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Abstract 

 

During a full magnetization cycle and under a collinearity situation, the magnetic losses in a 

ferromagnetic are observable by plotting the average magnetic flux density or magnetization as a 

function of the tangent magnetic excitation. This highly frequency dependent magnetic signature is 

called hysteresis cycle and its area is equal to the energy consumed during the magnetization cycle. 

The physical mechanisms behind this energy conversion are complex as they interfere and take place 

at different geometrical scales. Microscopic Eddy currents due to domain wall variations plays an 

important role, as well as the macroscopic Eddy currents due to the excitation field time variations and 

ruled by the magnetic field diffusion equation. From the literature on this topic, researchers have been 

proposing simulation models to reproduce and understand those complex observations. Even if all 

these losses contributions are physically interconnected, most of the simulation models available in 

the literature are based on the magnetic losses separation principle where each contribution is 

considered separately. Physically, the Weiss domains distribution and movements distort the diffusion 

process which becomes anomalous. In this article, the standard magnetic field diffusion equation is 

modified to take into account such anomaly. The first-order time derivation of the magnetic induction 

diffusion is replaced by a fractional order time derivation. This change offers flexibility in the simulation 

scheme as the fractional order can be considered as an additional degree of freedom. By adjusting 

precisely this order, very accurate simulation results can be obtained on a very broad frequency 

bandwidth for the prediction of the iron losses in a ferromagnetic material. 
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I - Introduction 

The magnetization processes in a ferromagnetic material are incredibly complex. Multiscale 

phenomena interfere, they depend highly on the surrounding conditions (temperature, pressure, 

geometry …). Under the influence of an external magnetic excitation, the stability of the magnetic 

domains distribution is disturbed and movements, fusions, nucleation, spread all over the magnetic 

sample [1]. The magnetic losses due to the magnetization cycles in a ferromagnetic material are highly 

frequency f dependent [2]-[5]. They manifest themselves while plotting the evolution of the material 

magnetic state (the magnetic induction field B) as a function of the external tangent magnetic 

excitation field H, the hysteresis cycle B(H). The area of the hysteresis cycle is equal to the magnetic 

losses, i.e. the energy consumed during a magnetization cycle. It is admitted that below a given 

frequency known as the quasi-static threshold, the hysteresis cycle shape remains unchanged. Under 

such conditions, it is also admitted that the magnetic losses are mainly due to the microscopic Eddy 

currents induced around the moving domain walls or directly inside them. For higher frequencies, the 

frequency dependence is clearly noticeable as the hysteresis shape is strongly modified. As f increases 

and under “maximum H” imposed conditions, the hysteresis area increases first, then decreases 

gradually. A full decline can even be envisaged under extreme frequency levels. Under “maximum B” 

imposed conditions, the hysteresis cycle area increases continuously at a slow rate (see fig. 1). Beyond 

the quasi-static threshold, domain walls and microscopic Eddy currents are still acting but they 

interfere with macroscopic Eddy currents which origin is linked to the external magnetic excitation 

field H variations. Ferromagnetic hysteresis, frequency dependence, Eddy currents interactions … have 

been studied for decades and a large number of simulation approaches can be found in the scientific 

literature [2]-[7]. The first experimental studies dealing with magnetic domains and wall distributions 

have been proposed by Bitter at the beginning of the 20th century [8]. A few years later, Weiss in [9][10] 

published his theoretical hypothesis leading towards the idea of magnetic domains in ferromagnetic 

materials. Right after, Pry & Bean in [11] confirmed the idea of magnetic domains, and established the 

first connection between their movements and some potential magnetic losses due to the 



magnetization cycle. But Steinmetz was the first one to propose an empirical loss power law (B and f 

dependent) to theoretically consider the magnetic losses in a ferromagnetic lamination [12]. Later 

again, Bertotti et al. in a large number of publications proposed the well-known losses separation 

principle which is still today probably the most standard approach used to consider magnetic losses 

inside an electromagnetic device [13][14]. According to Bertotti, the magnetic losses in a ferromagnetic 

lamination can be separated into three contributions: The frequency independent quasi-static 

hysteresis losses, the first order f 1 frequency dependent standard losses and the square root f 0.5 

frequency dependent excess losses. Fig. 1 below gives an illustration of the losses separation principle: 

 

Fig. 1 – Illustration of the magnetic separation losses principle as proposed by Bertotti. 

