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Abstract: NoSQL document stores offer support to store documents described using various structures. Hence, the
user has to formulate queries using the possible representations of the desired information from different
schemas. In this paper, we propose a novel approach that enables querying operators over a collection of
documents with structural heterogeneity. Our work introduces an automatic query rewriting mechanism based
on combinations of elementary operators: project, restrict and aggregate. We generate a custom dictionary that
tracks all representations for attributes used in the documents. Finally, we discuss the results of our approach
with a series of experiments.

1 INTRODUCTION

Document-oriented stores are becoming very popular
because of their simple and efficient ways to manage
large semi-structured data sets. Each record, usually
formatted in JSON, is stored inside a document in
schema-less fashion. So, a collection groups a he-
terogeneous set of documents for which no common
schema is required. Although this flexibility is very
power-full at loading time, the resulting heterogeneity
presents a serious issue during querying phase. In-
deed, in order to obtain relevant results, users have
to be aware of all existing schemas while formulating
their queries and have to combines all the schemas
in complex queries. Three classes of heterogeneity
can be considered in the context of document stores.
(Shvaiko and Euzenat, 2005)

• Structural heterogeneity points to the different
structures that exist in documents. The main issue
is the existence of several paths to access the same
attribute; e.g., the position of an attribute denoted
“name” may not the same in two documents (nes-
ted, flat).

• Syntactic heterogeneity exists when different at-
tributes refer to the same concept; e.g., the attri-
bute “name” may be denoted “name,” “names”
or “first name” in different documents.

• Semantic heterogeneity exists when the same at-
tribute refers to different concepts; e.g., the attri-

bute “name” may designate a “person name”, an
“animal name” or a “disease name” depending
on documents.

In this paper, we focus on the structural heteroge-
neity issue in document stores.

Example. We use the example collection of figure 1
composed of five documents describing authors and
some of their publications. Documents are descri-
bed using JavaScript Object Notation (Bourhis et al.,
2017).

Let us suppose we are interested in collecting infor-
mation related to “name of authors” and their publi-
cations. The query will be formulated over the attribu-
tes “name” and “title”. Any user may expect results
for the five authors of the example (except perhaps for
“paul verlaine”) and possibly five titles. If we look
at figure 1, the attribute “name” does not present any
problem since it is always in the same position in the
five documents. However, the attribute “title” may
cause some issues because of its various structural po-
sitions within the documents. To reach the attribute
“title” various paths exist in the different document
schemas: “title,” “book.title,” “artwork.1.title” and
“artwork.2.title” (here “.1.” and “.2.” stand for the
indexes in the array “artwork”).

When using MongoDB data store system, we can
formulate the query db.C.find( {}, {“name” : 1,
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[ { name:"victor hugo",
title:"les miserables",
year:1862

},
{ name:"honore de balzac",

book:{title:"le pere Goriot",
year:1835

}
},
{ name:"paul verlaine",

birthyear:1844
},
{ name:"charles baudelaire",

artwork:[
{title:"les fleurs du mal",
year:1857

},
{title:"le spleen de Paris",
year:1855

}
]

},
{ name:"pierre de ronsard",

title:"les amours",
year:1557

}
]

Figure 1: Collection “C” of five example documents.

“title” : 1}). Executing such query will return the
following incomplete set of documents because of the
structural heterogeneity of the attribute “title”:
[ { name:"victor hugo",

title:"les miserables" },
{ name:"honore de balzac" },
{ name:"paul verlaine" },
{ name:"charles baudelaire" },
{ name:"pierre de ronsard",

title:"les amours" } ]

If we formulate an alternative query that matches
with another path of “title”, db.C.find( {}, {“name”
: 1, “book.title” : 1}), the following incomplete set
of documents is returned:
[ { name:"victor hugo" },
{ name:"honore de balzac",

book:{title:"le pere Goriot"} }
{ name:"paul verlaine" },
{ name:"charles baudelaire" },
{ name:"pierre de ronsard" } ]

We can notice that each query returns a part of the
expected result (author/title pairs) meanwhile retur-
ning redundant incomplete results. Moreover, wit-
hout any other query, these incomplete two queries
results can lead the user to interpret that “charles bau-
delaire” has no publication in the collection; and that
is not true.

