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Abstract
In this article, the minimum time optimal control problem of an aircraft in its climbing phase is studied.
First, a reduction of the initial dynamics into a three dimensional single-input system with a linear de-
pendence with respect to the control is performed. This reduced system is then studied using geometric
control techniques. In particular, the maximum principle leads to describe a multi-point boundary value
problem which is solved by indirect methods. These methods are the implementation of the maximum
principle and are initialized by direct methods. We check that the extremal solution of the boundary value
problem satisfies necessary and sufficient conditions of optimality. From this reference case and consider-
ing small-time optimal trajectories, we give a local classification with respect to the initial mass and final
velocity of BC-extremals for the climbing phase.

1. Introduction

An aircraft travels along several phases during a flight. These phases are the take-off, the climb, the cruise, the descent,
the approach and the landing. In this article, we are interested in the time-optimal control problem of an aircraft in
its climbing phase. This phase is determined by its own dynamics and governed by a system of ordinary differential
equations of dimension 4. The aircraft is represented by the altitude h, the true air speed v, the mass m and the air slope
γ. The performance model which describes the evolution of the thrust, the fuel flow and the drag coefficient is a Base
of Aircraft Data (BADA) model from Eurocontrol.19 The atmospheric data as the pressure, the temperature and the air
density are given by the International Standard Atmosphere (ISA) model. In our model, the lift coefficient is taken as
the control variable.

The climbing phase has already been studied by the NASA.2, 18 These works higlight a time scale separation
between the different state variables. In his work, Ardema2 classified the air slope γ as a very fast variable, the
true air speed v and the altitude h as fast variables and the mass m as a slow variable. This time scale separation
between the variables is tackled by a singular perturbation analysis. The method used here to deal with the singular
perturbation consists in turning the system of ordinary differential equations into a system of differential algebraic
equations by taking a quasi-steady approximation of the very fast variable γ. Numerically, this technique gives a very
good approximation of the original time-to climb problem10 and leads to the reduction of the dynamics into a single-
input dynamics of dimension 3 with a linear dependence with respect to the control. In this reduced problem, the new
control variable is the air slope γ. This reduced problem is then studied through the Pontryagin’s Maximum Principle20

(PMP) and second-order optimality conditions. The extremals solution of the maximum principle are classified using
the work of Bonnard and Kupka.7 From this work and thanks to small-time analysis a local classification of time-
optimal trajectories is sketched.

The paper is organized as follows. The physical model with the optimal control problem are defined in section
2. In section 3, we analyze the optimal control problem with the application of the maximum principle and we classify
the bang-bang extremals near the switching surface in the particular case of the dimension 3. Then, in section 4, a local
time-optimal classification is sketched thanks to numerical methods and small-time considerations.

2. Physical model and Mayer optimal control problem

In this section, we present the dynamics of the climbing phase. We restrict the dynamics to the vertical motion of the 
aircraft. The aircraft is subjected to four forces, the drag −→D, the lift −→L , the thrust −→T and its own weight −→P . We use a

DOI: 10.13009/EUCASS2017-463

On the minimum time optimal control problem of an aircraft
in its climbing phase

O. Cots?, P. Delpy‡, J. Gergaud? and D. Goubinat?†
? Toulouse Univ., INP-ENSEEIHT, IRIT & CNRS, 2 rue Camichel, F-31071 Toulouse, France
‡ Thales Avionics SA, 105 av du General Eisenhower, B.P. 1147, 31047 Toulouse Cedex, France

†damien.goubinat@enseeiht.fr



ḣ = v sin(γ), (1)

v̇ =
T
m
− 1

2
ρS v2

m
CD − g0 sin(γ), (2)

ṁ = −CsT, (3)

γ̇ =
1
2
ρS v
m

CL − g
v

cos(γ), (4)

where the state variables h, v, m and γ represent respectively the altitude, the velocity, the mass and the air slope. In
this model, the fuel flow Cs, the thrust T and the drag coefficient CD are given by the BAse of Aircraft Data19 model:

Cs(v) B Cs,1 1 +
v

Cs,2

)
, T (h) B Ct,1

(
1 − h

Ct,2
+ h2Ct,3

)
, CD B CD,0 + CD,1C2

L,

where the constants Cs,i, Ct,i and CD,i are specific to the aircraft. The International Standard Atmospheric model
provides the expression of the pressure P, the temperature Θ and the air density ρ:

P(h) B P0
Θ(h)
Θ0

)g0/(βR)

, Θ(h) B Θ0 − βh, ρ(h) B
P(h)

RΘ(h)
.