Even if this approach gives accurate results, it is still limited to given conditions and hypotheses, and it 

considers only harmonic excitation, making it inappropriate to time dependent simulations. The idea 

of separate contributions is furthermore contradictory with the physical nature of the magnetization 

processes where multiscale behavior interactions are dominant. Even rarely described, simultaneous 

resolutions are somehow possible, in [2] Raulet & al. proposed as an example a modified dynamic field 

diffusion equation. This strong formulation solves, in a simultaneous way, the diffusion equation and 

a dynamic material law. Space discretized finite differences are used to solve the diffusion equation. 

For every nodes, locals B and H are connected through the dynamic material law. This law is made out 

of a classic inverse quasi-static hysteresis model (Preisach [15][16], Jiles-Atherton [17][18] …) extended 

to the dynamical effect via a first-order time derivation of the local induction field. This approach is 

particularly accurate as the physical nature of the simulated processes is well respected, however for 



complex geometries, fine space discretization schemes are mandatories and this increases drastically 

the simulation times. Furthermore, the implicit nature of the material law creates convergence issues 

at saturation levels and under weak frequency conditions where dynamic effects are extremely limited.  

In this article, we propose an alternative solution to simulate simultaneously every magnetic loss 

contributions and to ensure convergence in every situation. Under a varying magnetic field excitation, 

macroscopic eddy currents generate through the cross section of the ferromagnetic sample. By 

increasing the velocity of this excitation, the eddy currents are rejected over the cross section 

peripheral areas according to the well-known electrical skin effect. These eddy currents behave as a 

magnetic shield preventing a complete magnetic field diffusion [19][20]. All these behaviors are 

analytically considered through the magnetic field diffusion equation derived from the Maxwell 

equations: 

2 .
dB

H
dt

    (1) 

In a ferromagnetic material, the magnetic diffusion and the related eddy currents interfere with the 

magnetic domain structure. These interactions distort the diffusion process and the classic diffusion 

equation is no more suitable to provide correct simulation results. This unusual diffusion process can 

be classified as anomalous and requires unfamiliar mathematic tools to be modeled. Such operators 

exist in the framework of fractional calculus, specifically fractional derivatives. By replacing the first-

order magnetic induction field time derivation by a fractional one as proposed in (Eq. 2), flexibility is 

provided in the simulation scheme and very accurate simulation results can be obtained.  

2 .
d B

H
dt



    (2) 

By adjusting the fractional order of this modified diffusion equation, the obtained equation is able to 

simulate precisely all the dynamic magnetic losses contributions.  

In the first part of this article, details will be provided as a reminder of the fractional derivative concept, 

then the modified diffusion equation and its resolution will be discussed. An experimental set-up will 

be described right after and comparisons simulations/measures used to validate our theory. 



II - Fractional derivative 

Fractional derivatives generalize the concept of the derivative to non-integer orders. In applied 

mathematics and mathematical analysis, the fractional derivative is a derivative of any arbitrary order, 

real or complex [21]. A very limited number of functions can be analytically fractional derived. 

Trigonometric functions are some of them. Different definitions of fractional derivatives are available. 