In the literature, two approaches are developed to
deal with structural heterogeneity. The data integra-
tion approach consists in transforming data according
to a unified schema to form a homogeneous collection
(Tahara et al., 2014). The automated schema disco-
very approach provides the various schemas at users
(Wang et al., 2015). The data integration may be a
time-consuming task because it implies to define the
mapping for every variation of schemas, while the au-
tomated schema discovery requires that users handle
many structures and manage heterogeneity by them-
selves.

Our approach is designed to resolve these issues.
It lets the user query a collection using one schema
of some documents, and our system transparently re-
writes the user query to take into account all existing
schemas. We develop a system that we call EasyQ
(Easy Query for NoSQL databases), which consists
of a schema-independent querying on heterogeneous
documents describing a given entity in document-
oriented stores. We opt for a solution based on virtual
data integration in which we introduce a data dictio-
nary that runs in transparent way and hides the com-
plexity of building the expected queries (Yang et al.,
2015).

This paper is organized as follows. The second
section reviews the most relevant works that deal with
querying heterogeneous documents. Section 3 ex-
plains the proposed approach and proposes the for-
malization of the approach. Section 4 presents our
first experiments and the time/size cost of our appro-
ach regarding the size of collections and the variety of
schemas.

2 RELATED WORK

The problem of querying heterogeneous data is an
active research domain studied in several contexts
such as data-lake (Hai et al., 2016), federated database
(Sheth and Larson, 1990), data integration, schema
matching (Rahm and Bernstein, 2001). We classify
the state-of-the-art works into four main categories re-
garding the solution given to handle the heterogeneity
problems.

Schema Integration. The schema integration pro-
cess is performed as an intermediary step to facilitate
the query execution. In their survey paper, (Rahm and
Bernstein, 2001) presented the state-of-the-art techni-
ques used to automate the schema integration process.
Matching techniques can cover schemas or even in-
stances. Traditionally, lexical matches are used to



query side. Query rewriting (Papakonstantinou and
Vassalos, 1999) is a strategy to rewrite an input query
into several derivations to overcome the heteroge-
neity. The majority of works are designed in the con-
text of the relational database where heterogeneity is
usually restricted to the lexical level only. Regarding
the hierarchical nature of semi-structured data (XML,
JSON documents), the problem of identifying simi-
lar attributes is insufficient to resolve the problem of
querying documents with structural heterogeneity. To
this end, the keyword querying has been adopted in
the context of XML (Lin et al., 2017). The process
of answering a keyword query on XML data starts by
identifying the existence of the keywords within the
documents without the need to know the underlying
schemas. The problem is that the results do not consi-
der the heterogeneity in term of attributes but assume
that if the keyword is found so document is adequate
and has to be returned to the user. Other alternati-
ves to find different navigational paths leading to the
same attribute is supported by (Clark et al., 1999),
(Boag et al., 2002). Only the structural heteroge-
neity is partially addressed. There is always a need
to know the underlying document structures and to
learn a complex query language. In addition, these
solutions are not built to run over large-scale data. In
addition, we notice the same limitations considerati-
ons with JSONiq (Florescu and Fourny, 2013) the ex-
tension to XQuery designed to deal with large-scale
semi-structured data.

This paper takes these ideas one step further by in-
troducing a schema-independent querying approach
that is built over the native operators supported by do-
cument stores. We believe that, in collections of he-
terogeneous documents describing a given entity, we
are able to handle the documents heterogeneities via
the use of query rewriting mechanisms introduced in
this paper. Our approach is performed in a transpa-
rent way over the initial document structures. There
is no need to perform heavy transformation nor to use
further auxiliary systems.

3 EASY QUERY FOR NoSQL
DOCUMENT STORES

EasyQ is a tool that facilitates to the user the explora-
tory querying of a document store without having to
know the entire data structures of documents.

The figure 2 gives a high-level viewpoint of our
engine, divided into two parts: a dictionary builder
and a query rewriting engine. To ensure an efficient

handle the syntactic heterogeneity. Furthermore, the-
saurus and dictionary are used to perform semantic 
matching. The schema integration techniques may 
lead to data duplication and possible initial under-
lying data structure loss, which may be impossible or 
unacceptable to support legacy applications. Let us 
notice that we built our schema-independent querying 
upon the ideas developed in schema level matching 
techniques.