The remaining data are positive constants: g0 is the gravitational constant, S the wing area, R the specific constant of
air, β the thermical gradient and P0, Θ0 represent the pressure and temperature at the sea level.

Regarding the lift coefficient CL as the control variable looks like a natural idea in the considered dynamics.
However, according to the work of Ardema2 and Nguyen,18 the dynamics contains slow (the mass m), fast (the altitude
h and the velocity v) and very fast variables (the air slope γ). The time scale separation between the slow and the very
fast variable is handled by a singular perturbation analysis which consists here in taking the very fast variable as the
new control variable and replacing its corresponding dynamics by a quasi-steady approximation:

0 =
1
2
ρS v
m

CL − g
v
,

where we also consider that the air slope remains small (from 0 to γmax B 0.262 radians) so we set cos(γ) ≈ 1 and
sin(γ) ≈ γ. These assumptions lead to the following affine controlled dynamics:

ẋ(t) = f0(x(t)) + u(t) f1(x(t)),

where x B (h, v,m), u B γ,

f0(x) B
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m
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−CsT (h)
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and f1(x) B



v

−g0

0


.

A previous work10 has shown that this reduced system is a very good approximation of the original dynamics. Finally,
the time-optimal climbing problem is defined by:

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
u(·), t f

t f ,

ẋ(t) = f0(x(t)) + u(t) f1(x(t)), |u(t)| 6 umax, ∀t ∈ [0 , t f ] a.e., x(0) = x0,

b(x(t f )) = 0,

(Pt f )

where umax B γmax, x0 B (h0, v0,m0) and x f B (h f , v f ,m f ) are totally determined and where

b(x) B


h − h f

v − v f

m − m f

 .

nonlinear point mass representation and we consider that all the forces apply on the center of gravity of the aircraft. Let 
assume that the thrust, the drag and the velocity vector −→V are colinear. The application of the first dynamics principle, 
assuming that the earth system is galilean, provides the following four dimensional system:



3. Analysis of the time-optimal problem using the maximum principle

3.1 Necessary optimality conditions and singular trajectories

Let define the pseudo-Hamiltonian of the Mayer optimal control problem (Pt f )

H : Rn × (Rn)∗ × R→ R
(x, p, u) 7→ H(x, p, u) B 〈p , f0(x)〉 + u 〈p , f1(x)〉 .

If (ū(·), t̄ f ) is a solution of (Pt f ) with x̄(·) the associated trajectory, then, the maximum principle20 asserts that there
exists a real number p0 6 0 and an absolutely continuous function p̄(·) : [0 , t̄ f ] → (R)∗ such that (p̄(·), p0) , (0, 0).
Besides, for t ∈ [0 , t̄ f ] a.e., we have

˙̄x(t) =
∂H
∂p

(x̄(t), p̄(t), ū(t)), ˙̄p(t) = −∂H
∂x

(x̄(t), p̄(t), ū(t)), (5)

and the maximization condition holds:

H(x̄(t), p̄(t), ū(t)) = max
|w|6umax

H(x̄(t), p̄(t),w). (6)

For our time-optimal problem, the following boundary conditions must be fulfilled:

b(x̄(t̄ f )) = 0, (7)

H(x̄(t̄ f ), p̄(t̄ f ), ū(t̄ f )) = −p0. (8)

Definition 1. We call an extremal a triplet (x(·), p(·), u(·)) which satisfies equations (5) and (6) and such that H > 0
along it. It is called a BC-extremal if it satisfies also (7) and (8).

Remark 1. We only consider extremals in the normal case (p0 , 0), and by homogeneity we take p0 = −1. Besides,
for any extremal (x(·), p(·), u(·)), the adjoint vector p(·) never vanishes.

The singular extremals play an important role in this study. A complete study of these extremals can be found in
the work of Bonnard and Chyba5 but here, we focus our analysis on a single-input affine system in dimension 3. First,
we give a propostion which characterizes the singular extremals. We use this proposition as a definition of the singular
extremals.

Proposition 3.1. The control u(·) with its associated trajectory x(·) are singular on [0 ,T ] if and only if there exists a
non zero adjoint p(·) such that (x(·), p(·), u(·)) is solution a.e. on [0 ,T ] of the following equations:

ẋ(t) =
∂H
∂p

(x(t), p(t), u(t)),

ṗ(t) = −∂H
∂x

(x(t), p(t), u(t)),

0 =
∂H
∂u

(x(t), p(t), u(t)).

Definition 2. Let consider a smooth manifold M and a set of local coordinates x.

