic size in a population with one group (dotted curve, same as in Fig. 2)
or two groups (plain, thick curve) with q1 = 2.4 > R0 = 2.33 and p = 0.02 as a function of the
basic reproduction ratio (obtained by varying q in the first case and q2 in the second case). The
other lines correspond to simulations of r(t) for t = 30, 60, 90 in the model with two groups.
With two groups, we recover a phase transition as in Fig. 2, corresponding to q2 ≈ 0.96.

5. Discussion

In the SEIR model with a basic reproduction ratio R0 > 1, the stable equilibrium does not depends much
on the initial data: it is almost entirely determined by R0. The goal of lockdown is to decrease R0 by dividing
it by a reduction factor for social interactions, q. With R0/q < 1, the disease is under control. With R0/q > 1,
but close to 1, the epidemic disease spreads, the final state depends little on the initial data, but the curve
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is flattened: qualitatively, this is the scenario that one can observe in the Covid-19 outbreak in France under
lockdown.

Measuring the q factor is difficult. The aim of this article is to show that the crucial information cannot be
reduced to the knowledge of an average factor q: if the population is divided into two groups, with a group for
which q > R0 (the majority) and another group (the minority) that keeps a small q factor, the disease may
continue to spread. If the q factor of the majority is larger than R0 but close to R0, so that 1 − R0/q > 0
is small, the impact of the minority becomes extremely important as it eventually triggers the nonlinearity.
However, the equilibrium asymptotic state in a two-group model is not the same as when considering a single
group with an averaged basic reproduction ratio. The dynamics of the outbreak, for instance the height of the
epidemic peak, is also changed. A two-group model is of course extremely simplistic, but shows the importance
of understanding the distribution of the q factors in a population.

Our observations are not limited to a population divided into two groups. In our model of heterogeneous social
interactions, with a whole distribution of q factors, we have shown that an average of q is not relevant. While the
basic reproduction ratio behaves as a plain average across the homogeneous q categories, neither the peak nor
the total epidemic size do the same. In particular the presence of heterogeneity is beneficial for both the peak
and total epidemic size. Or, put it otherwise, a model with only one group and fitting the observed data in the
initial phase of the outbreak will be more pessimistic concerning the epidemic outcomes than a heterogeneous
model; this is even more true after lockdown when social distancing measures have been enforced, the lockdown
being by its nature a creator of heterogeneity. In terms of public health, this also underlines the importance of
targeting prevention measures on individuals with a high level of social interactions.
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