Physical Re-factorization. Several works have 
been conducted to enable querying over semi-
structured data without any prior schema validation 
or restriction. Generally, they propose to flatten XML 
or JSON data into a relational form (Chasseur et al., 
2013) (Tahara et al., 2014), (DiScala and Abadi, 
2016). SQL queries are formulated based on relati-
onal views built on top of the inferred data structures. 
This strategy suggests performing heavy physical re-
factorization. Hence, this process requires additional 
resources such as the need for external relational da-
tabase and extra efforts to learn the unified inferred 
relational schema. Users dealing with those systems 
have to learn new schemas every time they change 
the workload, or new data are inserted (or updated) in 
the collection because it is required to re-generate the 
relational views and the stored columns after every 
change.

Schema Discovery. Other works propose to infer 
implicit schemas from semi-structured documents. 
The idea is to give an overview of the different ele-
ments present in the integrated data (Baazizi et al., 
2017) (Ruiz et al., 2015). In (Wang et al., 2015) the 
authors propose summarizing all documents schema 
under a skeleton to discover the existence of fields or 
sub-schema inside the collection. In (Herrero et al., 
2016) the authors suggest extracting collection struc-
tures to help developers while designing their ap-
plications. The heterogeneity problem here is de-
tected when the same attribute is differently repre-
sented (different type, different position inside docu-
ments). Schema inferring methods are useful for the 
user to have an overview of the data and to take the 
necessary measures and decisions during application 
design phase. The limitation with such logical view is 
the need to manual process while building the desired 
queries by including the desired attributes and their 
possible navigational paths. In that case, the user is 
aware of data structures but is required to manage he-
terogeneity.

Querying Techniques. Others works suggest resol-
ving the heterogeneity problem by working on the



query enrichment, we introduce EasyQ in early sta-
ges during data loading phase in order to generate
and materialize a dictionary containing all different
navigational paths for all attributes. From a general
point of view, the dictionary is updated each time a
document is updated, removed or inserted in the col-
lection. At the querying stage, EasyQ takes as input
the user query, called Q, formulated over fields and/or
sub-paths, and the desired collection. The EasyQ re-
writing engine reads from the dictionary and produces
an enriched query supported by the underlying docu-
ment store, called Qext. Finally, the document store
returns the results to the user.

Figure 2: EasyQ architecture: data structure extractor and
query rewriting engine.

In the remainder of this section, we describe the
formal data model and the extended query process.

3.1 Formal Data Model

Usually, a document-oriented store is modelled as a
collection of JSON documents.

Definition 1 (Collection). A collection C is defined
as a set of documents:

C = {d1, . . . , dc}

Definition 2 (Document). A document di, ∀i ∈
[1,c], is defined as a (key,value) pair:

di = (ki,vi)

• ki is a key that identifies the document;

• vi = {ai,1 : vi,1, . . . ,ai,ni : vi,ni} is the document va-
lue. The document value vi is defined as an object
composed by a set of (ai, j, vi, j) pairs, where each
ai, j, is a string called attribute and each vi, j, is the
value that can be atomic (numeric, string, bool-
ean, null) or complex (object, array).

An atomic value is defined as follows:

• vi, j = n if n ∈ N∗, the set of numeric values;

• vi, j = “s” if “s” is a string formatted in Unicode
characters of ∑

∗;

• vi, j = b if b ∈ B the set of boolean values
B= {true, f alse};
• vi, j =⊥ is a null value.

A complex value is defined as follows:
• vi, j = {ai, j,1 : vi, j,1, . . . , ai, j,ni, j : vi, j,ni, j} is an ob-

ject value where vi, j,k are strings formatted in Uni-
code characters of ∑

∗ called attributes and vi, j,k
are values; This is a recursive definition identical
to document value;
• vi, j = [vi, j,1, . . . , vi, j,ni, j ] is an array of values.

In case of having document values vi, j as an object
or array, their inner values vi, j,k can be complex values
allowing to have different nesting levels. To cope with
nested documents and navigate through schemas, we
adopt classical navigational path notation (Bourhis
et al., 2017).

Definition 3 (Schema). A schema, denoted si, infer-
red from the document value {ai,1 : vi,1, . . . ,ai,ni : vi,ni}
is defined as a set of paths:

si = {p1, . . . , pmi}

Each p j is a path derived from the document value.
For multiple nesting levels, the path is extracted recur-
sively to find the absolute navigational path starting
from the root to the atomic value that can be found in
the document hierarchy.