• Lie derivative. The Lie derivative of a smooth function f on M along the vector field F is defined by f 7→ F · f
with (F · f )(x) B d f (x)F(x) for all x in M. We also say that the smooth vector field F acts on a smooth function
f .

• Lie bracket. The Lie bracket of two smooth vector fields F0 and F1 defined on M is defined by F1 7→ [F0 , F1] B
F0 · F1 − F1 · F0, i.e. [F0 , F1](x) = dF0(x)F1(x) − dF1(x)F0(x).

• Poisson bracket. Denoting H0 and H1, the Hamiltonian lifts associated to F0 and F1, we defined by {H0 ,H1} B−→
H0 · H1 = H[F0,F1] the Poisson bracket between H0 and H1, where −→H B (∂pH,−∂xH). We note H01 the Poisson
bracket between H0 and H1 and H001 the Poisson bracket between H0 et H01.



In our problem, ∂uH = H1 = 0 has to be differentiated at least twice along an extremal to compute the control 
and one gets:

H1 = H01 = H001 + u H101 = 0.

A singular extremal along which H101 , 0 is called of minimal order and the corresponding control is given by

us(z) B − 
H
H

001

101

(
(
z
z
)
) 
,

where z B (x, p). Plugging such us into H defines a  t rue Hamiltonian, denoted h s, whose solutions initiating from 
H1 = H01 = 0 define the singular extremals of minimal order outside H 101 =  0 . We also have the following additional

is non
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saturating,
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the
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| s · | max 
singular extremal: ∂

∂u
∂

∂t2

∂H
∂u

= H101 > 0. (9)

Introducing the determinants,

D0(x) B det( f1(x), f01(x), f0(x)),
D001(x) B det( f1(x), f01(x), f001(x)),
D101(x) B det( f1(x), f01(x), f101(x)),

then the singular trajectories and control are given by the following proposition.

Proposition 3.2. The singular trajectories satisfy

ẋ(t) = f0(x(t)) − D001(x(t))
D101(x(t))

f1(x(t)),

outside
{
x ∈ R3

∣∣∣ D101(x) = 0
}
.

Proof. Along a singular extremal, H1(z(·)) ≡ 0, so differentiating twice this quantity with respect to the time leads to

〈p , f1(x)〉 = 〈p , f01(x)〉 = 〈p , f001(x) + u f101(x)〉 = 0

along the extremal. Since p(·) does not vanish, then we have det( f1(x), f01(x), f001(x) + u f101(x)) = 0 along the singular
extremal and by linearity of the determinant, we obtain the expected result. �

Remark 2. In this case, the singular control is given in feedback form and we note with the same notation:

us(x) B −D001(x)
D101(x)

. (10)

Proposition 3.3. Along any singular extremal such that D0 , 0 we have

H101 > 0 ⇐⇒ D0 D101 > 0.

Proof. Along any singular extremal (x(·), p(·), u(·)), if D0(x) , 0 then span({ f1(x), f01(x)}) is a plane of R3 which
separates this space into two half spaces and for which p is a normal vector (since 〈p , f1(x)〉 = 〈p , f01(x)〉 = 0 along
the singular extremal. Besides, since H(x, p, u) = H0(x, p) = 〈p , f0(x)〉 > 0 along the singular extremal, then p and
f0(x) are in the same half space. At the end, H101(x, p) = 〈p , f101(x)〉 ≥ 0 if and only if f101(x) and f0(x) are in the
same half space, whence the result. �

Corollary 3.4. The strict generalized Legendre-Clebsch condition (9) becomes D0 D101 > 0 along a singular arc.



3.2 Generic classification of the bang-bang extremal near the switching surface.

Along a singular extremal we have ∂uH ≡ 0. In our particular case of a single-input affine system this condi-
tion becomes H1(z(t)) = 0. Let define the sets Σ1 and Σs, such that Σ1 represents the switching surface, i.e. Σ1 B
{z B (x, p) ∈ Rn × (Rn)∗ | H1(z) = 0}, and where Σs B {z B (x, p) ∈ Rn × (Rn)∗ | H1(z) = H01(z) = 0} contains all the
singular extremals. We define the switching function Φ : t 7→ Φ(t) B H1(z(t)) and we note Φ+ (resp. Φ−) if the control
along the extremal is umax (resp. −umax). The first and second derivatives of Φ± are given by:

Φ̇±(t) = H01(z(t)),

Φ̈±(t) = H001(z(t)) ± umaxH101(z(t)).