The Grünwald-Letnikov [22] and the Riemann-Liouville [23][26] definitions are probably the most 

popular even if both of them are particular cases of a general fractional-order operator namely. The 

first one represents the α order derivative, while the other represents the α folds integral. The class of 

functions described by the Riemann-Liouville definition is broader (the function must be integrable) 

than the one defined by Grünwald and Letnikov. However, in the case of functions from the Grünwald-

Letnikov class, both definitions are equivalent. It is important to keep in mind that fractional derivatives 

are rarely used in physics, they still generate lots of research efforts. According to Riemann and 

Liouville, the fractional derivative of a function f(t) is a convolution between f(t) and tαH(t)/Γ(1-α) 

where Γ(α) is the gamma function: 
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The additional time derivative present in the formula coincides with the occurrence of positive 

argument of the gamma function, Γ(.), leading towards its convergence to a finite value. From (Eq. 3), 

it is obvious that fractional derivatives include the memory of the previous states. Such property is 

fundamental while working with hysteretic behavior where current states depend strongly on the 

tested system or material history. From the spectral perspective, an interesting consequence of 

fractional derivatives is how the frequency spectrum f(ω) is multiplied by (jω)α instead of jω for a first-

order classic derivative. 

In this study, after multiple tests, the Grünwald-Letnikov definition (Eq. 4) has been preferred as the 

convergence rate and the simulation times were noticed to be better.  
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III - Anomalous diffusion equation 

 II.1 - Introduction 

Iron losses in a ferromagnetic material are related to both the macroscopic and the microscopic Eddy 

currents. The losses separation principle discretizes the losses contribution in 3 terms. In this article, 

the classical and the excess losses are jointly considered through a modified anomalous diffusion 

equation. In a ferromagnetic material, the domain wall distribution locally interferes with the magnetic 

field diffusion creating local interactions distorting the diffusion process which can be interpreted as 

an anomalous behavior. In physics, anomalous diffusion processes are frequent in complex media [27], 

anomalous diffusions are relatively commonly considered through fractional-order diffusion equation 

models [28][29]. Here, classically, the time derivative term is corresponding to a long-time heavy tail 

decay and the spatial derivative for diffusion nonlocality. Introducing fractional derivatives gives 

flexibility in the simulation process and it also leads to huge improvements in terms of accuracy 

[25][26][30]. In our particular case, the time derivative term is extended to a fractional order (Eq. 2).  

The Grünwald Letnikov fractional derivative definition is used to solve it: 
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B and H are connected through a sigmoid-type anhysteretic non-linear relation. This sigmoid function 

can be expressed from a Langevin-type function (Eq. 6):   
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Or from the Ising spin model (Eq. 7): 
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Bs is the saturation induction, a is an intrinsic material parameter strongly dependent on the density 

of the domain walls.  Bs and a are obtained by comparing simulation results to the experimental 

anhysteretic curve. Curve fitting toolbox from @Matlab software is used. Fig. 2 below, shows the 

comparison obtained after optimization for both the experimental and the simulated anhysteretic 

curve. It is worth mentioning that the experimental anhysteretic curve is an approximation as it has 

been reconstructed through average values from both increasing and decreasing branches of the 

experimental hysteresis cycle. 

 

Fig. 2 – Comparison simulation/measure for the anhysteretic nonlinear behavior, (f = 1 Hz, for the experimental conditions 
see part. V). 

 
II.2 - Resolution 

The modified diffusion equation (Eq. 6) is solved through an Epstein frame-type cross section 

lamination. The geometrical and magnetic assumptions are those of the single sheet tester: 

unidirectional and homogeneous surface excitation field H, collinearity between B and H. We also 

assume the electrical conductivity σ as homogeneous and constant. Considering the dimensions of the 

studied lamination (width >> thickness), a one-dimension (1-D) study in the thickness direction is 

carried out. The symmetry property of the single sheet tester allows to limit the study area to the half 

thickness of the lamination. The 1-D study limits the problem’s variable number, (Eq. 8) becomes: 
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Taking into account the simplicity of the study domain, i.e. half thickness of a magnetic lamination, the 

finite differences method is used to solve (Eq. 9).  

 

 

 

 

 

Fig. 3 – Simulation configuration. 

Once every nodes’ equation completed, a matrix system can be established: 

     .M X S  (9) 

Where: 
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Here Bi and Hi are respectively the i node magnetic induction and excitation. e is the space step 

separating two differences nodes. For every time step, the matrix system is solved. Once all the Bi 

known, the material magnetic induction is calculated from direct average calculus: 

1

n

iB
B

n



 (6) 

IV - Losses simulation 

The magnetic losses are calculated from the hysteresis cycle area. For the first simulation results (Fig. 