A schema si of document di is formally defined as
follows:
∀ j ∈ [1..ni],
• if vi, j is atomic, si = sdi ∪{ai, j};
• if vi, j is an object, si = si∪{ai, j}∪{∪p∈si, j ai, j.p}

where si, j is the schema of vdi, j;

• if vi, j is an array, si = si∪{ai, j}∪
‖vi, j‖
k=1

(
{ai, j.k}∪

{∪p∈si, j,k ai, j.k.p}
)

where si, j,k is the schema of

the kth value from the array vi, j.

Example. Let us consider the collection C =
{d1,d2,d3,d4,d5} composed of the documents intro-
duced in section 1, figure 1. The underlying schema
for the documents is described as follows:

s1 = { name, title, year }
s2 = { name, book, book.title, book.year }
s3 = { name, birthyear }
s4 = { name, artwork, artwork.1, artwork.2

, artwork.1.title, network.1.year
, artwork.2.title, artwork.2.year }

s5 = { name, title, year }



We can notice that the attribute “book” from do-
cument d2 is an object in which are nested the at-
tributes “title” and “year”. So, that leads to hand-
ling two different navigational paths “book.title” and
“book.year”. We can also notice that the attribute
“artwork” in document d4 is an array which is com-
posed of two sub-documents having the following
sub-schemas:

s4.1 = { title, year }
s4.2 = { title, year }

Thus, that leads us to add to the dictionary the four
aforementioned paths starting from “artwork”.

Definition 4 (Collection Schema). The schema SC
inferred from collection C is defined as follows:

SC =
c⋃

i=1

si

Definition 5 (Dictionary). The dictionary dictC of a
collection C is defined by a set of pairs:

dictC = {(pk, 4k)}

• pk ∈ SC;

• 4k = {pk}
⋃
{
⋃
∀pi∈SC |pi=pl .pk

pi}. For each path
pk,4k is the set of paths leading to pk.

Example. The dictionary dictC constructed from
the collection C of figure 1 is defined hereafter.
Each dictionary entry pk refers to the set of all
extracted navigational paths 4k. For example,
the entry “year” refers to all navigational paths
{year, book.year, artwork.1.year, artwork.2.year}
leading to the attribute “year”.

{
(name, {name}),
(title, {title, book.title,

artwork.1.title, artwork.2.title}),
(year, {year, book.year,

artwork.1.year, artwork.2.year}),
(book, {book}),
(book.title, {book.title}),
(book.year, {book.year}),
(birthyear, {birthyear}),
(artwork, {artwork}),
(artwork.1, {artwork.1}),
(artwork.1.title, {artwork.1.title}),
(artwork.1.year, {artwork.1.year}),
(artwork.2, {artwork.2}),
(artwork.2.title, {artwork.2.title}),
(artwork.2.year, {artwork.2.year})

}

3.2 Querying Heterogeneous Document
Stores

The querying process is supported by a set of ele-
mentary operators. These operators are expressed by
native MongoDB query commands such as “find” or
“aggregate”.

3.2.1 Kernel of Operators

The queries are defined according to combinations of
elementary operators. The set of operators forms a
kernel, which is denoted K. For now, this kernel is
composed of three operators: projection, restriction
(or selection) and aggregation. Each elementary ope-
rator is unary; we call Cin the queried collection, and
Cout the resulting collection.

Definition 6 (Kernel). The kernel K is a minimal
closed set composed of the following unary operators.

k = {π, σ, γ}

• πA(Cin) = Cout is a project operator, which con-
sists in restricting each document schema si to a
subset of attributes A⊆ Scin .

• σp(Cin) = Cout is a restrict operator, which con-
sists in selecting documents from Cin satisfying
the predicate p. A simple predicate is expres-
sed by ak ωk vk where ak ⊆ SCin is an attribute,
ωk ∈ {= ;> ;< ; 6= ;≥ ;≤ } is a comparison
operator, and vk is a value. It is possible to com-
bine predicates by logical connectors { ∨, ∧, ¬}.
We suppose that the predicate is defined as, or nor-
malized to, a conjunctive normal form:

∧
k

(∨
l

ak,l ωk,l vk,l

)

• GγF(Cin) = (Cout) is an aggregate operator, which
consists of aggregating each group of docu-
ments having same values for G ⊆ SCin and cal-
culating the aggregate values, F = { f (ak)| f ∈
{Sum,Max,Min,Avg,Count} ∧ ak ∈ SCin ∧ ak /∈
G}.