Definition 3. An extremal is said bang-bang on [0 , t f ] if it is composed of a finite number of arcs of the form σ+ and
σ− where σ+ (resp. σ−) represents a bang arc for which u(·) ≡ umax (resp. −umax). In a similar way, σs represents a
singular trajectory and we denote by σ1σ2 an arc σ1 followed by an arc σ2.

Near the switching surface Σ1, the behavior of the extremals for a single-input affine system is detailled in the
work of Kupka.15 We have the following:

Ordinary point. Let consider z0 B (x0, p0) ∈ Σ1 \ Σs and t0 its associated time such that z+(t0) = z−(t0) = z0, where
z+(·) (resp. z−(·)) represents the extremal with u(·) ≡ umax (resp. u(·) ≡ −umax). According to the maximum principle,
near Σ1, the extremal is of the form σ−σ+ if Φ̇(t0) > 0 and σ+σ− if Φ̇(t0) < 0.

Fold point. Let consider now a point z0 ∈ Σs and assume that Σs is a smooth manifold of codimension two. Let
denote t0 the time associated to z0. At t0, the extremal has a contact of order at least two with Σ1. If the contact is
exactly of order two, i.e. Φ̈±(t0) , 0, then locally z0 is a fold point and three different behaviors can be encountered.

- Parabolic case: Φ̈+(t0) Φ̈−(t0) > 0. The singular extremal at the switching time is not admissible and every
extremal is of the form σ+σ−σ+ or σ−σ+σ− with at most two switchings.

- Hyperbolic case: Φ̈+(t0) > 0 and Φ̈−(t0) < 0. A connection with a singular extremal is possible and locally each
extremal is of the form σ±σsσ± (by convention each arc of the sequence can be empty).

- Elliptic case: Φ̈+(t0) < 0 and Φ̈−(t0) > 0. In this case, a connection with a singular extremal is not possible. The
elliptic trajectories are then bang-bang with no uniform bound on the number of switchings.

Let assume D0(x) , 0, then the family ( f0(x), f1(x), f01(x)) forms a basis of R3 and there exists (α, α1, α01) ∈ R3

and (β, β1, β01) ∈ R3 such that

f001(x) − umax f101(x) = α f0(x) + α1 f1(x) + α01 f01(x),
f001(x) + umax f101(x) = β f0(x) + β1 f1(x) + β01 f01(x).

By linearity of the determinant, we have

D001(x) − umax D101(x) = αD0(x),
D001(x) + umax D101(x) = βD0(x),

and since D0(x) , 0 then we can compute α and β along the trajectory. Besides, along any singular extremal, these
quantitites can be linked to the signs of Φ̈±(t):

Φ̈−(t) = 〈p(t) , f001(x(t)) − umax f101(x(t))〉 = α(t) H0(z(t)),

Φ̈+(t) = 〈p(t) , f001(x(t)) + umax f101(x(t))〉 = β(t) H0(z(t)),

with H0(z(t)) > 0. Denoting t0 the time when the extremal has a contact with the switching surface Σ1, the behavior of
the trajectory near z0 is given by the signs of α(t0) and β(t0). Indeed, the trajectory is

- Hyperbolic if α(t0) < 0 and β(t0) > 0,

- Elliptic if α(t0) > 0 and β(t0) < 0,

- Parabolic if α(t0) β(t0) > 0.



−→

3.3 Second-order optimality conditions

This section relies on the work of Bonnard and Kupka7 about second-order optimality conditions.

Definition 4 . Let z(·) be a reference singular solution o f h s  on [0 , t f ] and contained in Σ s. The variational equation

δż(t) = d
−→
h s(z(t)) · δz(t),

dH1(z(t)) · δz(t) = dH01(z(t)) · δz(t) = 0,

is called Jacobi equation. A Jacobi field J(·) B (δx(·), δp(·)) is a non-zero solution of the Jacobi equation. It is said
semi-vertical at time t if δx(t) ∈ R f1(x(t)). The time 0 ≤ t1 ≤ t f is said to be conjugate if there exists a Jacobi field J(·)
semi-vertical at t = 0, t = t1 and the points x0 = x(0) and x1 = x(t1) are said to be conjugate.

Assumption 3.5. Let z(·) = (x(·), p(·)) be a reference singular extremal curve on [0 , t f ] solution on Σs and we assume
the following:

- f0(x) and f1(x) are linearly independant along x(·). H101(z(·)) is not equal to zero along z(·) and x(·) is injective.

- The space K(t) B
{
adk f0 · f1(x(t))

∣∣∣ k = 0, . . . , n − 2
}

has codimension one, where ad0 f0 · f1(x(t)) = f1(x(t)) and
ad f0 · f1(x(t)) = f01(x(t)).