5 below), surface H sine waveforms are imposed, the maximum amplitude is set to 350 A/m and the 

frequencies tested range from 2 to 4096 Hz. 10 values of fractional orders are tested from 0.1 to 1. The 

magnetic losses are negligible under weak frequency, they increase up to a maximum value and 

decrease continuously until reaching a negligible level. It is worth noticing through these first 

simulation results that the lack of losses under low frequency levels is justified from the absence of the 

quasi-static contribution. The effect of the fractional derivative consideration in the fractional diffusion 

equation can be described as a stretching of the Losses vs frequency curve. By decreasing the 

fractional-order, we decrease the maximum value of the magnetic losses and shift the peak in the 

rightward direction. From a hysteresis cycle point of view, the effect of this fractional-order decrease 

can be observed by a slow but continuous lay down of the hysteresis cycle. 

 



 

 

Fig. 5 – Hysteresis losses vs frequency for different values of α (H imposed). 

According to the ferromagnetic material characterization standards [31]-[33], to correctly characterize 

the hysteresis signature of a ferromagnetic material, the experimental tests have to be performed 

under “B imposed” sinus-type waveform. The anomalous diffusion equation (Eq. 5) can only be solved 

under “H imposed” conditions opposed to the standard conditions described in [31]-[33]. To address 

this issue, we used a feedback control and a proportional/integral corrector. This solution is described 

in Fig. 6. The corrector parameters are set from experimental optimization. Working under “B 

imposed” conditions is imposed by the norm but it is also a far much simpler way to consider the quasi-

static contribution in our simulation. This quasi-static contribution can be provided from the usual 

quasi-static hysteresis models. The classic Preisach and Jiles-Atherton models in their inverse versions 

[34]-[36] can be by instance used with success for this contribution. To limit the size of this article, both 

these well-known models will not be described hereby but every details can be found in the literature 

[27][30]. After several tests, we selected the Jiles-Atherton model for its simplicity and its limited 

number of parameters.  

 



 

 

Fig. 6 – Hysteresis losses vs frequency for different values of α (H imposed). 

Fig. 7 shows the magnetic losses versus frequency simulation curves. The same 10 fractional orders 

are tested. 1.52T maximal amplitude is imposed. As illustrated in Fig.1, a continuous increasing is 

observed. The increasing rate depends on the fractional order.  

 

Fig. 7 – Hysteresis losses vs frequency for different values of α (B imposed). 

 

V - Experimental set-up 

In order to experimentally validate the theoretical concepts described in this article, comparisons 

simulations/measures have been performed. Magnetic lamination samples made out of a non-

oriented SiFe material have been considered. These sheets are 3% silicon iron non-oriented grain 

electrical alloy referenced 35C330 grade. The manufacturer characteristics are given in Tab. I below.  



 

 

Tab. 1 – 35C330 properties from the manufacturer. 

The tested specimens have Epstein frame dimensions: 280 mm long, 30 mm wide and a thickness of 

0.35 mm. The conductivity is 2.17 106 (S/m). Measurements have been performed using a single sheet 

tester according to the standard IEC 60404-3 [32]. Two coils of 200 turns each in series constitute the 

primary excitation. A double C-yoke, 300mm wide and made out of grain-oriented Fe-Si lamination 

leads the magnetic flow through the tested sample. A 100 turns surrounding sensor coil is used to 

measure the magnetic flux through the cross section of the magnetic sample. The schematic of the 

experimental set-up is shown in Fig. 8. Harmonic B imposed characterization is performed. Real time 

feedback control is ensured from a DEWESoftX2 data acquisition software associated with a SIRIUSif 

8×CAN data acquisition and generation card. These devices ensure the control of the magnetizing 

current and the acquisition of the measured signals. The surface tangent excitation field H is monitored 

by a tesla–meter (Hall probe sensor). To ensure the reproducibility of our experimental conditions, the 

Hall Effect sensor is positioned in the middle and in contact with the ferromagnetic lamination, as close 

as possible of the sensor coil. A numerical integration is used to obtain the induction field variations 

from the surrounding coil sensor voltage measurements. A numerical correction is performed to get 

rid of the undesired drift due to the analogic integration. Before each new measure, we ensure the 

reproducibility of the result by a complete demagnetization of the tested samples. The same 

experimental setup is used for this operation; the excitation winding is subjected to a slowly decreasing 

amplitude, 50 Hz triangular voltage signal. This process ensures a fully demagnetization under 

controlled rate of flux variation. The magnetization process lasts less than 2 minutes. 