Definition 7 (Query). A query Q is formulated by
composing previous unary operators as follows:

Q = q1 ◦ · · · ◦qr(C)

where ∀i ∈ [1,r], qi ∈ K.



Example. Let us consider the collection C of figure
1. We propose hereafter several examples of queries;
let us staying aware that structural heterogeneity ex-
ists in C and that those queries are not expected to
deal with the heterogeneity.

• “Search for the list of authors’ name and their pu-
blications”
πname,title(C) =

[ { name:"victor hugo",
title:"les miserables" },

{ name:"honore de balzac" },
{ name:"paul verlaine" },
{ name:"charles baudelaire" },
{ name:"pierre de ronsard",
title:"les amours" } ]

• “‘Search for the titles of the publications of Pierre
de Ronsard and Charles Baudelaire”
π(name,title(σname=“Charles Baudelaire” ∨
name=“Pierre de Ronsard”(C)) =

[ { name:"charles baudelaire" },
{ name:"pierre de ronsard",

title:"les amours" } ]

• “‘Search for the number of publications for each
authors”
nameγcount(title)(C) =

[ { name:"victor hugo", count:1 },
{ name:"honore de balzac", count:0 },
{ name:"paul verlaine", count:0 },
{ name:"charles baudelaire", count:0 },
{ name:"pierre de ronsard", count:1 } ]

As aforementioned, due to the structural heteroge-
neity of the attribute “title” we notice that these que-
ries do not give relevant results according to the sto-
red documents. To obtain relevant results users would
have to write complex queries taking into account the
various schemas.

3.2.2 Query Extension Process

Dealing with a collection of heterogeneous docu-
ments complicates the process of expressing queries.
Most of NoSQL systems do not give native support
to query heterogeneous documents. For instance, the
“find” operator, as well as the “aggregate” pipeline
operator of MongoDB, is not able to automatically re-
cognize the numerous structures of the queried col-
lection. More precisely, the result does not include
values from navigational paths that are not explicitly
included in the query.

Our approach aims at enabling a transparent que-
rying process on a collection of heterogeneous docu-
ments via an automatic query rewriting process. It
employs the materialized dictionary to enrich the ini-
tial query by including the different navigational paths
that lead to desired attributes. It is described in the al-
gorithm 1 and parts are described hereafter:

• In case of projection, the list of projected attribu-
tes A is extended by the various navigational paths
4k for each attribute ak ∈ A; the underlying idea
is to ask the dbms to search for all possible exis-
ting path for attributes.
• In case of restriction, the normal conjunctive form

of the predicate p is enriched by the set of exten-
ded disjunctions built from the navigational paths
4k,l for each attribute a j of the predicate; the un-
derlying idea is to ask the dbms to test all possible
existing paths for attributes.
• In case of aggregation, the operation is extended

using two operations: an added projection to deal
with the heterogeneity of attributes, and a classi-
cal aggregation to operate the calculus. The list of
attributes G is extended by the various navigatio-
nal paths4k for each attribute a j ∈ G. Each path
is renamed according to the attribute a j given in
the aggregation; in the algorithm 1, we note the
rename operation a j ⇐ 4 j. An equivalent pro-
jection is made for all attributes of F . Then the
true and classical aggregation can be done. The
underlying idea is to ask the dbms to ”flatten”
all possible heterogeneous paths of attributes in G
and F in order to be able to group documents on
the same value of a same attribute and calculate
the aggregated value on a same attribute. Let us
notice that such operations are done by the dbms,
often in pipeline mode, and is not a physical fac-
torization (nor a physical flattening).

Example. Let us consider the previous queries ex-
amples, section 3.2.1.

• The query rewriting engine rewrites the
query πname,title(C) and for each projected
field (respectively “name” and “title”),
the process consults the dictionary and ex-
tracts all the possible navigational paths
(respectively 4name = {name}, and 4title =
{title,book.title,artwork.1.title,artwork.2.title}).
The projection query is then rewritten as
πname,title,book.title,artwork.1.title,artwork.2.title(C) =

[ { name:"victor hugo",
title:"les miserables" },

{ name:"honore de balzac",



Algorithm 1: Automatic extension of the initial
user query.