- hs(z(t)) = 〈p(t) , f0(x(t)) + us(z(t)) f1(x(t))〉 is not equal to zero along z(·).
Then we have the following theorem in the case of a single-input affine system.

Theorem 3.6. Let consider tc the first conjugate time. Under assumptions 3.5, the reference singular trajectory x(·) is
C0-locally time minimizing in the hyperbolic case and time maximizing in the elliptic case on [0 , tc).

Remark 3. Moreover, the trajectory x(·) is not time optimal in L∞-topology on [0 , t], for every t > tc.

From now on, the sufficient conditions of optimality come down to the search of the first conjugate time tc. In
the case of an affine system in dimension 3, the singular control is independent of the adjoint variable p and we can
give the following characterization of a Jacobi field J(·) along the state variable x(·), assuming that x(·) is a singular
trajectory contained in the set

{
x ∈ R3

∣∣∣ D101(x) , 0
}

on [0 , t f ].

Proposition 3.7. A Jacobi field J(·) along x(·) for a three dimensional system is a non trivial solution of the variational
equation

δẋ(t) =
∂

∂x
( f0 + us f1)(x(t)) · δx(t),

δx(0) ∈ R f1(x(0)).

Then the first conjugate time is the first time tc > 0 such that

det(J(tc), f0(x(tc)), f1(x(tc))) = 0,

since by assumption f0 and f1 are linearly independent and J is colinear at f1 only at the times 0 and tc.

4. Application to a medium-haul aircraft

4.1 Solving (Pt f ) with direct and indirect numerical methods

4.1.1 Numerical methods

For small-time trajectories, near the switching surface the parabolic, elliptic and hyperbolic classification is valid.
On the other hand, “long”-time optimal trajectories, i.e. solution of (Pt f ), must minimize the travel time on each
sub-interval no matter what the length of the interval is. From this fact, we consider that the time-optimal climbing
trajectory is composed of a concatenation of hyperbolic, parabolic or elliptic arcs. Two types of numerical methods are
used in order to solve the problem (Pt f ): a direct method to determine the optimal structure and to get a good initial
guess (see figure 1) in order to make the indirect method converge (see figure 3) which gives a refined solution and
make possible a fine analysis of the problem (see figure 8).

Firstly, we use the so-called direct approach wich consists in transforming the infinite dimensional optimal
control problem (Pt f ) into a finite dimensional optimization problem (NLP). This is done by a discretization in time



applied to the state and control variables, as well as the dynamics equation. These methods are usually less precise
than indirect methods based on Pontryagin’s Maximum Principle, but more robust with respect to the initialization.
Also, they are more straightforward to apply, hence their wide use in industrial applications. We refer the reader to
for instance the books of Betts3 and Gerdts11 for more details on direct transcription methods and NLP algorithms.
About the direct methods, all the tests were run using the Bocop4 software and the discretized nonlinear optimization
problems were solved by the well-known Ipopt21 solver.

When the structure of the solution is known, we use indirect methods to refine the solution. More precisely, we
use multiple shooting techniques which consists in solving a Multi-Point Boundary Value Problem (MPBVP) obtained
from the application of the maximum principle. The MPBVP is then transformed into a system of nonlinear equations
which is solved by a Newton-like algorithm. See the book of Bulirsch and Stoer8 for details about indirect methods.
About the indirect methods, all the tests were run using the HamPath9 software and the system of nonlinear equations
were solved by the hybrj17 routine.

4.1.2 Numerical results

In this paper, the direct methods are used to determine the structure of the trajectory and to initialize the indirect
methods. The figure 1 shows the resulting control for a middle-haul aircraft. This solution is computed using a gauss
scheme of order 4 with 750 nodes of discretization. The final time is t f ≈ 654 s and the data which describes the aircraft
and the atmosphere are presented in table 1. This aircraft starts from x0 = (3480, 128.6, 69000) up to the beginning of
the cruise defined by x f = (9144, 191, 68100).

Data Value Unit

S 1.226 × 102 m2

CD,0 2.42 × 10−2

CD,1 4.690 × 10−2

CT,1 1.410 × 105 N
CT,2 4.892 × 104 ft
CT,3 6.500 × 10−11 ft−2

CS ,1 6.333 × 10−1 kg.min−1.kN−1

CS ,2 8.590 × 10−2 kts

Data Values Unit

Θ0 2.882 × 102 K
β 6.500 × 10−3 K.m−1

P0 1.013 × 106 Pa
g0 9.810 N.m−1

R 2.880 × 102 J.kg−1.K−1

γair 1.4
κ B γair/(γair − 1) 2.857 × 10−1

Table 1: Constant data of a middle-haul aircraft and constant data of the atmospheric model during the climbing phase.