 

 

 

 



 

Fig. 8 – Experimental set-up, single sheet tester. 

 

VI - Comparison simulations/measures and validation of the simulation approach 

Extensive experimental tests have been performed, the most significant being displayed hereafter. Fig. 

9 gives a first illustration of the most accurate results obtained from the resolution of the anomalous 

diffusion equation. Comparison simulations/measures are displayed for 1.52 T “B imposed” sinus 

waveform with frequencies varying from 1 Hz to 400 Hz. Tab. 2 below gives the simulation parameters: 

 

Tab. 2 – Simulation parameters (Eq. 10). 

The accuracy of the simulation approach is obvious. Best simulation results are obtained for a fractional 

order set to 0.91. This 0.91 fractional order can be physically interpreted as the best compromise 

between the first-order classical losses contribution and the square root order excess losses. The level 

of 1.52 T has been chosen as it ensures a complete magnetization state. Even if not displayed in this 

article, it is worth mentioning that results obtained from lower amplitude tests exhibit very similar 

accuracy. Fig. 10 shows a comparison between the simulation and the measure on the hysteresis losses 

vs frequency curve, α = 0.91 curve is the only one plotted here as it gives the best results. 5% error 



bars have been added in the measured “Losses(f)” curve as it corresponds to the uncertainty of our 

experimental setup. 

 

Fig. 9 – Comparisons simulations/measures for major hysteresis cycles under magnetic excitation of increasing frequencies 
(1 to 400 Hz). 

 

Fig. 10 – Comparison simulation/measure for the magnetic losses vs frequency curve. 

An interesting aspect of the space discretization finite differences approach is the access to the sub-

surfacic and the in-depth field distributions (Hi and Bi). In the last figure of this article, we show the 
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depth distribution of the magnetic state as a function of the frequency for different values of α. The 

obtained results confirm several intuitive conclusions, i.e. a full magnetization state for weak α values 

and even under very high frequency excitation. By opposition huge variations of the magnetic 

distribution vs frequency can be observed for high α fractional orders. When α = 1 the transition state 

between full magnetization and no magnetization stands in a relatively narrow frequency bandwidth, 

by decreasing alpha the frequency bandwidth enlarges as an inverse proportion of the α variations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 – Hysteresis losses vs frequency for different values of α (H imposed). 

 

VII - Conclusion 

Fractional diffusion equations have already been used with success to simulate anomalous diffusive 

behaviors. In this article, it is shown its effectiveness for the simulation of the magnetic field diffusion 

through a ferromagnetic material. The influence of the magnetic domains and their activities on the 

diffusion of the magnetic field is strong. They clearly disturb the process and the resulting diffusion can 

with no doubt be classified as anomalous. In this paper, we explain in details how the classic magnetic 

diffusion equation has been modified with fractional derivative operators and illustrate the strong 

0.175 mm 

(T) 



performances obtained with the new formulation thanks to accurate comparisons with experimental 

results. From the iron losses and hysteresis frequency dependence point of view, as the fractional 

order gives flexibility in the simulation scheme, by adjusting it, classical and excess losses can be 

simulated simultaneously and through a single term. Such approach can, in some way, be interpreted 

as a much more coherent reading of the physical situation where macroscopic and microscopic eddy 

currents are continuously interacting and can’t hardly be separated. In this article, we have limited the 

simulation effort to a 1D geometrical situation, future work should extend these results on geometry 

where 2D and even 3D simulations are mandatories.   
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