input: Q
output: Qext
Qext ← id // identity
foreach qi ∈ Q do

switch qi do
case πAi // projection
do

Aext ←
⋃
∀ak∈Ai

4k
Qext ← Qext ◦πAext

end
case σNormp // restriction
do

Pext ←
∧

k(
∨

l
∨

a j∈4k,l
a j ωk,l vk,l)

Qext ← Qext ◦σPext

end
case GγF // aggregation
do

Qext ← Qext ◦ (π⋃
∀a j∈G a j⇐(4 j),⋃

∀ fk(ak) ∈F ak⇐(4k) ◦ GγF)

end
end

end

book:{title:"le pere Goriot" } }
{ name:"paul verlaine" },
{ name:"charles baudelaire",

artwork:[
{title:"les fleurs du mal"},
{title:"le spleen de Paris"}] },

{ name:"pierre de ronsard",
title:"les amours" } ]

• Our rewriting engine extends the query
πname,title(σname=“Charles Baudelaire” ∨ name=“Pierre de

Ronsard”(C)) with the dictionary entries in the
same way as the previous query. The projected
attributes are extended as for the previous query.
Next, the process continues with the selection
query. The selection is rewritten by extending the
normal form of its predicate; the attribute “name”
has only one structural form, then the predicate is
not rewritten. The composed query is then rewrit-
ten as πname,title,book.title,artwork.1.title,artwork.2.title
(σname=“Charles Baudelaire” ∨ name=“Pierre de Ronsard”)
(C)) =

[ { name:"charles baudelaire",
artwork:[

{title:"les fleurs du mal"},
{title:"le spleen de Paris"}] },

{ name:"pierre de ronsard",
title:"les amours" } ]

• Our rewritten query transforms the query
nameγcount(title)(C) to a project operator introduced
to rename the different heterogeneous paths.
Then, the query is rewritten as a composed
query such as nameγcount(title)(πname:(name⇐(name)),

title:(title⇐ (title|book.title| artwork.1.title|artwork.2.title))
(C)) =

[ { name:"victor hugo", count:1 },
{ name:"honore de balzac", count:1 },
{ name:"paul verlaine", count:0 },
{ name:"charles baudelaire", count:2 },
{ name:"pierre de ronsard", count:1 } ]

4 EXPERIMENTS

The overall goal of the next experiments is to study
if the rewriting process is acceptable along many di-
mensions: cost/overhead for query evaluation, size of
the dictionary and cost time for building it, number of
possible schemas that EasyQ can deal with. The pur-
pose of our first experiments in this section is to study
the scale effects on the rewritten queries regarding
two main factors: the size of the queried collection
and the heterogeneity levels. In addition, we study
their effects on the dictionary. We choose MongoDB
to store the different datasets, the dictionary and to
run the rewritten queries.

Let us notice that, using MongoDB or any ot-
her classical document store, the rewriting process is
compatible with the underlying dbms engine. Indeed,
during any query evaluation, if a path is not present in
a document, it is simply ignored. Thus, the following
rules are applied during queries evaluation:
• Projection: for each document, any non-present

projection path is ignored and only those really
existing in the document are retrieved.
• Restriction: for each document, any non-present

enriched path is ignored since it has been included
in a disjunctive form. If no path is found in the
document, the condition is evaluated to false.
• Aggregation: The same rule applies than for pro-

jection since we use this operator for rewriting
purpose; grouping and aggregation computing are
classical ones.

Experimental Protocol. All experiments in this pa-
per were implemented in Python and ran on a server
with Intel I5 (3.4 GHz 4 cores), 16GB RAM and Cen-
tOS 7.0. We repeated each experiment 5 times and
we report the mean values. The details of the dataset
and the queries are presented in the remainder of this
section.



Dataset. In this experimental evaluation, we em-
ploy synthetic datasets with various schemas and vo-
lume. All datasets are generated from the initial flat
collection of documents that describe films published
by IMDB1. To this end, we inject the structural he-
terogeneity by introducing new grouping fields. We
nest the initial attributes inside these new groups. The
values of those fields are randomly chosen from the
original film collection. To add more complexity, we
can set the nesting level used for each generated struc-
ture. We built our custom data generator allowing us
to define several parameters such as the number of
schemas to produce in the collection, the percentage
of the presence of every generated schema. For each
schema, we can adjust the number of grouping ob-
jects. We mean by grouping object, a compound field
in which we nest a subset of the document.