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.2

0.1
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t/t f

u

umax
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Figure 1: Control law for a time-optimal trajectory using direct methods obtained with a gauss discretization scheme
of order 4 using 750 nodes. The control seems to follow a structure of the form σ−σsσ+.

The resulting control seems to be of the form σ−σsσ+, this structure reminds the hyperbolic case where the
structure of the control is given by σ±σsσ±. Let check this structure with the indirect methods. The HamPath soft-
ware computes from the maximized Hamiltonian the corresponding adjoint system thanks to automatic differentiation.



Hence, we need to introduce the following true Hamiltonians

h±(x, p) B H0(x, p) ± umax H1(x, p),
hs(x, p) B H0(x, p) + us(x) H1(x, p),

with us given by eq. (10) and which composed the maximized Hamiltonian

H(x(t), p(t)) B



h−(x(t), p(t)), when 0 6 t < t1,

hs(x(t), p(t)), when t1 6 t < t2,

h+(x(t), p(t)), when t2 6 t 6 t f ,

where t1 and t2 represent the switching times.

Remark 4. All the needed expressions of determinants and vector fields, for instance D001(x), D101(x) or f01(x), may
be found in the work of Ref.12

Finally, we define the shooting function S : R5n+3 → R5n+3

S (p0, t1, t2, t f , z1, z2) B



x f − πx(z(t f , z2, t2))
H(z(t f , z2, t2)) + p0

H1(z1)
H01(z1)

z2 − z(t2, z1, t1)
z1 − z(t1, z0, 0)



(11)

where z0 B (x0, p0), πx(x, p) = x, z(t j, zi, ti) is the solution1 at t j of the initial value problem ż(t) =
−→H(z(t)), z(ti) = zi.

The two first conditions represent the boundary conditions of the climbing problem. The third and the fourth conditions
are related to the structure of the control and the two final conditions are matching conditions. The shooting method
consists in finding a zero of S (y) with y B (p0, t1, t2, t f , z1, z2). To any zero of S is associated a unique BC-extremal
of (Pt f ). The HamPath software is used to solve the shooting equation S (y) = 0 and we find y∗ such that ||S (y∗)|| ≈
1.07 × 10−10. The solution y∗ is composed of p∗0 ≈ (4.09 × 10−2, 6.00 × 10−1,−1.92 × 10−1), t∗1 ≈ 19 s, t∗2 ≈ 642 s and
t∗f ≈ 656 s. The values of z∗1 and z∗2 are omitted as they can be computed by numerical integration. Figures 2 and 3
depict the evolution of the altitude, the velocity and the air slope (which is the control in our dynamics) associated to
the σ−σsσ+ structure.
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Figure 2: Evolution of the altitude h and of the true air speed v associated to the σ−σsσ+ structure. At the boundaries
of the trajectory, we observe that h and v have opposite variation, for example when the altitude is decreasing the true
air speed is increasing. This behavior looks like an energy sharing strategy where, at the beginning of the trajectory,
potential energy is transformed into kinetics energy whereas the opposite exchange happens at the end of the trajectory.

1Numerically, z(t j, zi, ti) is computed with a high-order Runge-Kutta scheme with adaptative step-size.
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Figure 3: Evolution of the control law associated to the σ−σsσ+ structure.

In a second time, we check a posteriori that the trajectory is hyperbolic by computing the values of α(·)
and β(·), defined on section 3.2, along the singular arc. The validity of the generalized Lendendre-Clebsch condi-
tion, see corollary 3.4, along the trajectory is also checked. At the same time, we compute the quantity Λ(·) B
det(J(·), f0(x(·)), f1(x(·))) in order to check the absence or presence of a conjugate time on [t∗1 , t

∗
2]. The results of these

computations are presented in figures 4 and 5. The values of α(·) and β(·) on [t∗1 , t
∗
2] are consistent with the hyperbolic

case. In addition, the hyperbolic trajectory satisfy the sufficient conditions of optimality since Λ(t) , 0 on (t∗1 , t
∗
2]. In

conclusion, this hyperbolic trajectory is locally a C0-optimal trajectory.
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Figure 4: Evolution of the quantities α(·), β(·) and D0(x(·)) D101(x(·)) along the singular arc. The generalized Legendre-
Clebsch condition from corollary 3.4 is satisfied all along the singular arc as D0(x(·) D101(x(·)) > 0. The signs of α(·)
and β(·) along the singular arc confirm that we have an hyperbolic trajectory.