Let us notice that every dataset can be generated
in two versions: the generated heterogeneous one and
an equivalent flat one. The flat dataset contains data
from the heterogeneous one in which each document
is flatten to its leaf attributes. So, each document va-
lues existing in heterogeneous dataset also exists in
the flat one. This allows to compare queries over hete-
rogeneous data and equivalent homogeneous data (flat
documents in our case) since, if they are relevant, they
should return the same number of documents and the
same values. We are currently working on the on-
line free delivery of datasets and datasets generator;
for the moment you can ask the authors or visit their
websites.

Queries. We define two queries composed of 2 and
8 predicates for projection and selection operators,
and we use all possible comparison operators on dif-
ferent data types. We generate for each query two ver-
sions constituted by the conjunctive form of the pre-
dicates in Q1, Q3 queries, and disjunctive in Q2, Q4
queries. Moreover, we introduce two other queries to
study the aggregation operator A1, A3.

• Q1 & Q2 select all documents where the “director
name” of the film starts with the letter “A” and/or
the film got as “gross” more than 100 K.

• Q3 & Q4 select all documents where the “director
name” of the film starts with the letter “A” an-
d/or the film got as “gross” more than 100 K an-
d/or the “duration” of the film does not exceeds
200 minutes and/or the “title year” is less than
the year 1950 and/or the “country” of the film is
known and/or the film “language” is “English”
and/or the film got “IMDB score” more less than

1www.omdbapi.com

4 and/or the “number of Facebook likes” is grea-
ter than 500.

• A1 group documents by “country” and “lan-
guage” and then aggregate by the function “Max”
over the “film score”.

• A2 group documents by “director name” and
“year” and then aggregate by the function “Sum”
over the “revenue”.

Table 1: Settings of the generated dataset for rewritten que-
ries evaluation.

Setting Value
# schemas 10
# groups per schema {5,6,1,3,4,2,7,2,1,3}
Nesting levels per schema {4,2,6,1,5,7,2,8,3,4}
% schema presence 10%
#attributes per schema Random
#attributes per group Random

Scale Effects on the Rewritten Queries. In this
test series, we try to study the effects of the scale
on the rewritten queries. We define three contexts in
which we run the above-defined queries. The order of
query execution is set to be random to prevent the do-
cument store from reusing cache mechanisms. Here,
we describe the different execution contexts:

• We note “QBase” the query that refers to the ini-
tial user query (one of the above defined queries),
and that is executed over the homogeneous ver-
sion of the dataset. The purpose of this first con-
text is to study the native behaviour of the docu-
ment stores. We use this first context as a baseline
for our experimentation.

• The “QRewritten” refers to the query “QBase”
rewritten by our approach and executed over the
heterogeneous version of the datasets. As afore-
mentioned the two datasets are considered ”equi-
valent”, then “QRewritten” is expected to return
the same number of documents (and content) than
“QBase”. It is the case in all the following expe-
riments.

• The “QAccumulated” refers to the set of equiva-
lent queries formulated on each possible schema
from the collection. In our case, it is made of 10
separated queries since we are dealing with col-
lections having ten schemas. It is executed over
the heterogeneous version of the datasets. For the
experiments, we wrote these queries ”by hand”.

Table 1 presents the characteristics of the datasets
used for this first category of experiments. Let us no-
tice that each attribute is present in ten different sche-
mas at different nesting levels.
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Figure 3: Collection size effect on the rewritten queries compared to classical ones.

tra costs for refactoring the underlying data structu-
res. Unlike the baseline, our synthetic dataset con-
tains different grouping objects with varying nesting
levels. Then, the rewritten query contains several
navigational paths that are processed by the native
query engine of MongoDB to find matches in each
visited document among the collection. Finally, let
us notice that the aggregation rewriting allows per-
forming complex computations that are particularly
time-consuming and prone to errors when done ”by
hand”.

Heterogeneity Effects on the Dictionary and the
Query Build Time. With this series of experiments,
we try to push the dictionary and the query rewriting
engine to their limits. For that, we generated a hetero-
geneous synthetic collection of 1 GB. We use the ini-
tial 28 attributes from the IMDB flat films collection.
The custom collections are generated in a way that
each schema inside a document is composed of two
grouping objects with no further nesting levels. We
generated collection having 10, 100, 1k, 3k and 5k
schemas. For this experiment, we test the use of the
query Q4 introduced earlier in this section. We pre-
sent the dictionary size and the time needed to build
the rewritten query of Q4 in Table 2

It is notable that the time to build the rewritten
query is very low, always less than two seconds when
5K distinct schemas exist in the collection. In ad-
dition, it is possible to construct a dictionary over a
highly heterogeneous collection of documents, here

Figure 3 shows our first r esults. E ach graphic 
shows: x axis is the collection size (GB), y axis is 
the time of query execution (s), blue curve refers to 
“QRewritten”, green one to “QBase”, and red one to 
“QAccumulated”, that is the sum of the evaluation of 
the ten sub-queries.

As shown in figure 3, the behaviour of our rewrit-
ten query is similar to the baseline. Both “QRewrit-
ten” and “QBase” have execution time linear when 
regarding collection size while the accumulated query 
“QAccumulated” seems to exhibit exponential time 
costs. We can notice also that the execution of our so-
lution is less than two times higher (e.g., disjunctive 
form) than the normal execution of the baseline query. 
Moreover, we score an overall overhead that does not 
exceed 1,5 times in the different projection and se-
lection queries.

The same behaviour is also noticed while studying 
the aggregation queries. Only “QRewritten” and 
“QBase” are presented in the study of the aggrega-
tion queries. The rewriting of aggregation uses the 
“aggregate” pipeline operator of MongoDB. It is re-
markable that although the necessary insertion of two 
projections in the pipeline (cf. algorithm 1 and ex-
planations section 3.2.2), the time execution overhead 
remains low.

For all queries, despite of the fact that each attribute 
has been replaced by ten possible paths, the time exe-
cution overhead remains quite low. We believe that 
this overhead is acceptable since we bypass the ex-



Table 2: Data diversity effects on query rewriting time and
dictionary size.

# of schemas Query rewriting in (s) Dictionary size
10 0.0005 40 KB
100 0.0025 74 KB
1 K 0.139 2 MB
3 K 0.6 7.2 MB
5 K 1.52 12 MB

our dictionary can support up to 5k of distinct sche-
mas. The resulting size of the materialized dictionary
is very promoting since it does not require significant
storage space. Furthermore, we also believe that the
time spent to build the rewritten query is very inte-
resting and represent another advantage of our solu-
tion. When rewriting the queries, we try to find dis-
tinct navigational paths for eight predicates. Having
5k of paths for each query predicate, these experi-
ments show that we are able to generate a selection
query with 40k of navigational paths expressed in dis-
junctive form.

5 CONCLUSION

In this paper, we provide a novel approach for que-
rying heterogeneous documents describing a given
entity over document-oriented data stores. Our ob-
jective is to allow users to perform their queries using
a minimal knowledge about data schemas. Our tool
EasyQ is based on two main principles. The first one
is a dictionary that contains all possible paths for a gi-
ven field. The second one is a rewriting module that
modifies the user query to match all field paths ex-
isting in the dictionary. Our approach is a syntactic
manipulation of queries. Therefore, it is grounded on
a strong assumption: the collection describes homo-
geneous entities, i.e., a field has the same meaning in
all document schemas. If this assumption is not gua-
ranteed, users may face with irrelevant or incoherent
results.

We conduct experiments to compare the execu-
tion time cost of basic MongoDB queries and rewrit-
ten queries proposed by our approach. We conduct a
set of experiments by changing two primary parame-
ters, the size of the dataset and the structural heteroge-
neity inside a collection. Results show that the cost of
executing rewritten queries proposed in this paper is
higher when compared to the execution of basic user
queries. The overhead added to the performance of
our query is due to the combination of multiple access
path to a queried field. Nevertheless, this time over-
head is neglectful when compared to the execution of
separated queries for each path. Let us notice that
an interesting advantage of EasyQ is that each time

a query is evaluated, it is first rewritten according to
the dictionary taht is updated online. Therefore, the
query will always automatically deal with all existing
schemas.

These first results are very encouraging to conti-
nue this research way and need to be strengthened.
Short-term perspectives are to continue evaluations
and to identify the limitation regarding the number of
paths and fields in the same query and regarding time
cost. More experiments still to be performed on larger
”real data” datasets. Another perspective is to study
in depth the process of the dictionary building in real
applications and in parallel of collection updates and
querying.

Finally, a long-term perspective is to enhance que-
rying over a collection of documents presenting se-
veral levels of heterogeneity, i.e., structural as well as
syntactic and semantic heterogeneities.
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