4.2 Small-time analysis at the beginning of the trajectory

From now on, we know that our hyperbolic trajectory is locally time-optimal. In this section and the following,
we intend to study the deformation of this trajectory with respect to some parameters, focusing our analysis on the
hyperbolic case. We aim to study the influence of the initial and final conditions by fixing the initial speed, the initial
altitude and the final altitude but making the initial mass m0 and the final velocity v f varying in predefined ranges
(m0 ∈ [48 000 , 72 000] kg and v f ∈ [190 , 250] m.s−1) which are admissible values for the chosen aircraft. Let
emphasize that the final mass m f is free. The goal now is to give the optimal structure depending on the two parameters
m0 and v f . More precisely, we want to determine for a given couple (m0, v f ), the type of the bang arcs at the beginning
and the end of the trajectory. We present the analysis made at the beginning of the trajectory. In a similar way, we can
study the end of the trajectory.
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Figure 5: Evolution of Λ(·) = det( f0(x(·)), f1(x(·)), J(·)) on [t∗1 , t
∗
2] where J(·) represents the Jacobi field. As Λ(t) < 0

for all t in (t∗1 , t
∗
2], we observe the absence of conjugate points on [t∗1 , t

∗
2] and then the singular arc in σ−σsσ+ is locally

time-optimal.

In the aircraft dynamics, the mass m is considered as a slow variable. In other words, the mass m evolves much
more slowly than the altitude and the velocity. Let consider small-time variation, the evolution of the mass can be
omitted and then the dynamics can be reduced to a planar dynamics, given by

˙̄x(t) = f̄0(x̄(t)) + u f̄1(x̄(t)),

where x̄ B (h, v) and

f̄0(x̄) B



0

T (h)
m0
− 1

2
ρ(h)S v2

m0
CD,0 − 2

m0g2
0

ρ(h)S v2


, f̄1(x̄) B


v

−g0

 .

Let consider the beginning of the trajectory and let x̄0 B (h0, v0) denote the initial point of this dynamics associated
to the initial constant mass m0. The singular set in dimension 2, which contains the singular extremals, is given
by S B {x̄ ∈ R2 | det( f̄1(x̄), f̄01(x̄)) = 0}. It depends on m0 and locally if 0 is a regular value of the application
x̄ 7→ Ψ(x̄) B det( f̄1(x̄), f̄01(x̄)), then each connected component of Ψ = 0 is diffeomorphic to the circle or the real line.
Let assume there exists only one connected component diffeomorphic to the real line and let consider a point x̄0 < S .
Then, two cases may occur: either x̄0 is below the line which represents S or it is above.

The figure 6 depicts the behavior of the negative bang and positive bang trajectories from x̄0. Since the full
trajectory is of the form σ±σsσ±, the purpose of the bang arcs is to connect the singular arc. Then if x̄0 is below S ,
according to figure 6, an arc σ− must begin the trajectory. On the other hand if x̄0 is above S , an arc σ+ must begin
the trajectory. For a given mass m0 and a given altitude h0, we denote by vS

0 the associated velocity such that the point
(h0, vS

0 ) ∈ S . The figure 7 shows the evolution of vS
0 for m0 ∈ [48 000 , 72 000]. In this figure we compare vS

0 and v0.
Since v0 is constantly equal to 128.6 m.s−1 we observe that vS

0 > v0 for every m0 in [48 000 , 72 000]. As a consequence,
in any case the point x̄0 = (h0, v0) is below the line which represents the singular set S and then we must start with a
negative bang. The same argumentation may be used at the end of the trajectory to determine the nature of the final
bang. In our situation, we can have both cases σ−σsσ± depending on the value of v f .

4.3 Local classification of the optimal structure with respect to m̄0 and v f

Locally, we search BC-extremals of the form σ−σsσ±. Let consider the separating trajectory σ−σs. We note againH
the maximized Hamiltonian associated to this structure, and it is defined by

H(z(t)) B


h−(z(t)), when 0 6 t < t1,

hs(z(t)), when t1 6 t 6 t f .
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Figure 6: Local representation of the negative bang (the green curve) and the positive bang (the red curve) trajectories
from x̄0. On the left (resp. right), x̄0 is located below (resp. above) the blue line which represents locally the singular
set S . On the left figure, the only way to connect the singular trajectory σs, which is time-optimal, is to follow an arc
σ− whereas on the right figure the only way to connect σs is to follow an arc σ+.
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Figure 7: Representation of v0 and vS
0 in relation with the initial mass variation. The quantity vS

0 is computed such that
x̂0 = (h0, vS

0 ) ∈ S with h0 fixed and m0 ∈ [48 000 , 72 000]. The sign of the quantity vS
0 − v0 indicates if the initial point

x̄0 is above or below the singular set S . We observe that vS
0 − v0 > 0 for all m0 and then x̄0 is below the singular set S

for every m0 ∈ [48 000 , 72 000].

The shooting function denoted S −s associated to this trajectory is defined by

S −s(p0, t1, t f , z1) B



h f − h(t f ; t1, z1)
H(z(t f ; t1, z1)) + p0

pm(t f ; t1, z1)
H1(z1)
H01(z1)

z(t1; 0, z0) − z1



where z0 B (x0, p0), z(t j; ti, zi) is the solution at t j of the initial value problem ż(t) =
−→H(t), z(ti) = zi and pm is the

adjoint variable associated to the mass m. The HamPath package is used to solve the shooting equation S −s(y) = 0,
y B (p0, t1, t f , z1), and we find y∗ B (p∗0, t

∗
1, t
∗
f , z
∗
1) such that ||S (y∗)|| ≈ 6.1 × 10−9. The solution is composed of

p∗0 ≈ (6.08 × 10−2, 1.12,−2.72 × 10−2), t∗1 ≈ 78.7 s and t∗f ≈ 889 s. The value z∗1 is omitted since it can be computed by
numerical integration. The HamPath package may also be used to realize a differential continuation on a parameter. See
the book of Allgower and Georg1 for details about differential path-following methods and we refer to the presentation
of the software9 for details about the implementation of these methods in the HamPath code. We use this functionality
on the initial mass from m0 = 72 000 kg up to m0 = 48 000 kg. The figure 8 depicts locally the structure of the
trajectories in relation with the initial mass and the final velocity. The blue curve, computed by numerical continuation,
represents all the trajectories which end on the singular set. As the final altitude h f is fixed, the final velocity v f of each



of these trajectories is adjusted to be on this set. We note v f ,m0 the final velocity associated to the initial mass m 0 for
which the associated trajectory ends on the singular set. This particular trajectory is the boundary between σ−σsσ− 
and σ−σsσ+ trajectories. The classification given in figure 8 shows that if v f  is below v f,m0 , the final bang is a positive 
one and if v f is above v f ,m0 it is a negative one.

Remark 5. It has not been proven that this classification gives time-optimal trajectories but we may emphasize that the 
reference trajectory, from section 4.1.2, satisfies necessary and sufficient conditions of local optimality and we mention 
that this classification has been obtained thanks to an analysis of small-time optimal trajectories.
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Figure 8: Local classification of the optimal structure with respect to the initial mass and the final velocity of the
climbing phase. Note that this final velocity is also the cruise velocity.

5. Conclusion

In this paper, the time-optimal control problem of an aircraft in its climbing phase is modeled as a Mayer problem.
Firstly, the four dimensional dynamics is reduced into a three dimensional dynamics to deal with the singular pertur-
bation phenomenon. This reduced system is a single-input control system where the control appears linearly. The
behavior of bang-bang extremals near the switching surface with the characterization of the singular trajectories are
studied in the particular case of the dimension 3 throughout geometric analysis. Combining these results with nu-
merical methods and small-time considerations leads to sketch a local classification of fairly time-optimal climbing
trajectories depending on the initial mass and the cruise speed.

This study does not take into account states constraints which should be fulfilled during the climbing phase. For
instance, the Computed Air Speed (CAS) and the number of mach (M) are limited by the Operation Maximal Speed
(VMO) and by the Maximal Mach Operation (MMO). The figure 9 shows the evolution of the two velocity constraints
c1(x) B CAS(x)−VMO and c2(x) B M(x)−MMO for a trajectory of the form σ−σsσ+ with m0 = 69 000 kg and v f =

191 m.s−1. In this example none of these constraints are saturated but a more exhaustic study is necessary to understand
the behavior of the trajectories in presence of state constraints. A methodology closed to the unconstrained case can
be applied except that the geometric study should be based on a maximum principle with state constraints which is
presented, for example, in the work of Jacobson13 et al. and Maurer.16 Besides, the small-time considerations could
also be used and could give some interesting results on the structure of time-optimal trajectory with state constraints as
it was done for the space shuttle reentry problem in the work of Bonnard et al.6
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